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by 

GULSAH ALTUN 

Under the direction of Dr. Robert W. Harrison  

ABSTRACT  

 

Recently, many methods have been proposed for the classification and prediction 

problems in bioinformatics. One of these problems is the protein structure prediction. 

Machine learning approaches and new algorithms have been proposed to solve this problem. 

Among the machine learning approaches, Support Vector Machines (SVM) have attracted a 

lot of attention due to their high prediction accuracy. Since protein data consists of sequence 

and structural information, another most widely used approach for modeling this structured 

data is to use graphs. In computer science, graph theory has been widely studied; however it 

has only been recently applied to bioinformatics.  In this work, we introduced new algorithms 

based on statistical methods, graph theory concepts and machine learning for the protein 

structure prediction problem. A new statistical method based on z-scores has been introduced 

for seed selection in proteins. A new method based on finding common cliques in protein 

data for feature selection is also introduced, which reduces noise in the data. We also 

introduced new binary classifiers for the prediction of structural transitions in proteins. These 



           

 

new binary classifiers achieve much higher accuracy results than the current traditional 

binary classifiers.  

 

INDEX WORDS: algorithm, machine learning, graph theory, support vector machines, 
feature selection, protein structure prediction 
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CHAPTER 1  

 

Introduction  

 
Recently, many methods have been proposed for the classification and prediction 

problems in bioinformatics [9][38][43]. One these problems is the protein structure 

prediction problem. Solving the protein structure prediction problem is one of the ten most 

wanted solutions in protein bioinformatics [65]. Proteins are the major components of living 

organisms and are considered to be the working and structural molecules of cells and they are 

composed of building-block units called amino acids [34][45]. These amino acids dictate the 

structure of a protein [72].  

Many machine learning approaches and new algorithms have been proposed to solve the 

protein structure prediction problem [5][8][16][14][41][60]. Among the machine learning 

approaches, Support Vector Machines (SVM) have attracted a lot of attention due to its high 

prediction accuracy. Since protein data consists of sequence and structural information, 

another widely used approach for modeling this structured data is to analyze it as graphs. In 

computer science, graph theory has been widely studied; however it has been recently 

applied to bioinformatics. In this work, we introduced new algorithms based on statistical 

methods, graph theory concepts and machine learning for the protein structure prediction 

problem.   

In this work, we introduced new algorithms based on statistical methods, graph theory 

concepts and machine learning for the protein structure prediction problem. We introduced a 
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new statistical method based on z-scores has been introduced for seed selection in protein 

data. We also developed a new method based on finding common cliques in protein data for 

feature selection. This method reduces noise in the data. We also introduced new binary 

classifiers for the prediction of structural transitions in proteins. Our new binary classifiers 

achieve much higher accuracy results than the current traditional binary classifiers. 

In the following, a short description of the methods and results that are described in each 

chapter of this dissertation is given:  

In chapter 2, the problem definitions and related work is presented. This chapter gives a 

general background for the methods that we propose in this work. In this chapter, proteins are 

introduced in detail. Then, the formal problem formulation for protein structure prediction is 

given. We also give background of two machine learning approaches; support vector 

machines and random forests. The mathematical theories behind these two approaches are 

explained in detail. A brief introduction to feature selection is given and some related work is 

explained. Then, a brief background to graph theory is given.  

In chapter 3, we propose a new algorithm based on a statistical approach using z-scores 

that maximizes the likelihood of seeds sharing the same local structure in both the query and 

known protein sequences. A seed is a short contiguous or patterned match of amino acids of 

two or more protein sequences that can be extended to find alignments between these 

proteins. We evaluated our algorithms on the 2290 protein sequences in the PISCES (Protein 

sequence culling server) database [69]. Our new algorithm results in an effective a priori 

estimate of seed structural quality which results in finding better query seeds in a BLAST 

(The Basic Local Alignment Search Tool) search [3].  
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 In this study, the factors involved in the accurate selection of seeds for protein sequence 

alignments were explored. It is possible to identify seeds that are likely to share structural 

similarity with a meaningful a priori assessment of accuracy by using a profile-clustered 

profile approach. We used high order information identified by clustering and showed that it 

is reliable in small scales. We found that look-up of this clustered sequence-based seeds for 

the best match works much better than look-up of individual frequency profile of each seed 

in the database. The predictive ability of these clusters suggests that there are distinct 

sequence-structure seeds. The dramatic improvement found by using high quality clustered 

profiles shows that higher order descriptions of sequence similarity are required for accurate 

results in the prediction of protein structure. This suggests that PHI-BLAST like algorithms 

can be substantially improved if the database is clustered first. Our results show that it is 

possible to select seeds when sequence windows are clustered and average profiles of these 

clusters are used for calculating similarity measure.  

In chapter 4, we propose two hybrid kernels SVMSM+RBF and SVMEDIT+RBF. The goal of 

this work is to find the best kernel function that can be applied to different types of problems 

and application domains. We propose two hybrid kernels SVMSM+RBF and SVMEDIT+RBF [5]. 

SVMSM+RBF is designed by combining the best performed radial basis function (RBF) kernel 

with substitution matrix (SM) based kernel developed by Vanschoenwinkel and Manderick 

[66]. SVMEDIT+RBF is designed by combining the edit kernel devised by Li and Jiang [47] with 

the RBF kernel. In our approach, two hybrid kernels are devised by combining the best 

performed RBF kernel with substitution matrix (SM) based kernel [66] and with edit kernel 

[47]. We tested these two kernels on the CB513 and RS126 protein datasets for the protein 

secondary structure problem. Two data sets were used in evaluating our system. The RS126 
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dataset consists of 126 protein chains, was presented by Rost and Sander [61]. The CB513 

dataset by Cuff and Barton contains 513 proteins [22]. Our results were 91% accuracy on 

H/E binary classifier. In this case, the information in the substitution matrix reinforces the 

information in the RBF on PSSM profiles. However, this is not true with the edit distance. 

These results show us that the data are consistent when substitution matrix is used and not 

consistent when edit distance is used. The edit distance kernel gives good results in [47], but 

not when used with our dataset in this work. Our results show that it is critically important to 

use mutually consistent data when merging different distance measures in support vector 

machines.  

In chapter 5, we propose a new algorithm that uses a graph theoretical approach which 

finds cliques in the non-position specific evolutionary profiles of proteins obtained from 

BLOSUM62. Even though, graph theory concepts have been around for more than a century, 

its concepts are just newly being explored for applying to biology [13][67]. The clique search 

algorithm was applied to find all the cliques with the different threshold values. In this work, 

we propose an algorithm that used a graph theory approach for feature selection. First, we 

apply this algorithm on BLOSUM62 matrix and then based on the feature set produced by 

the algorithm; we use this feature set for condensing the PSSM matrix. Next, based on the 

newly designed algorithm, final cliques were determined. By merging the vertices within the 

same clique into one, the original feature space is reduced. Finally, this reduced feature set 

was applied to random forests and the performance was compared with the unreduced 

counterpart. These cliques the features selected by this algorithm are used for condensing the 

position specific evolutionary information obtained from PSI-BLAST. Our results show that 
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we are able to save significant amount of space and time and still achieve high accuracy 

results even when the features of the data are 25% reduced.   

  In chapter 6, we introduce a novel encoding scheme and a computational method using 

machine learning for prediction starts and ends of secondary structure elements. Most 

computational methods have been developed with the goal to predict the secondary structure 

of every residue of a given protein sequence. However, instead of targeting to predict the 

structure of each and every residue, a method that can correctly predict where each secondary 

structure segment (such as alpha-helices, beta-sheets or coils) in a protein starts and ends 

could be much more reliable since less number of predictions are required. Our system 

makes only one prediction to determine whether a given sequence segment is the start or end 

of any secondary structure H, E or C, whereas the traditional methods must be able to predict 

each and every residue’s structure correctly in the segment to be able to make that decision. 

We compared the traditional existing binary classifiers, to the new binary classifiers 

proposed in this work and achieved a much higher accuracy than the traditional approach.   

 In chapter 7, we give future work.  As a future work, our clique finding algorithm can be 

enhanced for the newly proposed encoding scheme in chapter 6. Finding common amino acid 

patterns in transition boundaries could be useful in making our feature selection algorithm 

more robust and accurate. These common patterns will be searched when a prediction is 

being made. Where in the protein these common patterns occur is also important. Depending 

on whether at the beginning of a sequence or end of a sequence is, the transition boundary 

could be changed drastically. A new encoding scheme will be developed to represent this 

information as well. This is one of the future problems that can be explores in the future.  
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In chapter 8, we give a conclusion where we summarize our work. The expected 

contribution of this dissertation work involves two aspects: first, we developed new 

algorithms drawing from graph theory and machine learning for structured data prediction. In 

protein structure prediction, we encountered too many negative data and just a few positive 

examples. The datasets are huge and these problems are shared by the data in many 

applications. We tested our methods on protein structure data; our methods, however, are 

more general and were tested for different data and applications such as micro array and gene 

data. We propose methods for predicting protein secondary structure and detecting transition 

boundaries of secondary structures of helices (H), coils (C) and sheets (E). Detecting 

transition boundaries instead of the structure of individual residues in the whole sequence is 

much easier. Thus, our problem is reduced to the problem of finding these transition 

boundaries.  
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CHAPTER 2 

 

Problem Definitions and Related Work 

In this chapter, problem definitions, motivation and related work are presented. This 

chapter gives a general background for the methods that we propose in chapters 3, 4, 5 and 6.  

 

 

2.1. Prediction of protein structure 

Proteins are polymers of amino acids containing a constant main chain (linear polymer of 

amino acids) or backbone of repeating units with a variable side chain (sets of atoms attached 

to each alpha-carbon of the main chain) attached to each [44]. Proteins play a variety of roles 

that define particular functions of a cell [44]. They are a critical component of all cells and 

are involved in almost every function performed by them. Proteins are building blocks of the 

body controls; they help communicating with cells and transport substances. Biochemical 

reactions which are done by enzymes also contain protein. The transcription factors that turn 

genes on and off are proteins as well.  

A protein is primarily made up of amino acids, which determine its structure. There are 20 

amino acids that can produce countless combinations of proteins [34][55]. There are four 

levels of structure in a protein: the first level is the primary structure of the protein, which is 

its amino acid sequence. A typical protein contains 200-300 amino acids. The second level is 

the secondary structure, which is formed of recurring shapes called helices, strands, and coils 
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as shown in Figure 2.1. Many proteins contain helices and strands. The third level is the 

tertiary structure of a protein which is the spatial assembly of helices and sheets and the 

pattern of interactions between them. This is also called the folding pattern of a protein. 

Many proteins contain more than one polypeptide chain; the combinations two or more 

polypeptide chains in a protein make up its quaternary structure [10][20]. The protein in 

Figure 2.1 is a CASPase 7 protein borrowed from the Weber lab in the Georgia State 

University (GSU) Biology department.  

 

                 

 
Figure 2.1 CASPASE 7 protein  

 
 

Proteins interact with DNA (Deoxyribonucleic acid), RNA (Ribonucleic acid) and  other 

proteins in their tertiary and quaternary state. Therefore, knowing the structure of a protein is 

crucial for understanding its function.  
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 Recently, large volumes of genes have been sequenced. Therefore, the gap between 

known protein sequences and protein structures that have been experimentally determined is 

growing exponentially. Today, in Protein Data Bank (PDB) [11] there are over 1 million 

proteins whose amino acid sequence are known; however, only a very little fraction 

(~50,000) of these protein structures are known [8][11]. The reason for this gap is that 

Nuclear Magnetic Resonance (NMR) and x-ray crystallography techniques take years to 

determine the structure of one protein. Therefore, having computational tools to predict the 

structure of a protein is very important and necessary. Even though most of the 

computational methods proposed for protein structure prediction do not give 100% accurate 

results, even an approximate model can help experimental biologists guide their experiments. 

