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Abstract We propose a multi-agent logic of knowledge, public announcements and
arbitrary announcements, interpreted on topological spaces in the style of subset space
semantics. The arbitrary announcement modality functions similarly to the effort
modality in subset space logics, however, it comes with intuitive and semantic dif-
ferences. We provide axiomatizations for three logics based on this setting, with S5
knowledge modality, and demonstrate their completeness. We moreover consider the
weaker axiomatizations of three logics with S4 type of knowledge and prove soundness
and completeness results for these systems.

Keywords Topology - Subset space logic - Dynamic epistemic logic - Arbitrary
(public)announcements

1 Introduction

Moss and Parikh (1992) introduce a bi-modal logic with language
p:=pl-elore|Ke|Up,

called subset space logic (SSL), in order to formalize reasoning about sets and points

together in a particular modal system. The main interest in their investigation lies in
spatial structures such as topological spaces, and using modal logic and the techniques
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behind it for spatial reasoning; however, they also have a strong motivation from epis-
temic logic. While the modality K is interpreted as knowledge, [Jis intended to capture
the notion of effort, i.e., any action that results in an increase in knowledge; such as
measurement, computation, approximation or even an announcement. While the shape
of effort may vary depending on the context and the source of information, one funda-
mental and common constituent is taken to be observation (Moss and Parikh 1992).
Such a rich epistemic setting capturing observational effort and knowledge therefore
demands well-equipped models in order to be able to represent the aforementioned
concepts. Moss and Parikh (1992) therefore propose subset space semantics for their
logic. A subset space is defined to be a pair (X, O), where X is a non-empty set of
states and O is a collection of subsets of X (not necessarily a topology, however topo-
logical spaces constitute a particular case of subset spaces).! The elements of O are
considered as possible observations or possible observation sets, and the formulas are
interpreted not only with respect to the actual state, but with respect to pairs of the
form (x, U), where x € U € O: while x represents the way the actual state of affairs
is, the neighbourhood U with x € U € O is taken to be a truthful observation that
can be made about the actual state x (Moss and Parikh 1992). According to subset
space semantics, given a pair (x, U), the modality K quantifies over the elements
of U, whereas [ quantifies over all subsets of U in O that include the actual world
x. Therefore, while knowledge is interpreted ‘locally’ in a given turthful observation
set U, effort is read as neighbourhood-shrinking where more effort corresponds to
a smaller neighbourhood, i.e., a more refined truthful observation, thus, a possible
increase in knowledge. The schema ¢ K ¢ states that after some effort the agent comes
to know ¢, where effort can be in the form of measurement, computation, approxima-
tion (Moss and Parikh 1992; Dabrowski et al. 1996; Parikh et al. 2007; Bagkent 2012),
or announcement (Plaza 1989; Balbiani et al. 2008; van Ditmarsch et al. 2014).

The epistemic motivation behind the subset space semantics and the dynamic nature
of the effort modality suggests a link between SSL and dynamic epistemic logic,
in particular dynamics known as public announcement, as also noted by Georgatos
(2011), and studied in Bagkent (2007, 2012), Balbiani etal. (2013), Wang and Agotnes
(2013b), Bjorndahl (2017). Baskent (2007, 2012) and Balbiani et al. (2013) propose
modelling public announcements on subset spaces by deleting the states or the neigh-
bourhoods falsifying the announcement. This dynamic epistemic method is not in the
spirit of the effort modality: dynamic epistemic actions result in global model change,
whereas the effort modality results in local neighbourhood shrinking without leading
to any change in the model under consideration. Hence, it is natural to search for
a ‘neighbourhood-shrinking-like’ interpretation of public announcements on subset
spaces. Wang and Agotnes (2013b) first proposed semantics for public announce-
ments on subset spaces in the style of the effort modality, although the subset spaces
used here are not necessarily topological spaces. Bjorndahl (2017) then proposed a
revised version of the semantics of Wéng and Agotnes (2013b). In contrast to the afore-
mentioned proposals, Bjorndahl (2017) uses models based on topological spaces to

