13 research outputs found

    Satisfiability of Arbitrary Public Announcement Logic with Common Knowledge is ÎŁ11\Sigma^1_1-hard

    Full text link
    Arbitrary Public Announcement Logic with Common Knowledge (APALC) is an extension of Public Announcement Logic with common knowledge modality and quantifiers over announcements. We show that the satisfiability problem of APALC on S5-models, as well as that of two other related logics with quantification and common knowledge, is ÎŁ11\Sigma^1_1-hard. This implies that neither the validities nor the satisfiable formulas of APALC are recursively enumerable. Which, in turn, implies that APALC is not finitely axiomatisable.Comment: In Proceedings TARK 2023, arXiv:2307.0400

    Coalition and coalition announcement logic

    Get PDF
    Dynamic epistemic logics which model abilities of agents to make various announcements and influence each other’s knowledge have been studied extensively in recent years. Two notable examples of such logics are Group Announcement Logic and Coalition Announcement Logic. They allow us to reason about what groups of agents can achieve through joint announcements in non-competitive and competitive environments. In this paper, we consider a combination of these logics – Coalition and Group Announcement Logic and provide its complete axiomatisation. Moreover, we partially answer the question of how group and coalition announcement operators interact, and settle some other open problems

    Logics with Group Announcements and Distributed Knowledge: Completeness and Expressive Power

    Get PDF
    Public announcement logic (PAL) is an extension of epistemic logic with dynamic operators that model the effects of all agents simultaneously and publicly acquiring the same piece of information. One of the extensions of PAL, group announcement logic (GAL), allows quantification over (possibly joint) announcements made by agents. In GAL, it is possible to reason about what groups can achieve by making such announcements. It seems intuitive that this notion of coalitional ability should be closely related to the notion of distributed knowledge, the implicit knowledge of a group. Thus, we study the extension of GAL with distributed knowledge, and in particular possible interaction properties between GAL operators and distributed knowledge. The perhaps surprising result is that, in fact, there are no interaction properties, contrary to intuition. We make this claim precise by providing a sound and complete axiomatisation of GAL with distributed knowledge. We also consider several natural variants of GAL with distributed knowledge, as well as some other related logic, and compare their expressive power.publishedVersio

    Quantifying over information change with common knowledge

    Get PDF
    Public announcement logic (PAL) extends multi-agent epistemic logic with dynamic operators modelling the effects of public communication. Allowing quantification over public announcements lets us reason about the existence of an announcement that reaches a certain epistemic goal. Two notable examples of logics of quantified announcements are arbitrary public announcement logic (APAL) and group announcement logic (GAL). While the notion of common knowledge plays an important role in PAL, and in particular in characterisations of epistemic states that an agent or a group of agents might make come about by performing public announcements, extensions of APAL and GAL with common knowledge still haven’t been studied in detail. That is what we do in this paper. In particular, we consider both conservative extensions, where the semantics of the quantifiers is not changed, as well as extensions where the scope of quantification also includes common knowledge formulas. We compare the expressivity of these extensions relative to each other and other connected logics, and provide sound and complete axiomatisations. Finally, we show how the completeness results can be used for other logics with quantification over information change.publishedVersio

    Logics with Group Announcements and Distributed Knowledge: Completeness and Expressive Power.

    Get PDF
    Public announcement logic (PAL) is an extension of epistemic logic with dynamic operators that model the effects of all agents simultaneously and publicly acquiring the same piece of information. One of the extensions of PAL, group announcement logic (GAL), allows quantification over (possibly joint) announcements made by agents. In GAL, it is possible to reason about what groups can achieve by making such announcements. It seems intuitive that this notion of coalitional ability should be closely related to the notion of distributed knowledge, the implicit knowledge of a group. Thus, we study the extension of GAL with distributed knowledge, and in particular possible interaction properties between GAL operators and distributed knowledge. The perhaps surprising result is that, in fact, there are no interaction properties, contrary to intuition. We make this claim precise by providing a sound and complete axiomatisation of GAL with distributed knowledge. We also consider several natural variants of GAL with distributed knowledge, as well as some other related logic, and compare their expressive power

    Quantifying over Boolean announcements

    Get PDF
    Various extensions of public announcement logic have been proposed with quantification over announcements. The best-known extension is called arbitrary public announcement logic, APAL. It contains a primitive language construct Box phi intuitively expressing that "after every public announcement of a formula, formula phi is true". The logic APAL is undecidable and it has an infinitary axiomatization. Now consider restricting the APAL quantification to public announcements of Boolean formulas only, such that Box phi intuitively expresses that "after every public announcement of a Boolean formula, formula phi is true". This logic can therefore called Boolean arbitrary public announcement logic, BAPAL. The logic BAPAL is the subject of this work. Unlike APAL it has a finitary axiomatization. Also, BAPAL is not at least as expressive as APAL. A further claim that BAPAL is decidable is deferred to a companion paper

    To Be Announced

    Full text link
    In this survey we review dynamic epistemic logics with modalities for quantification over information change. Of such logics we present complete axiomatizations, focussing on axioms involving the interaction between knowledge and such quantifiers, we report on their relative expressivity, on decidability and on the complexity of model checking and satisfiability, and on applications. We focus on open problems and new directions for research
    corecore