Predicting the secondary and tertiary structure of a protein from its amino acid sequence is 

one of the important problems in bioinformatics. However, with the methods available today, 

protein tertiary structure prediction is a very hard task even when starting from the exact 

knowledge of protein backbone torsion angles [12]. It is also suggested that protein 

secondary structure delimits the overall topology of the proteins [50]. It is believed that 

predicting the protein secondary structure provides insight into and an important starting 

point for the prediction of the tertiary structure of the protein, which leads to understanding 

the function of the protein. Recently, there have been many approaches to reveal the protein 

secondary structure from the primary sequence information [19][27][56][57][58][59] 

[75][76]. 
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2.2. Protein secondary structure prediction problem formulation  

In this work, we adopted the most generally used DSSP secondary structure assignment 

scheme [39].  The DSSP classifies the secondary structure into eight different classes: H (α- 

helix), G (310-helix), I (π-helix), E (β-strand), B (isolated β-bridge), T (turn), S (bend), and - 

(rest).  These eight classes were reduced for the purposes of this dissertation into three 

regular classes based on the following method: H, G and I to H; E to E; all others to C. In this 

work, H represents helices; E represents sheets and C represents coils. 

The problem formulation is stated as:  

Given: A protein sequence a1a2…aN, secondary structure prediction  

Find:  The state of each amino acid ai as being either H (helix), E (beta strand), or C 

(coil).  

The quality of secondary structure prediction is measured with a “3-state accuracy” score 

called Q3. The Q3 formula is the percent of residues that match reality as shown below in 

equation 2.1.  

                                       { }

{ }
∑

∑

∈

∈=

CEHi

CEHi
i

iclassinresiduesof

predictedcorrectlyresiduesof
Q

,,

,,

#

#

3
 (2.1) 

      

Q3 is one of the most commonly used performance measures in protein secondary 

structure prediction. Q3 refers to the three-state overall percentage of correctly predicted 

residues. 
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2.3. Previous work on protein secondary structure prediction   

The protein secondary structure prediction problem has been studied widely for almost a 

quarter of a century. Many methods have been developed for the prediction of the secondary 

structure of proteins. In the initial approaches, secondary structure predictions were 

performed on single sequences rather than families of homologous sequences [26]. The 

methods were shown to be around 65% accurate. Later, with the availability of large families 

of homologous sequences, it was found that when these methods were applied to a family of 

proteins rather than a single sequence, the accuracy increased well above 70%. Today, many 

proposed methods utilize evolutionary information such as multiple alignments and PSI-

BLAST profiles [2]. Many of these methods that are based on Neural networks, SVM and 

hidden Markov models have been very successful [5][8][16][14][41][60]. The accuracy of 

these methods reaches around 80%. An excellent review on the methods for protein 

secondary structure prediction has been published by Ross [60].  

   Recently, there has been an increase in pattern-based approaches for protein secondary 

structure prediction due to their high accuracy values, which are mostly above 80%. Among 

these, machine learning methods SVM, decision trees and random forests have been 

attracting a lot of attention. In this work, we propose a new algorithm that adapts a graph 

theory approach combined with random forests for the secondary structure prediction 

problem and feature selection. In section 2.4 we give a brief introduction to random forests.  
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2.4. Random forests 

Random forests were proposed by Leo Breiman [14]. Random forests are a combination of 

decision trees; each tree is grown from a randomly sampled set of the training data as shown 

in Figure 2.2.  

 

Figure 2.2 Random forests  
 

Each of the classification trees (k classifiers) is built using a bootstrap sample of the data. 

Each tree outputs a class for a given set of test data, and the test data is labeled with the class 

that has the majority of the votes from these trees. Given M features in a training set, the best 

splitting feature is determined for each decision tree in the random forest from a randomly 

selected subspace of m features at each decision node. The optimal value of m is usually the 

square root of M; however, this m value also depends on the strength and correlation of the 

trees. The user has to specify the m value accordingly.  

Random forests use both bagging and random variable selection for tree building. There 

is no pruning. Bagging and random variable selection result in low correlation of the 
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individual trees, which yields better classification [14][25]. Random forests do not overfit 

and show comparable results to other machine learning approaches such as SVM. It is a 

robust method concerning the noise and the number of attributes. Generated forests in 

random forests can be saved for future use on other data.    

 

 

2.5. Random forest software  

The random forests software used in this work is an implementation of random forests [15] 

written in extended Fortran 77.  

 

 

2.6. Support Vector Machines  

The Support Vector Machines (SVM) algorithm is a modern learning system designed by 

Vapnik and Cortes [68]. Based on statistical learning theory which explains the learning 

process from a statistical point of view, the SVM algorithm creates a hyperplane that 

separates the data into two classes with the maximum margin.  Originally, it was a linear 

classifier based on the optimal hyperplane algorithm. However, by applying the kernel 

method to the maximum-margin hyperplane, Vapnik and his colleagues proposed a method 

to build a non-linear classifier. In 1995, Cortes and Vapnik suggested a soft margin classifier, 

which is a modified maximum margin classifier that allows for misclassified data. If there is 

no hyperplane that can separate the data into two classes, the soft margin classifier selects a 

hyperplane that separates the data as cleanly as possible with maximum margin [17].  

SVM learning is related to recognizing patterns from the training data [1][23]. Namely, we 
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estimate a function f: RN → {±1}, based on the training data which have an N-dimensional 

pattern xi and class labels yi. By imposing the restriction called Structural Risk Minimization 

(SRM) on this function, it will correctly classify the new data (x, y) which has the same 

probability distribution P(x,y) as the training data. SRM determines the learning machine that 

yields a good trade-off between low empirical risk (mean error over the training data) and 

small capacity (a set of functions that can be implemented by the learning machine).   

In the linear soft margin SVM which allows some misclassified points, the optimal 

hyperplane can be found by solving the following constrained quadratic optimization 

problem.   

                   ∑
=

+
l

i
ibw

Cw
1

2

,, 2
1min ε

ε
    (2.2)                            

           libxwyts iiii ,....,101)(.. =>−≥+• εε  

Where, xi is an input vector, yi = +1 or -1 based on whether xi is in a positive class or 

negative class, ‘l’ is the number of training data, ‘w’ is a weight vector perpendicular to the 

hyperplane and ‘b’ is a bias which moves the hyperplane parallel to itself. Also ‘C’ is a cost 

factor (penalty for misclassified data) and ε is a slack variable for misclassified points.  The 

resulting hyperplane decision function is  

                        ∑
=

+•=
SV

i
iii bxxysignxf

1
))(()( α  (2.3) 

where, αi is a Lagrange multiplier for each training data. The points αi > 0 lie on the boundary 

of the hyperplane and are called ‘support vectors’. In Eq. (2.2) and (2.3), it is observed that 

both the optimization problem and the decision function rely on the dot products between 

each pattern.   

In the non-linear SVM, the algorithm first maps the data into high-dimensional feature 
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space (F) via the kernel function φ(•):X→F and constructs the optimal separating hyperplane 

there using the linear algorithm as can be seen in Figure 2.3.  

 

 

 

 

 

 

 

 

 

Figure 2.3 Non-linear SVM mapping 
 

According to Mercer’s theorem, any symmetric positive definite matrix can be regarded as 

a kernel function.  The positive definite kernel is defined as follows [23]: 

Definition 1.  Let X be a nonempty set.  A function k(•, •):  

X x X → R is called a positive definite kernel if k(•, •) is symmetric and for all n ∈N, 

x1,...., xn ∈  X and a1, ..., an ∈  R. 

The traditional positive definite kernel functions are the following:                                                    

                    pyxyxK )1(),( +•=          (2.4) 

                    2

),( yxeyxK −−= γ               (2.5) 

                    )tanh(),( δ−•= ykxyxK   (2.6) 

Eq. (2.4) is a polynomial, Eq. (2.5) is a Gaussian radial basis function (RBF), and Eq. (2.6) 

is a two-layer sigmoidal neural network kernel. Based on one of the above kernel functions, 

(a) Not separable by linear boundary 

x2

x1

x2 

x

(b) Linearly separable  

x3

K(xi,xj) 
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the final non-linear decision function has the form 

                  ∑
=

+•=
SV

i
iii bxxKysignxf

1
))(()( α        (2.7) 

The choice of proper kernel is critical to the success of the SVM. In the previous protein 

secondary structure prediction studies, a radial basis function worked best [32][33]. 

 

 

2.7. SVM software 

 SVMlight is an implementation of Support Vector Machines (SVM) in C [36]. In this work, 

we adopt the SVMlight software, which is an implementation of Vapnik's Support Vector 

Machines [67]. This software also provides methods for assessing the generalization 

performance efficiently.  

 SVMlight consists of a learning module (svm_learn) and a classification module 

(svm_classify). The classification module can be used to apply the learned model to new 

examples.  

 The format of training data and test data input file is as follows: 

<line> .=. <target> <feature>:<value> <feature>:<value> ... 

<target> .=. +1 | -1 | 0 | <float> 

<feature> .=. <integer> | "qid"   

<value> .=. <float> 
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 For classification, the target value denotes the class of the example. +1 and -1 as the 

target values denote positive and negative examples, respectively.  

 

2.8. Feature selection  

Analysis with a large number of variables requires a large amount of memory and 

computation time. The problem of selecting a subset of relevant features in a large quantity 

of data is very important. Feature selection is a process commonly used in machine learning, 

where a subset of the features available from the data is selected for the learning algorithm. 

Feature selection is often necessary where it is computationally infeasible to use all available 

features. One of the main benefits of feature selection is that it reduces training and storage 

requirements. Also, a good feature selection mechanism can improve the classification by 

eliminating noisy or non-representative features. 

There has been a lot of research on feature selection. Birzele and Kramer [12] have used 

a new representation for protein secondary structure prediction based on frequent patterns, 

which gives competitive results with the current techniques. Shi and P. N. Suganthan [63] 

investigated feature analysis for the prediction of the secondary structure of protein 

sequences using support vector machines (SVM) and the K-nearest neighbors algorithm 

(KNN). They applied feature selection and scaling techniques to obtain a number of distinct 

feature subsets. Their experimental results show that the feature subset selection improves 

the performance for both SVM and KNN.  

Kurgan and Homaeian [44] describe a new method for predicting protein secondary 

structure content based on feature selection and multiple linear regression. The application of 
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feature selection and the novel representation result in a 14-15% error rate reduction when 

compared to results where normal representation is used. Their prediction tests also show that 

a small set of 5-25 features is sufficient to achieve accurate predictions for the helix and 

strand content of non-homologous proteins. Karypis proposes a new encoding scheme and 

better kernels for the protein secondary structure problem [40]. In the proposed new coding 

scheme, both position-specific and non-position-specific information are combined for the 

representation of each protein sequence. In this work, we compare this new encoding scheme 

with many different encoding schemes and present the results.  

Su et al. [64] have used a condensed position-specific scoring matrices with respect to 

physicochemical properties (PSSMP), where the matrices are derived by merging several 

amino acid columns of a PSSM matrix sharing a certain property into a single column. Their 

experimental results show that the selected feature set improves the performance of a 

classifier built with Radial Basis Function Networks (RBFN) when compared with the 

feature set constructed with PSSMs or PSSMPs that simply adopt the conventional 

physicochemical properties. In order to get an effective and compact feature set for this 

problem, they propose a hybrid feature selection method that inherits the efficiency of 

univariant analysis and the effectiveness of the stepwise feature selection that explores 

combinations of multiple features. They decompose each conventional physicochemical 

property of amino acids into two disjoint groups which have a propensity for order and 

disorder, respectively. Then, they show that some of the new properties perform better than 

their parent properties in predicting protein disorder.  
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2.9. Graph Theory  

In mathematics and computer science, graph theory is the study of graphs –mathematical 

structures used to model pair-wise relations between objects from a certain collection. Graph 

algorithms are good for data mining and modeling; additionally, it is powerful to have a 

graphic statistic model [29][70].  

Many problems today can be stated in terms of a graph. Since the properties of graphs are 

well-studied in computer science, many algorithms exists to solve problems that are posed as 

graphs. Recently many bioinformatics problems have been studied using graph theory 

.Usually biological data is represented as mathematical objects (strings, sets, graphs, 

permutations, etc.), then biological relations are mapped into mathematical relations, and 

then the biological question is formulated. An excellent survey on graph theory and protein 

structures can be found in [61]. Although the topic is more than two centuries old, only 

recently has it gained momentum and been routinely used in various branches of science and 

engineering.  
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CHAPTER 3 

 

A  New Seed Selection Algorithm that Maximizes Local Structural Similarity in 

Proteins  

 
All homology methods and many ab initio methods assume that similar sequences have 

similar structures [18][53][59]. Recent work suggests that finding short contiguous or 

patterned matches, called seeds or words, can be extended to find alignments [52]. Similarity 

searches based on the strategy of finding short seed matches have been widely studied, and 

many programs have been developed using this approach. One of the most popular programs 

is BLAST (Basic Local Alignment Search Tool), which has been cited over 10000 times over 

the last decade; the BLAST server currently receives about 100000 hits per day [3][56].   

