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ABSTRACT

Recently, the transmission of vector quantization (VQ) over a code-division multiple

access (CDMA) channel has received a considerable attention in research community.

The complexity of the optimal decoding for VQ in CDMA communications is pro-

hibitive for implementation, especially for systems with a medium or large number

of users. A suboptimal approach to VQ decoding over a CDMA channel, disturbed

by additive white Gaussian noise (AWGN), was recently developed in [1], [2]. Such

a suboptimal decoder is built from a soft-output multiuser detector (MUD), a soft

bit estimator and the optimal soft VQ decoders of individual users. Due to its lower

complexity and good performance, such a decoding scheme is an attractive alternative

to the complicated optimal decoder. It is necessary to extend this decoding scheme

for a frequency-selective Rayleigh fading CDMA channel, a channel model typically

seen in mobile wireless communications. This is precisely the objective of this thesis.

A frequency-selective Rayleigh fading channel is typically modeled as a tapped-

delay line [3]. In this channel model, the received amplitude over each path of each
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user is a complex random variable. The delay between paths is an integer multiple of

the chip duration. Therefore, the formulation of the suboptimal decoding proposed

for an AWGN channel in [1], [2] needs to be carefully examined. In the suboptimal

decoding under consideration, the received signal waveform is first correlated with

delayed replicas of the users’ signature waveforms to form the sufficient statistic. The

sufficient statistic is then processed by the MUD and the VQ decoder in order to

make the final decision for the source data. The soft-output MUD can be the jointly

optimal MUD (OPT-MUD), the minimum mean-square error MUD (MMSE-MUD)

or the decorrelating MUD (DC-MUD). For each type of MUD, the soft-bit estimates

are calculated from the sufficient statistic and then fed into the soft VQ decoders [1].

Furthermore, the suboptimal decoders are obtained not only for binary phase shift

keying (BPSK), but also for M -ary pulse amplitude modulation (M -PAM). This

extension offers a flexible trade-off between spectrum efficiency and performance of

the systems. In addition, two algorithms based on distance measure and reliability

processing are introduced as other alternatives to the suboptimal decoder. Simulation

results indicate that the suboptimal decoders studied in this thesis also performs very

well over a frequency-selective Rayleigh fading CDMA channel.
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1. Introduction

Nowadays, digital communication systems play an important role in the daily ac-

tivities of human being. In digital communications, the information in digital form

is transmitted from a source to one or more destinations. Three basic elements of

a digital communication system are the transmitter, the channel and the receiver.

The transmitter uses proper signals to transmit information over the channel. The

communication channel is the physical medium connecting the transmitter and the

receiver. For example, the communication channel can be a pair of wires, a mag-

netic disk or the atmosphere. The receiver obtains the signal from the channel, then

recovers the original information as correctly as possible.

The transmitter of a digital communication system is designed to transmit data

in digital form. Consequently, the source outputs must be translated into digital

format that can be transmitted digitally. The conversion of the source output to

a digital form is performed by a source encoder. The output of a source encoder

is a sequence of binary digits [3]. Vector quantization (VQ) was introduced in the

late 1970’s as a scheme for effectively mapping a sequence of vectors into a digital

sequence of numbers. In source coding, vector quantization is an important technique

which results in data compression. One of the most important advantages of VQ is

that it can model any device that maps blocks of information source into a finite

representation. VQ becomes common in many applications. It is also a major tool in

many practical systems. For example, VQ is employed in most (low or medium rate)

speech coding algorithms. Image and video coding that involves VQ are becoming

hot topics for research [7]. This thesis also studies VQ as a source coding technique

for a digital communication system.

In a communication system, a large number of users can share a common com-
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munication channel to transmit information to a receiver. Multiaccess communica-

tion is referred to as multipoint-to-point communication. Point-to-multipoint and

multipoint-to-point channels are sometimes distinguished as downlink and uplink, re-

spectively. In general, there are several different ways in which multiple users can

send information through the communication channel to the receiver. One simple

method is to divide the available channel bandwidth into a number of frequency non-

overlapping subchannels. Each subchannel is assigned to one user. This method is

called frequency-division multiple access (FDMA). Another way for creating multiple

subchannels is referred to as time-division multiple access (TDMA). In TDMA, time is

partitioned into slots. Then, each user who wishes to transmit information is assigned

to a particular time slot. Employing FDMA and TDMA is wasteful, especially when

the number of users is large. In code-division multiple access (CDMA), one user is

distinguished from another by superimposing a different pseudorandom pattern, also

called a code or a signature waveform. Each transmitter sends its data stream by

modulating its own signature waveform as in a single-user digital communication sys-

tem. A particular receiver can recover the transmitted information intended for it by

knowing the pseudorandom pattern. At the receiver, after correlating with signature

waveforms, the received signal is processed by the multiuser detection (MUD) block

to obtain the respective information for each user.

One advantage of CDMA technique is to combat the detrimental effects of in-

terference due to jamming, interference arising from other users of the channel, and

self-interference due to multipath propagation. The bandwidth of spread spectral sig-

nals used for the transmission is much greater than the information rate. The large

redundancy inherent in spread spectral signals helps to overcome the severe levels

of interference that are encountered in the transmission of digital information over

radio channels. Another important feature in the design of spread spectral signals

is pseudorandomness, which makes the signals appear similar to random noise and

difficult to demodulate by receivers other than the intended ones. CDMA technique

has been developed dramatically in recent years and become key in many current
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commercial digital communication systems [3].

Transmission of VQ over a CDMA channel is therefore an important problem,

which has received considerable attention in the research community. Figure 1.1

describes the general block diagram of such a system. The transmitter consists of

Data

Reconstruction

Data

Source
Modulator

Demodulator

CDMA

channel

Index

Assignment
VQ Encoder

Decoder

Figure 1.1 General block diagram of VQ transmission over a CDMA channel.

a VQ encoder, an index assignment (IA) operator and a modulator. The source

information is encoded by the VQ encoder into index integers. Then, the index

assignment block finds the best index assignment in terms of minimizing the channel

distortion. The output of the index assignment block is a binary sequence that

is then transmitted over the CDMA channel by the modulator. At the receiver,

the opposite operations are performed accordingly. After demodulation, the decoder

obtains the demodulated data in a proper sequence and then reconstructs the original

information. The investigation of the optimal decoder for VQ over a CDMA channel

appears in [7,8]. However, such an optimal decoder is too complicated to implement,

especially when the number of users is medium or large. Recently, the author in [1], [2]

derived a suboptimal decoder which is built from a soft-output multiuser detector

(MUD), a soft bit estimator and the optimal soft VQ decoders of individual users. Due

to its lower complexity and good performance, this decoding scheme is an attractive

alternative to the complicated optimal decoder. It should be pointed out that the

work in [1] only considers a CDMA channel disturbed by additive white Gaussian
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noise (AWGN). Such a simple channel model is reasonable for communications over

coaxial cables or optical links. When considering wireless communications, a unique

and important phenomenon known as fading needs to be taken into account. In

essence, fading refers to time-varying channel conditions, where the amplitude of the

received signal changes due to constructive or destructive combination of the same

transmitted signal that arrives to the receiver via different paths. These different

paths are the consequence of reflections and/or diffractions of the electromagnetic

wave. Moreover, if the bandwidth of the transmitted signal is large (which is typical of

CDMA), the time-varying channel condition causes significantly different amplitude

distortions over different ranges of frequency, a phenomenon known as frequency-

selective fading. Due to the relevance of frequency-selective Rayleigh fading channel

in wireless communications, it is necessary to extend and develop the technique in [1]

for this type of channel.

1.1 Thesis Objectives

As mentioned earlier, the complexity of the decoder for VQ over a CDMA channel

is a prominent problem. Different alternative suboptimal decoders to the compli-

cated optimal decoder are studied in detail for a frequency-selective Rayleigh fading

CDMA channel in this thesis. The first suboptimal decoder is essentially based on

the approach presented in [1, 2]. Since the channel model considered in this thesis is

completely different from the one in [1, 2], necesary and important modifications to

the soft-output multiuser detector block in [1] need to be made. Additionally, two

decoding algorithms that are based on distance measure and reliability processing [9]

are investigated as other suboptimal decoding methods.

Since spectrum efficiency is an important consideration in a digital communi-

cation system, the suboptimal decoding of VQ over a frequency-selective Rayleigh

fading CDMA channel is developed not only for binary phase shift keying (BPSK)

modulation but also for M -ary pulse amplitude modulation (M -PAM). It is shown

that the use of M -PAM offers a flexible trade-off between the bandwidth efficiency
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and system performance.

1.2 Thesis Organization

The remaining of this thesis is organized as follows.

Chapter 2 provides background theories on the transmission of vector quantiza-

tion (VQ) over a code-division multiple access (CDMA) channel. First, both scalar

and vector quantization will be introduced. A well-known algorithm used to design

VQ will also be presented. The description of VQ based on the Hadamard matrix

representation is then discussed. Second, basic concepts and techniques of CDMA

and multiuser detection are also presented in this chapter.

Chapter 3 presents and discusses the problem of transmitting VQ over a frequency-

selective Rayleigh fading CDMA channel. The tapped-delayed line model for the

channel is first introduced. Several common existing decoders for VQ over a such a

channel are also summarized. An example will be presented to demonstrate how the

overall system works.

Chapter 4 examines the suboptimal soft decoding scheme originally proposed

in [1,2] for VQ transmitted over a frequency-selective Rayleigh fading CDMA channel.

Such a decoder is built from a soft-output multiuser detector (MUD), a soft bit esti-

mator and the optimal soft VQ decoding of an individual user. The main contribution

of this chapter is the development of three soft-output multiuser detectors (MUD)

for a frequency-selective Rayleigh fading CDMA channel. These MUDs includes the

maximum likelihood (optimal) multiuser detector (OPT-MUD), the minimum mean-

square error multiuser detector (MMSE-MUD) and the decorrelating multiuser detec-

tor (DC-MUD). Furthermore, two algorithms that are based on distance measure and

reliability processing are also proposed to simplify the complexity of the soft-output

OPT-MUD.

Chapter 5 extends the proposed decoding schemes to systems employing M -PAM.

Instead of binary phase shift keying (BPSK), using M -PAM can transmit more than
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one information bit during a symbol duration. This allows a faster transmission rate

without requiring a larger transmission bandwidth. Therefore, a higher spectrum

efficiency is obtained. However, the performance of the systems is degraded compared

to that of systems with BPSK. This is because there are more signal points in the

signal constellation of M -PAM and the minimum distance between signals decreases

for the same average energy. With this extension, this chapter offers a trade-off

between bandwidth efficiency and performance of the system.

Finally, Chapter 6 draws conclusions and provides some suggestions for further

studies.
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2. Background

Since this thesis deals with vector quantization and CDMA, this chapter first

provides necessary background theories on these two techniques.

2.1 Vector Quantization

In a digital communication system, whether a source is analog or discrete, it must

be converted to a format that can be transmitted digitally. This conversion of the

source output to a digital form is performed by the source encoder, whose output

may be assumed to be a sequence of binary digits [3]. Mathematical models and

quantitative measures are provided to treat the information emitted by a source and

quantization is a very powerful tool in source coding. When transmitting data, the

sender wants to send his/her information as much as possible in a limited duration of

time. By applying the sampling theorem, the output of an analog source is converted

to an equivalent sequence of discrete-time samples. The samples are then quantized,

in amplitude, from a infinite number of values to some fixed values of quantization

categories. The quantization categories are then encoded. One type of simple en-

coding is to represent each discrete amplitude level by a sequence of binary digits.

Therefore, quantization of the amplitudes of the sampled signal results in data com-

pression, but it also introduces some distortion of the waveform and a loss of signal

fidelity. The minimization of this distortion should be considered in any quantization

schemes.

The simplest type of quantization, performed on sample-by-sample basis, is called

scalar quantization. Figure 2.1 illustrates the process of scalar quantization. Here

x(t) is a message waveform. By applying the sampling theorem with sampling rate 1
Ts

,

where Ts is the sampling duration, the output of an analog signal x(t) is converted to
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Process of transforming
)(tx )( snTx

0 tsT
snT

)(ˆ snTx

0D

1D

1−ND

Figure 2.1 The process of scalar quantization.

an equivalent sequence of discrete-time samples {x(nTs)}∞n=0. In scalar quantization,

each sample value1 x(nTs) = xn is transformed to a quantized value. The term

distortion means some measure of the difference between the actual source samples

{xn} and the corresponding quantized values {x̂n}.

The design of a quantizer depends on the properties of the message signal. Assume

that the uniform quantizer has N levels and the maximum amplitude of the message

signal is xmax. Then the quantization step-size is given by [6],

∇ =
2xmax

N
(2.1)

Let ϑ be the error introduced by the quantizer, then −∇/2 ≤ ϑ ≤ ∇/2. If the

step-size ∇ can be made sufficiently small (i.e., the number of quantization intervals

N is sufficiently large), then it is reasonable to assume that the quantization error ϑ

is a uniform random variable over the range [−∇/2,∇/2]. The probability density

function (pdf) of the random variable ϑ is therefore given by,

fϑ(ϑ) =







1
∇

, −∇
2
≤ ϑ ≤ ∇

2

0, otherwise
(2.2)

In uniform quantizers, all the quantization regions are of equal size and the target

(quantized) levels are at the midpoint of the quantization regions. Though simple,

1The sample value x(nTs) is written as xn for simplicity.

8



uniform quantizers are not optimal in terms of minimizing the signal-to-quantization

noise ratio. The optimal quantizer is designed to maximize the signal-to-quantization

noise. Necessary and sufficient conditions for a memoryless quantizer to be optimal

are known as the Lloyd-Max conditions which will be represented later in this section.

Based on the Lloyd-Max conditions, it can be easily verified that for the special

case where the message signal is uniformly distributed, the optimal quantizer is a

uniform quantizer. Thus, as long as the distribution of the message signal is close to

uniform, the uniform quantizer works fine. However, for certain signals such as voice,

the input distribution is far from being uniform. For a voice signal in particular,

there exists a higher probability for small amplitudes (corresponding to silent periods

and soft speech) and a lower probability for large amplitudes (corresponding to loud

speech). Therefore it is more efficient to design a quantizer with more quantization

regions at lower amplitudes and less quantizations regions at larger amplitudes. The

resulting quantizer will be a nonuniform quantizer having quantization regions of

various sizes [6].

Instead of performing quantization on sample-by-sample basis, vector quantiza-

tion (VQ) is the joint quantization of a block of signal samples or a block of signal

parameters. It can be seen that scalar quantization is a special case of VQ when the

number of samples in a block is one. The VQ transforming process is illustrated in

Figure 2.2. Here, every d-dimensional source vector X = [x1, x2, . . . , xd] with real-

valued, continuous-amplitude components {xk, 1 ≤ k ≤ d} is quantized into another

d-dimensional vector X̂ with components {x̂k, 1 ≤ k ≤ d}. For convenience, express

the quantization operation as Q(·), so that X̂ = Q(X) [6].

