1,782 research outputs found

    High quality protein sequence alignment by combining structural profile prediction and profile alignment using SABERTOOTH

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein alignments are an essential tool for many bioinformatics analyses. While sequence alignments are accurate for proteins of high sequence similarity, they become unreliable as they approach the so-called 'twilight zone' where sequence similarity gets indistinguishable from random. For such distant pairs, structure alignment is of much better quality. Nevertheless, sequence alignment is the only choice in the majority of cases where structural data is not available. This situation demands development of methods that extend the applicability of accurate sequence alignment to distantly related proteins.</p> <p>Results</p> <p>We develop a sequence alignment method that combines the prediction of a structural profile based on the protein's sequence with the alignment of that profile using our recently published alignment tool SABERTOOTH. In particular, we predict the contact vector of protein structures using an artificial neural network based on position-specific scoring matrices generated by PSI-BLAST and align these predicted contact vectors. The resulting sequence alignments are assessed using two different tests: First, we assess the alignment quality by measuring the derived structural similarity for cases in which structures are available. In a second test, we quantify the ability of the significance score of the alignments to recognize structural and evolutionary relationships. As a benchmark we use a representative set of the SCOP (structural classification of proteins) database, with similarities ranging from closely related proteins at SCOP family level, to very distantly related proteins at SCOP fold level. Comparing these results with some prominent sequence alignment tools, we find that SABERTOOTH produces sequence alignments of better quality than those of Clustal W, T-Coffee, MUSCLE, and PSI-BLAST. HHpred, one of the most sophisticated and computationally expensive tools available, outperforms our alignment algorithm at family and superfamily levels, while the use of SABERTOOTH is advantageous for alignments at fold level. Our alignment scheme will profit from future improvements of structural profiles prediction.</p> <p>Conclusions</p> <p>We present the automatic sequence alignment tool SABERTOOTH that computes pairwise sequence alignments of very high quality. SABERTOOTH is especially advantageous when applied to alignments of remotely related proteins. The source code is available at <url>http://www.fkp.tu-darmstadt.de/sabertooth_project/</url>, free for academic users upon request.</p

    Multiple Biolgical Sequence Alignment: Scoring Functions, Algorithms, and Evaluations

    Get PDF
    Aligning multiple biological sequences such as protein sequences or DNA/RNA sequences is a fundamental task in bioinformatics and sequence analysis. These alignments may contain invaluable information that scientists need to predict the sequences\u27 structures, determine the evolutionary relationships between them, or discover drug-like compounds that can bind to the sequences. Unfortunately, multiple sequence alignment (MSA) is NP-Complete. In addition, the lack of a reliable scoring method makes it very hard to align the sequences reliably and to evaluate the alignment outcomes. In this dissertation, we have designed a new scoring method for use in multiple sequence alignment. Our scoring method encapsulates stereo-chemical properties of sequence residues and their substitution probabilities into a tree-structure scoring scheme. This new technique provides a reliable scoring scheme with low computational complexity. In addition to the new scoring scheme, we have designed an overlapping sequence clustering algorithm to use in our new three multiple sequence alignment algorithms. One of our alignment algorithms uses a dynamic weighted guidance tree to perform multiple sequence alignment in progressive fashion. The use of dynamic weighted tree allows errors in the early alignment stages to be corrected in the subsequence stages. Other two algorithms utilize sequence knowledge-bases and sequence consistency to produce biological meaningful sequence alignments. To improve the speed of the multiple sequence alignment, we have developed a parallel algorithm that can be deployed on reconfigurable computer models. Analytically, our parallel algorithm is the fastest progressive multiple sequence alignment algorithm

    Towards a deeper understanding of protein sequence evolution

    Get PDF
    Most bioinformatic analyses start by building sequence alignments by means of scoring matrices. An implicit approximation on which many scoring matrices are built is that protein sequence evolution is considered a sequence of Point Accepted Mutations (PAM) (Dayhoff et al., 1978), in which each substitution happens independently of the history of the sequence, namely with a probability that depends only on the initial and final amino acids. But different protein sites evolve at a different rate (Echave et al., 2016) and this feature, though included in many phylogenetic reconstruction algorithms, is generally neglected when building or using substitution matrices. Moreover, substitutions at different protein sites are known to be entangled by coevolution (de Juan et al., 2013). This thesis is devoted to the analysis of the consequences of neglecting these effects and to the development of models of protein sequence evolution capable of incorporating them. We introduce a simple procedure that allows including the among-site rate variability in PAM-like scoring matrices through a mean-field-like framework, and we show that rate variability leads to non trivial evolutions when considering whole protein sequences. We also propose a procedure for deriving a substitution rate matrix from Single Nucleotide Polymorphisms (SNPs): we first test the statistical compatibility of frequent genetic variants within a species and substitutions accumulated between species; moreover we show that the matrix built from SNPs faithfully describes substitution rates for short evolutionary times, if rate variability is taken into account. Finally, we present a simple model, inspired by coevolution, capable of predicting at the same time the along-chain correlation of substitutions and the time variability of substitution rates. This model is based on the idea that a mutation at a site enhances the probability of fixing mutations in the other protein sites in its spatial proximity, but only for a certain amount of time