Given a query protein or DNA sequence along with a pattern (query sequence) occurring 

within the sequence, the Pattern Hit Initiated BLAST (PHI-BLAST) program searches a 

protein database for other instances of the query sequence in order to build local alignment 

[2][74]. This is because of the assumption that a good alignment is likely to contain high-

scoring pairs of seeds. Many methods have been proposed to find more optimal seeds by 

using gapped alignments or position-specific scoring matrices [2][18][21][24][28][30] 

[46][48][60][69][73]. However, some of these methods select seeds by scanning each 

sequence window of a given size k in the database one by one, which can result in many false 

positives due to the large number of sequence windows in a protein database.  

Therefore, it is crucial to evaluate the factors in selecting seeds to minimize the number 
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of false positives. In this work, we explore the reliability of z-score statistics when used on 

sequence vs. profile, profile vs. profile and profile vs. clustered profile approaches to define 

seeds.  

Sequence vs. profile methods use a single profile for the first sequence and the second 

sequence to select scores from the profile. For example, PSI-BLAST derives profile sequence 

alignments and then uses the query sequence to find the score [2]. In profile vs. profile 

methods, the two profiles are compared. For example, the Fold and Function Assignment 

System (FFAS) server uses the dot product of the two profiles when aligning protein 

sequences [35]. Neither sequence vs. profile nor profile vs. profile methods has any means of 

assessing the statistical significance of the profile. Clustering the profiles as a preprocessing 

step extracts profiles that are conserved in sequence space and that are, thus, likely to 

correspond to conserved structure or function in the proteins. The Profile vs. Clustered 

profile algorithm, suggested in this work, can take advantage of this statistical significance. 

The sequence clusters can be assigned a quality based on their internal statistical consistency; 

this quality strongly correlates with the structural similarity in the proteins that contain them.  

 

 

3.1 Experimental setup 

The dataset used in this work includes 2290 protein sequences obtained from the Protein 

Sequence Culling Server (PISCES) [62][69]. Protein sequences in this database do not share 

more than 25% sequence similarity in this database. We also used the sliding window 

scheme.  When predicting or analyzing some characteristics of an amino acid, a window that 

is centered with that particular amino acid is used. In the sliding window scheme, every 

amino acid in the protein becomes a center and a window becomes one training pattern for 
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predicting the structure of that residue.  All the sliding windows with nine successive and 

continuous residues are generated from protein sequences. The width of nine residues was 

chosen to be representative of the size of protein-folding motifs. While the optimal sizes are 

not constant and may be either larger or smaller than nine residues, this is a useful 

approximation and removes sample size bias from the analysis. The frequency profile from a 

database of homology-derived secondary structures of proteins (HSSP) is constructed based 

on the alignment of each protein sequence from the Protein Data Bank (PDB) in which all the 

sequences are considered homologous in the sequence database [54][51]. Using the sliding 

window technique, 500,000 sequence windows are generated. Each sequence window is 

represented by either the amino acid residue or the 9x20 HSSP profile matrix, depending on 

the method applied. Twenty columns represent the 20 amino acids and 9 rows represent each 

position of the sliding window.   

 

 

 
Figure 3.1 Sliding window representation 
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Figure 3.2 HSSP representation of sequence profiles 

 

 
 
3.2 Sequence vs. Profile Algorithm 

   In the Sequence vs. Profile algorithm, each sequence window in the database is represented 

by its frequency profile produced by the multiple sequence alignment. However, the query 

sequence is represented solely by its amino acid residues. The scores were calculated for a 

window width of 9 residues. Z-scores were used to place the results in a constant scale with 

respect to the standard deviation. Thus two samples with similar z-scores have similar 

statistical significance. The formula to calculate the score for a sequence window of size 9 is 

given in the following equation:   
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Freqi : The frequency of the ith amino acid of the sequence window in the sequence profile 

database 

Avgi : The average value of the the ith amino acid in the entire database.  

Stdi : The standard deviation value of the ith amino acid in the entire database.  
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   After each sequence window in the database is assigned a z-score, the sequence window 

which receives the highest z-score after the comparison process is considered to be the best 

match for the given query.  

 

 

3.3 Profile vs. Profile Algorithm 

   In the Profile vs. Profile algorithm, a given query amino acid sequence window is 

represented by the frequency profile rather than its amino acid sequence representation, as 

was done in the Sequence vs. Profile method. The sequence window in the database having a 

frequency profile closest to the frequency profile of a given amino acid sequence window is 

considered to be the best match for the Profile vs. Profile method.  

 
                                                        (3.2)    
 
 
                          
 

 
 
 
(3.3) 
 

 
 

  Std
Avgscore

scorez i−=−   (3.4) 

 
 

 

 

N

score
Avg

N

i
i∑

== 1

N

Avgscore
Std

N

i
i∑

=

−
= 1

2)(
scorei : The score 
assigned to the ith 
sequence segment  in the 
sequence profile 
database. 



 

 

25

3.4 Profile vs. Clustered Profile Algorithm 

In the Profile vs. Clustered Profile algorithm, we propose a cluster-based approach which 

is different from the previous two methods.  In this algorithm, initially all the sequence 

windows in the database are classified into different sequence-based clusters by the K-means 

clustering algorithm [75]. We used the K-means algorithm because it produces many high 

quality clusters and because it is an efficient way to cluster a huge dataset such as PISCES 

[75]. After all sequence windows are clustered based on their sequence similarity using 

HSSP profiles, each cluster was assigned an average profile that represents that cluster. 

   After finding the clusters, each cluster was ranked based on the secondary structure 

similarity of each sequence window that they contain. Based on this ranking the clusters were 

divided into high quality clusters, average quality clusters and low quality clusters. A cluster 

was ranked as high quality if at least 70% of the sequence windows that the cluster contains 

shared more than 70% secondary structure similarity. Similarly, if at most 70% of the 

sequence windows had 70% secondary structure similarity, the cluster was ranked as average 

cluster. If no more than 30% of the sequence windows shared more than 70% secondary 

structure similarity, the cluster was ranked as a bad cluster.  

   For a given query sequence window, when a cluster had an average frequency profile 

closest to the profile of the given query, then that cluster’s frequency profile was considered 

to be the best match of the given query sequence.  
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3.5 Experimental Results 

Using the sliding window technique, we generated 6507 sequence windows 

(approximately %1 of the PISCES) to search for seeds from randomly selected proteins. 

These windows were removed from the database to prevent any bias when sequences were 

alike. We determined that this was a good proportion for searching for seeds because having 

more sequence windows would generate many matches in the database. For all our tests, 

these 6507 sequence and profile windows were used as the search queries. Seeds were 

selected by using the algorithms described above. These seeds were scanned against the 2290 

protein sequences in the PISCES in order to find their best match out of 500,000 unique 9-

mers (sequence window of size 9) in the PISCES database.  

 

 

3.5.1. Seed selection results for the Sequence vs. Profile and Profile vs. Profile 

Algorithms 

   The results for the Sequence vs. Profile and the Profile vs. Profile methods are almost 

similar as can be seen in Fig. 3.3 and Fig. 3.4, respectively. In both of the methods, when the 

optimal alignment over the entire database was found, the probability of a significant 

structural similarity was low. This would correspond to the probability of a seed used by 

PHI-BLAST which was a structurally accurate homolog. It is clear that most of the seeds 

found have less than 70% structural similarity with their best match. These results indicate 

that the Sequence vs. Profile and the Profile vs. Profile methods cannot find seeds that would 

lead to a good sequence alignment. 
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Figure 3.3 Sequence vs. Profile method results 
 

 

 

 

Figure 3.4 Profile vs. Profile method results 
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3.5.2. Dissimilarity search  

      The Sequence-Profile and Profile-Profile methods were also tested for their ability to find 

the most dissimilar structures in the database. We performed this test because we used an 

extreme value distribution measurement such as maximum and minimum z-scores in this 

work. The assumption is that the best matches found by the minimum and maximum z-scores 

of the sequence segments could correspond to most dissimilar structures as well. Searching 

for dissimilarity is important because it is possible that, if the structures of two proteins are 

dissimilar, then the words that form these structures are dissimilar.  

    All the given sequence segments are assigned a minimum z-score by using the Sequence-

Profile method. The segments with minimum scores are compared with their best match in 

order to find the dissimilarity between them. The results are given in Figure 3.5, where each 

segment’s minimum z-score and the secondary structure similarity with its best match are 

shown. The low secondary structure predictions correspond to most dissimilar structures. As 

can be seen from Figure 3.5 a, there is no relation between a segment’s minimum z-score and 

its secondary structure similarity with its best match.  

    For the Profile-Profile method, all the given sequence segments are assigned a maximum 

z-score. The segments with maximum scores are compared with their best match in order to 

find the dissimilarity between them. The results are given in Figure 3.6, where each 

segment’s maximum z-score and the secondary structure similarity with its best match are 

shown. The low secondary structure predictions correspond to most dissimilar structures. As 

can be seen from Figure 3.6a, there is no relation between a segment’s maximum z-score and 

its secondary structure similarity with its best match. 
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         (B) Histogram of the scatter plot in (A).

= 
Figure 3.5 Structural dissimilarity for the most dissimilar sequences using Sequence-Profile 

Method. 

 
 

Neither approach could accurately predict that two sequences have different structures 

because the best scores and worst scores of most sequence segments in the database have 

similar prediction accuracy.  
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  (B) Histogram of the scatter plot in (A).  

 

Figure 3.6 Structural dissimilarity for the most dissimilar sequences using Profile-Profile 
Method. 

 

 

3.5.3. Profile vs. Clustered Profile seed selection results 

  Neither the Sequence vs. Profile nor the Profile vs. Profile methods could select seeds that 

reflected local structural similarities. However, when the profiles are clustered prior to the 

search, significant structural similarity between the seeds and their best match are found 

when the Profile vs. Clustered Profile algorithm is used. Based on previous work, [75] we 

used 800 clusters and ranked each cluster as specified in the algorithm. Out of these 800 

clusters, 345 clusters were ranked as high quality clusters and average quality clusters.   

Figure 3.7(a) and 3.7(b) show the results for the Sequence vs. Profile and the Profile vs. 

Profile methods, respectively. Fig. 3.7(c) and Fig. 3.7(d) show that only 9% and 52% of 

sequence windows share above 70% structural similarity in bad sequence clusters and in 

average clusters, respectively.  
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On the other hand, as can be seen from Fig. 3.7(e), high quality clusters were able to select 

sequence windows with very high structural similarity where 84% of sequence windows 

share above 70% structural similarity with the average cluster structure. These results show 

that the Profile vs. Clustered Profile algorithm can select seeds that have high structural 

similarity with the average cluster structure when high quality clusters are used.   
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Figure 3.7 Seed selection results of all three algorithms 

84% of the sequence windows share more than 
70% structural similarity
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3.6 Conclusion 

   In this study, the factors involved in the accurate selection of seeds for protein sequence 

alignments were explored [4]. It is possible to identify seeds that are likely to share structural 

similarity with a meaningful a priori assessment of accuracy by using a profile-clustered 

profile approach. We used high order information identified by clustering and showed that it 

is reliable in small scales. We found that the look-up of these clustered sequence-based seeds 

for the best match works much better than the look-up of the individual frequency profile of 

each seed in the database. The predictive ability of these clusters suggests that there are 

distinct sequence-structure seeds. The dramatic improvement found by using high quality 

clustered profiles shows that higher order descriptions of sequence similarity are required for 

accurate results in the prediction of protein structure. This suggests that PHI-BLAST-like 

algorithms can be substantially improved if the database is clustered first. Our results show 

that when sequence windows are clustered and average profiles of these clusters are used for 

calculating similarity measure, it is possible to select seeds.  



 

 

33

 

 

CHAPTER 4  
 

Hybrid SVM Kernels for Protein Secondary Structure Prediction 

 
The SVM model is a powerful methodology for solving problems in nonlinear 

classification, function estimation and density estimation. When the data are not linearly 

separable, they are mapped to a high dimensional future space using a nonlinear function, 

which can be computed through a positive definite kernel in the input space. Different kernel 

functions can change the prediction results remarkably. The goal of this work is to find the 

best kernel function that can be applied to different types of problems and application 

domains. We propose two hybrid kernels: SVMSM+RBF and SVMEDIT+RBF [5]. SVMSM+RBF is 

designed by combining the best performing radial basis function (RBF) kernel with a 

substitution matrix (SM)-based kernel developed by Vanschoenwinkel and Manderick [66]. 