A fundamental result of rate-distortion theory (due to C. Shannon) is that bet-

ter performance can be achieved by quantizing vectors instead of scalars, even if the

continuous source is memoryless [6]. If, in addition, the signal samples or signal

parameters are statistically dependent, the redundancy can be exploited by jointly

quantizing blocks of samples or parameters and an even greater efficiency can be

achieved (i.e., lower bit rate) compared with what can be achieved by scalar quanti-
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Process of transfroming

)(tx

0 tsT
sTdn )1( −

{

1X mX

sTd )1( −
{

K

)(ˆ
3 mXQX =

2X̂

4X̂
1X̂

Figure 2.2 Illustration of vector quantization process [4].

zation [3].

As an example, consider the quantization of two-dimensional vectors X = [x1, x2].

The two-dimensional space is partitioned into cells as illustrated in Figure 2.3. Here,

every pair of numbers falling in a particular cell is approximated by a star associated

with that cell. Note that there are 16 = 24 cells (regions) and 16 stars–each of which

can be uniquely represented by 4 bits2. Thus, this is a 2-dimensional, 4-bit VQ. Its

rate is 2 bits/source dimension. In this example, the stars are called codevectors

and the regions defined by the borders are called encoding regions. The set of all

codevectors is called the codebook and the set of all encoding regions is called the

partition of the source space.

Basically, vector quantization can be viewed as a pattern recognition problem

2Each bit presents a binary value, 0 or 1.
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involving the classification of blocks of data into a discrete number of categories or

cells (or regions) in a way that optimizes some fidelity criterion such as the mean-

square error distortion.
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Figure 2.3 An example of two-dimensional vector quantization: Input vectors are

marked with x, codewords are marked with stars, and regions are sep-

arated with boundary lines.

In the general case, denote the set of possible codevectors as {X̂n, 1 ≤ n ≤ N}
and the set of encoding regions by P = {S1, S2, . . . , SN}. The quantization of the d-

dimensional source vector X into an d-dimensional vector X̂ introduces a quantization

error or a distortion d(X, X̂), defined as

d(X, X̂) =
1

d

d
∑

k=1

|xk − x̂k|p, (2.3)
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where p takes values from the set of positive integers. Then, the average distortion

over the set of input vectors X is:

Φ =
N

∑

n=1

Pr(X ∈ Sn)E{d(X, X̂n)|X ∈ Sn}

=
N

∑

n=1

Pr(X ∈ Sn)

∫

X∈Sn

d(X, X̂n)p(X)dX (2.4)

where Pr(X ∈ Sn) is the probability that the vector X falls into cell Sn and p(X) is

the joint PDF of the d random variables which is determined by the source statistics.

If the mean-square error (l2 norm) is used for distortion measure, then

d(X, X̂) =
1

d

d
∑

k=1

(xk − x̂k)
2 (2.5)

Thus the main problem in designing the optimal VQ is to partition the d-dimensional

source space into N cells {Sn, 1 ≤ n ≤ N} and to choose the codevectors {X̂n, 1 ≤
n ≤ N} so that the average distortion is minimized. It can be shown [3] that there

are two necessary and sufficient conditions for the optimal vector quantizer. The first

is that the optimal quantizer must employ the nearest-neighbor rule, which can be

expressed as:

Q(X) = X̂n if and only if d(X, X̂n) ≤ d(X, X̂m), n 6= m, 1 ≤ m,n ≤ N (2.6)

The second condition necessary for optimality is that each codevector X̂n must be

chosen to minimize the average distortion in cell Sn. This means that X̂n is the vector

in Sn that minimizes:

Φn = E{d(X, X̂)|X ∈ Sn} =

∫

X∈Sn

d(X, X̂)p(X)dX (2.7)

The vector X̂n that minimizes Φn is called the centroid of cell Sn.

The above two conditions can be applied to design the optimal VQ when the

joint PDF p(X) is known. However, in practice, the joint PDF p(X) of the data

vector may not be known. Because of this, the design of a vector quantizer was

considered a challenging problem in the earlier days. In 1980, Linde, Buzo, and Gray
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proposed a VQ design algorithm (known as the LBG algorithm3) based on a training

sequence [10]. The use of a training sequence bypasses the need for multi-dimensional

integration. A VQ that is designed using this algorithm is referred to in the literature

as an LBG-VQ.

2.1.1 The LBG Algorithm

It is assumed that there is a training sequence consisting of M source vectors:

T = {X1,X2, . . . ,XM}. (2.8)

This training sequence can be obtained from some large database. For example, if

the source is a speech signal, then the training sequence can be obtained by recording

several long telephone conversations. Here M is assumed to be sufficiently large so

that all the statistical properties of the source are captured by the training sequence.

It is assumed that the source vectors are d-dimensional, i.e.,

Xm = [xm,1, xm,2, . . . , xm,d], m = 1, 2, . . . ,M (2.9)

Let N be the number of codevectors and let

C = {X̂1, X̂2, . . . , X̂N} (2.10)

represent the codebook. Similarly, each codevector is represented by

X̂n = [x̂n,1, x̂n,2, . . . , x̂n,d], n = 1, 2, . . . , N (2.11)

The quantization for this training sequence is as follows

Q(Xm) = X̂n, if Xm ∈ Sn (2.12)

Assuming a squared-error distortion measure, the average distortion is given by:

Φave =
1

Md

M
∑

m=1

||Xm − Q(Xm)||2 (2.13)

3The LBG algorithm is also known as the K-means algorithm.
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where ||e||2 = e2
1 + e2

2 + . . . + e2
d. The design problem can be succinctly stated as

follows: Given T and N , find C and the partition P such that Φave is minimized [6].

Optimality Criteria. Similar to the previous discussion, it can be shown [3]

that if C and P form a solution to the above minimization problem, then they must

satisfy the following two criteria.

1) Nearest Neighbor Condition:

Sn = {X : ||X − X̂n||2 ≤ ||X − X̂n′ ||2, ∀n, n
′

= 1, 2, . . . , N} (2.14)

This condition says that the encoding region Sn should consist of all vectors that

are closer to X̂n than any of the other codevectors. For those vectors lying on the

boundary, any tie-breaking procedure will do.

2) Centroid Condition:

X̂n =

∑

Xm∈Sn
Xm

∑

Xm∈Sn
1

, m, n = 1, 2, . . . , N. (2.15)

This condition says that the codevector X̂n should be average of all those training

vectors that are in encoding region Sn. In implementation, one should ensure that at

least one training vector belongs to each encoding region (so that the denominator in

the above equation is never 0).

The LBG Algorithm. The LBG-VQ design algorithm is an iterative algorithm

which alternatively solves the above two optimality criteria. The algorithm requires

an initial codebook C(0). This initial codebook is obtained by the splitting method. In

this method, an initial codevector is set as the average of the entire training sequence.

This codevector is then split into two. The iterative algorithm is run with these two

vectors as the initial codebook. The final two codevectors are splitted into four and

the process is repeated until the desired number of codevectors is obtained. The

algorithm is summarized below [6].

1. Given T and the number of codevectors N . Let ǫ be a “small” number.
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2. Let N = 1 and

X̂∗
1 =

1

M

M
∑

m=1

Xm (2.16)

Calculate

Φ∗
ave =

1

Md

M
∑

m=1

||Xm − X̂∗
1||2 (2.17)

3. Splitting: For i = 1, 2, . . . , N , set

X̂
(0)
i = (1 + ǫ)X̂∗

i (2.18)

X̂
(0)
N+i = (1 − ǫ)X̂∗

i . (2.19)

Set N = 2N .

4. Iteration: Let Φ
(0)
ave = Φ∗

ave. Set the iteration index i = 0.

i. For m = 1, 2, . . . ,M , find the minimum value of

||Xm − X̂(i)
n ||2,

over all n = 1, 2, . . . , N . Let n∗ be the index which achieves the minimum.

Set Q(Xm) = X̂
(i)
n∗ .

ii. For n = 1, 2, . . . , N , update the codevector

X̂(i+1)
n =

∑

Xm:Q(Xm)=X̂
(i)
n

Xm

∑

Xm:Q(Xm)=X̂
(i)
n

1
(2.20)

iii. Set i = i + 1.

iv. Calculate

Φ(i)
ave =

1

Md

M
∑

m=1

||Xm − Q(Xm)||2 (2.21)

v. If (Φ
(i−1)
ave − Φ

(i)
ave)/Φ

(i−1)
ave > ǫ, go back to Step (i).

vi. Set Φ∗
ave = Φ

(i)
ave. For n = 1, 2, . . . , N , set X̂∗

n = X̂
(i)
n as the final codevec-

tors.

5. Repeat Steps 3 and 4 until the desired number of codevectors is obtained.

Figure 2.4 shows, in a flow diagram, the detailed steps of the LBG algorithm.
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Figure 2.4 Flow diagram of the LBG algorithm, modified from [5].

2.1.2 Description of VQ Based on Hadamard Matrix

Vector quantization (VQ) is an important technique for block-based source cod-

ing. In the derivation of decoder expression, the Hadamard representation for VQ can

be employed conveniently and effectively [7]. A more thorough presentation of this

representation can be found in [11]. Previous works have shown that the Hadamard

transform is a powerful tool in the analysis of VQ over the binary-symmetric chan-

nel [11], [12], [13], and [14]. In what follows, the Hadamard representation for the

centroids of VQ will be discussed.

A (Sylvester-type) Hadamard matrix, H(2L), of size N = 2L, is a symmetric square

matrix with elements from {±1}. It is defined recursively as

H(1) =





+1 + 1

+1 − 1



 ; H(2L) = H(1) ⊗ H(2L−1), L > 1, (2.22)
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where the symbol ⊗ denotes the Kronecker product. As a definition, the Kronecker

product of two matrices A and B is given as follows [14]:

A ⊗ B =











{A}0,0B . . . {A}0,m−1B
...

. . .
...

{A}n−1,0B . . . {A}n−1,m−1B











(2.23)

where A is of size n rows and m columns. The recursive nature of the Hadamard

matrix gives the following useful property. If the natural binary representation of

integer i is (bL, bL−1, . . . , b1), with logical “zero” represented by +1 and logical “one”

by −1, the ith column of H(2L) can be computed as

h
(2L)
i =





1

bL



 ⊗





1

bL−1



 ⊗ . . . ⊗





1

b1



 . (2.24)

Another useful property of Hadamard matrix is that, for any size N = 2L, the mul-

tiplication of the Hadamard matrix by itself is H(2L) ×H(2L) = N × I, where I is the

identity matrix of size N . Therefore
(

H(2L)
)−1

= N−1 ×H(2L). This latter property

is often employed to define Hadamard matrices of general sizes [15]. The Hadamard

transform {ãm}N−1
m=1 of a sequence {am}N−1

m=1, where N = 2L, is defined as [14]

[ã0, ã1, . . . , ãN−1]
⊤ = H(2L) × [a0, a1, . . . , aN−1]

⊤. (2.25)

The question is that how the Hadamard matrix and Hadamard transform can be

useful for VQ description. To answer this question, consider a general vector-valued

function f : {0, 1, . . . , N − 1} → R
d where the domain is an integer set. Such a

function can always be presented as f(n) = T · h(N)
n , n = 0, 1, . . . , N − 1, where h

(N)
n

is the nth column of an N × N Hadamard matrix H(N), and T is a real transform

matrix. The matrix T is obtained as T = N−1[f(0), f(1), . . . , f(N − 1)] · H(N). In

the special case where f represents the encoder centroids, ci = E[X|I = i], one can

simply represent the encoder centroids as

ci = T · h(N)
i (2.26)

In essence, the above representation gives an efficient way of describing the mapping

from the individual bits of index i to the corresponding encoder centroid [14]. This
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VQ representation has turned out to be very useful, especially in the analysis of the

channel robustness of VQ’s [7], [11], [16] and [14]. This representation for the encoder

centroids is also the key to many of the results in this thesis.

2.2 Code-Division Multiple-Access (CDMA)

In communication systems, users can send data from one place to many other

places or data can be transmitted from many points to another point. Multiaccess

communication is sometimes referred to as multipoint-to-point communication. The

engineering issues in the dual point-to-multipoint channel depend on the commonality

of the information transmitted to each destination [17]. As mentioned earlier, there

are three common multiple access techniques in digital communications. Frequency-

Division Multiple Access (FDMA) assigns a different carrier frequency band to each

user so that the resulting spectra do not overlap. Time-Division Multiple Access

assigns each user to a time slot. Channel or receiver nonideal effects may require

the insertion of guard times in TDMA and spectral guard bands in FDMA to avoid

cochannel interference. In Code-Division Multiple Access (CDMA), more than one

user are allowed to share a channel or subchannel by the use of direct-sequence spread

spectrum signals. In this method, each user is assigned a unique code sequence or

signature sequence that allows the user to spread the information signal across the

whole frequency band. Signals from various users are then separated at the receiver

by cross correlating the received signal with each of the possible user signature se-

quences [3]. In CDMA, the channel introduces cross correlation among users’ signals.

Therefore, statistical knowledge about all users’ signals can be utilized in order to

enhance the performance in decoding one particular user [7].

Multiuser detection (MUD) is an important technique in the receiver of a CDMA

system. Four important multiuser detectors, namely the optimal MUD, the con-

ventional matched-filter detector, the minimum mean-square error MUD and the

decorrelating MUD will be presented in this section. Each of them has its own prop-

erties. The selection of which type of MUD depends on the required complexity and
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performance.

2.2.1 System Model

Consider a CDMA channel shared by K simultaneous users. Each user is assigned

a signature waveform sk(t) of duration T , where T is the symbol interval. A signature

waveform is generally constructed as [3]

sk(t) =
L−1
∑

n=0

gk(n)p(t − nτc), 0 ≤ t ≤ T (2.27)

where {gk(n), 0 ≤ n ≤ L − 1} is a pseudonoise (PN) code sequence consisting of L
chips that take values {±1}, p(t) is a chip pulse of duration τc, and τc is the chip

interval. Thus, each symbol has L chips and T = Lτc. Without loss of generality, it

is assumed that all K signature waveforms have unit energy, i.e.,
∫ T

0

s2
k(t)dt = 1, k = 1, 2, . . . , K (2.28)

The cross correlations between pairs of signature waveforms play an important

role in the metrics for signal detector and on its performance. The cross correlations

between two signature waveforms are defined as follows:

ρkl(τ) =

∫ T

τ

sk(t)sl(t − τ)dt (2.29)

ρlk(τ) =

∫ τ

0

sk(t)sl(t + T − τ)dt (2.30)

where 0 ≤ τ ≤ T and k < l. Equations (2.29) and (2.30) are applied to asynchronous

transmission of the K users. For synchronous transmission, the time epochs of users

are aligned at the receiver, thus τ = 0, and only ρkl(0) is needed [3]. This requires

closed-loop timing control or providing the transmitters with access to a common

clock (such as the Global Positioning System) [17]. The system is synchronous in the

sense that the transmission rate is the same for all the K users.

For simplicity, it is assumed that binary antipodal signals are used to transmit

the information from each user (i.e., binary phase shift keying (BPSK) modulation).