! The topological version of the subset space logics, the so-called topologic, has been extensively studied
by Georgatos (1993, 1994, 1997).
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interpret knowledge and information change via public announcements. He considers
the language

p::=pl|l—-olore|Kel|int(p)|[ele,

where int(¢), roughly speaking, means ‘g is true and can be announced’ and where
[¢]yr means ‘after public announcement of ¢, ¥ (is true).” More precisely, in this
topological framework, the novel modality int(¢) plays the role of the precondition for
the public announcement of ¢ and itis interpreted as the interior operator on topological
spaces. The precondition int(¢p) is stronger than ¢ only being true: it moreover states
that ¢ is supported by a truthful observation (as opposed to the standard precondition
for the public announcements, that is, the announced formula only being true, see e.g.,
van Ditmarsch et al. 2007, 2015 for a survey). This modality is also an important part of
our current work and it will be analysed in detail, both syntactically and semantically,
in later sections.

Balbiani et al. (2008) introduce alogic to quantify over announcements in the setting
of epistemic logic based on the language (with single-agent version here)

p:=ploolorne| Kellelp|Up.

In this case, unlike the above SSL setting where g is read as ‘after any effort, ¢ (is
true)’, the so-called arbitrary announcement modality [ means ‘after any announce-
ment, ¢ (is true)’. It therefore quantifies over only epistemically definable subsets
(O-free formulas of the language) of a given model. In this case, { K ¢ again means
that the agent comes to know ¢, but in the interpretation that there is a formula 1 such
that after announcing it the agent knows ¢. What becomes true or known by an agent
after an announcement can be expressed in this language without explicit reference to
the announced formula.

Clearly, the meaning of the effort [J modality (of Moss and Parikh 1992) and of the
arbitrary announcement [ modality (of Balbiani et al. 2008) are related in motivation.
In both cases, interpreting the modality requires quantification over sets. Subset-space-
like semantics provides natural tools for this. van Ditmarsch et al. (2014) extended the
proposal in Bjorndahl (2017) with an arbitrary announcement modality

p:=pl-olone| Kelint(p)|[ele | Op

and provided topological semantics for the [J modality, and proved completeness for
the corresponding single-agent logic APAL;,,. Baltag et al. (2017) later showed that,
in spite of their different readings, the arbitrary announcement modality and the effort
modality are equivalent in the single-agent case on topological spaces.

In this paper, we generalize the topological arbitrary announcement setting in van
Ditmarsch et al. (2014) to a multi-agent setting, wherein the language becomes

p:i=pl-olornel|Kiplint(p)|lele | Ue.
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The only difference with the previous language is that the knowledge operator now
has an index: K;¢ means that agent i knows ¢. Multi-agent subset space logics have
been investigated in Heinemann (2008, 2010), Bagkent (2007) and Wéng and Agotnes
(2013a). There are some challenges with such a logic concerning the evaluation of
higher-order knowledge. The general setup is for any finite number of agents, but to
demonstrate the challenges, consider the case of two agents. If we extend the setup
from the single agent case in the straightforward way, then for each of two agents i
and j there is an open set and the semantic primitive becomes a triple (x, U;, U;)