SVMEDIT+RBF is designed by combining the edit kernel devised by Li and Jiang [46] with the 

RBF kernel. In our approach, two hybrid kernels are devised by combining the best 

performing RBF kernel both with the substitution matrix (SM)-based kernel [66] and with 

the edit kernel [46][68]. 
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4.1. Hybrid kernel: SVMSM+RBF 

The SM-based kernel was developed by Vanschoenwinkel and Manderick [66]. The 

authors introduced a pseudo inner product (PI) between amino acid sequences based on the 

Blosum62 substitution matrix values [31]. PI is defined in [66] as follows:  

Definition 1. Let M be a 20 × 20 symmetric substitution matrix with entries M(ai, aj) = mij 

where ai, aj are components of the 20-tuple A = (A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, 

S, T, V, W, Y ) = (a1, . . . , a20). Then for two amino acid sequences x, x’ ∈  ∑n with x = (ai1 

, . . . , ain) and x’ = (aj1 , . . . , ajn), with aik , ajk ∈A, i, j ∈{1, . . . , 20} and k = 1, . . . , n,  

their inner product is defined as: 

                        ),('|
1 jkik

n

k
aaMxx ∑

=
=><   (4.1)  

Based on the PI above, the substitution matrix-based distance function between amino acid 

sequences is defined in [66] as follows: 

Definition 2. Let x, x’ ∈  ∑n be two amino acid sequences with x = (ai1 , . . . , ain) and x’ = 

(aj1 , . . . , ajn) and let <x | x’> be the inner product as defined in equation (4.1) [66], then the 

substitution distance dsub between x and x’ is defined as:  

 ><+><−><= '|''|2|)',( xxxxxxxxd sub  (4.2) 

Figure 4.1 shows how the rbf kernel is replaced with the substiturion kernel.  

 

Figure 4.1 RBF Kernel vs. Substitution kernel 
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Figure 4.2 Distance between two sequence windows 
 

  In our approach, we combined the SM kernel with the RBF kernel. A diagram of the 

algorithm of SVMSM+RBF is given in Fig. 4.3, which shows how a sequence segment is used 

in the hybrid kernel for finding distances with different kernel functions.  
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Figure 4.3 SVMSM+RBF  algorithm 

 
 

 
The data encoding given to the SVMSM+RBF is shown in detail in Figure 4.2. The data input 

for each sequence is the position-specific scoring matrix (PSSM) encoding of the sequence 

combined together with the sequence itself [37]. The same data encoding is used for 

SVMEDIT+RBF.  

 

 

4.2. Hybrid kernel: SVMEDIT+RBF 

The edit kernel was devised by Li and Jiang [47] to predict translation initiation sites in 

Eukaryotic mRNAs with SVM. It is based on the string edit distance, which contains 

biological and probabilistic information. The edit distance is the minimum number of edit 

operations (insertion, deletion, and substitution) that transform one sequence to the other.  

These edit operations can be considered as a series of evolutionary events. In nature, the 

evolutionary events happen with different probabilities. Li and Jiang [47] defined the edit 
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kernel as follows: 

 
),(),( yxediteyxK •−= γ

(4.3)  

( ))|(log)|(log
2
1),( ∑∑ +−=

i iii ii xyPyxPyxedit  (4.4)  

where the edit distance is the average of the negative log of the probability of mutating x into 

y and the negative log of the probability of mutating y into x.  The authors modified the 1-

PAM matrix to get the asymmetric substitution cost matrix (SCM) for the edit kernel above. 

In our approach, we combined the edit kernel with the RBF kernel. An example of 

SVMEDIT+RBF is given in Fig. 4.4, which shows how a sequence segment is used in the hybrid 

kernel for finding the distances.   

 

 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 4.4 SVMEDIT+RBF  algorithm 
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4.3. Experimental Results 

The dataset used in this work includes 126 protein sequences obtained from Rost and 

Sander [59]. Sliding windows with eleven successive residues are generated from protein 

sequences. Each window is represented by a vector of 20x11. Twenty represents 20 amino 

acids and eleven represents each position of the sliding window. In Table 4.1, we show the 

results of the binary classifiers of the 6-fold cross-validation test for the protein secondary 

structure prediction. SVMfreq are from Hua and Sun [33] and the SVMpsi results are obtained 

by PSI-BLAST profiles from Kim and Park [41]. SVMRBF is the profile which adopts the 

PSSM by Hu et al. [32]. As the result in [32] show, since PSSM encoding achieves the best 

results in the previous studies, we adopted the PSSM encoding scheme for the RBF kernel 

part of our hybrid kernel approaches.       

 
Table 4.1 6-fold cross-validation of the binary classifiers 

 
RS126 Binary 

Classifier SVMfreq SVMpsi SVMRBF 

H/~H 80.4 87.5 87.4 

E/~E 81.3 86.3 86.8 

C/~C 73.2 77.9 77.5 

H/E 80.9 90.2 91.1 

E/C 76.7 81.9 82.4 

C/H 77.6 85.0 85.1 

 

    In Table 4.2, 6-fold cross-validation results of the binary classifiers obtained by using 

different kernels in SVM are shown. The hybrid SVM method SVMSM+RBF proposed in this 
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work shows results that are almost identifcal to SVMRBF. This is because the data encoded for 

the RBF part in SVMSM+RBF uses PSSM encoding, which is the same as in SVMRBF. These 

results indicate combining SM with the RBF kernel cannot improve the accuracy the results 

where the RBF kernel is used alone. This means that the additional distance information from 

the SM part was not helpful in making the final decision. As alternatives, instead of adding 

the distance functions together, we have also tried different approaches, such as taking the 

maximum of the two distances returned by the two kernels, or giving different weight to each 

distance before sending it to the decision function. However, all these methods gave similar 

or worse results compared to those obtained by just adding the distance functions together. 

SVMEDIT+RBF could not achieve the results that SVMSM+RBF achieved. This suggests that, for 

the protein secondary structure problem, SVMSM+RBF is a more suitable kernel. 

 

Table 4.2. 6-fold cross-validation of the binary classifiers 

RS126 Binary 

Classifier SVMRBF SVMSM SVMEDIT SVMSM+RBF SVMEDIT+RBF 

H/~H 87.4 75.18 68.2 87.4 74.0 

E/~E 88.2 78.44 40.0 86.8 76.7 

C/~C 79.4 69.83 52.5 77.9 64.0 

H/E 91.7 73.32 48.8 91.0 79.2 

E/C 83.6 75.36 41.8 82.5 71.8 

C/H 85.3 73.48 48.9 85.0 71.1 

 
 
 
 
 
 



 

 

40

4.4. Conclusion  

In chapter 4, we propose two hybrid kernels SVMSM+RBF and SVMEDIT+RBF. We tested these 

two hybrid kernels on one of the most widely studied problems in bioinformatics -the protein 

secondary structure prediction problem. For the protein secondary structure problem, our 

results achieved 91% accuracy in predicting the H/E binary classifier. In this case, the 

information in the substitution matrix reinforces the information in the RBF-on-PSSM 

profiles. However, this is not true with the edit distance. These results show that the data are 

consistent when the substitution matrix is used, but are not consistent when the edit distance 

is used. The edit distance kernel gives good results in [47], but not when used with our 

dataset in this work. Our results show that it is critically important to use mutually consistent 

data when merging different distance measures in support vector machines.  
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CHAPTER 5  
 

A Feature Selection Algorithm based on Graph Theory and Random Forests for Protein 

Secondary Structure Prediction  

 

In this work, we propose an algorithm that uses a graph-theory approach for feature 

selection. First, we apply this algorithm to the BLOSUM62 matrix; and then, based on the 

feature set produced by the algorithm, we use this feature set for condensing the PSSM 

matrix.  This work attempted to reduce the feature space of the dataset using a graph-

theoretical approach. Even though graph theory concepts have been around for more than a 

century, its concepts are just newly being explored for biological applications [12][66]. The 

clique search algorithm was applied to find all the cliques with different threshold values. We 

used Niskanen’s and Ostergard’s original implementation of Cliquer version 1.1 [49]. The 

code Cliquer is a set of C routines for finding cliques in an arbitrary weighted graph. It uses 

an exact branch-and-bound algorithm recently developed by Östergård [50]. Next, based on 

the newly designed algorithm, final cliques were determined. By merging the vertices within 

the same clique into one, the original feature space is reduced. Finally, this reduced feature 

set was applied to random forests and the performance was compared with the unreduced 

counterpart. In Fig. 5.1, the whole picture of this model is presented.   
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Figure 5.1 New model for protein secondary structure prediction 
 

 

5.1. Encoding Schemes of the Data 

   Two matrices such as Blosum62 and PSSM were applied alone or combined with a feature 

reduction scheme. The BLOSUM62 matrix is a measure of differences between two distantly 

related proteins. The values in the BLOSUM62 matrix represent the possibility that two 

given amino acids will interchange with each other in the evolutionary process. The position-

specific scoring matrix (PSSM) generated by PSI-BLAST; uses position-specific scores for 

each position in the alignment. Highly conserved positions have high scores and weakly 

conserved positions have low scores close to zero. Since each of these coding schemes 

captures different aspects of the properties of the amino acids, the combinations of these two 

different encodings would be more informative.  

Data Set 

 Bootstrapped sample 

Clique Search Algorithm

 Data Set with Reduced Features 

…Bootstrapped sample Bootstrapped sample 

Random Forest 
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The above encoding profiles were generated based on the sliding window scheme.  In the 

sliding window scheme, a window becomes one training pattern for predicting the structure 

of the residue at the center of the window. The optimal window size of the sliding window 

scheme was set as 13 based on previous research [32]. To reduce the noise in the training 

data and to minimize the memory requirement for training, the feature set was reduced based 

on the clique search algorithm. This approach is described in detail in the next section.   

 

 

5.2. Feature Reduction Based on Cliques 

A clique in an undirected graph G is a set of vertices V such that, for every two vertices in 

V, there exists an edge connecting the two. The subgraph induced by V is a complete graph. 

The size of a clique is the number of vertices it contains. The maximum clique problem is to 

find the largest clique in a given graph. 

The BLOSUM62 matrix used in this study can be represented as a graph which consists of 

20 different vertices. The edges among these 20 vertices can be introduced by applying 

different threshold values to the BLOSUM62 matrix. This study attempted to reduce the 

feature size by obtaining the cliques which occur commonly in different threshold values and 

by merging the vertices within the same clique. This process can be divided into the 

following three steps. The first step is converting the matrix into the adjacency matrix based 

on different threshold values ranging from -2 to 2. Each cell of the adjacency matrix has a 

value ‘1’ if there is an edge between two vertices or a value ‘0’ if there is no edge between 

them based on different threshold values. The second step is applying the clique search 

algorithm to each of these adjacency matrices. The third step is scanning through all the 
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cliques obtained from each matrix and finding the common cliques. The cliques of size 2, 3 

or 4 vertices (n-mer) which share at least one physico-chemical property (polarity, 

hydrophobicity, or aromaticity, etc.) were considered for final decision. The common cliques 

were determined by counting the same vertices (n-mer) in each clique. Based on this 

algorithm, three most commonly occurring n-mers were found. These were merged into one-

mers as follows: 

 Q E → E 

 I L M → L 

 H F Y → Y 

 

The pseudocode of this algorithm is given in Fig. 5.2 The physico-chemical property sets P 

in the pseudocode are described in Table 5.1.   
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Input: Blosum62 matrix B 

     Threshold set T  T = {-2, -1, 0, 1, 2}   

     Physico-chemical property sets P  P= {P1, P2, …, P8, P9}     

Output: Common_Clique_Set C 

Process: 

   FOR each threshold i of T        

       Adj_Matrixi = Create_adjacency_matrix (B) 

   END FOR 

   FOR each adjacency matrix Adj_Matrixi     

Clique_Seti = Find_all_cliques (Adj_Matrixi ) 

   END FOR 

   FOR each clique set Clique_Seti  

        FOR each clique j  j ∈ Clique_Set i  

           if size_of(j) equals to 2 or 3 or 4 

            FOR each Pi ∈ P 

                      if j ⊆ Pi  

          count++ 

                END FOR 

Save the count into count_array 

END FOR 

END FOR 

Common_Clique_Set C = Vote_and_Find_Top_Three(count_array) 

Figure 5.2 Common clique search algorithm  
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Table 5.1 Physico-chemical property set 

 

Set P Physico-chemical 
properties Amino acids in each set 

P1 Small A, C, D, G, N, P, S, T, V 
P2 Hydrophobic A, C, F, G, H, I, K, L, M, T, V, W, Y 
P3 Polar C, D, E, H, K, N, Q, R, S, T, W, Y 
P4 Tiny A, C, G, S 
P5 Aliphatic I, L, V 
P6 Aromatic F, W, Y 
P7 Charged D, E, H, K, R 
P8 Positive H, K, R 
P9 Negative D, E 

 

 

The BLOSUM62 matrix is reduced to the size of 15x15 based on the above compression. 