The information sequence of the kth user is denoted by {bk(i)}, where the value of
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each information bit is ±1. It is convenient to consider the transmission of a block of

bits of some arbitrary length, say N. Then, the data block from the kth user is

bk = [bk(1), . . . , bk(N)]⊤ (2.31)

and the corresponding equivalent low-pass, transmitted waveform can be expressed

as

sk(t) =
√

Ek

N
∑

i=1

bk(i)sk(t − iT ) (2.32)

where Ek is the signal energy per bit for user k. The composite transmitted signal

for the K users can be written as

s(t) =
K

∑

k=1

sk(t − τk)

=
K

∑

k=1

√

Ek

N
∑

i=1

bk(i)sk(t − iT − τk), (2.33)

where {τk} are the delays, which satisfy 0 ≤ τk ≤ T for 1 ≤ k ≤ K. Without loss

of generality, one can assume that 0 ≤ τ1 ≤ . . . ≤ τK < T , when considering the

asynchronous transmission mode. In the special case of synchronous transmission,

τk = 0 for 1 ≤ k ≤ K.

For simplicity in presenting the main principles of different MUDs, the transmitted

signal is assumed to be corrupted by only additive white Gaussian noise (AWGN).

Hence, the received signal can be expressed as

y(t) = s(t) + u(t) (2.34)

where s(t) is given as in (2.33) and u(t) is zero-mean white Gaussian noise with two

sided power spectral density N0

2
[3].

2.2.2 Multiuser Detection in CDMA

The receiver in a CDMA system tries to recover the transmitted information from

the received signal y(t) as correctly as possible. For simplicity, the K-user synchronous

CDMA channel is considered. For synchronous transmission, it is sufficient to consider
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the signal received in one symbol interval, e.g., the first interval. Therefore, the

received signal can be written as

y(t) =
K

∑

k=1

√

Ekbksk(t) + u(t), 0 ≤ t ≤ T. (2.35)

where the time index i has been dropped for simplicity.

The received continuous-time signal waveform is converted into a discrete-time

process by passing through a bank of matched filters, each matched to the signature

waveform of a different user. In the synchronous case, the outputs of the bank of

matched filter are

z1 =

∫ T

0

y(t)s1(t)dt

...

zK =

∫ T

0

y(t)sK(t)dt. (2.36)

This process is illustrated in the Fig. 2.5. The output of the kth matched filter can

Tt =

Tt =

1z

2z

Kz

Tt =

M

)(ty

)(1 tTs −

)(2 tTs −

)( tTsK −

Figure 2.5 Discrete-time K-dimensional vector of matched filter outputs.
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be further written as:

zk =

∫ T

0

y(t)sk(t)dt

=
√

Ekbk +
K

∑

l=1
l6=k

√

Elbl

∫ T

0

sk(t)sl(t)dt + uk (2.37)

where the noise component

uk =

∫ T

0

u(t)sk(t)dt (2.38)

is a Gaussian random variable with zero mean and variance computed as follows:

σ2 = E[u2
k]

=

∫ T

0

∫ T

0

E[u(t1)u(t2)]sk(t1)sk(t2)dt1dt2

=
1

2
N0

∫ T

0

∫ T

0

δ(t1 − t2)sk(t1)sk(t2)dt1dt2

=
1

2
N0

∫ T

0

s2
k(t)dt =

N0

2
. (2.39)

The z = [z1, . . . , zK ]⊤ vector of the matched filter outputs is known as a sufficient

statistic that contains all the information in the original observation [17]. The output

vector of the bank of K matched filters’ outputs can also be written using matrix

notation as follows

z = RWb + u, (2.40)

where the K ×K diagonal matrix of the received amplitudes is W = diag{√E1, . . .,
√

EK}, R = {ρk,l}K
k,l=1 is the normalized cross-correlation matrix whose component

is computed by ρlk =
∫ T

0
sk(t)sl(t)dt and u is a Gaussian random vector with zero

mean and covariance matrix equal to E[uu⊤] = σ2R. Based on the sufficient statistic

z, the transmitted bit sequence b can be detected by one of the following multiuser

detectors.

The optimum multiuser detector. The optimum maximum-likelihood receiver

selects the most probable sequence of bits {bk, 1 ≤ k ≤ K} given the received signal

y(t) in (2.35). Obviously, there are 2K different possibilities for b = [b1, b2, . . . , bK ]⊤.
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The solution of the optimal receiver chooses the most likely b that maximizes the

likelihood function [17]:

exp







− 1

2σ2

∫ T

0

[

y(t) −
K

∑

k=1

√

Ekbksk(t)

]2

dt







. (2.41)

It is easy to see that maximizing (2.41) is minimizing the following log likelihood

function:

ΛOPT (b) =

∫ T

0

[

y(t) −
K

∑

k=1

√

Ekbksk(t)

]2

dt (2.42)

The above log likelihood function is expanded as follows:

ΛOPT (b) =

∫ T

0

y2(t)dt − 2
K

∑

k=1

√

Ekbk

∫ T

0

y(t)sk(t)dt

+
K

∑

l=1

K
∑

k=1

√

ElEkbkbl

∫ T

0

sk(t)sl(t)dt (2.43)

It is observed that the selection of b does not depend on the first term of (2.43).

Therefore, b can be chosen to minimize:

−2
K

∑

k=1

√

Ekbk

∫ T

0

y(t)sk(t)dt +
K

∑

l=1

K
∑

k=1

√

ElEkbkbl

∫ T

0

sk(t)sl(t)dt (2.44)

Define and compute the correlation metric as follows:

Ω(b) = 2
K

∑

k=1

√

Ekbk

∫ T

0

y(t)sk(t)dt −
K

∑

l=1

K
∑

k=1

√

ElEkbkbl

∫ T

0

sk(t)sl(t)dt

= 2b⊤Wz − b⊤WRWb. (2.45)

Then the demodulated information sequence of the K users can be found as:

b = arg max
b={±1}K

{

2b⊤Wz − b⊤WRWb
}

. (2.46)

Observe from (2.45) that the optimum detector must have knowledge of the re-

ceived signal energies and all the signature waveforms of K users in order to compute

the correlation metrics. There are 2K possible choices of the information sequence

of the K users. The optimum detector computes the correlation metrics Ω(b) for
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each sequence and selects the sequence that yields the largest correlation metric. Ob-

viously, the optimum detector has a complexity that grows exponentially with the

number of users, K.

Since it is too complicated to implement an optimum detector for a CDMA system

with a medium or large number of users, three types of suboptimum detectors whose

computational complexities grow linearly with the number of users will be introduced

next. The simplest suboptimum detector is the conventional matched-filter detector.

Conventional matched-filter (MF) detector. In the conventional matched-

filter detector, the received signal is first correlated with the signature waveform of

the desired user. The correlator output is then simply compared with a zero threshold

to make the decision on the transmitted bit. That is,

b̂k = sgn(zk), (2.47)

where zk is calculated from (2.37). Thus, this detecting scheme neglects the presence

of the other users in CDMA channel. This is equivalent to assume that the aggregate

noise plus interference is white and Gaussian [3]. Fig. 2.6 shows the structure of the

MF detector.
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M

)(ty
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Figure 2.6 Structure of the matched-filter detector.

In Equation (2.37), the first component contains the desired signal of user k, the
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second component is due to multiple-access interference (MAI) from all other (K−1)

users and the last component is due to the background noise. Clearly, if the signa-

ture sequences are orthogonal, the interference from the other users vanishes and this

conventional detector is optimum. On the other hand, if one or more signature wave-

forms are not orthogonal to the desired user’s signature waveform, the interference

from the other users can become excessive if the power levels of the signals of one

or more of the other users is sufficiently larger than the power level of the kth user.

This situation is generally called the near-far problem in multiuser communications,

and necessitates some type of power control for conventional detection [3].

Decorrelating detector. The large gaps in performance and complexity between

the conventional single-user matched filter and the optimum multiuser detector en-

courage the search for other multiuser detectors. The decorrelating detector is not

only a simple and natural strategy but it is optimal according to three different cri-

teria: least-squares, near-far resistance, and maximum-likelihood when the received

amplitudes are unknown [17].

The vector of the bank of K matched filters’ outputs is computed in (2.40). It

is observed that z is described by a K-dimensional Gaussian PDF with mean RWb

and covariance matrix σ2R. That is,

f(z) =
1

√

(2πσ2)K |R|
exp

{

− 1

2σ2
(z − RWb)⊤R−1(z − RWb)

}

(2.48)

The best linear estimate of b′ = Wb is the value that maximizes f(z) or equivalently

minimizes the following log likelihood function

ΛDC(b′) = (z − RWb)⊤R−1(z − RWb)

= (z − Rb′)⊤R−1(z − Rb′) (2.49)

The result of this minimization yields [3]

b̃ = R−1z (2.50)

Then, the estimation of the transmitted binary sequence is obtained by taking the
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sign of each element of b̃, i.e.,

b̂ = sgn(b̃) = sgn(Wb + R−1u) (2.51)

Observe that multiuser interference is completely removed by the decorrelator and

the only source of interference remained is the background noise. It should be noted,

however, that the price to pay for removing the multiuser interference is the en-

hancement of the background noise. Fig. 2.7 illustrates the receiver structure. Since

Tt =

Tt =

Tt =

M

)(ty

)(1 tTs −

)(2 tTs −

)( tTsK −
Kb̂

1̂b

2̂b

M

1−R

Figure 2.7 Structure of the decorrelating detector.

the estimate b̂ is obtained by performing a linear transformation on the vector of

correlator outputs, the computational complexity is linear in K.

Minimum mean-square error detector. A common approach in estimation

theory to the problem of estimating a random variable Ψ on the basis of observations

z is to choose the function Ψ̂(z) that minimizes the mean-square error (MSE):

E{[Ψ − Ψ̂(z)]2} (2.52)

Under very general conditions, it can be shown that the solution is the conditional-

mean estimator [17]:

Ψ̂(z) = E[Ψ|z]. (2.53)
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In most problems, it is challenging to derive the conditional-mean estimator from

the joint distribution of Ψ and z. For that reason, it is common to minimize the

MSE within a restricted set of linear transformations of z. The linear minimum

mean-square error (MMSE) estimator is, in general, easy to compute and it depends

on the joint distribution of Ψ and z only through their variances and covariance.

This problem of linear estimation can be applied to the problem of linear multiuser

detection by requiring that the MSE between the kth user bit bk and the output of the

kth linear transformation m⊤
k z be minimized. Although this approach does not lead

to the minimization of the bit-error-rate, it is a sensible criterion, particularly when

the multiuser receiver, rather than demodulating the data, supplies soft decisions to

an error-control decoder.

The MMSE linear detector for the kth user chooses the K-vector mk that mini-

mizes

E
[

(

bk − m⊤
k z

)2
]

. (2.54)

The total number of users is K in the system. Therefore, there are K uncoupled

optimization problems (one for each user), which can be solved simultaneously by

choosing the K × K matrix M (whose kth column is equal to mk) that achieves

min
M∈RK×K

E
[

‖b − Mz‖2] , (2.55)

where z is given in (2.40). The solution to this optimization problem is given in [17],

as

M = W−1
(

R + σ2W−2
)−1

(2.56)

The decision outputs of the MMSE linear detector can then be expressed as

b̂k = sgn
{[

(

R + σ2W−2
)−1

z
]

k

}

. (2.57)

Therefore, the MMSE linear detector replaces the transformation R−1 of the decorre-

lating detector by (R + σ2W−2)
−1

, where W−2 = diag
{

1
E1

, . . . , 1
EK

}

. The structure

of the MMSE detector is shown in Fig. 2.8.

Similarly to the DC detector, the complexity of the MMSE detector increases

linearly with the number of users K. The MMSE receiver requires knowledge of
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Figure 2.8 The MMSE linear detector for the synchronous channel.

all users’ signature waveforms, as well as knowledge of the signal-to-noise ratios of

all users [6]. The benefit obtained from the requirement of more information for

the receiver implementation is the superiority in bit-error-rate performance of the

corresponding receiver [18].

The trade-off between the error performance and the complexity of various MUDs

needs to be carefully examined when a CDMA communications system is designed.

As an example, Fig. 2.9 plots the bit-error-rates (BERs) achieved by various linear

multiuser detectors discussed earlier in this chapter (the solid lines). The results are

presented for a system having eight (K=8) users with identical crosscorrelation (equal

to 0.1) and perfect power control. Also shown in the figure are the BERs computed

based on Gaussian approximation. Note that for the decorrelating receiver, the exact

BER is exactly the same as Gaussian approximation. For the MF, the approximation

is only accurate for very low signa-to-noise ratios. For this system, the performances

of the DC and the MMSE receiver are indistinguishable [6].

Based on numerical and some analytical results, Poor and Verdú conjectured that

the BER of the MMSE detector is better than that of the decorrelator for all levels

of background Gaussian noise, number of users, and crosscorrelation matrices [18].
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Figure 2.9 BERs of different MUDs for a system with K = 8, ρk,l = 0.1 [6].

However, is it recently shown in [19] that this relative performance is not always

true [6].

Finally, a unified linear (UL) receiver was recently introduced in [20, 21]. The

strategy for the UL receiver is to minimize the weighted sum of the MAI and the

background noise where the weighting factor is adjusted according to the relative

levels of the MAI and the background noise in order to improve the bit-error-rate

performance. By tunning the weighting factor, it is possible to improve the perfor-

mance of the UL receiver over that of any of the above mentioned linear receivers [6].
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3. Transmission of VQ Over A

Frequency-Selective Rayleigh Fading

CDMA Channel

Chapter 2 presents basic concepts and theories of vector quantization (VQ) and

CDMA techniques. As mentioned before, transmission of VQ over a CDMA channel

is an important and interesting problem, both from theoretical and practical perspec-

tives. This chapter describes this research problem in details. Previous solutions to

the problem are also presented and their limitations are discussed.

3.1 System Description

Signature waveform

Signature waveform

Source

vector
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vector

Index

Assignment

Encoder

1

)(1 nTts −

Frequency

Selective

Rayleigh

Fading

CDMA

Channel

)( nTtsK −

Encoder

K

Index

Assignment

∈1X }1,,0{1 −∈ NI K }1{}{ 1 ±∈Ibn

∈KX }1,,0{ −∈ NI K K }1{}{ ±∈Kn Ib

M M

d

d

Figure 3.1 Structure of the transmitter.

The general structure of the transmitter is shown in Figure 3.1. There are K

users in a CDMA system where the kth user transmits his/her d-dimensional source

vector Xk ∈ R
d. The encoder of the kth user then encodes Xk into an index Ik ∈
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{0, 1, . . . , N − 1}, where N = 2L for some integer L. The kth encoder is described by

a partition {S(k)
i }N−1

i=0 of the Euclidean source space R
d such that if Xk ∈ S

(k)
i , then

Ik = i and P
(k)
i = Pr(Ik = i) = Pr(Xk ∈ S

(k)
i ). The encoder entropy of the kth user is

defined as Hk = −∑N−1
j=0 P

(k)
j log2 P

(k)
j . Also, let the ith encoder centroid of user k be

defined as c
(k)
i = E[Xk|Ik = i]. The codebook of the VQ is arranged with good index

assignments based on LISA-algorithm [13]. The detail of this algorithm is provided in

Appendix A. For transmission, the index Ik is converted into a binary sequence of L

bits, denoted as (b1(Ik), . . . , bL(Ik)) where bn(Ik) ∈ {±1}. These bits are transmitted

over a frequency selective Rayleigh fading CDMA channel. The channel model in the

system under consideration is similar to the one in [8]. Here, the frequency-selective

Rayleigh fading channel is also modeled as a tapped-delay line [3] where the received

amplitude over each path of each user is a complex Gaussian random variable and

the delay between paths is an integer multiple of the chip duration.

