260 research outputs found

    Minimum mean-squared error iterative successive parallel arbitrated decision feedback detectors for DS-CDMA systems

    Get PDF
    In this paper we propose minimum mean squared error (MMSE) iterative successive parallel arbitrated decision feedback (DF) receivers for direct sequence code division multiple access (DS-CDMA) systems. We describe the MMSE design criterion for DF multiuser detectors along with successive, parallel and iterative interference cancellation structures. A novel efficient DF structure that employs successive cancellation with parallel arbitrated branches and a near-optimal low complexity user ordering algorithm are presented. The proposed DF receiver structure and the ordering algorithm are then combined with iterative cascaded DF stages for mitigating the deleterious effects of error propagation for convolutionally encoded systems with both Viterbi and turbo decoding as well as for uncoded schemes. We mathematically study the relations between the MMSE achieved by the analyzed DF structures, including the novel scheme, with imperfect and perfect feedback. Simulation results for an uplink scenario assess the new iterative DF detectors against linear receivers and evaluate the effects of error propagation of the new cancellation methods against existing ones

    Suboptimal maximum-likelihood multiuser detection of synchronous CDMA on frequency-selective multipath channels

    Full text link

    Adaptive multicoding and robust linear-quadratic receivers for uncertain CDMA frequency-selective fading channels

    Get PDF
    Wideband Code Division Multiple Access (WCDMA) communications in the presence of channel uncertainty poses a challenging problem with many practical applications in the wireless communications filed. In this dissertation, robust linear-quadratic (LQ) receivers for time-varying, frequency-selective CDMA channels in the presence of uncertainty regarding instantaneous channel state information are proposed and studied. In order to enhance the performance of the LQ receivers, a novel modulation technique adaptive multicoding is employed. We proposed a simple, intuitively appealing cost function the modified deflection ratio that can be maximized to find signal constellations and associated LQ receivers that are optimal in a certain sense. We discuss the properties of the proposed LQ cost function and derive a related adaptive algorithm for the simultaneous design of signals and receivers based on a simple multicoding technique. The Chernoff bound for the LQ receivers is also derived to compensate for the analytical intractability of the probability of bit error. Finally, in order to achieve higher data rate transmission in favorable channels, we extend our approach from binary signals to M-ary signal constellations in a multi-dimension subspace

    Near maximum likelihood multiuser receivers for direct sequence code division multiple access

    Get PDF
    Wideband wireless access based on direct-sequence code-division multiple access (DS-CDMA) has been adopted for third-generation mobile communications systems. Hence, DS-CDMA downlink communications systems form the platform for the work in this thesis. The principles of the spread spectrum concept and DS-CDMA technology are first outlined, including a description of the system model and the conventional receiver. The two classes of codes used in this system, namely spreading codes and forward error correction codes (including Turbo codes), are discussed. Due to the fact that practical communications channels are non-ideal, the performance of an individual user is interference limited. As a result, the capacity of the system is greatly restricted. Fortunately, multiuser detection is a scheme that can effectively counteract this multiple access interference. However, the optimum multiuser detection scheme is far too computationally intensive for practical use. Hence, the fundamental interest here is to retain the advantages of multiuser detection and simplify its implementation. The objective of the thesis is to investigate the optimum multiuser receiver, regarded on a chip level sampling basis. The aim is to reduce the complexity of the optimum receiver to a practical and implementable level while retaining its good performance. The thesis first reviews various existing multiuser receivers. The chip-based maximum likelihood sequence estimation (CBMLSE) detector is formulated and implemented. However, the number of states in the state-transition trellis is still exponential in the number of users. Complexity cannot be reduced substantially without changing the structure of the trellis. A new detector is proposed which folds up the original state-transition trellis such that the number of states involved is greatly reduced. The performance is close to that of the CBMLSE. The folded trellis detector (FTD) can also be used as a preselection stage for the CBMLSE. The FTD selects with high accuracy the few symbol vectors that are more likely to be transmitted. The CBMLSE is then used to determine the most likely symbol vector out of the small subset of vectors. The performance of this scheme is as good as the CBMLSE. The FTD is also applied in an iterative multiuser receiver that exploits the powerful iterative algorithm of Turbo codes

    Near far resistant detection for CDMA personal communication systems.