By applying the same reduction, the dimensions of the PSSM can also be compressed to 

Lx15. Here, L is the sequence length of the protein.    

We also tested all other possible clique sizes between 1-20 in order to choose an optimal 

clique size. The test results are given in tables 5.2, 5.3 and 5.4. The highest accuracy was 

achieved when a clique size of 5 is used. These results indicate that the output of the 

algorithm already gives the optimal clique size which is 5.  
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Table 5.2 Finding optimal clique size (results between size 3-10) 
 

Clique sizes 
Binary classifiers 

3 4 5 6 7 8 9 10 

H/~H 87.3 86.2 93.6 86.8 87.0 85.9 83.9 75.1 

 
 
 

Table 5.3 Finding optimal clique size (results between size 11-18) 

Clique sizes 
Binary classifiers 

11 12 13 14 15 16 17 18 

H/~H 74.2 68.8 67.3 67.3 68.0 64.1 63.5 66.6 

 
 
 

Table 5.4 Finding optimal clique size (results between size 19-20) 
 

Clique sizes 
Binary classifiers 

19 20 

H/~H 67.7 65.9 
 

 
 
 

5.3. Training and Testing  

   The commonly used RS126 set was applied to compare our results with previous studies. 

The RS126 data set was proposed by Rost and Sander and is known to be a non-homologous 

set which shares less than 25% sequence identity [59]. The random forests algorithm 

performs a bootstrap test with the training data. In other words, one third of the instances are 
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left out in the construction of the kth tree; are applied for classification. Therefore, in random 

forests, we do not need to perform a cross-validation. Nor do we need to save a separate test 

set to obtain unbiased accuracy values. However, the current study applied two thirds of the 

original data for training and one third for testing to confirm the results obtained from the 

training data.       

 

5.4.Parameter Optimization  

In the random forests program, the only parameter which is optimized is the number of 

features, called mtry, that are randomly selected at each node [15]. As a rule of thumb, the 

author suggested that it could be set to the square root of the number of whole features.  

Including this value, this study tested 4 different mtry values to find the optimum value.      

 

 

5.5. Binary Classifiers  

Six binary classifiers, such as three one-versus-rest classifiers (H/~H, E/~E and C/~C), 

and three one-versus-one classifiers (H/E, E/C and C/H) were created based on the previous 

study [32]. Here, the name ‘one’ in the one-versus-rest classifier refers to a positive class and 

the name ‘rest’ means a negative class. In the term one-versus-one classifier, the former 

“one” refers to a positive class and the latter “one” to a negative class.  For example, the 

classifier H/~H classifies the testing sample as helix or not helix and the classifier E/C 

classifies the testing sample as sheet or coil.  This paragraph is unclear. You introduce the 

one-versus-rest and one-versus-one notations, but then your example illustrates a different 

nomenclature: V and ~V. 
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5.6. Results 

5.6.1. Parameter Optimization  

Table 5.5 presents the result of applying different mtry values (the number of features 

randomly selected) based on the Blosum62 and the reduced PSSM concatenated encoding 

scheme. In the second column of the table, the value 22 is obtained from the approximate 

square root of the whole dimension of the feature: the whole dimension is (20+15) * 13 = 

455. As can be seen from the table, the accuracy values are almost same even though we 

chose the larger mtry values. This means that the square root value is almost the optimal 

value.  

 

Table 5.5 Comparison of different mtry values 
 

Accuracy (%) for different mtry values Binary 
classifier 22 50 100 200 

H/~H 82.2 
85.1 

82.1 
85.6 

83.3 
85.6 

82.1 
85.1 

 
 

 

5.6.2. Encoding Scheme Optimization 

Table 5.6 shows the result obtained by applying different encoding schemes to the random 

forests. Two different accuracy values are displayed. The first row is obtained by doing a 

bootstrap test on the training data and the second row by using the test data. As can be 

observed from the table, both the reduced Blosum62 matrix and the reduced PSSM 
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encodings present equal level of accuracy values when compared with the unreduced 

counterparts whether applied alone or applied in a concatenated form. This result proves that 

there is no information loss from the feature reduction and that our algorithm for this 

reduction works properly. Among all the different encoding schemes, the reduced PSSM 

encoding shows the best performance. The reduced PSSM encoding performs similarly to the 

concatenated encoding of the reduced PSSM and the BLOSUM62 matrix. The reduced 

PSSM shown in the last column has 13*15=195 features whereas the unreduced PSSM 

13*20=260 features. This means that an approximate 25% feature reduction is achieved by 

using our algorithm while still achieving high accuracy.             

 

Table 5.6 Comparison of different encoding schemes for H/~H  

 PSSM Reduced 
 PSSM BLOSUM Reduced 

BLOSUM 

PSSM+ 
BLOSU

M 

Reduced 
PSSM+ 

BLOSUM 

Reduced 
PSSM+ 
Reduced 

BLOSUM

H/~H  82.3 
 85.5 

82.5 
85.7 

76.9 
80.7 

77.2 
80.8 

82.3 
85.1 

82.2 
85.1 

81.7 
85.0 

 
 

In Table 5.7, all six binary classifiers are tested based on the BLOSUM and PSSM 

combined encodings. Once again, it can be observed that the reduced PSSM encoding has 

almost the same performance as the unreduced counterpart against all six binary classifiers. 
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Table 5.7 Accuracy results with BLOSUM+PSSM encoding 

 

  

5.6.3. Time comparison 

Table 5.8 shows the execution times of the reduced PSSM encoding scheme versus the 

PSSM+BLOSUM encoding scheme with different number of trees. Our proposed encoding 

scheme using reduced PSSM has a faster execution time. Also, when using 2000 trees, 

PSSM+BLOSUM encoding scheme did not run after a few hours due to its high 

dimensionality whereas reduced the PSSM encoding could run. These results show that the 

reduced PSSM encoding could be used to reduce the space and time complexity drastically 

where the data dimensionality is very high.   

 

 

 

 

Binary 
classifiers 

Accuracy for 
PSSM+BLOSUM 

Accuracy for 
reduced 

PSSM+BLOSUM 

Accuracy for 
reduced PSSM 

H/~H 82.3 
85.1 

82.2 
85.1 

82.5 
85.7 

E/~E 83.9 
81.1 

83.7 
81.1 

84.0 
81.0 

C/~C 76.1 
75.5 

75.7 
74.9 

76.3 
75.6 

H/E 85.2 
83.1 

85.3 
82.7 

86.5 
84.0 

E/C 79.5 
78.7 

78.9 
78.6 

80.6 
80.3 

C/H 82.0 
83.2 

82.1 
82.9 

82.2 
83.3 
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Reduced PSSM Profiles 

Clique finding algorithm 

SVM 

    Data Set 

 

Table 5.8 Comparison of execution times for reduced PSSM vs. PSSM+BLOSUM 
 

Encoding Scheme Tree 
size PSSM+BLOSUM Reduced PSSM 

100 25min 58.9s 5min 53.7s 

500 153min 50.6s 31min 8.5s 

1000 267min 31.9s 66min 15.8s 

2000 _ 124min 24.7s 
 

 

 

5.6.4. Random forest vs. SVM  

   We have proposed an initial new model that uses support vector machines and cliques for 

feature selection, and some initial results have been obtained for the protein secondary 

structure prediction problem. This model is shown in Figure 5.3. 

 

  

 

 
 
 
 

Figure 5.3 Prediction Model 
 
  

   The reduced feature set was applied to support vector machines and the performance was 

compared both with the unreduced counterpart and with the random forests method for 

protein secondary structure prediction. The results are presented in Table 5.9. 
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Table 5.9 Random forest vs. SVM comparison for different encoding schemes 
 

Random forest SVM 
Binary 

classifiers Accuracy for 
PSSM+BLOSU

M 

Accuracy for 
reduced PSSM 

Accuracy for 
PSSM+BLOSU

M 

Accuracy for 
reduced PSSM 

H/~H 85.1 85.7 92.8 93.6 
E/~E 81.1 81.0 83.3 87.1 
C/~C 75.5 75.6 72.4 77.6 
H/E 83.1 84.0 88.2 90.8 
E/C 78.7 80.3 79.8 82.4 
C/H 83.2 83.3 83.9 84.5 

 
As can be seen from the table, SVM produces much better accuracy than the random forests 

which improved our previous accuracy results.  

 

 

5.7. Conclusion 

In this work, we proposed a novel algorithm for feature selection based on cliques and 

evolutionary information of proteins. We tested our algorithm using random forests and 

different encoding schemes for the secondary structure problem in proteins. These algorithms 

were tested on both condensed and non-condensed data sets. We found out that the prediction 

accuracies for both data sets were similar. These results show that a significant amount of 

space and time can be saved while still achieving the same high accuracy results by using a 

subset of the features when these features are carefully selected.  

These results show that it is important to select features from the data that are more 

significant for training and testing instead of using the entire feature set. Also, using our 

novel algorithm, we achieved an approximate 25% reduction in space and time. We tested 



 

 

54

our algorithm using SVM as a machine learning method instead of random forests and 

achieved high accuracy. Finally, we propose that, as a subject for further research, SVM can 

be used instead of random forests in order to increase prediction accuracy.   
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CHAPTER 6 
 

New Binary Classifiers for Protein Structural Boundary Prediction  

 
Proteins are primarily made up of amino acids which determine the structure of a protein. 

Protein structure has three states called primary structure, secondary and tertiary structure. 

The primary structure of the protein is its amino acid sequence. The secondary structure of a 

protein is formed from recurring shapes called the alpha-helix, the beta sheet, and the coil. 

The tertiary structure of the protein is the spatial assembly of helices and sheets and the 

pattern of interactions between them. Predicting the secondary and tertiary structure of 

proteins from their amino acid sequences is an important problem; knowing the structure of a 

protein aids in understanding how the functions of proteins in metabolic pathways map for 

whole genomes, in deducing evolutionary relationships, and in facilitating drug design.  

    It is strongly believed that protein secondary structure delimits the overall topology of the 

proteins [26] Therefore, during the past 25 years, many researchers have tried to understand 

how to predict the secondary structure of a protein from its amino acid sequence. Many 

algorithms and machine learning methods have been proposed for this problem [2][6] 

[40][42]. The algorithms for predicting secondary structure of proteins have reached a 

plateau of roughly 90%. Much more success has occurred with motifs and profiles [16].  

The common approach to solve the secondary structure prediction problem has been to 

develop tools that predict the secondary structure for each and every amino acid (residue) of 

a given protein sequence. In this work, we propose new binary classifiers which do not 
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require the correct prediction of each and every residue in a given protein segment. The new 

binary classifiers predict only the start or end of a helix, sheet or coil. In figure 6.1, this 

concept is illustrated. Fig 6.1 represents the tertiary structure of a protein with its secondary 

structure regions colored in different shades. The point where one secondary structure 

element ends and another one begins is called a “structural transition” throughout this 

chapter. 

  
 
 
 
    
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
Figure 6.1 Structural transitions of a protein 

 
 

   Protein sequences may have specific residue preferences at the end or start of secondary 

structure segments. For example, it has been shown that specific residue preferences exist at 

the end of helices, which is called helix capping. Recent research has suggested that it is 

possible to detect helix-capping motifs [7]. However, these results reflect a linear decision 

function based on amino acid frequencies. It is well known that non-linear decision 

functions, for example those implemented with the Support Vector Machines (SVM), 

dramatically outperform linear decision functions when the underlying data are nonlinear 

[68]. In this work, we use a machine learning approach based on SVM to predict the helix 

Structural transitions  

Start of a helix  

End of a helix  
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capping regions of a given protein sequence. These helix capping regions indicate where a 

helix ends. The same method is also used for predicting the starting points of helices and to 

predict the end and starting points of coils and sheets. The end and starting points of 

secondary structures are also called structural transition boundaries.   