More precisely, assuming BPSK modulation, the transmitted signal of user k at

time n ∈ {1, . . . , L} is
√

Ekbn(Ik)sk(t − (n − 1)T ), where Ek and sk(t) are the bit

energy and the real-valued signature waveform of the kth user. The users’ signature

waveforms all have a duration of T seconds and are normalized to have unit energy.

Let P be the number of multipaths, τc be the chip duration, and ak,i(n) be the received

amplitude of user k over path i and at bit duration n. The fading amplitudes are

assumed to be constant over one bit interval T (slow fading) and independent in n

(perfect interleaving).

Figure 3.2 illustrates the tapped-delay line model of this channel. The received

signal component, stemming from the transmission of the L bits of user k, is given

by:

yk(t) =
√

Ek

L
∑

n=1

bn(Ik)s
⊤
k (t − (n − 1)T )ak(n), 0 ≤ t ≤ LT (3.1)

where sk(t) = [sk(t), sk(t−τc), . . . , sk(t−(P−1)τc)]
⊤, and ak(n) = [ak,0(n), ak,1(n), . . . ,

ak,P−1(n)]⊤ is the vector of independent complex Gaussian random variables.

At the receiver, the received signal waveform y(t), stemming from the transmitted
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Figure 3.2 Tapped-delay line model of a frequency-selective fading channel.

signals of all the K users plus the additive white Gaussian noise, is then given as

y(t) =
K

∑

k=1

yk(t) + u(t), (3.2)

where u(t) is complex AWGN with covariance equal to E[u(t)u∗(s)] = σ2δ(t − s).

Let zk(n) be a vector formed by correlating the received waveform y(t) with the

delayed replicas of the signature waveform of user k, that is:

zk(n) =

∫ nT

(n−1)T

y(t)sk(t − (n − 1)T )dt. (3.3)

This operation defines the continuous-time to discrete-time front-end processing of

the receiver and is illustrated in Fig. 3.3. When the symbol period is much greater

than the delay spread of the channel, it is reasonable to assume that no intersym-

bol interference occurs. Using (3.1) and substituting (3.2) into (3.3), zk(n) can be

expressed as

zk(n) =
√

Ekbn(Ik)Rkkak(n) +
K

∑

l=1
l6=k

√

Elbn(Il)Rklal(n)

+

∫ nT

(n−1)T

sk(t − (n − 1)T )u(t)dt (3.4)

where Rkl is P ×P cross correlation matrix of all the delayed replicas of the signature

waveforms of users k and l. It can be computed as

Rkl =

∫ T

0

sk(t)s
⊤
l (t)dt (3.5)
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Figure 3.3 Front-end processing of the receiver.

During the nth bit duration, the received vectors of all users can be merged into a

KP -vector z(n) = [z⊤1 (n), . . . , z⊤K(n)]⊤. Using matrix notations, z(n) can be written

as:

z(n) = RWA(n)b(n) + u(n) (3.6)

where the KP ×KP matrix R is built up by stacking all the submatrices {Rkl}K
k,l=1,

W = diag(W1, . . . ,WK) is the KP × KP real matrix with Wk =
√

EkIP (where

IP denotes the P × P identity matrix). Moreover, A(n) = diag(a1(n), . . . , aK(n)) is

a KP × K block diagonal matrix. The vector b(n) = [bn(I1), . . . , bn(Ik)]
⊤ contains

the transmitted bits of all users at time n. The noise vector u(n) is a complex zero-

mean Gaussian vector of size KP and covariance matrix E[u(n)uH(n)] = σ2R. It

is well-known that z(n) contains sufficient statistics for the decoding of the source

vectors.
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3.2 Known Decoders

At the receiver, the decoder tries to make the decision for the source vectors based

on the sufficient statistics and the source statistics as correctly as possible. In what

follows, previously proposed decoding schemes are reviewed.

3.2.1 The Optimal Decoder

The jointly optimal multiuser decoder takes the source statistics of all users into

account. Such a decoder measures the sufficient statistic Z = [z⊤(1), . . . , z⊤(L)]⊤

and forms the optimal estimate X̂K(Z) = [X̂⊤
1 (Z), . . . , X̂⊤

K(Z)]⊤ that minimizes the

distortion E{‖Xk − X̂k(Z)‖2} for every user k. An implementation of such optimal

decoder based on Hadamard matrix description of the VQ’s (hence it is referred to as

the Hadamard-based multiuser decoder (HMD)) is presented in [7] and [8]. In HMD,

the ith centroid of user k is represented as c
(k)
i = Tkh

(N)
i . This presentation was pre-

viously discussed in Section 2. Hence, the optimal estimate X̂K(Z) is the conditional

mean X̂K(Z) = E[XK |Z] = E[cK |Z], where XK and cK are the augmented source

vector and the augmented centroid vector, respectively [7]. This implies that the soft

estimate X̂K(Z) is formed as a weighted sum over the encoder centroids cK = Th
(M)

iK
,

where T is the corresponding augmented transform matrix, iK is the sampled value

of the index vector IK = [I1, . . . , I
K ]⊤ and h

(M)

iK
is a size M = NK Hadamard matrix

column, obtained as h
(M)

iK
= h

(N)
iK

⊗ . . . ⊗ h
(N)
i1

. X̂K(Z) can be therefore expressed as

follows [8]

X̂K(Z) = TE[h
(M)

IK |Z = z]

= T

∑

iK h
(M)

iK
pZ(z|iK)PiK

∑

iK pZ(z|iK)PiK
, (3.7)

where

pZ(z|iK) =
exp

{

− 1
σ2

∑L
n=1[z(n) − RWA(n)b(n)]HR−1[z(n) − RWA(n)b(n)]

}

(πσ2)KPL|R|L ,

(3.8)

and

PiK = P
(1)
i1

P
(2)
i2

. . . P
(K)
iK

. (3.9)
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The structure of the optimal decoder is illustrated in Fig. 3.4. As can be seen from

(3.7), this approach is too complicated for a CDMA system with a medium or large

number of users. This is because its total decoding complexity is about O(PKL·2KL)

operations.
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Figure 3.4 Model of the jointly optimal multiuser-VQ decoder.

3.2.2 The Suboptimal Decoder Based on Table Look-up

Figure 3.5 shows the structure of an alternative decoding approach that is based

on a combination of separate multiuser detection (MUD) and table-lookup (or hard)

VQ decoding. Let b̂n(Ik) be the hard decision produced by the MUD for user k at
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Figure 3.5 Model of the suboptimal decoder based on table-lookup.

time n and let b̂(n) = [b̂n(I1), . . . , b̂n(IK)]⊤. If the optimal MUD is used, the hard

bit decisions are based on the maximum likelihood (ML) decision rule [1]. Instead
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of the ML rule, the decorrelating MUD (DC-MUD) makes the hard bit decisions

at time n based on R−1z(n). On the other hand, the MMSE-MUD provides the

hard bit decisions based on a linear filtering mH
k (n)z(n) of z(n) that minimizes the

mean-square error E
[

∥

∥bn(Ik) − mH
k (n)z(n)

∥

∥

2
]

[17].

Next, the VQ decoder of the kth user converts L consecutive bits {b̂n(Ik)}L
n=1

to the estimated index îk and outputs the centroid c
(k)

îk
for VQ decoding (table-

lookup decoding). The complexity of such a suboptimal hard-decision decoder largely

depends on the type of MUD employed. It is about O(PL · 2K) operations for the

OPT-MUD. On the other hand, the decoding complexity is about O(PL·K2) if either

DC-MUD or MMSE-MUD is used.

3.3 An Example

To illustrate how the system works in general, an example is presented in this

subsection. Consider a simple CDMA system with 2 users whose signature sequences

of length 7 are [1100101] and [0110110], respectively [22]. One user transmits a

512 × 512 monochrome image of “Lena” and the other user transmits a 512 × 512

monochrome image of “Barbara”. For transmission, these two images are sampled and

quantized with the LBG-VQ. The VQ codebook is designed from 20 different 512×512

monochrome images. Common images such as “baboon”, “bridge”, “pepper”, and

“f16” are used as the training data. The pixels of all images are presented by 8

bits. The VQ is trained for image sources in a noiseless channel with the codevector

dimension d = 8 and the number of codevectors N = 2L = 64. The compression

ratio is thus L/d = 6/8 = 0.75 bits/pixel [2]. The output of VQ is then arranged

with a good index assignments based on the LISA algorithm [13] (see Appendix A).

For simplicity, it is assumed that two users have the same average received energy

per bit, i.e., E1 = E2 = Eb. The simulation is run for a frequency-selective Rayleigh

fading CDMA channel with P = 3 paths . The transmission system is illustrated in

Fig. 3.6.

The decoding schemes used in simulation are the Hadamard-based multiuser
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Figure 3.6 Image transmission using VQ over a CDMA channel.

decoder (HMD) and the suboptimal hard-decision decoders employing the OPT-

MUD, the MMSE-MUD and the DC-MUD. Two original images are shown in Fig-

ures 3.7 and 3.8. The performances of various decoders are illustrated by display-

ing the reconstructed images for both users in Figures 3.9 to 3.16. The simula-

tions were run at the channel signal-to-noise ratio (CSNR) Eb/N0 = 8 (dB). The

performance of VQ decoders can also be measured in terms of either the output

signal-to-noise ratio, SNRk = E{‖Xk‖2}/E{‖Xk − X̂k‖2}, or the peak signal-to-

noise ratio (PSNR) of the reconstructed image for each user k, which is defined as

PSNRk = ‖max(Xk)‖2/E{‖Xk − X̂k‖2}. Table 3.1 tabulates the SNRs and PSNRs

offered by different decoding schemes. It can be observed clearly from Figures 3.9-

3.16 and Table 3.1 that a better quality of reconstructed images is obtained by using

a more-complicated decoding scheme.

Table 3.1 SNRs and PSNRs for CSNR = 8 (dB).

HMD OPT-MUD MMSE-MUD DC-MUD

SNR PSNR SNR PSNR SNR PSNR SNR PSNR

User 1 12.11 25.41 10.71 25.25 9.56 24.09 4.83 19.36

User 2 9.87 23.26 9.88 23.26 9.09 22.47 5.45 18.84
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Figure 3.7 Original image of “Lena”.

Figure 3.8 Original image of “Barbara”.
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Figure 3.9 Reconstructed image of “Lena” with the HMD decoder.

Figure 3.10 Reconstructed image of “Barbara” with the HMD decoder.
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Figure 3.11 Reconstructed image of “Lena” using the suboptimal hard decoder with

OPT-MUD.

Figure 3.12 Reconstructed image of “Barbara” using the suboptimal hard decoder

with OPT-MUD.
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Figure 3.13 Reconstructed image of “Lena” using the suboptimal hard decoder with

MMSE-MUD.

Figure 3.14 Reconstructed image of “Barbara” using the suboptimal hard decoder

with MMSE-MUD.
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Figure 3.15 Reconstructed image of “Lena” using the suboptimal hard decoder with

DC-MUD.

Figure 3.16 Reconstructed image of “Barbara” using the suboptimal hard decoder

with DC-MUD.
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4. The Suboptimal Soft-Decision Decoders

Chapter 3 presented several options for decoding VQ over a CDMA channel.

The suboptimal hard-decision decoders have a low computational complexity with

respect to the number of users K. They, however, perform poorly at low and medium

ranges of the channel signal-to-noise ratio (CSNR) [1, 2]. On the other hand, the

optimal HMD is too complicated for systems with a medium to large number of

users. Recently, the author in [1, 2] proposed a low complexity, suboptimal decoder

for VQ over a CDMA channel. This decoder has the same complexity as that of

the suboptimal hard decoder but its performance is much improved. The structure

of this suboptimal soft-decision decoder is shown in Fig. 4.1. It should be pointed

out that the work in [1, 2], however, only considers the AWGN and frequency-flat

Rayleigh fading channels, where the transmitted signal is affected only in amplitude

and not by multipath effects. An important contribution of this chapter is to extend

the scheme in [1,2] to a frequency-selective fading channel, where the received signal

is affected in both strength and shape due to multipath effects. Note that such an

extension is not simple as it might first appear. The complication is due to the fact

that one has to modify both the soft-output MUD and the soft bit estimator shown

in Fig. 4.1.

Observe that the suboptimal decoder in [1, 2] is also based on separate multiuser

detection and VQ decoding. However, instead of using the table-lookup (or hard) VQ

decoding, the individual soft VQ decoders are employed to make the decision for the

source vectors based on the soft bit estimates that are calculated from the soft bit

estimator. As in [1, 2], to see what are the soft bit estimates needed for individual

soft VQ decoders, it is appropriate to consider the optimal decoding of VQ over a

single-user frequency-selective Rayleigh fading channel first.
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Figure 4.1 Structure of the suboptimal soft decoder [1, 2].

Without loss of generality, assume that only one user, namely user k, transmits a

d-dimensional source vector Xk over a frequency-selective fading channel. Similar to

(3.4), the discrete channel output is simply

zk(n) =
√

Ekbn(Ik)ak(n) + uk(n), n = 1, 2 . . . , L (4.1)

where the noise uk(n) is a complex Gaussian random vector of size P with zero-

mean and covariance matrix equal to σ2Rkk. The optimal decoder that minimizes

the mean-square error computes the following conditional expectation:

X̂k(z
(k)) =

N−1
∑

ik=0

Pr(Ik = ik|Z(k) = z(k)) · c(k)
ik

(4.2)

where z(k) is the sample value of Z(k) = [z⊤k (1), z⊤k (2), . . . , z⊤k (L)]⊤ and, recall that,

c
(k)
ik

is the ikth centroid of the kth user’s codebook.

A detailed treatment of the above decoder based on Hadamard matrix and the

related Hadamard transform is given in [7] for an AWGN channel. Such a decoder

provides a description of the optimal decoding scheme in terms of the estimates of the

individual bits of the transmitted index. The main operation of the Hadamard-based

representation was summarized in Subsection 2.1.2 of Chapter 2. More specifically,

the encoder centroids can be represented as

c
(k)
ik

= Thik (4.3)
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where T is the encoder’s transform matrix and hik is the ikth column of an N × N

Sylvester-type Hadamard matrix H. Following the same derivations in [1, 2] and [7],

it can be shown that Equation (4.2) can be computed as

X̂k(z
(k)) = T

(

∑N−1
i=0 P

(k)
i hikh

⊤
ik

)

· p̂(z(k))
(

∑N−1
i=0 P

(k)
i hik

)⊤

· p̂(z(k))
(4.4)

where

p̂(z(k)) = [1, b̃L(Ik)]
⊤ ⊗ · · · ⊗ [1, b̃1(Ik)]

⊤ (4.5)

and the symbol ⊗ denotes Kronecker matrix product as defined in (2.23). The MMSE

soft estimate b̃n(Ik) of the bit bn(Ik) is computed from the channel output in (4.1) as

b̃n(Ik) = E

{

bn(Ik)|zk(n); Pr(bn(Ik) = +1) =
1

2

}

= tanh
[

σ−2
√

Ekz̆k(n)
]

(4.6)

where z̆k(n) = 2ℜ{aH
k (n)zk(n)} is equivalent to the output of a RAKE receiver. Here

RAKE receiver refers to a popular diversity combining technique. In essence, the

RAKE receiver uses multi correlators to process several received signal arrived over

multipaths. Each correlator in a RAKE receiver is called finger. The correlators’ out-

puts are coherently combined to achieve improved reliability of the decision variable,

hence improved performance. Since the action of the RAKE receiver is similar to that

of a garden rake, hence the name and mnemonic of the receiver. Note that for the

case of an AWGN channel, the corresponding statistic is shown in [1,2] to be simply

the first component of zk(n). Observe that, in the case of a multipath fading channel,

the statistic is extended to the “RAKE statistic”, giving the extension of the AWGN

result to multipath fading an intuitively satisfying interpretation.