    Predicting residue-wise contact orders in proteins by support vector regression

    Get PDF
    BACKGROUND: The residue-wise contact order (RWCO) describes the sequence separations between the residues of interest and its contacting residues in a protein sequence. It is a new kind of one-dimensional protein structure that represents the extent of long-range contacts and is considered as a generalization of contact order. Together with secondary structure, accessible surface area, the B factor, and contact number, RWCO provides comprehensive and indispensable important information to reconstructing the protein three-dimensional structure from a set of one-dimensional structural properties. Accurately predicting RWCO values could have many important applications in protein three-dimensional structure prediction and protein folding rate prediction, and give deep insights into protein sequence-structure relationships. RESULTS: We developed a novel approach to predict residue-wise contact order values in proteins based on support vector regression (SVR), starting from primary amino acid sequences. We explored seven different sequence encoding schemes to examine their effects on the prediction performance, including local sequence in the form of PSI-BLAST profiles, local sequence plus amino acid composition, local sequence plus molecular weight, local sequence plus secondary structure predicted by PSIPRED, local sequence plus molecular weight and amino acid composition, local sequence plus molecular weight and predicted secondary structure, and local sequence plus molecular weight, amino acid composition and predicted secondary structure. When using local sequences with multiple sequence alignments in the form of PSI-BLAST profiles, we could predict the RWCO distribution with a Pearson correlation coefficient (CC) between the predicted and observed RWCO values of 0.55, and root mean square error (RMSE) of 0.82, based on a well-defined dataset with 680 protein sequences. Moreover, by incorporating global features such as molecular weight and amino acid composition we could further improve the prediction performance with the CC to 0.57 and an RMSE of 0.79. In addition, combining the predicted secondary structure by PSIPRED was found to significantly improve the prediction performance and could yield the best prediction accuracy with a CC of 0.60 and RMSE of 0.78, which provided at least comparable performance compared with the other existing methods. CONCLUSION: The SVR method shows a prediction performance competitive with or at least comparable to the previously developed linear regression-based methods for predicting RWCO values. In contrast to support vector classification (SVC), SVR is very good at estimating the raw value profiles of the samples. The successful application of the SVR approach in this study reinforces the fact that support vector regression is a powerful tool in extracting the protein sequence-structure relationship and in estimating the protein structural profiles from amino acid sequences

    Machine Learning and Graph Theory Approaches for Classification and Prediction of Protein Structure

    Get PDF
    Recently, many methods have been proposed for the classification and prediction problems in bioinformatics. One of these problems is the protein structure prediction. Machine learning approaches and new algorithms have been proposed to solve this problem. Among the machine learning approaches, Support Vector Machines (SVM) have attracted a lot of attention due to their high prediction accuracy. Since protein data consists of sequence and structural information, another most widely used approach for modeling this structured data is to use graphs. In computer science, graph theory has been widely studied; however it has only been recently applied to bioinformatics. In this work, we introduced new algorithms based on statistical methods, graph theory concepts and machine learning for the protein structure prediction problem. A new statistical method based on z-scores has been introduced for seed selection in proteins. A new method based on finding common cliques in protein data for feature selection is also introduced, which reduces noise in the data. We also introduced new binary classifiers for the prediction of structural transitions in proteins. These new binary classifiers achieve much higher accuracy results than the current traditional binary classifiers

    Structural approaches to protein sequence analysis

    Get PDF
    Various protein sequence analysis techniques are described, aimed at improving the prediction of protein structure by means of pattern matching. To investigate the possibility that improvements in amino acid comparison matrices could result in improvements in the sensitivity and accuracy of protein sequence alignments, a method for rapidly calculating amino acid mutation data matrices from large sequence data sets is presented. The method is then applied to the membrane-spanning segments of integral membrane proteins in order to investigate the nature of amino acid mutability in a lipid environment. Whilst purely sequence analytic techniques work well for cases where some residual sequence similarity remains between a newly characterized protein and a protein of known 3-D structure, in the harder cases, there is little or no sequence similarity with which to recognize proteins with similar folding patterns. In the light of these limitations, a new approach to protein fold recognition is described, which uses a statistically derived pairwise potential to evaluate the compatibility between a test sequence and a library of structural templates, derived from solved crystal structures. The method, which is called optimal sequence threading, proves to be highly successful, and is able to detect the common TIM barrel fold between a number of enzyme sequences, which has not been achieved by any previous sequence analysis technique. Finally, a new method for the prediction of the secondary structure and topology of membrane proteins is described. The method employs a set of statistical tables compiled from well-characterized membrane protein data, and a novel dynamic programming algorithm to recognize membrane topology models by expectation maximization. The statistical tables show definite biases towards certain amino acid species on the inside, middle and outside of a cellular membrane