instead of a pair (x, U). Now consider a formula like K; K jKip, for ‘agent i knows
that agent j considers possible that agent i knows proposition p’. If this is true for
a triple (x, U;, U;), then IejK,-p must be true for any y € U;; but y may not be
in Uj, in which case (y, U;, Uj;) is not well-defined: we cannot interpret I&'j Kip.
Our solution to this dilemma is to consider neighbourhoods that are not only relative
to each agent, as usual in multi-agent subset space logics, but that are also relative
to each state. This amounts to, when shifting the viewpoint from x to y € U;, in
(x, U;, Uj), we simultaneously have to shift the neighbourhood (and not merely the
point in the actual neighbourhood) for the other agent. So we then go from (x, U;, U;)
to (y, Ui, V), where V; may be different from U;: U; represents j’s observation at
x and V; represents j’s observation at y. Therefore, the neighbourhood shift from U
to V; does not mean a change of agent j’s observation at the actual state. While the
tuple (x, U;, U;) represents the actual state and the view points of both agents, the
components (y, V;) of the latter tuple merely represents agent j’s epistemic state from
agent i’s perspective at y, a possibly different state from the actual state x.

In order to define the evaluation neighbourhood for each agent with respect to
the state in question, we employ a technique inspired by the standard neighbourhood
semantics (Chellas 1980). We use a set of neighbourhood functions, determining the
evaluation neighbourhood relative to both the given state and the corresponding agent.
These functions need to be partial in order to render the semantics well-defined for
the dynamic modalities in the system.

Using topological spaces enriched with a set of (partial) neighbourhood functions
as models allows us to work with different notions of knowledge. In the standard
(single-agent) SSL setting, as the knowledge modality quantifies over the elements of
a fixed neighbourhood, the S5 type knowledge is inherent to the way the semantics
defined. With our approach, however, the epistemic view of an agent changes accord-
ing to the neighbourhood functions when the evaluation state changes, therefore, the
valid properties of knowledge are determined by the constraints imposed on the neigh-
bourhood functions. To this end, we work with both the S5 and S4 types of knowledge
in this paper: while the former is the standard notion of knowledge in the subset space
setting, the latter reveals a novel aspect of our approach, namely, the ability to capture
different notions of knowledge.

In Sect. 2 we define the syntax, structures, and semantics of our multi-agent logic of
arbitrary public announcements, APAL;,;, interpreted on topological spaces equipped
with a set of neighbourhood functions. Without arbitrary announcements we get the
logic PAL;,;, and with neither arbitrary nor public announcements, the logic EL;,,;.
In this section we also show some typical validities, and give two detailed examples.
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In Sect. 3 we give axiomatizations for the logics: PAL;,; extends EL;,; and APAL;,;
extends PAL;,;. In Sect. 4 we demonstrate completeness for these logics. The com-
pleteness proof for the epistemic version of the logic, EL;,;, is rather different from
the completeness proof for the full logic APAL;,;. Section 5 adapts the logics to the
case of S4 knowledge. In Sect. 6 we compare our work to that of others, and then
conclude.

Prior work This work should be seen as the journal version of the extended abstract
presented in van Ditmarsch et al. (2015b). This journal version: contains more proof
details, for example, in Propositions 14-18 and in Lemma 40; provides an additional
extended example with a truly topological character (Sect. 2.6.2); uses another com-
plexity measure in the completeness proof (for better integration with the PAL;y;
completeness proof); has a new Sect. 2.5 on the least topological model (given a set of
neighbourhood functions); has a new Sect. 5 on S4 knowledge; and has a new Sect. 6.1
embedding single-agent into multi-agent topological semantics and vice versa.

2 The logic APAL;,;

We define the syntax, structures, and semantics of our logic. From now on, Prop is a
countable set of propositional variables and .4 a finite and non-empty set of agents.

2.1 Syntax

Definition 1 The language Lapaz,, is defined by

p::=pl-olonel|Kiplint(p)|lele | O

where p € Prop and i € A. Abbreviations for the connectives vV, — and <> are
standard, and L is defined as abbreviation by p A —p. We employ K i for =K;—p,
and Q¢ for -J—¢. We denote the non-modal part of Lapaz,, (Without the modalities
K;, int, [¢] and OJ) by L p;, the part without L by Lpsy,,, and the part without [ and
[§0] by LELim'

Necessity forms (Goldblatt 1982) allow us to select unique occurrences of a sub-
formula in a given formula (unlike in uniform substitution). They will be used in the
axiomatization (Sect. 3).