In the suboptimal soft decoder proposed in [1, 2], it is observed that the optimal

Hadamard-based soft VQ decoder for a single-user channel can also be employed for

an individual user in a CDMA channel if the soft bit estimates can be generated from

the soft-output MUD in Fig. 4.1. The soft bit estimates for a given MUD can be
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defined as follows [1, 2]

b̃n(Ik) =
∑

bn(Ik)∈{±1}

bn(Ik) Pr(bn(Ik)| MUD). (4.7)

Let q = Pr(bn(Ik) = +1| MUD) in (4.7), then Pr(bn(Ik) = −1| MUD) = 1 − q.

Equation (4.7) is written as:

b̃n(Ik) = q − (1 − q) =
q − (1 − q)

q + (1 − q)

=

q
1−q

− 1
q

1−q
+ 1

=

[

q
1−q

]
1
2 −

[

q
1−q

]− 1
2

[

q
1−q

]
1
2

+
[

q
1−q

]− 1
2

=
e

1
2 log[ q

1−q ]
2 − e

− 1
2 log[ q

1−q ]
2

e
1
2 log[ q

1−q ]
2 + e

− 1
2 log[ q

1−q ]
2

= tanh

(

1

2
log

[

q

1 − q

])

. (4.8)

Moreover, the a posteriori log-likelihood ratio (LLR) of the bit bn(Ik) at the output

of an MUD is defined as

λ(bn(Ik)) , log
Pr[bn(Ik) = +1|MUD]

Pr[bn(Ik) = −1|MUD]

= log

[

q

1 − q

]

(4.9)

It then follows from (4.8) and (4.9) that the soft bit estimate b̃n(Ik) of the bit bn(Ik)

can be computed from the LLR at the output of MUD as follows:

b̃n(Ik) = tanh

[

1

2
λ(bn(Ik))

]

(4.10)

If the transmitted bits bn(Ik) are equally likely, the a posteriori LLR can be explicitly

computed for each type of multiuser detection. The use of different types of MUD

requires different levels of computational complexity for the suboptimal soft decoding

scheme considered in this chapter. In what follows, the optimal multiuser detector

(OPT-MUD), the minimum mean-square error multiuser detector (MMSE-MUD),

and the decorrelating detector (DC-MUD) are analyzed in order to obtain the a

posteriori LLR that is used to compute the soft bit estimates.
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4.1 Suboptimal Soft Decoding with OPT-MUD

The soft-output MUD obtains the sufficient statistic from the bank of correlators

and then provides the LLR for computing the soft bit estimates. Over the duration

n, the received vector z(n) and its properties are presented in (3.6). The probability

density function of z(n) is completely specified by the mean and the covariance matrix,

and given by

f(z(n)) =
exp

{

−σ−2 [z(n) − RWA(n)b(n)]H R−1 [z(n) − RWA(n)b(n)]
}

(πσ2)KP |R| (4.11)

Substitute (4.11) into (4.9), the LLR can be computed for the optimal multiuser

detector (OPT-MUD) with the assumption of equally likely transmitted bits bn(Ik)

as follows:

λOPT[bn(Ik)] = log
Pr[bn(Ik) = +1|z(n)]

Pr[bn(Ik) = −1|z(n)]

= log
{f [z(n)|bn(Ik) = +1]f [bn(Ik) = +1]}/f [z(n)]

{f [z(n)|bn(Ik) = −1]f [bn(Ik) = −1]}/f [z(n)]

= log
f [z(n)|bn(Ik) = +1]

f [z(n)|bn(Ik) = +1]

= log

∑

b(n)∈B+
k

exp
{

− 1
σ2 [z(n) − RWA(n)b(n)]H R−1 [z(n) − RWA(n)b(n)]

}

∑

b(n)∈B−
k

exp
{

− 1
σ2 [z(n) − RWA(n)b(n)]H R−1 [z(n) − RWA(n)b(n)]

}

(4.12)

where

B+
k , {(bn(I1), . . . , bn(Ik−1), +1, bn(Ik+1), . . . , bn(IK)) : bn(Ij) ∈ {±1}, j 6= k} (4.13)

B−
k , {(bn(I1), . . . , bn(Ik−1),−1, bn(Ik+1), . . . , bn(IK)) : bn(Ij) ∈ {±1}, j 6= k} (4.14)

The soft bit estimates generated from the optimal MUD can be computed by

substituting (4.12) into (4.10). The soft individual VQ encoders then use these soft

bit estimates to make the decision for source vectors.

Simulation results provided in the next section show that the suboptimal soft

decoder using the OPT-MUD has a good error performance that is very close to the
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performance of the optimal decoder. However, it should be pointed out that with

the use of the OPT-MUD, the complexity of the decoder is about O(KP · 2KP ),

which is still exponential in number of users K. To further reduce the computational

complexity of the suboptimal soft decoder using the OPT-MUD, the MMSE-MUD

and the DC-MUD can be employed.

4.2 Suboptimal Soft Decoding with MMSE-MUD

Instead of employing the OPT-MUD, here the decoder uses the MMSE-MUD to

compute the LLR for the soft bit estimator. In this suboptimal soft decoding, the

soft MMSE-MUD applies the linear filter mH
k (n) for the user k at time n to minimize

the following mean-square error:

MSEk = E
[

∥

∥bn(Ik) − mH
k (n)z(n)

∥

∥

2
]

(4.15)

The MSEk in the above equation is expanded as follows:

MSEk = E
[

(

bn(Ik) − mH
k (n)z(n)

) (

bn(Ik) − mH
k (n)z(n)

)H
]

= E
[

1 − bn(Ik)m
H
k (n)z(n) − bn(Ik)z

H(n)mk(n) + mH
k (n)z(n)zH(n)mk(n)

]

(4.16)

Substitute (3.6) into (4.16) and note that E[u(n)uH(n)] = σ2R, E[b(n)b⊤(n)] = I,

and E[u(n)] = 0, then MSEk is given as

MSEk = 1 − e⊤
k AH(n)WRmk(n) − mH

k (n)RWA(n)ek

+ mH
k (n)RWA(n)AH(n)WRmk(n) + σ2mH

k (n)Rmk(n) (4.17)

where ek is a K-vector of all zeros, except for the kth element, which is one. The

mean-square error MSEk is now a function of mk(n). Therefore, the filter solution of

mk(n) is obtained by setting the derivative of MSEk (with respect to mk(n)) to zero:

∂MSEk

∂mk(n)
= 0 (4.18)

Solving the above equation yields

mH
k (n) = e⊤

k AH(n)WR
[

RWA(n)AH(n)WR + σ2R
]−1

(4.19)
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Now, the output of the MMSE-MUD corresponding to the kth user can be computed

as follows:

u(k)
n = mH

k (n)z(n)

= e⊤
k AH(n)WR

[

RWA(n)AH(n)WR + σ2R
]−1

× [RWA(n)b(n) + u(n)] . (4.20)

It is shown in [18] that the distribution of the residual interference-plus-noise at the

output of the linear MMSE-MUD is well approximated by a Gaussian distribution.

Thus, it can be assumed that the output u
(k)
n in (4.20) represents the output of an

equivalent AWGN channel as follows:

u(k)
n = µ(k)

n bn(Ik) + η(k)
n (4.21)

where µ
(k)
n is the equivalent amplitude of the kth user’s signal and η

(k)
n is a zero-mean

complex Gaussian noise sample with variance (ν
(k)
n )2. From (4.20) and (4.21), the

parameters µ
(k)
n and (ν

(k)
n )2 are given as follows:

µ(k)
n = E

{

bn(Ik)u
(k)
n

}

= e⊤
k AH(n)WR

(

RWA(n)AH(n)WR + σ2R
)−1 × RWA(n)ek (4.22)

and

(ν(k)
n )2 = var{u(k)

n } = E
{

(

u(k)
n

)2
}

−
(

µ(k)
n

)2
(4.23)

From (4.20), it follows that

E
{

(

u(k)
n

)2
}

= E
{

(

u(k)
n

) (

u(k)
n

)H
}

= e⊤
k AH(n)WR

[

RWA(n)AH(n)WR + σ2R
]−1

RWA(n)ek

= µ(k)
n (4.24)

Substitute (4.24) into (4.23), the variance of u
(k)
n can be expressed as

(ν(k)
n )2 = µ

(k)
n −

(

µ
(k)
n

)2

= µ
(k)
n [1 − µ

(k)
n ]. (4.25)
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Note that, both µ
(k)
n and ν

(k)
n are real-valued quantities. The approximated Gaussian

probability density function of the output u
(k)
n is now written as

f(u(k)
n ) =

1

2πν
(k)
n

exp











−
∥

∥

∥
u

(k)
n − bn(Ik)µ

(k)
n

∥

∥

∥

2

(

ν
(k)
n

)2











(4.26)

Based on the above approximation for the PDF of u
(k)
n , the a posteriori LLR of the

soft MMSE-MUD is given by

λMMSE[bn(Ik)] = log
f [u

(k)
n |bn(Ik) = +1]

f [u
(k)
n |bn(Ik) = −1]

= − 1
(

ν
(k)
n

)2

{

∥

∥u(k)
n − µ(k)

n

∥

∥

2 −
∥

∥u(k)
n + µ(k)

n

∥

∥

2
}

=
µ

(k)
n

[

u
(k)
n +

(

u
(k)
n

)∗]

µ
(k)
n [1 − µ

(k)
n ]

=
2ℜ{u(k)

n }
1 − µ

(k)
n

(4.27)

Similarly to the OPT-MUD, the LLR computed from the MMSE-MUD in (4.27)

is fed into the soft bit estimator. The computational complexity of the MMSE-MUD

is about O(PL · K2) which is clearly much lower than that of the optimal decoder

and the soft-decision decoder based on the soft OPT-MUD.

4.3 Suboptimal Soft Decoding with DC-MUD

As discussed in Subsection 2.2.2, for the soft DC-MUD, the sufficient statistic z(n)

is multiplied with R−1 to give v(n) = R−1z(n). That is

v(n) = R−1[RWA(n)b(n) + u(n)]

= WA(n)b(n) + R−1u(n). (4.28)

The vector v(n) can also be represented as v(n) = [v⊤
1 (n), . . . ,v⊤

K(n)]⊤, where vk(n)

is the P -vector corresponding to the kth user and can be written as follows:

vk(n) = bn(Ik)
√

Ekak(n) + ũk(n). (4.29)
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If the matrix R−1 of size KP × KP is partitioned into K2 submatrices, each of size

P × P , as

R−1 =











R+
11 . . . R+

1K

...
. . .

...

R+
K1 . . . R+

KK











(4.30)

Then, ũk(n) in (4.29) is a complex Gaussian random vector of length P , with zero-

mean and covariance matrix σ2R+
kk. Given the channel fading amplitudes, the proba-

bility density function of vk(n) is completely specified by the mean vector bn(Ik)
√

Ek

ak(n) and the covariance matrix σ2R+
kk, written as

f(vk(n)) =
exp

{

− 1
σ2 [vk(n) − bn(Ik)

√
Ekak(n)]H(R+

kk)
−1[vk(n) − bn(Ik)

√
Ekak(n)]

}

(πσ2)P |R+
kk|

(4.31)

It then follows that the a posteriori LLR provided by the DC-MUD can be computed

as:

λDC[bn(Ik)] = log
f [vk(n)|bn(Ik) = +1]

f [vk(n)|bn(Ik) = −1]
(4.32)

Equation (4.32) can be expressed using (4.31) as

λDC[bn(Ik)] =

{

− 1

σ2
[vk(n) −

√

Ekak(n)]H(R+
kk)

−1[vk(n) −
√

Ekak(n)]

}

−
{

− 1

σ2
[vk(n) +

√

Ekak(n)]H(R+
kk)

−1[vk(n) +
√

Ekak(n)]

}

=
4
√

Ek

σ2
ℜ

[

aH
k (n)(R+

kk)
−1vk(n)

]

(4.33)

The soft output of the DC-MUD from the above equation is passed to the soft bit

estimator. The soft bit estimator in turn calculates the soft bits b̃n(Ik) of the trans-

mitted bits bn(Ik) and then feeds them to the individual VQ decoders. Simulation

results in Section 4.4 show that the suboptimal soft decoder using the DC-MUD as

described above has a good performance at practical range of the channel signal-to-

noise ratio (CSNR). More importantly, the complexity of the overall decoder is only

about O(PL · K2).
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4.4 Illustrative Simulation Results

First, the transmission of two images (for 2 users) over a frequency-selective

Rayleigh fading CDMA channel is once again considered. The reconstructions of

“Lena” and “Barbara” images are performed for the suboptimal soft decoding schemes

in order to compare the performance between the hard and the soft decoders. All

the system parameters used in simulations are the same as that specified in Section

3.3 for the simulations of hard-decoding schemes. The PSNRs of both users employ-

ing different types of MUD in the soft decoding scheme are tabulated in Table 4.1.

Comparing the quality of reconstructed images shown in Figures 4.2 to 4.7 and those

displayed in 3.11 to 3.16 clearly demonstrates that a better performance is achieved

by the proposed soft-decoding schemes over their hard-decoding counterparts.

Table 4.1 PSNRs for the soft-decoding schemes at CSNR = 8 (dB).

OPT-MUD MMSE-MUD DC-MUD

SNR PSNR SNR PSNR SNR PSNR

User 1 10.92 25.45 8.67 23.20 5.56 20.09

User 2 9.89 23.28 7.96 21.35 5.87 19.25

To provide quantitative performance comparison between the hard-decision and

soft-decision decoding schemes, simulations with synthetic data sources are considered

next. Here the source of an individual user is modeled as a zero-mean, unit-variance,

stationary and first order Gauss-Markov random process with correlation coefficient

̺. Mathematically,

Xn = ̺Xn−1 + ζn, (4.34)

where {ζn} is an independent and identically distributed zero-mean Gaussian process

with variance 1 − ̺2. The performance of VQ decoders is measured by the output

signal-to-noise ratio (SNR) versus the CSNR, i.e., Eb/N0. Each curve represents for

one decoder’s performance over the specified range of channel quality. As usual, at

low CSNR, all decoders perform poorly, because the background noise dominates the

signal. On the contrary, the value of output SNR increases at higher CSNR, where
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the channel has a better quality. The parameters of the VQ used in the simulations

are d = 3 and L = 3. The VQ was trained for the Gauss-Markov source having

̺ = 0.9 in a noiseless channel. The codebook of the VQ is arranged with good index

assignments based on the LISA-algorithm [13]. For this VQ the entropy is Hk = 2.93

(bits) and the highest achievable value of the SNR for this VQ is 9.35 (dB). The

frequency-selective Rayleigh fading channel is simulated with three paths where the

path delay between the two adjacent paths equals to the chip duration and the relative

average amplitudes over the three paths are 0.52, 0.39 and 0.29 [8].