 

 

6.1.  Problem Formulation 

     In this study, we adopted the most generally used DSSP secondary-structure-assignment 

scheme [39]. The DSSP classifies the secondary structure into eight different classes: H (α- 

helix), G (310-helix), I (π-helix), E (β-strand), B (isolated β-bridge), T (turn), S (bend), and - 

(rest). These eight classes were reduced into three regular classes based on the following 

method: H, G and I were reduced to H; E to E; and all others to C.  

 

 

6.1.1. Traditional problem formulation for the secondary structure prediction 

The traditional problem formulation is stated as:  

Given a protein sequence a1a2…aN, find the state of each amino acid ai as being either: 

• H (helix) or 

• E (beta strand) or  

• C (coil).  

The quality of the secondary structure prediction is measured with a “3-state accuracy” 

score called Q3. Q3 is the percent of residues that match reality. Most of the previous research 

adopted Q3 as an accuracy measurement.  
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6.1.2. New problem formulation for the transition boundary prediction 

The new problem formulation is stated as follows:  

Given a protein sequence profile, find the state of each amino acid ai as being either: 

•  The start of a H (helix), E (beta strand), or C (coil) or 

•  The end of  a H (helix), E (beta strand), or C or 

•  Neither of the above (named as ‘X’: doesn’t matter) 

Here, we used a new scoring scheme that we call QT (Transition) which is similar to Q3. QT 

is the percent of residues that match reality.  We had to change the scoring scheme to QT 

because Q3 scoring scheme takes into account all the residues whereas QT takes into account 

only the residues that are necessary for prediction.  
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In QT scoring scheme the number of correctly predicted transition residues of class H, E, o C 

are divided by the number of all transition residues of class H, E or C.   
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6.2. Method 

6.2.1. Motivation 

 
 
   

 
                                
 
 
 
 
 
 
 
 

 
Figure 6.2 A 9-mer with helix junction 

    

Given a protein sequence of a 9-mer, let the middle element of this 9-mer be the starting 

position of a helix as it shown in Figure 6.2. Our goal is to determine whether the middle 

residue is the start or end of a helix. If we use the traditional binary classifiers (such as 

H/~H), first we must correctly identify all the residues in the whole segment. We need to 

correctly predict 3 consecutive residues as H (at least 4 residues are needed for a helix) and 

the rest of the residues should be ~H. In this case, we have to make 9 predictions, and ideally 

we should be correct all 9 times. However, the probability that we can predict all 9 residues 

correctly in the protein segment is at maximum .35 if we assume that our chance of making 

each prediction correctly is 0.9 and that this probability of success is independent of the other 

predictions.   

 In the next section, we explore how to overcome the problem of making 9 predictions for 

a given 9-mer and how to reduce it to a problem of making only one prediction per 9-mer.  

 

 

EAN L D A V D A

HHH H H E H C E 

 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9=(0.9)9=0.35 

Corresponding secondary structure of 
 the protein sequence segment 
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6.2.2. A new encoding scheme for the prediction of starts of H, E and C.   

   The goal of our new encoding scheme is shown in Fig 6.3 where a new binary classifier has 

to make only one guess instead of 9 guesses. Here, the new encoding scheme for representing 

the starting points of helices is shown as an example. The same encoding is applied to both 

sheets and coils. 

 

 

 
 

 
 
 
 
 
 

 
           Figure 6.3 New encoding scheme for Helix start 

   
 

In Figure 6.3, the illustration of the new encoding scheme is presented. 

The rules of the new encoding scheme are as follows:  

In order for the middle residue to be classified as the start of a helix, the conditions are:  

1. The residues corresponding to X’s can be C, H or E, but no two consecutive H’s are 

allowed.  

2. The secondary structure of the middle residue must be H.  
 
3. All residues after the middle residue must be H.  
 
 

E AN L A V D A

 

D 

H HH H H X X XX

 A helix starts here 

Corresponding secondary structure of 
 the protein sequence segment 
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If all three rules are satisfied, the protein segment is represented by the new encoding as 

the start of a helix (Hstart). If not, the protein segment is represented as ~Hstart (not the start of 

a helix). 

 
 

 

6.2.3. A new encoding scheme for the prediction of ends of H, E and C.   

 
   Similar to the the method in section 6.2.2 the new encoding scheme for representing the 

ends of helices is shown as an example is shown in Fig 6.5. The same encoding is applied to 

sheets and coils. 

 
 

 
 

Figure 6.4 A 9-mer with helix end 
 

 
In the new encoding scheme, the protein sequences are classified as the following:  
 
 
 
 
 
 

 
Figure 6.5 New encoding scheme for Helix start 

      

The rules of the new encoding scheme are as follows. These are similar to the rules in section 

6.2.2, however used for predicting the ends of secondary structures:  

In order for the middle residue to be classified as a helix end, the conditions are:  

E EH C H H H H H 

 Only one prediction is sufficient  

X XX X H H H HH

                              A Helix ends here  
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1. The residues corresponding to X’s can be C, H or E, but no two consecutive  H’s are 

allowed.  

2. The secondary structure of the middle residue must be H.  

3. All residues before the middle residue must be H.  

If all three rules are satisfied, the protein segment is represented by the new encoding as the 

end of a helix (Hend). If not, the protein segment is represented as ~Hend (not the end of an 

helix). 

 

 

6.3. New binary classifiers 

In the traditional secondary structure prediction approach, usually six binary classifiers, 

such as three one-versus-rest classifiers (H/~H, E/~E and C/~C) and three one-versus-one 

classifiers (H/E, E/C and C/H) are used. Here, the name ‘one’ in one-versus-rest classifier 

refers to a positive class and the name ‘rest’ means a negative class. Likewise, the name 

‘one’s in one-versus-one classifier refers to positive class and negative class respectively. For 

example, the classifier H/~H classifies the testing sample as helix or not helix and the 

classifier E/C classifies the testing sample as sheet or coil.  

The six new binary classifiers that are proposed are the following: 

 

Binary Classifier 1:  

    Hstart/~Hstart: This binary classifier classifies the positive samples as the start of a helix 

and negative samples as not being the  start of a helix.  
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Binary Classifier 2:  

Estart/~Estart: This binary classifier classifies the positive samples as the start of a sheet and 

negative samples as not being the   start of a sheet.   

Binary Classifier 3:  

   Cstart/~Cstart: This binary classifier classifies the positive samples as the start of a coil and 

negative samples as not being the  start  of a coil.   

Binary Classifier 4:  

   Hend/~Hend: This binary classifier classifies the positive samples as the end of a helix and 

negative samples as not being the end of a helix.   

Binary Classifier 5:  

   Eend/~Eend: This binary classifier classifies the positive samples as the end of a sheet and 

negative samples as not being the end of a sheet.   

Binary Classifier 6:  

   Cend/~Cend: This binary classifier classifies the positive samples as the end of a coil and 

negative samples as not being the end of a coil.  

6.4. SVM kernel 

 We used a radial basis kernel (RBF) since it was optimal when used for secondary 

structure prediction:   

           
2

),( yxeyxK −−= γ
           (6.2)           

Here, x and y are two input vectors containing different feature values and γ is the radial 

basis kernel parameter.  Radial basis kernels depend on a numerical representation of the 

input data.   
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6.5. Choosing the window size 

   In order to choose an optimal window size for the proposed encoding scheme for a given 

protein segment, we tried different window sizes on the smaller dataset RS126. We used the 

PSSM profiles of the dataset RS126 during the tests. As a prediction method, the SVM RBF 

kernel was used. Using the sliding window scheme, first each k-mer from a protein sequence 

is extracted. Each k-mer is classified as a positive or negative sample. If the middle residue 

satisfies the encoding scheme as described in section 6.2, it is marked as a positive sample: 

Hstart, Estart, or Cstart. Otherwise it is marked as a negative sample ~Hstart,  ~Estart, or ~Cstart, 

   Fig 6.6 shows the QT prediction accuracy results of all the six new binary classifiers used 

with the SVM RBF kernel and the RS126 dataset. The prediction accuracy of SVM varied 

for different window sizes. The best overall prediction accuracy was achieved when the 

window size was 9.  
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Figure 6.6 Accuracy of Hend, Eend and Cend binary classifiers for RS126 dataset 

 

 

Fig 6.7 shows the QT prediction accuracy results of all the six new binary classifiers used 

with the SVM RBF kernel and the CB513 dataset. The prediction accuracy of SVM varied 

for different window sizes. The best overall prediction accuracy was achieved when the 
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window size was 9 for CB513 data which is similar to the results of RS126 data shown in 

Fig. 6.6. 
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Comparison of w indow sizes for Hend, Eend and Cend
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Figure 6.7 Accuracy of Hend, Eend and Cend binary classifiers for CB513 dataset 
 
 
 

For the later experiments and for the larger dataset CB513 dataset a window size of 9 was 

used for testing the new binary classifiers.    

 

 



 

 

67

6.6. Test results of the binary classifiers 

Table 6.1 shows the QT prediction accuracy results of all six binary classifiers 

Hstart/~Hstart, Estart/~Estart , Cstart/~Cstart and Hend/~Hend , Eend/~Eend and Cend/~Cend used with the 

SVM RBF kernel with a window size of 9. We used the PSSM profiles of the dataset CB513 

during these tests. Since there were many negative samples, we balanced the negative and 

positive samples in the dataset by randomly choosing from the negative samples for training 

the SVM. The results are given in Table 6.1. The probability of SVM correctly predicting the 

start of helices is 81.5%, which is much higher than the 35% theoretical bound for per-

residue prediction. The probability of successfully predicting the end of a helix is also high--

approximately 71.33%. This shows that there is more of a signal in the data indicating the 

start of helices than there is a stop signal. The start and end positions of strands and coils are 

predicted with approximately 75% accuracy.  

These results show that, by training a classifier such as SVM to predict the secondary 

structure transition boundaries, it is possible to detect where helices, strands and coils begin 

and end with high accuracy. Furthermore, the detection of these secondary structure 

transition boundaries is performed on the basis of one prediction rather than trying to predict 

correctly all the residues in a given sequence segment, the probability of which would 

theoretically be only roughly 35%.      
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Table 6.1 Prediction accuracies of the new binary classifiers 
 

Binary 
Classifier 

Accuracy 
(TP+TN)/ 

(TP+TN+FN+FP)*

Recall 
(TP/TP+FN)

Specifity 
(TN/TN+FP) 

Precision 
(TP/(TP+FP)

Hstart/~Hstart 81.5 78.5 84.16 83.33 

Estart/~Estart 73.16 73.33 73.16 73.16 

Cstart/~Cstart 75.33 78.33 72 74.33 

Hend/~Hend 71.33 86.16 66.66 69.5 

Eend/~Eend 78.66 82 75.33 77.66 

Cend/~Cend 77.66 79 76 77.5 
 

* TP: TRUE POSITIVE       TN: TRUE NEGATIVE        FP: FALSE POSITIVE     FN: FALSE NEGATIVE 
 

 
 
 
6.7.  Accuracy as a function of helix sizes    

Fig 6.8 shows the comparison between the prediction accuracy levels of helix starting and 

end points as a function of the number of turns in the helix. One can see that the prediction 

accuracies of the binary classifiers Hstart/~Hstart and Hend/~Hend reach a maximum value when 

the helix has 2.25 turns. Since a helix has about 4 residues per turn, this corresponds to a 

window size of 9 residues. At different number of turns of a helix, the accuracies are lower. 