    Get PDF
    The growth of Personal Communications, the keyword of the 90s, has already the signs of a technological revolution. The foundations of this revolution are currently set through the standardization of the Universal Mobile Telecommunication System (UMTS), a communication system with synergistic terrestrial and satellite segments. The main characteristic of the UMTS radio interface, is the provision of ISDN services. Services with higher than voice data rates require more spectrum, thus techniques that utilize spectrum as efficiently as possible are currently at the forefront of the research community interests. Two of the most spectrally efficient multiple access technologies, namely. Code Division Multiple Access (CDMA) and Time Division Multiple Access (TDMA) concentrate the efforts of the European telecommunity.This thesis addresses problems and. proposes solutions for CDMA systems that must comply with the UMTS requirements. Prompted by Viterbi's call for further extending the potential of CDMA through signal processing at the receiving end, we propose new Minimum Mean Square Error receiver architectures. MMSE detection schemes offer significant advantages compared to the conventional correlation based receivers as they are NEar FAr Resistant (NEFAR) over a wide range of interfering power levels. The NEFAR characteristic of these detectors reduces considerably the requirements of the power control loops currently found in commercial CDMA systems. MMSE detectors are also found, to have significant performance gains over other well established interference cancellation techniques like the decorrelating detector, especially in heavily loaded system conditions. The implementation architecture of MMSE receivers can be either Multiple-Input Multiple Output (MIMO) or Single-Input Single-Output. The later offers not only complexity that is comparable to the conventional detector, but also has the inherent advantage of employing adaptive algorithms which can be used to provide both the dispreading and the interference cancellation function, without the knowledge of the codes of interfering users. Furthermore, in multipath fading channels, adaptive MMSE detectors can exploit the multipath diversity acting as RAKE combiners. The later ability is distinctive to MMSE based receivers, and it is achieved in an autonomous fashion, without the knowledge of the multipath intensity profile. The communicator achieves its performance objectives by the synergy of the signal processor and the channel decoder. According to the propositions of this thesis, the form of the signal processor needs to be changed, in order to exploit the horizons of spread spectrum signaling. However, maximum likelihood channel decoding algorithms need not change. It is the way that these algorithms are utilized that needs to be revis ed. In this respect, we identify three major utilization scenarios and an attempt is made to quantify which of the three best matches the requirements of a UMTS oriented CDMA radio interface. Based on our findings, channel coding can be used as a mapping technique from the information bit to a more ''intelligent" chip, matching the ''intelligence" of the signal processor

    Improved CDMA Performance Using Parallel Interference Cancellation

    Get PDF
    This report considers a general parallel interference cancellation scheme that significantly reduces the degradation effect of user interference but with a lesser implementation complexity than the maximum-likelihood technique. The scheme operates on the fact that parallel processing simultaneously removes from each user the interference produced by the remaining users accessing the channel in an amount proportional to their reliability. The parallel processing can be done in multiple stages. The proposed scheme uses tentative decision devices with different optimum thresholds at the multiple stages to produce the most reliably received data for generation and cancellation of user interference. The 1-stage interference cancellation is analyzed for three types of tentative decision devices, namely, hard, null zone, and soft decision, and two types of user power distribution, namely, equal and unequal powers. Simulation results are given for a multitude of different situations, in particular, those cases for which the analysis is too complex

    Proceedings of the Fall 1995 Advanced Digital Communication Systems

    Get PDF
    Coordinated Science Laboratory was formerly known as Control Systems Laborator

    Transmission of vector quantization over a frequency-selective Rayleigh fading CDMA channel

    Get PDF
    Recently, the transmission of vector quantization (VQ) over a code-division multiple access (CDMA) channel has received a considerable attention in research community. The complexity of the optimal decoding for VQ in CDMA communications is prohibitive for implementation, especially for systems with a medium or large number of users. A suboptimal approach to VQ decoding over a CDMA channel, disturbed by additive white Gaussian noise (AWGN), was recently developed. Such a suboptimal decoder is built from a soft-output multiuser detector (MUD), a soft bit estimator and the optimal soft VQ decoders of individual users. Due to its lower complexity and good performance, such a decoding scheme is an attractive alternative to the complicated optimal decoder. It is necessary to extend this decoding scheme for a frequency-selective Rayleigh fading CDMA channel, a channel model typically seen in mobile wireless communications. This is precisely the objective of this thesis. Furthermore, the suboptimal decoders are obtained not only for binary phase shift keying (BPSK), but also for M-ary pulse amplitude modulation (M-PAM). This extension offers a flexible trade-off between spectrum efficiency and performance of the systems. In addition, two algorithms based on distance measure and reliability processing are introduced as other alternatives to the suboptimal decoder. Simulation results indicate that the suboptimal decoders studied in this thesis also performs very well over a frequency-selective Rayleigh fading CDMA channel
    • …
    corecore