    New Methods to Improve Protein Structure Modeling

    Get PDF
    Proteins are considered the central compound necessary for life, as they play a crucial role in governing several life processes by performing the most essential biological and chemical functions in every living cell. Understanding protein structures and functions will lead to a significant advance in life science and biology. Such knowledge is vital for various fields such as drug development and synthetic biofuels production. Most proteins have definite shapes that they fold into, which are the most stable state they can adopt. Due to the fact that the protein structure information provides important insight into its functions, many research efforts have been conducted to determine the protein 3-dimensional structure from its sequence. The experimental methods for protein 3-dimensional structure determination are often time-consuming, costly, and even not feasible for some proteins. Accordingly, recent research efforts focus more and more on computational approaches to predict protein 3-dimensional structures. Template-based modeling is considered one of the most accurate protein structure prediction methods. The success of template-based modeling relies on correctly identifying one or a few experimentally determined protein structures as structural templates that are likely to resemble the structure of the target sequence as well as accurately producing a sequence alignment that maps the residues in the target sequence to those in the template. In this work, we aim at improving the template-based protein structure modeling by enhancing the correctness of identifying the most appropriate templates and precisely aligning the target and template sequences. Firstly, we investigate employing inter-residue contact score to measure the favorability of a target sequence fitting in the folding topology of a certain template. Secondly, we design a multi-objective alignment algorithm extending the famous Needleman-Wunsch algorithm to obtain a complete set of alignments yielding Pareto optimality. Then, we use protein sequence and structural information as objectives and generate the complete Pareto optimal front of alignments between target sequence and template. The alignments obtained enable one to analyze the trade-offs between the potentially conflicting objectives. These approaches lead to accuracy enhancement in template-based protein structure modeling

    Computational Molecular Coevolution

    Get PDF
    A major goal in computational biochemistry is to obtain three-dimensional structure information from protein sequence. Coevolution represents a biological mechanism through which structural information can be obtained from a family of protein sequences. Evolutionary relationships within a family of protein sequences are revealed through sequence alignment. Statistical analyses of these sequence alignments reveals positions in the protein family that covary, and thus appear to be dependent on one another throughout the evolution of the protein family. These covarying positions are inferred to be coevolving via one of two biological mechanisms, both of which imply that coevolution is facilitated by inter-residue contact. Thus, high-quality multiple sequence alignments and robust coevolution-inferring statistics can produce structural information from sequence alone. This work characterizes the relationship between coevolution statistics and sequence alignments and highlights the implicit assumptions and caveats associated with coevolutionary inference. An investigation of sequence alignment quality and coevolutionary-inference methods revealed that such methods are very sensitive to the systematic misalignments discovered in public databases. However, repairing the misalignments in such alignments restores the predictive power of coevolution statistics. To overcome the sensitivity to misalignments, two novel coevolution-inferring statistics were developed that show increased contact prediction accuracy, especially in alignments that contain misalignments. These new statistics were developed into a suite of coevolution tools, the MIpToolset. Because systematic misalignments produce a distinctive pattern when analyzed by coevolution-inferring statistics, a new method for detecting systematic misalignments was created to exploit this phenomenon. This new method called ``local covariation\u27\u27 was used to analyze publicly-available multiple sequence alignment databases. Local covariation detected putative misalignments in a database designed to benchmark sequence alignment software accuracy. Local covariation was incorporated into a new software tool, LoCo, which displays regions of potential misalignment during alignment editing assists in their correction. This work represents advances in multiple sequence alignment creation and coevolutionary inference

    MESSM: a framework for protein threading by neural networks and support vector machines

    Get PDF
    Protein threading, which is also referred to as fold recognition, aligns a probe amino acid sequence onto a library of representative folds of known structure to identify a structural similarity. Following the threading technique of the structural profile approach, this research focused on developing and evaluating a new framework - Mixed Environment Specific Substitution Mapping (MESSM) - for protein threading by artificial neural networks (ANNs) and support vector machines (SVMs). The MESSM presents a new process to develop an efficient tool for protein fold recognition. It achieved better efficiency while retained the effectiveness on protein prediction. The MESSM has three key components, each of which is a step in the protein threading framework. First, building the fold profile library-given a protein structure with a residue level environmental description, Neural Networks are used to generate an environment-specific amino acid substitution (3D-1D) mapping. Second, mixed substitution mapping--a mixed environment-specific substitution mapping is developed by combing the structural-derived substitution score with sequence profile from well-developed amino acid substitution matrices. Third, confidence evaluation--a support vector machine is employed to measure the significance of the sequence-structure alignment. Four computational experiments are carried out to verify the performance of the MESSM. They are Fischer, ProSup, Lindahl and Wallner benchmarks. Tested on Fischer, Lindahl and Wallner benchmarks, MESSM achieved a comparable performance on fold recognition to those energy potential based threading models. For Fischer benchmark, MESSM correctly recognise 56 out of 68 pairs, which has the same performance as that of COBLATH and SPARKS. The computational experiments show that MESSM is a fast program. It could make an alignment between probe sequence (150 amino acids) and a profile of 4775 template proteins in 30 seconds on a PC with IG memory Pentium IV. Also, tested on ProSup benchmark, the MESSM achieved alignment accuracy of 59.7%, which is better than current models. The research work was extended to develop a threading score following the threading technique of the contact potential approach. A TES (Threading with Environment-specific Score) model is constructed by neural networks
    • …
    corecore