This also proves that choosing a window size of 9 residues is optimal for the transition 

boundary prediction problem.  
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Figure 6.8 Accuracy levels of Hstart and Hend 

 
 
 
 

6.8.   Comparison of traditional binary classifiers to the new binary classifiers 

There are several studies that focus on finding where the structural segments start and 

end. Aydin et al. have shown that new dependency models and training methods bring 

further improvements to single-sequence protein secondary structure prediction [8]. Their 

results improve most Q3 accuracy results by 2%, which shows that considering amino acid 

patterns at segment borders increases the prediction accuracy. Some other approaches are 

focused on finding the end of helices. The reason for this is that the helices (alpha-helices) 

are the most abundant regular secondary structure and that a certain residue preference exists 

at the ends of helices [71]. However, current secondary structure prediction programs can not 

identify the ends of helices correctly in most cases. The same rule applies to strands although 

the residue preferences for strand termini are not as strong as in helices. Wilson et. al. used 

cumulative pseudo-free energy calculations to predict helix start positions and achieved 38% 

prediction accuracy. We achieved around 80% QT accuracy using SVM, which is of course 

significantly higher.  
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One could question what our Q3 overall prediction accuracy is. Most of the current 

secondary structure prediction methods try to solve the problem at a per-residue level, 

whereas we try to solve the prediction at a per-segment level. In this work, we proposed 

binary classifiers that target the prediction of the start and end positions of helices, strands 

and coils. Therefore, in order to be able to compare our prediction accuracy to the current 

prediction methods, we derived a method that converts our QT accuracy results to the 

standard Q3 and vice versa.  

 

 

6.8.1. Estimate of the Q3  from QT  and QT  from Q3 

When, traditional binary classifiers such as one-versus-rest classifiers (H/~H, E/~E and 

C/~C), and one-versus-one classifiers (H/E, E/C and C/H) are used, their prediction 

accuracies are measured using a Q3 measurement. In the Q3 measurement, a prediction for 

each and every residue of a protein sequence is done. In order to determine whether a given 

protein sequence is the start or end of a secondary structure with the traditional binary 

classifiers, each residue’s secondary structure must be predicted first. However, it is clear 

that, even with the 90% accuracy per residue, the probability of independently predicting k 

residues correctly is 0.9 to the kth order. In order to calculate a Q3 measurement of a given a 

protein sequence window (of size k), a prediction for each and every residue in that window 

must be made using the traditional binary classifiers. However, with the proposed new binary 

classifiers, only one prediction per window is enough to tell whether that window represents 

the end or start of a helix, sheet or coil. Besides, the overall prediction probability is slightly 

pessimistic because the estimates may not be fully independent.  
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Based on the above reasoning, in order to be able to compare our results to the traditional 

binary classifiers which calculate the prediction accuracy per residue, we derived a method 

using the following assumption. Given a protein segment of window size k, we assumed that  

the prediction of each residue in that window is truly independent of the other residues in that 

window. Then, we converted the traditional Q3 accuracy measurement to our accuracy 

measurement QT, using the following equation:  

 
                     QT=Q3

 (window size)    (6.3) 

 
The formula above basically states that, the fewer number of predictions made for a 

given protein window, the higher the chances are that the prediction is correct. Using the 

traditional binary classifiers, given a protein window of size k, k predictions must be made in 

order to see what that protein sequence segment is. Using the binary classifiers proposed in 

this work, only one prediction is enough. The inverse of the formula above is: 

 
                         
                               (6.4) 
 
 
The inverse of the formula gives us the corresponding Q3 accuracy as a function of QT.   
 
 
 
 
 
6.8.2. Traditional binary classifiers vs.  new binary classifiers  

In order to make a fair comparison, we took Q3 measurements for the H/~H, E/~E and 

C/~C binary classifiers from [32][33] which are one of the highest Q3 measurements for 

these binary classifiers, and estimated their QT measurements. We also converted the QT 

results in Table 6.1 to Q3 measurements and listed the results in Table 6.2 and Table 6.3.    
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Table 6.2 Estimated Q3 results 
 

QT converted to Q3  Binary 
classifiers QT Q3 

H/~H 83.17  96.31  
E/~E 80.5  95.67  
C/~C 76.5  94.65  

 
 
 

Table 6.3 Estimated QT results 
 

Q3 converted to QT  Binary 
classifiers Q3* QT 

H/~H    87.18   50.35  
E/~E    86.02   47.09  
C/~C   77.47  36.01 

 
 

*Q3 measurements from Hu et al, 2004 and Hua and Sun, 2001 
 
 

Table 6.2 shows our QT accuracy calculations converted to the corresponding Q3 

accuracies. When Q3 accuracies are converted to QT measurements as shown in table 6.3, the 

accuracies are low. (Note, these estimates are based on the assumption that each residue 

prediction is independent of all the others.) These results show that using the new binary 

classifiers gives higher prediction accuracy than the traditional binary classifiers. These 

results also prove that it is better to make predictions using a per-segment window rather than 

a making them per residue. In other words, we should split the data in big chunks (segments) 

and make predictions using these segments instead of trying to predict each and every piece 

of data (residues).  
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6.9.   Test results on individual proteins outside the dataset  

In order to prove that the new proposed encoding scheme works, we have run blind tests 

on individual proteins. The test results are given in Table 6.4. In all the test cases, the 

accuracy, recall, specifity and precision values are high as expected. However, the precision 

values are low. The reason for this is the unbalanced nature of the dataset. In our training 

datasets, we have many negative samples whereas the positive samples are roughly 1% of the 

number of the negative sets. This is a major problem with these kinds of datasets. The false 

positives (FPs) are high because we are dealing with 100 times more examples of negative 

cases than positive cases. These results imply that it is very hard to get a high precision due 

to the unbalanced nature of the datasets. The false positives overwhelm the correct matches. 

This is the truly difficult aspect of using minority classes. The good accuracy shows that 

there is a signal in the data that we can extract. However, because there are so many more 

negatives matches, we get large number FPs. What we discover by this analysis is that there 

is a signal that SVM selects because we have high accuracy; however, we can not get high 

precision values because there are very few examples of the minority classes. Therefore, we 

give he results for both balanced data and unbalanced data.   

 
 

Table 6.4 Protein ID: CBG 
Binary 

Classifier Accuracy Recall Specifity Precision 

Hstart/~Hstart 0.77 0.62 0.77 0.13 
Estart/~Estart 0.80 0.53 0.81 0.9 
Cstart/~Cstart 0.71 0.59 0.72 0.17 
Hend/~Hend 0.79 0.54 0.80 0.13 
Eend/~Eend 0.81 0.59 0.82 0.11 
Cend/~Cend 0.72 0.57 0.73 0.17 
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Table 6.5 Protein ID: CELB 

Binary 
Classifier Accuracy Recall Specifity Precision 

Hstart/~Hstart 0.89 0.2 0.99 0.03 
Estart/~Estart 0.75 0.39 0.78 0.13 
Cstart/~Cstart 0.58 0.27 0.62 0.07 
Hend/~Hend 0.91 0.70 0.92 0.17 
Eend/~Eend 0.79 0.42 0.82 0.17 
Cend/~Cend 0.63 0.51 0.64 0.13 

 
 
 
 
 

Table 6.6 Protein ID: BAM 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 6.7 Protein ID: AMP-1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Binary 
Classifier Accuracy Recall Specifity Precision 

Hstart/~Hstart 0.79 0.57 0.79 0.09 
Estart/~Estart 0.69 0.50 0.69 0.06 
Cstart/~Cstart 0.66 0.75 0.65 0.16 
Hend/~Hend 0.76 0.86 0.76 0.11 
Eend/~Eend 0.78 0.62 0.78 0.11 
Cend/~Cend 0.72 0.56 0.73 0.16 

Binary 
Classifier Accuracy Recall Specifity Precision 

Hstart/~Hstart 0.70 0.64 0.70 0.08 
Estart/~Estart 0.79 0.11 0.82 0.02 
Cstart/~Cstart 0.73 0.65 0.73 0.15 
Hend/~Hend 0.84 0.55 0.85 0.12 
Eend/~Eend 0.83 0.67 0.83 0.11 
Cend/~Cend 0.72 0.67 0.72 0.16 
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Table 6.8 Protein ID: ADD-1 
Binary 

Classifier Accuracy Recall Specifity Precision 

Hstart/~Hstart 0.86 0.77 0.87 0.28 
Estart/~Estart 0.84 0.88 0.84 0.11 
Cstart/~Cstart 0.65 0.66 0.65 0.16 
Hend/~Hend 0.74 0.59 0.75 0.14 
Eend/~Eend 0.86 0.88 0.86 0.13 
Cend/~Cend 0.80 0.37 0.84 0.18 

 
 
 
 
 
6.10.  Test results on randomly chosen subsets of data  

In order to test that we did not simply select a subset of the negative data for balancing 

the dataset that optimized our method’s prediction probabilities, we tested our method using 

10 different randomly chosen different subsets of the data. These test results show that our 

proposed method works and that it is possible to train an SVM algorithm to learn where the 

helices, strands and coils begin and end. 

 

Table 6.9 Test-1, random subset-1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Binary 
Classifier Accuracy Recall Specifity Precision 

Hstart/~Hstart 80 80 80 80 
Estart/~Estart 73 77 68 71 
Cstart/~Cstart 73 72 73 73 
Hend/~Hend 70 77 64 68 
Eend/~Eend 81 84 78 80 
Cend/~Cend 76 80 72 76 
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Table 6.10 Test-2, random subset-2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Table 6.11 Test-3, random subset-3 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 6.12 Test-4, random subset-4 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Binary 
Classifier Accuracy Recall Specifity Precision 

Hstart/~Hstart 81 79 83 83 
Estart/~Estart 72 78 67 70 
Cstart/~Cstart 70 73 68 69 
Hend/~Hend 73 76 70 72 
Eend/~Eend 78 82 74 77 
Cend/~Cend 75 79 71 75 

Binary 
Classifier Accuracy Recall Specifity Precision 

Hstart/~Hstart 87 84 91 90 
Estart/~Estart 75 74 77 76 
Cstart/~Cstart 72 73 71 72 
Hend/~Hend 74 84 64 70 
Eend/~Eend 80 83 77 79 
Cend/~Cend 81 84 77 79 

 
Binary 

Classifier 
Accuracy Recall Specifity Precision 

Hstart/~Hstart 84 83 84 84 
Estart/~Estart 73 71 75 74 
Cstart/~Cstart 73 79 68 71 
Hend/~Hend 76 80 73 75 
Eend/~Eend 78 84 71 75 
Cend/~Cend 78 79 77 79 
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Table 6.13 Test-5, random subset-5 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Table 6.14 Test-6, random subset-6 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 6.15 Test-7, random subset-7 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Binary 
Classifier Accuracy Recall Specifity Precision 

Hstart/~Hstart 80 80 81 81 
Estart/~Estart 74 74 74 74 
Cstart/~Cstart 78 79 77 77 
Hend/~Hend 76 78 72 81 
Eend/~Eend 79 82 75 77 
Cend/~Cend 81 83 79 81 

Binary 
Classifier Accuracy Recall Specifity Precision 

Hstart/~Hstart 82 79 85 84 
Estart/~Estart 72 70 73 72 
Cstart/~Cstart 75 76 74 74 
Hend/~Hend 79 87 71 75 
Eend/~Eend 78 81 75 77 
Cend/~Cend 78 81 74 77 

Binary 
Classifier Accuracy Recall Specifity Precision 

Hstart/~Hstart 83 83 82 81 
Estart/~Estart 79 86 71 77 
Cstart/~Cstart 71 72 70 71 
Hend/~Hend 73 75 71 72 
Eend/~Eend 82 82 82 82 
Cend/~Cend 76 78 73 76 
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Table 6.16 Test-8, random subset-8 

 
Binary 

Classifier Accuracy Recall Specifity Precision 

Hstart/~Hstart 84 82 85 85 
Estart/~Estart 81 84 77 81 
Cstart/~Cstart 72 78 66 70 
Hend/~Hend 74 79 70 72 
Eend/~Eend 81 85 77 79 
Cend/~Cend 80 83 76 79 

 
 
 
 

Table 6.17 Test-9, random subset-9 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 6.18 Test-10, random subset-10 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Binary 
Classifier Accuracy Recall Specifity Precision 

Hstart/~Hstart 85 83 88 87 
Estart/~Estart 79 84 74 78 
Cstart/~Cstart 74 78 69 72 
Hend/~Hend 74 82 71 66 
Eend/~Eend 80 84 76 79 
Cend/~Cend 78 85 71 76 

Binary 
Classifier Accuracy Recall Specifity Precision 

Hstart/~Hstart 83 80 86 85 
Estart/~Estart 73 73 73 73 
Cstart/~Cstart 75 78 73 74 
Hend/~Hend 73 80 67 70 
Eend/~Eend 80 84 75 78 
Cend/~Cend 79 83 75 79 
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6.11.    New binary classifiers tested with the feature selection algorithm  

 
In this section, we apply the feature selection algorithm described in chapter 5 to the 

boundary detection problem with the new binary classifiers proposed in chapter 6. Table 6.19 

shows the QT prediction accuracy results of all six binary classifiers--Hstart/~Hstart, Estart/~Estart, 

Cstart/~Cstart and Hend/~Hend, Eendt/~Eemd and Cend/~Cend--used with the SVM RBF kernel and a 

window size of 9. We used the PSSM profiles of the dataset CB513 during these tests.  