Figure 4.8 compares the performance of three different hard-decision decoders,

while a similar comparison is shown in Fig. 4.9 for the corresponding suboptimal

soft-decision decoding schemes. Also displayed in Figs. 4.8 and 4.9 is the performance

of the optimal HMD to serve as the upper bound. Two common observations from

these two figures are (i) The use of a more complicated MUD results in a better SNR

performance, especially over the range of medium CSNR; and (ii) The performance

of all the decoders (hard or soft) can asymptotically approach the highest achievable

value of SNR at the high CSNR region (more than about 18 dB). More importantly,

the superiority of a soft decoding scheme over its hard decoding counterpart is evident

from these two figures, especially over the range of small CSNR. Finally, it can be

seen from Fig. 4.9 that the SNR performances of the optimal HMD decoding and the

soft decoder based on the OPT-MUD are indistinguishable.

Simulations for CDMA systems with a larger number of users are also carried

out. Figures 4.10 and 4.11 show the performance of both hard and soft suboptimal

decoders for a three-path Rayleigh fading CDMA systems with K = 4 and K = 8

users, respectively. For both systems, the VQ is trained with the same parameters as

for the case of two-user system except that L = 5. The entropy of VQ in this case

is Hk = 4.92 (bits) and the signal-to-distortion ratio, which is the highest achievable

value of SNR, is 13.2 (dB). For the system with K = 4, four users employ random

signature sequences of length 31. On the other hand, for the eight-user system,

individual users are assigned Gold sequences of length 31 [23] in order to reduce the
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cross-correlation. Table 4.2 tabulates random signature sequences and Gold sequences

used in the simulations.

As can be predicted, the performance curves of the soft decoding schemes are

always higher than that of the hard decoding schemes with the same type of MUD.

The advantage of the proposed decoder with soft-output MUD and soft-VQ decoding

over the table-lookup decoder can be clearly observed from figures 4.10 and 4.11 for

each type of MUD, especially at low to medium CSNR [2]. Such performance im-

provement is obtained with no extra computational complexity. Another observation

is that there seems to be a little performance improvement by the user of MMSE-

MUD over DC-MUD when the number of user is small. This is due to the fact that

the level of multiple-access-interference (MAI) is small and the two MMSE-MUD and

DC-MUD perform fairly close in this case. The advantage of using MMSE-MUD over

DC-MUD becomes more evident when a system with a larger number of users, K = 8,

(i.e., a higher level of MAI) is shown in Fig. 4.11.

Table 4.2 Signature sequences used in simulations.

K = 4
(Random sequences)

s1 1 1 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 0 1 1 1 0 0 1 1 0 1 1 0 0

s2 0 0 0 0 1 1 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 0 1 1 1 1 1 0 1 1

s3 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 0 0 1 0

s4 0 0 0 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1

K = 8
(Gold sequences)

s1 0 0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 1

s2 0 1 0 0 0 1 0 0 1 0 1 0 1 1 0 0 0 0 1 1 1 0 0 1 1 0 1 1 1 1 1

s3 1 0 1 0 1 0 1 1 0 0 1 1 0 0 0 1 1 1 0 1 1 0 1 0 0 0 1 1 0 1 0

s4 1 1 0 1 1 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 1 0 0 0 0 1 0

s5 1 1 1 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0 0 0 0 0 1 1 1 0 1 1 1 0

s6 1 1 1 1 1 1 0 1 0 0 1 0 1 1 0 1 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0

s7 1 1 1 1 0 0 1 1 0 1 0 0 0 0 1 0 1 0 1 0 0 1 1 1 0 0 1 0 0 1 1

s8 0 1 1 1 0 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 0 0 0 0 1 1 0
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Figure 4.2 Reconstructed image of “Lena” using the suboptimal soft decoder with

OPT-MUD.

Figure 4.3 Reconstructed image of “Barbara” using the suboptimal soft decoder

with OPT-MUD.
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Figure 4.4 Reconstructed image of “Lena” using the suboptimal soft decoder with

MMSE-MUD.

Figure 4.5 Reconstructed image of “Barbara” using the suboptimal soft decoder

with MMSE-MUD.
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Figure 4.6 Reconstructed image of “Lena” using the suboptimal soft decoder with

DC-MUD.

Figure 4.7 Reconstructed image of “Barbara” using the suboptimal soft decoder

with DC-MUD.
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Figure 4.8 Performance comparison of different hard decoding schemes over a 3-

path Rayleigh fading CDMA system with two users.
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Figure 4.10 Performance comparison of different decoding schemes over a 3-path

Rayleigh fading CDMA system with four users.
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Figure 4.11 Performance comparison of different decoding schemes over a 3-path

Rayleigh fading CDMA system with eight users.
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4.5 Suboptimal Decoders Based on Modifications of The Op-

timal Multiuser Detector

The previous section presented various suboptimal decoding schemes for VQ trans-

mitted over a frequency-selective Rayleigh fading CDMA channel. In essence, these

schemes were obtained by appropriately modifying the well-known suboptimal multi-

user detectors so that they can be combined with the optimal VQ decoders of indi-

vidual users.

This section introduces another suboptimal decoding scheme which is resulted

from a direct modification of the optimal multiuser detector. The main motivation

for this suboptimal decoding is described next.

It can be seen from (4.12) that there is a summation taken over all vertices of

a hypercube {±1}K (that is, there are 2K terms) for the suboptimal soft decoding

scheme with the OPT-MUD. Since many terms of the sums in (4.12) will not con-

tribute significantly to the result, especially at a high channel signal to noise ratio

(CSNR) [7], it suggests that one can limit the summation to a subset of {±1}K in

order to reduce the computational complexity. There are a number of ways to choose

this subset. This section introduces two methods to find the suitable subsets, which

are based on distance measure and reliability processing.

4.5.1 The Algorithm Based on Distance Measure

As mentioned above, one is interested in reducing the number of terms in the

summation in (4.12). The obvious question is how to identify a suitable subset of

the vertices of a hypercube to include in the summations. Here, a suitable subset

can be found based on the hard decision bhard(n) of the transmitted information bit

vector b(n) and its “neighbors”. Such a decoder first makes the hard-bit decision

and then searches the α nearest neighbors based on the smallest distances to the

hard decision bhard(n). The summation subset is then taken to include α (a positive

integer less than 2K) vectors with the nearest distances to bhard(n). The employed
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distance measure between b(n) and bhard(n) is

l[b(n),bhard(n)] = ‖R1/2WA(n)(b(n) − bhard(n))‖. (4.35)

Hence, the vertices to include in the summations in (4.12), for each possible value

of bhard(n), can be computed in advance and stored. For simplicity, the suboptimal

decoder with OPT-MUD, computed with α nearest neighbors, is referred to as the

α-suboptimal decoder. A similar decoder is considered in [7] and [2] for AWGN and

flat (single-path) Rayleigh fading channels, respectively.

4.5.2 The Algorithm Based on Reliability Processing

Instead of distance measure, an alternative algorithm to find the suitable subset

based on reliability processing is investigated in this subsection. Here, the hard

decision bhard(n) is first made by using any low-comlexity linear operator, LK×K , as

follows:

bhard(n) = sgn(Lz(n)). (4.36)

Then, an algorithm is applied to search the subset based on the reliability measure

of the initial (hard) decision.

Obviously, the performance of such an algorithm depends heavily on the reliability

measurement. Here define for each hard-bit decision b̂n(Ik) the corresponding soft-

output γ̃k as follows:

γ̃k = l⊤k z(n), k = 1, 2, . . . , K (4.37)

where l⊤k is the kth row of matrix L. Then, the reliability value γk of the hard-bit

decision b̂n(Ik) is defined as the log-likelihood ratio:

γk ,
1

2
ln

f(γ̃k|bn(Ik) = b̂n(Ik))

f(γ̃k|bn(Ik) = −b̂n(Ik))
(4.38)

where f(γ̃k|bn(Ik)) denotes the probability density function of γ̃k conditioned on the

transmitted bit bn(Ik). For all the K users, the generated reliability vector is γ =

[γ1, . . . , γK ]⊤.
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Over the nth symbol duration, the detector makes the hard decision bhard(n) for

the transmitted bit sequence b(n). Note that, the best decision is b̂ML(n). It is

expected that bhard(n) may produce the ML decision b̂ML(n). With this motivation,

a sequence of error patterns is generated as e(d) ∈ {0, 1}K , d = 1, 2, . . . , 2K , where

e
(d)
k = 1 indicates an error at the bit position k. The error sequence e(d) is applied on

the vector bhard(n) to create the bit vector b̂(d) as follows:

b̂(d) = [b̂
(d)
1 , b̂

(d)
2 , . . . , b̂

(d)
K ]⊤ : b̂

(d)
k = b̂n(Ik) ⊕ e

(d)
k , k = 1, . . . , K (4.39)

where ⊕ denotes modulo-2 addition. Naturally, the error sequence generation cri-

terion will be the likelihood of b̂(n) = bhard(n) ⊕ e(d) based on the observation of

the soft-output vector γ̃, and its conditional density distribution f(γ̃|b(n) = b̂(n)).

Assume that the soft-output γ̃k are conditionally independent random variables, then

the likelihood function becomes
∏K

k=1 f(γ̃k|bn(Ik) = b̂k) and the log-likelihood ratio

(LLR) is

Λ[b̂(n)] =
1

2

K
∑

k=1

ln
f(γ̃k|bn(Ik) = b̂k)

f(γ̃k|bn(Ik) = −b̂k)

=
1

2

K
∑

k=1

b̂k=b̂n(Ik)

ln
f(γ̃k|bn(Ik) = b̂k)

f(γ̃k|bn(Ik) = −b̂k)
+

1

2

K
∑

k=1

b̂k 6=b̂n(Ik)

ln
f(γ̃k|bn(Ik) = b̂k)

f(γ̃k|bn(Ik) = −b̂k)

=
1

2

K
∑

k=1

b̂k=b̂n(Ik)

ln
f(γ̃k|bn(Ik) = b̂n(Ik))

f(γ̃k|bn(Ik) = −b̂n(Ik))
+

1

2

K
∑

k=1

b̂k 6=b̂n(Ik)

ln
f(γ̃k|bn(Ik) = −b̂n(Ik)

f(γ̃k|bn(Ik) = b̂n(Ik))

=
1

2

K
∑

k=1

b̂k=b̂n(Ik)

ln
f(γ̃k|bn(Ik) = b̂n(Ik))

f(γ̃k|bn(Ik) = −b̂n(Ik))
− 1

2

K
∑

k=1

b̂k 6=b̂n(Ik)

ln
f(γ̃k|bn(Ik) = b̂n(Ik)

f(γ̃k|bn(Ik) = −b̂n(Ik))

(4.40)
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Substitute (4.38) into (4.40), the LLR is computed as

Λ[b̂(n)] =
K

∑

k:b̂k=b̂n(Ik)

γk −
K

∑

k:b̂k 6=b̂n(Ik)

γk

=
K

∑

k=1

γk −
K

∑

k:b̂k 6=b̂n(Ik)

γk −
K

∑

k:b̂k 6=b̂n(Ik)

γk

=
K

∑

k=1

γk − 2
K

∑

k:b̂k 6=b̂n(Ik)

γk

=
K

∑

k=1

γk − 2
K

∑

k:ek=1

γk (4.41)

Denote the second term of (4.41) as
∑K

k:ek=1 γk = φ(e,γ). Note that, this is the only

quantity of LLR effected by the choice of the error pattern e. For our purpose of

finding the subset to reduce the complexity, arrange all 2K error patterns {e(d)}2K

k=1

in the ascending order under the following key

φ(e(d),γ) ≤ φ(e(d+1),γ), d = 1, 2, . . . , 2K − 1. (4.42)

By keeping only the first β error sequences, where β is a positive integer, then the

subset of β vectors is created as follows:

{b̂(d)(n)}β
d=1 : b̂(d)(n) = bhard(n) ⊕ e(d) (4.43)

With this subset, it is guaranteed that the summation in (4.12) is taken over the set

of β vectors {b̂(d)(n)}β
d=1 with the biggest LLR, given γ at any time n.

The authors in [9] investigated an algorithm that creates the error patterns e

given the observation γ under the key (4.42). However, such an algorithm must

provide e and calculate φ(·,γ) for every e(d) ∈ {e(d)}β
d=1 at any bit duration n. It is

recognized that the ordered error patterns under the key (4.42) are unique for all the

vectors γs whose elements are also in ascending order γ1 ≤ γ2 ≤ . . . ≤ γK . Thus,

an alternative algorithm proposed here is to obtain the subset of β vectors b̂(n) in

which the ordered sequences of β error patterns are computed only one time for all

the ascending ordered vectors γs. However, the subset of β elements coincides in
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the ascending order of vectors γs rather than the reliability vector γ of bhard(n).

Therefore, the positions of bits in vector bhard(n) are changed into bhard
s (n) according

to the index Is of γs’s elements so that the ordered error vectors in {e(d)}β
d=1 can be

applied on bhard
s (n). The positions of the elements of bhard

s (n) are finally inter-changed

back to the index I of bhard(n) to obtain b̂(d)(n). The set of β vectors {b̂(d)(n)}β
d=1 is

the expected subset.

Starting with bhard(n) and γ, the outcome of the algorithm gives the set of

{b̂(d)(n) = bhard(n) ⊕ e(d)}β
d=1 such that e satisfies the key (4.42). To summarize,

the detailed steps of this algorithm are presented in Appendix B.

For simplicity, the suboptimal decoder with OPT-MUD using the algorithm based

on reliability processing, approximated with β vectors in the sum, is named as the

β-suboptimal decoder.

4.5.3 Simulation, Results and Comparison

The two algorithms are applied for both hard and soft suboptimal decoders to

reduce the computational complexity of the summations from 2K down to a positive

integer number. Simulations are run for systems that are the same as the ones in

Subsection 4.4, with K = 2, 4 users, respectively. These two algorithms are applied for

both hard and soft suboptimal decoders and the integer numbers (α, β) used for two

algorithms are equal to the number of users K. For the system with K = 2, Figures

4.12 and 4.13 show the performance curves of the suboptimal decoders employing

the two algorithms for both hard and soft decoding, respectively. Also illustrated

in these two figures are the performances of the suboptimal decoders with the OPT-

MUD (soft-ML), the DC-MUD and the MMSE-MUD. It is observed that the decoders

with MMSE-MUD and DC-MUD perform worse than the ones using either of the

two algorithms over the practical range of CSNR. Moreover, the decoders with β-

algorithm performs lightly better than the ones with α-algorithm. The performance

gap between the β-algorithm and the α-algorithm is at most 0.5 (dB).

Figures 4.12 and 4.13 also show that both the α-algorithm and β-algorithm cannot
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approach the suboptimal decoder with the OPT-MUD at low CSNR. This is expected

because both algorithms cannot pick up the suitable subsets in computing (4.12).

Similar comparisons are shown in Figures 4.14 and 4.15 for system with a larger

number of users, namely K = 4. Observe from these two figures that the α-algorithm

slightly outperforms the β-algorithm for this larger system. It should be pointed out,

however, that the α-algorithm must find and store all the possible subsets of α vectors

which can be excessive. The β-algorithm, on the other hand, finds the suitable subset

directly from the received signal.

To summarize, at the same complexity as the decoders using either the MMSE-

MUD or the DC-MUD, both α-algorithm and β-algorithm can perform very close to

that of the decoder with the OPT-MUD. The use of these two algorithms offers other

alternatives to the suboptimal decoding schemes in the effort of achieving complexity

reduction. Basically, the computational complexities of the decoding scheme with

these two algorithms increase linearly with α or β. Although the gaps between the

performance curves of different decoders with and without the complexity-reduced

algorithm are small over the practical range of channel signal-to-noise ratio (CSNR),

the use of these two algorithms provides a complexity-controllable scheme for the

decoder by simply changing the value of the parameters α and β.
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Figure 4.12 Hard decoders for the system with 2 users using random sequences of

length 7, α=β=2.
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Figure 4.13 Soft decoders for the system with 2 users using random sequences of

length 7, α=β=2.
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Figure 4.14 Hard decoders for the system with 4 users using random sequences of

length 31, α=β=4.
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Figure 4.15 Soft decoders for the system with 4 users using random sequences of

length 31, α=β=4.
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5. Extensions to Systems with M-PAM

Constellations

Chapter 4 considered the transmission of VQ over a frequency-selective Rayleigh

fading CDMA channel. However, the system was designed only for BPSK modulation.

With BPSK, the signal constellation has only two signal points. If one wants to have

a better bandwidth efficiency, one must use a higher-order signal constellation. This

generally makes the error performance of the system poorer because the minimum

Euclidean distance between signal points in a more crowded constellation decreases

for the same average energy. This chapter extends the results of the proposed decoders

to systems employing M -ary pulse amplitude modulation (M -PAM) constellations.

The extension is necessary to offer a flexible trade-off between complexity, spectral

efficiency and performance of the system.

5.1 System Model

The system model considered in this chapter is similar to the one in Section

3.1. The only difference between these two systems at the transmitter is in the

modulation scheme. The d-dimensional source vectors from K users are encoded and

then transmitted over a frequency-selective Rayleigh fading CDMA channel by means

of M -PAM.

Let {Am = (2m − 1 − M)∆
2
, 1 ≤ m ≤ M} be the set of M possible amplitudes

used to carry one of M = 2Q possible Q-bit blocks (or symbols). The value of

∆ is set at
√

12
M2−1

in order to normalize the average symbol energy to be unity,

i.e., Es = 1
M

∑M
m=1 A2

m = 1. For the kth user, at any symbol duration n, the binary

sequence of Q bits, [b1(Ik), . . . , bj(Ik), . . . , bQ(Ik)], is mapped to a symbol pk(n), taking

a value from the set {Am}M
m=1. These symbols pk(n) are transmitted over a frequency-

68



selective Rayleigh fading DS-CDMA channel. The transmitter in the system under

consideration is modified from the one in Subsection 3.1 and shown in Fig. 5.1.
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Figure 5.1 Structure of the transmitter with M -PAM.

Similarly to (3.1), the received signal component corresponding to user k in this

system is given by:

yk(t) =
√

Ekpk(n)s⊤k (t − (n − 1)T )ak(n), 0 ≤ t ≤ T (5.1)

The received signal waveform y(t), resulting from the transmitted signals of all the

K users, is y(t) =
∑K

k=1 yk(t) + u(t). It should be pointed out that the noise u(t) is

the same as the one in (3.2), and instead of the transmitted bit bn(Ik), the symbol

pk(n) is expressed in (5.1).

Moreover, the sufficient statistic vector z(n), whose components are computed

from correlating the received signal waveform y(t) with the delayed replicas of the

signature waveforms, can be written as:

z(n) = RWA(n)p(n) + u(n) (5.2)

where the vector p(n) = [p1(n), . . . , pK(n)]⊤ contains the transmitted symbols of all

users at time n and all the other matrices in (5.2) are identical to the ones in (3.6).
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The decoder has to make the decision for the source vectors of all the K users based

on the sufficient statistic {z(n)}. Similar to the case of BPSK, different processing

algorithms on {z(n)} (i.e., different decoders) are discussed next.

5.2 The Suboptimal Hard Decoders
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detection

Multiuser

Detection

(MUD)

Z

Table-

lookup

VQ

Decoder

(User 1)

Table-

lookup

VQ

Decoder

(User K)

)(ˆ
1 ZX

)(ˆ ZXK

1

2

L

M

M

M

1

2

L
M

Demapper

)(ˆ
1Ib j

)(ˆ
Kj Ib

M

)(ˆ1 np

)(ˆ npK

Figure 5.2 Model of the decoder based on table-lookup.

Fig. 5.2 shows the structure of the decoding approach based on a combination

of separate multiuser detection (MUD) and table-lookup (or hard) VQ decoding.

The sumbol p̂k(n) is the hard decision made by the MUD for user k at time n.

Let p̂(n) = [p̂1(n), . . . , p̂K(n)]⊤ denote the hard decision vector for the vector of the

transmitted symbols p(n). Three different types of the MUDs can be implemented

to make the hard decision for p(n) as discussed in the following.

First, if the OPT-MUD is employed, its output is computed based on the max-

imum likelihood decision rule. From (5.2), the probability density function of z(n)

conditioned on p(n) is given by

f(z(n)) =
exp

{

−σ−2 [z(n) − RWA(n)p(n)]H R−1 [z(n) − RWA(n)p(n)]
}

(πσ2)KP |R| (5.3)
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The ML decision rule is therefore

p̂ML(n) = arg min
p(n)∈{Am}K

[p⊤(n)AH(n)WRWA(n)p(n) − zH(n)WA(n)p(n)

− p⊤(n)AH(n)Wz(n)]

= arg min
p(n)∈{Am}K

[

p⊤(n)AH(n)WRWA(n)p(n) − 2ℜ{zH(n)WA(n)p(n)}
]

(5.4)

Second, for the DC-MUD, the output of the decorrelating filter is the product of

sufficient statistic and the inverse matrix R−1, given as follows

v(n) = R−1z(n) = WA(n)p(n) + R−1u(n)

= WA(n)p(n) + ũ(n) (5.5)

where ũ(n) is a KP -vector of complex Gaussian random variable with zero mean and

covariance matrix σ2R−1. The output of the DC-MUD can also be represented as the

KP -vector v(n) = [v⊤
1 (n), . . . ,v⊤

K(n)]⊤, where v⊤
k (n) is the P -vector, given as

vk(n) = pk(n)
√

Ekak(n) + ũk(n). (5.6)

Note that the properties of vector ũk(n) have been known already from (4.29). The

probability density function of vk(n) is completely specified by the mean pk(n)
√

Ekak(n)

and the same covariance matrix of ũk(n). It is written as

f(vk(n)) =
1

(πσ2)P |R+
kk|

exp

{

− 1

σ2
[vk(n) − pk(n)

√

Ekak(n)]H(R+
kk)

−1[vk(n)

− pk(n)
√

Ekak(n)]
}

(5.7)

With the above pdf, the decision rule for the kth user at time n is expressed as:

p̂DC
k (n) = arg min

pk(n)∈{Am}

[

p2
k(n)Eka

H
k (n)(R+

kk)
−1ak(n)

− pk(n)
√

Eka
H
k (n)(R+

kk)
−1vk(n) − pk(n)

√

Ekv
H
k (n)(R+

kk)
−1ak(n)

]

= arg min
pk(n)∈{Am}

[

p2
k(n)Eka

H
k (n)(R+

kk)
−1ak(n)

− 2 ℜ
(

pk(n)
√

Eka
H
k (n)(R+

kk)
−1vk(n)

)]

. (5.8)
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Let α0 = Eka
H
k (n)(R+

kk)
−1ak(n) and α1 = 2

√
Ekℜ

{

aH
k (n)(Rkk)

−1vk(n)
}

, the decision

rule can be expressed as follows

p̂DC
k (n) =











arg min
pk(n)∈{Am}

∣

∣

∣
pk(n) − α1

2α0

∣

∣

∣
; if α0 ≥ 0

arg max
pk(n)∈{Am}

∣

∣

∣
pk(n) − α1

2α0

∣

∣

∣
; if α0 < 0

(5.9)

Third, with the MMSE-MUD, the MMSE linear detector for user k at time n

chooses the KP -vector mk(n) that minimizes

MSEk = E
[

∥

∥pk(n) − mH
k (n)z(n)

∥

∥

2
]

(5.10)

Using (5.2) and the fact that noise and data are uncorrelated, MSEk is computed as

represented in (4.17). mH
k (n) is therefore exactly the same as expressed in (4.19).

The output of the MMSE-MUD corresponding to the kth user can be computed as

follows:

u(k)
n = mH

k (n)z(n)

= e⊤
k AH(n)WR

[

RWA(n)AH(n)WR + σ2R
]−1

[RWA(n)p(n) + u(n)]

(5.11)

Similar to Section 4.2, u
(k)
n is well approximated by a complex Gaussian distribution

and it is represented as

u(k)
n = µ(k)

n pk(n) + η(k)
n (5.12)

where µ
(k)
n and (ν

(k)
n )2 are computed in (4.22) and (4.25), respectively. The distribu-

tion function of u
(k)
n is now known with µ

(k)
n and ν

(k)
n , given by:

f(u(k)
n ) =

1

2πν
(k)
n

exp











−
∥

∥

∥
u

(k)
n − pk(n)µ

(k)
n

∥

∥

∥

2

(

ν
(k)
n

)2











(5.13)

Therefore, the decision rule for the kth user at time n can be computed as follows:

p̂MMSE
k (n) = arg min

pk(n)∈{Am}

∥

∥u(k)
n − pk(n)µ(k)

n

∥

∥

2
(5.14)

Based on the output of the MUD, the demapper receives the sequences of p̂k(n) for

all the K users and then converts them into the binary sequences [b̂1(Ik), . . . , b̂Q(Ik)].
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In turn, the VQ decoder of the kth user converts these bits to the estimated index îk.

The table-lookup operation finds the centroid c
(k)

îk
for VQ decoding, given îk. Note

that, the complexity of such decoders depends on the type of the MUD. The decoding

complexity is about O(PL · MK) operations for the OPT-MUD. On the other hand,

the decoding complexity is about O(PL · KM) computations if the other MUDs are

employed.

5.3 The Suboptimal Soft Decoders

This decoding scheme has been presented in Chapter 4 and its structure is shown

in Fig. 4.1. This section extends the results of such decoding approach to a system

with M -PAM. To this end, the corresponding LLRs of the soft-output MUDs need

to be computed accordingly for M -PAM. In particular, the soft bit estimate b̃j(Ik)

is generated from soft-output MUD, and fed into the individual soft VQ decoder.

An individual soft VQ decoder in turn processes the soft bit estimates and outputs

the estimation of the source vector using the optimal decoding algorithm [1]. The

structure and computation principles of the suboptimal soft decoding for M -PAM are

basically the same as that provided in Chapter 4. The soft estimate b̃j(Ik) of the bit

bj(Ik) is computed from the soft-output of the MUD as

b̃j(Ik) = tanh

[

1

2
λ(bj(Ik))

]

(5.15)

where λ(bj(Ik)) denotes the a posteriori log-likelihood ratio (LLR) of the bit bj(Ik),

given by

λ(bj(Ik)) , log
Pr[bj(Ik) = +1|MUD]

Pr[bj(Ik) = −1|MUD]
(5.16)

It is important to recognize that the index j in the above equations is different from

the index n in (4.6) and (4.9). However, they both indicate the index of the bit

duration. In the case of BPSK, n is also the symbol duration because each symbol

contains only one bit. On the contrary, for M -PAM each symbol duration corresponds

to a block of Q bits. In what follows, the a posteriori LLR is provided for each type

of MUD with the assumption of equally likely transmitted bits bj(Ik).
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First, substitute (5.3) into (5.16), the LLR of the soft OPT-MUD can be computed

as follows:

λOPT[bj(Ik)] =

log

∑

p(n)∈B+
k

exp
{

− 1
σ2 (z(n) − RWA(n)p(n))H R−1 (z(n) − RWA(n)p(n))

}

∑

p(n)∈B−
k

exp
{

− 1
σ2 (z(n) − RWA(n)p(n))H R−1 (z(n) − RWA(n)p(n))

} , (5.17)

where

B+
k , {(p1(n), . . . , p+

k (n), . . . , pK(n)) : pr(n) ∈ {Am}, r 6= k} (5.18)

B−
k , {(p1(n), . . . , p−k (n), . . . , pK(n)) : pr(n) ∈ {Am}, r 6= k}. (5.19)

Moreover, p+
k (n) and p−k (n) are symbols whose jth bit is +1 or −1, i.e., ([b1(Ik), . . . ,

bj−1(Ik), ±1, bj+1(Ik), . . . , bQ(Ik)]).

Instead of the OPT-MUD, the linear MUDs are employed to reduce the complexity

that comes from the summations taken over B+
k and B−

k . Similar to the computation

of LLR from the OPT-MUD, the log-likelihood ratios of the bit bj(Ik), calculated

from the soft-outputs of the DC-MUD and the MMSE-MUD in (5.7) and (5.13)

respectively. They are given as follows:

λDC[bj(Ik)] = log
f [vk(n)|bn(Ik) = +1]

f [vk(n)|bn(Ik) = −1]
=

log

∑

pk(n)∈P+
k,j

exp
{

− 1
σ2 [vk(n) − pk(n)

√
Ekak(n)]H(R+

kk)
−1[vk(n) − pk(n)

√
Ekak(n)]

}

∑

pk(n)∈P−
k,j

exp
{

− 1
σ2 [vk(n) − pk(n)

√
Ekak(n)]H(R+

kk)
−1[vk(n) − pk(n)

√
Ekak(n)]

}

(5.20)

and

λMMSE[bj(Ik)] = log
f [u

(k)
n |bj(Ik) = +1]

f [u
(k)
n |bn(Ik) = −1]

= log

∑

pk(n)∈P+
k,j

exp

{

−
(

ν
(k)
n

)−2 ∥

∥

∥
u

(k)
n − pn(k)µ

(k)
n

∥

∥

∥

2
}

∑

pk(n)∈P−
k,j

exp

{

−
(

ν
(k)
n

)−2 ∥

∥

∥
u

(k)
n − pn(k)µ

(k)
n

∥

∥

∥

2
} (5.21)
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where P+
k,j and P−

k,j are subsets of {Am}K whose elements are mapped from ([b1(Ik),

. . ., bj−1(Ik), ±1, bj+1(Ik), . . ., bQ(Ik)]), respectively.

In summary, the LLRs of three different types of the MUDs are computed from

(5.17), (5.20) and (5.21). For each type of MUD, the LLR is then used to calculate the

soft-bit estimates as in (5.15). The soft-bit estimates are fed into individual soft-VQ

encoders in order to make the final decisions for the source vectors.