As in chapter 5, first, based on the feature set produced by the algorithm, we used this 

feature set for condensing the PSSM matrix.  Our goal was to reduce the feature space of the 

dataset using the proposed graph-theoretical approach. By merging the vertices within the 

same clique into one, the original feature space is reduced. Finally, this reduced feature set 

was applied to a support vector machine algorithm. We were able to achieve similar accuracy 

results as given in Table 6.1 with less number of features.   

 
Table 6.19 Prediction accuracies of the new binary classifiers with feature selection 

 

Binary 
Classifier 

Accuracy 
(TP+TN)/ 

(TP+TN+FN+FP)*

Recall 
(TP/TP+FN)

Specifity 
(TN/TN+FP) 

Precision 
(TP/(TP+FP)

Hstart/~Hstart 83 81 85 85 

Estart/~Estart 79 84 74 79 

Cstart/~Cstart 73 74 72 72 

Hend/~Hend 78 84 72 76 

Eend/~Eend 79 85 73 76 

Cend/~Cend 77 79 75 78 
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6.12.  Test results on randomly chosen subsets of data  

In order to test that we did not simply select a subset of the data that optimized our 

method’s prediction probabilities when we balanced the dataset, we tested our method using 

10 different randomly chosen different subsets of the data. These test results show that our 

proposed method works and that it is possible to train an SVM algorithm to learn where the 

helices, strands and coils begin and end when features are reduced based on the clique 

algorithm.  

 

Table 6.20 Test-1, random subset-1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 6.21 Test-2, random subset-2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Binary 
Classifier Accuracy Recall Specifity Precision 

Hstart/~Hstart 82 80 83 83 
Estart/~Estart 81 86 74 80 
Cstart/~Cstart 73 78 71 68 
Hend/~Hend 80 85 75 79 
Eend/~Eend 80 82 77 79 
Cend/~Cend 77 82 72 76 

Binary 
Classifier Accuracy Recall Specifity Precision 

Hstart/~Hstart 83 80 85 84 
Estart/~Estart 79 85 72 77 
Cstart/~Cstart 73 80 73 70 
Hend/~Hend 79 86 71 77 
Eend/~Eend 80 85 74 77 
Cend/~Cend 81 84 76 80 
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Table 6.22 Test-3, random subset-3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 6.23 Test-4, random subset-4 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 6.24 Test-5, random subset-5 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Binary 
Classifier Accuracy Recall Specifity Precision 

Hstart/~Hstart 84 82           85 85 
Estart/~Estart 82 88 75 80 
Cstart/~Cstart 76 77 75 75 
Hend/~Hend 78 86 70 76 
Eend/~Eend 80 84 75 78 
Cend/~Cend 77 82 72 76 

 
Binary 

Classifier 
Accuracy Recall Specifity Precision 

Hstart/~Hstart 83 80 86 85 
Estart/~Estart 83 86 79 83 
Cstart/~Cstart 76 73 79 78 
Hend/~Hend 81 88 72 80 
Eend/~Eend 81 82 80 81 
Cend/~Cend 79 78 79 80 

Binary 
Classifier Accuracy Recall Specifity Precision 

Hstart/~Hstart 85 82 87 86 
Estart/~Estart 78 82 74 78 
Cstart/~Cstart 72 76 68 71 
Hend/~Hend 77 81 72 77 
Eend/~Eend 83 84 81 82 
Cend/~Cend 80 82 77 79 
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Table 6.25 Test-6, random subset-6 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Table 6.26 Test-7, random subset-7 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 6.27 Test-8, random subset-8 
 

Binary 
Classifier Accuracy Recall Specifity Precision 

Hstart/~Hstart 83 83 84 84 
Estart/~Estart 80 85 75 79 
Cstart/~Cstart 77 78 75 76 
Hend/~Hend 79 85 72 76 
Eend/~Eend 79 83 75 77 
Cend/~Cend 80 82 76 80 

 
 

Binary 
Classifier Accuracy Recall Specifity Precision 

Hstart/~Hstart 83 80 86 85 
Estart/~Estart 81 83 78 81 
Cstart/~Cstart 74 76 72 73 
Hend/~Hend 85 89 80 84 
Eend/~Eend 82 87 78 80 
Cend/~Cend 78 83 72 77 

Binary 
Classifier Accuracy Recall Specifity Precision 

Hstart/~Hstart 82 79 84 84 
Estart/~Estart 80 85 74 79 
Cstart/~Cstart 71 78 65 69 
Hend/~Hend 79 85 73 78 
Eend/~Eend 81 83 79 80 
Cend/~Cend 77 82 71 76 
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Table 6.28 Test-9, random subset-9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 6.29 Test-10, random subset-10 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6.13. Conclusion 

     In this work, we proposed a new way to look at the protein secondary prediction problem. 

Most of the current methods use the traditional binary classifiers such as H/~H and require 

the correct prediction of every residue’s secondary structure. This approach gives an 

overview of the secondary structure of a sequence. However, in order to determine whether a 

sequence segment is a Helix, Sheet or Coil using the traditional binary classifier, most of the 

Binary 
Classifier Accuracy Recall Specifity Precision 

Hstart/~Hstart 81 81 82 82 
Estart/~Estart 79 88 70 76 
Cstart/~Cstart 74 71 77 76 
Hend/~Hend 81 88 74 80 
Eend/~Eend 82 84 81 82 
Cend/~Cend 80 83 76 79 

Binary 
Classifier Accuracy Recall Specifity Precision 

Hstart/~Hstart 85 83 87 86 
Estart/~Estart 81 84 77 81 
Cstart/~Cstart 74 76 72 73 
Hend/~Hend 82 85 78 81 
Eend/~Eend 79 83 76 78 
Cend/~Cend 79 85 73 77 
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residues in the sequence segment must be classified correctly. Even with a 90% probability 

that each residue is correctly predicted independently, the cumulative probability of being 

correct for all the residues in the sequence segment is low (around 35%).  We propose six 

new binary classifiers that could be used to overcome the problem of classifying all the 

residues in a given protein sequence segment when we attempt to determine whether the 

sequence segment is a helix, strand of coil. In our binary classifiers, only one classification is 

made per segment. In order to use these binary classifiers, we proposed a new encoding 

scheme for data representation. Our results show that it is possible to train an SVM to learn 

where the helices, strands and coils begin and end. 
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CHAPTER 7 

 

Future work 

 
There are many things that can be done to further the research in this dissertation. In 

chapter 3, we explored the factors involved in the accurate selection of seeds for protein 

sequence alignments. Our results show that if the proteins in a database are clustered first and 

a seed search is made, higher quality seeds are found than when an individual database 

search is made. In the future, PHI-BLAST like algorithms can be improved based on this 

finding. These algorithms currently do not cluster any of the data and run a search 

individually for each protein in the whole database. This is not only time consuming, but also 

it makes it harder for quality seeds to be found.  

In chapter 4, we proposed two hybrid kernels SVMSM+RBF and SVMEDIT+RBF. Both of these 

hybrid kernels can be further improved by using different substitution matrices. Also, in both 

the models, the decision from two kernels are simply added and sent to SVM. However, 

instead of simply adding these, a different function such a Boolean of two values can be 

used.  

For the feature selection algorithm introduced in chapter 5, the clique-finding approach 

could be enhanced by using different size cliques for each binary classifier. Our current 

algorithm uses a fixed size of 5 for all binary classifiers. However, it is possible to achieve 

higher accuracy if this number is optimized for each classifier individually. Also, different 

threshold values in the clique-finding algorithm could be applied and tested. Currently we are 
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using threshold values between -2 and +2 and our algorithm uses a fixed threshold value for 

all classifiers. Again this value can be adapted to each classifier.  

Also, the current feature selection algorithm takes into account only the BLOSUM 

(BLOcks of Amino Acid SUbstitution Matrix substitution matrix however, many other 

matrix representations of the protein data could be replaced in our algorithm. Even, these 

different representations could be combined optimally in the future.   

We proposed six new binary classifiers that are used for predicting the starts and end of 

secondary structures of protein. For these binary classifiers, we also proposed a new 

encoding scheme. Our current encoding scheme takes only into account the information 

whether a protein window is the end or start of a secondary structure. It does not take into 

account where in the protein that sequence window belongs to. Depending on whether it 

occurs at the beginning or end of a sequence, the occurrence of a transition boundary could 

be changed drastically. The new binary classifiers currently do not use the information that 

states a sequence window to be at the start or end of protein; however, they can be improved 

in the future to represent this information.  

Another future improvement could be finding common amino acid patterns that make up 

the transition boundaries.  If there are common amino acid patterns (motifs), this information 

could be added to the encoding scheme and an SVM could be additionally trained with these 

patterns to make better prediction. These common patterns could lead to rules as in which 

order of amino acids represent transition boundaries. These rules can later be embedded into 

the encoding scheme or put into a new kernel function of SVM.  

The correct detection of transition boundaries could be used for predicting the tertiary 

structure of a protein. For instance, each transition boundary could also be a possible domain 
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boundary. Proteins are usually made up of several domains or independent functional units 

which have their own shape and function. All these remain as promising topics for future 

research.  
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CHAPTER 8 
 

Conclusion 

 
   In this study, first we explored the factors involved in the accurate selection of seeds for 

protein sequence alignments. We found that it is possible to identify seeds that are likely to 

share structural similarity with a meaningful a priori assessment of accuracy by using a 

profile-clustered profile approach. In this approach we proposed that instead of searching 

individual frequency profile of each seed in a database, we should first cluster the database 

and search for seeds in a clustered database. Based on this finding PHI-BLAST-like 

algorithms can be substantially improved if the database is clustered first. Our results show 

that it when sequence windows are clustered and average profiles of these clusters are used 

for calculating a similarity measure, it is possible to select high quality seeds that share many  

of the structural properties of a protein.  

We also proposed a novel algorithm for feature selection based on cliques and 

evolutionary information of proteins. We tested our algorithm using random forests, SVM 

and different encoding schemes for the secondary structure problem in proteins. When we 

selected only a subset of the features given in the dataset, we found out that the prediction 

accuracies for both data sets were similar. These results show that our algorithm carefully 

selects important features whereas unnecessary features were thrown away. Based on the 

new algorithm we were able to save space and time while still achieving the same accuracy 

when feature set of the data is not reduced. Using our novel algorithm, we achieved an 
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approximate 25% reduction in space and time. We tested our algorithm using SVM as a 

machine learning method instead of random forests and achieved a higher accuracy.  

We also propose six new binary classifiers that are used for predicting the starts and end 

of secondary structures of protein. With these binary classifiers, it is easier to train an SVM 

since only one prediction per protein segment is necessary for concluding whether it is a 

helix, strand or coil. In order to use these binary classifiers, we also proposed a new encoding 

scheme for data representation. Our results show that it is possible to train an SVM to learn 

where the helices, strands and coils begin and end. We have achieved close to 90% accuracy 

whereas traditional binary classifiers can only reach to a maximum of 35% accuracy for a 

window size of 9.  

The expected contribution of this dissertation involves two aspects: we develop new 

methods and algorithms based on statistics, machine-learning and graph-theory approaches 

for protein structure prediction. In the protein structure prediction problem, we encounter too 

many negative matches/examples in the data because there are always too many negative 

samples in the biological dataset compared to positive samples. We tested our methods 

primarily on protein structure data; however, our methods can be used and tested for different 

data and applications, such as for gene data.  

We also propose methods for predicting protein secondary structure and detecting 

transition boundaries between the helix, coil and sheet secondary structures. Detecting 

transition boundaries instead of the structure of individual residues in the whole sequence is 

much easier. Thus, our problem is reduced to the problem of finding these transition 

boundaries. Our work provides new insights on accurately predicting protein secondary 

structure and may help determine the tertiary structure as well; this could be used by 
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biologists to help solve the critically important problem of how proteins fold. A protein’s 

tertiary structure is critical to its performing its biological functions correctly and efficiently.  
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