5.4 Results and Comparison

In this section, the method used to measure the performance of systems with M -

PAM is the same as in Subsection 4.4. To be precise, performance measurement is

the output SNR versus the channel signal-to-noise ratio CSNR, where

SNRk =
E{||Xk||2}

E{||Xk − X̂k||2}
, (5.22)

CSNR =
Eb

N0

, (5.23)

and Eb = Es

Q
is the average transmitted energy per bit. The source of an individ-

ual user is modeled as a zero-mean, unit-variance, stationary and first order Gauss-

Markov random process as described in (4.34). The parameters of the VQ used in

the simulation for the system with two users are d = 3, L = 3. The number of paths

and the signature waveforms are the same as used in Subsection 4.4 for the case of

K = 2 users. Figures 5.3 and 5.4 show the performance curves of the hard and the

soft suboptimal decoders for both BPSK and 4-PAM. Observe that the system with

BPSK provides a better performance than that of the system with 4-PAM, especially

in the medium range of CSNR. On the other hand, one can improve bandwidth effi-

ciency from 1 to 2 (bit/second/Hz) by using 4-PAM instead of BPSK. However, the

system performance loss is about 2 (dB) in the output SNR.

To obtain an even better bandwidth efficiency, a system using 8-PAM can be con-

sidered. Generally, the higher order signal constellation is used, the better bandwidth

efficiency of the system is achieved. Figures 5.5 and 5.6 provide the comparisons of

different suboptimal decoders for both BPSK and 8-PAM systems. The use of 8-
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Figure 5.3 Performance of hard decoding schemes in the system employing BPSK

and 4-PAM and with 2 users: Signature sequences of length 7.

PAM yields a bandwidth efficiency of 3 (bit/second/Hz). The price to pay for this

higher bandwidth efficiency is the performance degradation compared to both 4-PAM

and BPSK.

To provide a better insight in understanding the trade-off between spectral effi-

ciency and performance of different modulations schemes, Figure 5.7 compares the

SNR performance of three schemes for the case that the proposed soft decoding with

MMSE-MUD is used. Over the medium range of CSNR that corresponds to the out-

put SNR range between 5 to 9 dB, this figure shows that the penalty in SNR is about

3 dB, e.g., two times for every additional bit in spectral efficiency.
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Figure 5.4 Performance of soft decoding schemes in the system employing BPSK

and 4-PAM and with 2 users: Signature sequences of length 7.
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6. Conclusions and Suggestions for Further

Research

6.1 Conclusions

This thesis has extended the results of the suboptimal decoding scheme, originally

proposed in [1, 2] for an AWGN channel, to a frequency-selective Rayleigh fading

CDMA channel. Results obtained demonstrate that such a decoding scheme also

works very well in mobile wireless communications. The suboptimal soft decoder is

shown to be a graceful approach to the complicated optimal decoder. The complexity

of the receiver reduces from an exponential number to a linear number of K, the

number of users. The use of different types of MUDs in such a suboptimal decoder

also offers a great flexibility to trade the performance for complexity of the system.

The results are useful in designing a practical decoder for a VQ transmission system

in mobile wireless communications.

Additional algorithms were also investigated in Section 4.5 as other alternatives

of the suboptimal decoder. Simulation results indicated that the decoder using both

the reliability-based processing and the distance-based algorithms provide similar

performance to that of the proposed suboptimal decoder in [1, 2]. In addition to

good performance, the algorithms offer a decoding method whose complexities can

be controlled in a very flexible manner.

The proposed decoders were also extended for systems employing M -ary PAM in

order to obtain a better bandwidth efficiency. From simulation results and analysis,

it can be concluded that one must suffer some performance loss to obtain a better

spectral efficiency. This extension basically offers a trade-off between performance

and bandwidth efficiency of the system.
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6.2 Suggestions for Further Research

In this thesis, the suboptimal soft decoding scheme was studied for the transmis-

sion of VQ over a synchronous1 uncoded system. It would be interesting and useful to

extend this decoding scheme for asynchronous and coded systems. For coded systems,

the BER can be reduced with the use of a good error correcting code. Therefore, the

performance of the whole system will be improved. After VQ encoding, the source

symbols are converted into a sequence of binary bits. It is conceivable that using

an error correcting code reduces the errors in the recovery of the transmitted bits,

leading to an improvement in the construction quality of the source vectors. It is

interesting to design a coded system to minimize the distortion of VQ reconstruction.

The modulation schemes employed for the systems in this thesis are one-dimensional

BPSK and M -PAM. When bandwidth efficiency is the primary concern, it is of inter-

est to study signal mapping problem in multi-dimensional constellations built from

other conventional higher-order constellations (such as M -PSK, M -QAM). Moreover,

adaptive modulation techniques to further improve the capacity of the system would

be very attractive.

1Actually it is symbol asynchronous, but chip synchronous system.
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A. A Review of Linear Increasing Swap

Algorithm (LISA)

It was shown that the channel distortion is minimized if the vector quantizer

can be expressed as a linear transform of a hypercube. A linearization problem

of the vector quantizer is regarded as the index assignment (IA) problem. For a

vector quantizer with N cells, there are N ! ways to order N numbers, providing N !

solutions for assigning indices. In some IAs, codewords, that interchange frequently

far apart in signal space, cause large contributions to the overall distortion when

transmission errors occur. On the other hand, there are encoders whose careful IAs

are taken mitigate the effects of channel errors. The authors in [13] proposed a

powerful algorithm to find the best IA of codevectors. The encoder design includes

the source-coding problem and the index-assignment problem. A coder designed in

this manner is called a robust vector quantizer (RVQ).

As discussed in Section 2.1, a d-dimensional vector X is fed to the VQ to produce

a L-bit binary codeword for transmission, b(i) = [bL(i), bL−1(i), . . . , b1(i)]
⊤ where i

is the index of the codeword. The table-lookup decoder receives a codeword j and

produces a d-dimensional reconstruction vector as output.

As the encoder is assumed to have maximum entropy, the channel distortion can

be expressed [13]

ΦC =
1

N

N−1
∑

i=0

N−1
∑

j=0

‖ci − cj‖2 · pj/i (A.1)

where pj/i is the probability of receiving the index j given that index i was sent, and

ci are the centroids of the reconstruction cells. The minimization of (A.1) is precisely

the problem of index assignment. There exists a class of related codebooks having

the same centroids, but another order, C = [c0, . . . , cN−1]. To describe the ordering of
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the VQ centroids, a row vector G = [b(0),b(1), . . . ,b(N − 1)] is defined as the index

assignment matrix whose columns are the L-dimensional base-2 representations of

the index integers [0, 1, . . . , N − 1].

As represented in Subsection 2.1.2, an encoder centroid can be described as in

(2.26), and a full codebook can be represented as

C = T · H (A.2)

The d×N matrix T = [t0, t1, . . . , tN−1] is the Hadamard transform of C that is divided

into two parts. The linear part contains t0, t20 , t21 , t22 , . . . , tN/2 and the nonlinear part

includes the remaining vectors. The linearity of T is measured by the linearity index

ℓ ,
1

σ2
V Q

L−1
∑

j=0

‖t2j‖2 (A.3)

where σ2
V Q is defined as a “variance” of the codebook, given as [13]

σ2
V Q ,

1

N

N−1
∑

i=0

‖ci‖2 −
∥

∥

∥

∥

∥

N−1
∑

i=0

ci

∥

∥

∥

∥

∥

2

=
N−1
∑

i=0

‖ti‖2 − ‖t0‖2

=
N−1
∑

i=0

‖ti‖2. (A.4)

It is convenient to use ℓ as a measure on how dominant the linear part of the general

transform T is. The range of ℓ is 0 ≤ ℓ ≤ 1 where ℓ = 1 denotes a purely linear

transform. The relationship between the channel distortion and the linearity index is

expressed with the upper bound and the lower bound as in Theorem 2 of [13], as

2σ2
V Q[2qℓ+(1−(1−2q)2)·(1−ℓ)] ≤ ΦC ≤ 2σ2

V Q[2qℓ+(1−(1−2q)L)·(1−ℓ)], (A.5)

where q is the cross-over error probability of a binary symmetric channel (BSC). It

can be seen from (A.5) that the larger ℓ is, the smaller ΦC becomes. Thus, the optimal

index assignment is achieved at the maximum linearity index ℓ = 1 and the minimum

channel distortion is

ΦCmin = 4 · q · σ2
V Q. (A.6)
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The parameter ℓ is therefore an indicator of how good an index assignment is, but it

gives no information on how to find the optimal index assignment.

In order to find a good index assignment, all the classes of assignments can be

evaluated simultaneously. As decomposed in Theorem 3 of [13], any IA matrix, G,

can be uniquely specified through its triple as

G = LGez ⊕ w1⊤ (A.7)

where L is an invertible L × L matrix, Gez is a reduced echelon IA matrix with an

initial zero vector, w is a L-dimensional vector, and 1 is the column vector of N ones.

With this decomposition, IAs of a cookbook can be categorized into classes. The set

of IAs having the same reduced echelon matrix Gez is called a Hadamard class. There

are N = N !

N ·
L=1P
j=0

(N−2j)

possible values for Gez. The Full Linear Search Algorithm (FLSA)

presented in [13] preforms a full search among N Hadamard classes, which gives the

same result as if an exhaustive search were performed over all index assignments.

The Linearity Increasing Swap Algorithm (LISA) rapidly finds a good index as-

signment by swapping codewords in an effective manner. With LISA, it is unnecessary

to compute the complete Hadamard transform in order to calculate the linear index.

The swap of two VQ centroids cE and cF in a codebook C turns T into the new

matrix T′ whose columns can be computed as

t′i =
1

N

[

c0 + . . . + cF (−1)b
⊤(E)b(i) + . . . + yE(−1)b

⊤(F )b(i) + . . .
]

= ti −
1

N

[

(cF − cE) · ((−1)b
⊤(F )b(i) − (−1)b

⊤(E)b(i))
]

(A.8)

Thus, the new linearity becomes

ℓ′ = ℓ +
1

(N · σV Q)2

L−1
∑

j=0

[

(∆bj)
2‖∆c‖2 − 2N∆bjt

⊤
2j∆c

]

(A.9)

where ∆c = cF − cE and ∆bj = ∆bj(F ) − ∆bj(E). Observe that the linearity index

increases if and only if the sum in (A.9) is positive. This occurs for swaps of indices

with a Hamming distance of one, implying that ∆bj = 0 for all but one j value.
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Therefore, b(E) and b(F ) must differ only in bit j, equivalently expressed as

{E,F} =







2m · 2j ≤ E ≤ (2m + 1)2j − 1, any integer m

F = E + 2j
(A.10)

All possible swaps of this type are depicted as a butterfly structure. For E and F

matching this pattern, (A.8) and (A.9) yield the following simple expressions [13]:

Test :
1

N
· ‖∆c‖2 + t⊤2j∆c > 0

Update t′ : t′2l = t2l +
2

N
· ‖∆c‖

Update ℓ : ℓ′ = ℓ +
4

(N · σV Q)2
·
[

‖∆c‖2 + N · t⊤2j∆c
]

. (A.11)

There are totally 2L−1(2L − 1) possible swaps. For low computational burden, it

is well worth dividing all pairwise swaps into two subsets. First, it picks out only a

subset of L · 2L−1 Hamming-1 neighbors from all pairwise swaps. This swap strategy

is called “Hamming-1 butterflies”.

Second, the remaining 2L−1(2L − L − 1) pairwise swaps, having an additional

increase of linearity, are invoked in a procedure named “Remaining Butterflies”. The

LISA presents a routine performing all pairwise swaps by first swapping the Hamming-

1 neighbors and then all the others. This split is especially favorable when the total

time consumption is of concern and the procedure has to be terminated before a full

cycle is completed. The LISA can be described as follows

Input: An initial codebook C.

Output: A permutation of the initial codebook with a good IA, also named C.

Linearity Increasing Swap Algorithm (LISA):

Compute the Hadamard transform T of C.
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Repeat:

Hamming-1 Butterflies

For j = 0 to L − 1

For j = 0 to N − 2j+1, step 2j+1

For E = i to i + 2j − 1

∆c = cE+2j − cE

If ‖∆c‖2 + N · t⊤2j∆c > 0

Swap cE and cE+2j

t2j = t2j +
2

N
· ∆c

Remaining Butterflies

For j = 0 to L − 1

For v = 2j + 1 to 2j+1 − 1

For i = 0 to N − 2j+1, step 2j+1

For E = i to i + 2j − 1

F = E ⊕ v

∆c = cF − cE

∆br = ∆br(F ) − ∆br(E); r = 0, 1, . . . , j

If

j
∑

r=0

[

(∆br)
2‖∆c‖2 − 2N∆brt

⊤
2r∆c

]

> 0

Swap cE and cF

t2r = t2r − ∆br

N
· ∆c; r = 0, 1, . . . , j

Until convergence.

The FLSA finds the optimal IA with the highest linearity index. It is however

more theoretical than practical interest. The LISA is a significantly faster than the

other algorithms tested, reaching a good, but not the best IA in the test. For large

codebook, the high speed makes the LISA an attractive choice.
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B. Algorithm Based on Reliability Processing

1) Sort γ = {γk}K
k=1 in increasing order such that γh1 ≤ . . . ≤ γhK

. This gives

γs = [γh1 , . . . , γhK
]⊤ with index Is = [h1, . . . , hK ]⊤.

2) Exchange the positions of bits in bhard(n) from index I to index Is to obtain

bhard
s (n).

3) Define the error pattern sequences εp , {e(pt)}, p = 0, . . . , K, t = 1, . . . , 2p where

{e(pt)} are ordered under the key φ(·,γ):

φ(e(pt),γ) ≤ φ(e(pt+1),γ), t = 1, 2, . . . , 2p − 1 (B.1)

and satisfies

e
(pt)
h = 0 for every h ∈ {hp+1, hp+2, . . . , hK} and 1 ≤ t ≤ 2p. (B.2)

Here, e
(·)
h is the hth position in the error pattern e(·) and (B.2) states that e(pt)

introduce errors only in the p lowest reliability positions of the initial bit decision

vector bhard(n). The implementation starts with ε0 = {e(1) = [0, 0, . . . , 0]⊤}.
Define also the error pattern sequences ε′p , {e′(pt)}, p = 0, 1, . . . , K − 1, t =

1, 2, . . . , 2p, where {e′(pt)} is such that

e
′(pt)
h =







1, if h = hp+1

e
(pt)
h , otherwise

(B.3)

Therefore, each {e′(pt)} contains exactly one more error in bit position hp+1 than

the corresponding error pattern {e(pt)}. It follows that φ(e′(pt),γ) = φ(e(pt),γ)+

γhp+1 and {e′(pt)} is also ordered under the key (4.42).

At this point, it is important to observe the following. If the two ordered

sequences εp = {e(·)} and ε′p = {e′(·)} are merged together, one obtains εp+1 =
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[{e(·)}, {e′(·)}] in increasing order of the same key (4.42). Therefore, the iterative

generation of ε′p from εp and the mergence of two sequences to form εp+1 for

p = 0, 1, . . . , K − 1 will lead to εK of all 2K error patterns under the key

φ(·,γ). Since only the first β error patterns in εK are needed, this process can

be simplified greatly. For this purpose, the operation of the algorithm can be

stopped when the length of εp is β. This set is exactly the same to the set of

the first β elements in εK .

4) Apply β elements of εK on bhard
s (n) to create {b̂(d)

s (n) = bhard
s (n) ⊕ e(d)}β

d=1.

5) Return the positions of all the elements in {b̂s(n)} to the original index I to

obtain the expected set {b̂(d)(n)}β
d=1.
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[17] S. Verdú, Multiuser Detection. Cambridge University Press, 1998.
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