Definition 2 Let ¢ € Lapar,,. The necessity forms are inductively defined as

W =tle— &M@ | KE®@ [int(5(®)) | [p]5(@).

Each necessity form £(ff) has a unique occurrence of #f. Given a necessity form &(f)
and a formula ¢ € Lapar,,, the formula obtained by replacing by ¢ is denoted by
§(p).

In the Truth Lemma of the completeness proof (Lemma 40, Sect. 4) we need a
complexity measure on formulas wherein, for example, [ ] is less complex than Ug.
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Therefore, the subformula complexity of formulas does not suffice. The appropriate
complexity measure is composed of a measure S(¢) that is a weighted count of the
number of symbols and a measure d(¢) that counts the number of the [J-modalities
occurring in a formula.

Definition 3 The size S(¢) of formula ¢ € Lapar,., is defined as:

int

S(p) =1,
S(—p) = S(p) +1,
Sleny) =S +SW)+ 1,
S(Kip) = S(p) + 1,
S(int(¢)) = S(¢) + 1,
S(ely) = 4(S(@) +HSW),
S(Ug) = S(p) + 1.

The clauses for conjunction and public announcement in S(¢) are different from
the similar measure defined in Balbiani and van Ditmarsch (2015), and also different
from the measure used in van Ditmarsch et al. (2015b). The measures used there are
of course fine, however, we preferred a complexity measure that we could not only
use in the completeness proof of APAL;,, but also in the completeness proof of public
announcement logic PAL;,;.

Definition 4 The [-depth d(¢) of formula ¢ € Lapar,, is defined as:

int

d(p) =0,
d(—¢) = d(e),
d(p AY) = max{d(p),d(¥)},
d(Kip) = d(p),

d(int(¢)) = d(p),
d([el¥) = max{d(p), d(¥)},
d(Ug) =d(p) +1

We now define three order relations on Lapaz
the formulas.

based on the size and [J-depth of

int

Definition 5 For any ¢, ¥ € Lapar,

o ¢ <5 Yiff S(p) < S(¥)
o v <qyiffd(p) <dy)
) <5 Y iff (either d(¢) < d(¥), or d(¢) = d(¥) and S(p) < S(¥))

We let Sub(¢) denote the set of subformulas of a given formula ¢.

int?

Lemma 6 Forany ¢, € Lapar,,

1. <5, <y, <dS are well-founded strict partial orders between formulas in Lapar,

int’
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Nk e

if o € Sub(Y) and ¢ is not , then ¢ <§ v,
int(g) <§ [@1¥,

¢ € Lpar,, iffd(p) =0,

¢ € Lpar,, implies [ply <5 Oy

Lemma 7 Forany ¢, V, x € Lapar,, andi € A,

AN e

int(p) — p <3 lelp,

int(p) = —lply <3 [p]=,
[l A lelx <5 (@l A ),
int(p) — int([@ly) <3 [glint(¥),
int(p) — Kiloly <3 [@]Ki,
[=lel=int(Y)1x <5 [ell¥1x.

Proof We prove Lemmas 7.3, 7.4 and 7.6. The proofs for the other items follow
similarly. We define ¢ — 1 as —(¢ A =), so that S(¢ — ) = S(p) + S(¥) + 3.

(7.3)

(7.4)

(7.6)

On the left-hand-side, we have S([¢]¥ A [@lx) = 1 +4(S(p) + 4 (S) +
S(x)). However, S([pl(Y A x)) = 4(S(p)+H(1+SWY)+S(x)) = 4(S(p)+
4) +4(S(p) + H(SW) + S(x))- Thus, S([pl¥ A lelx) < SUel(¥ A x)).
Moreover, d([¢ly A [@lx) = max{d(p),d(¥),.d(x)} = d(el(¥ A X))
(This is similar in the other items). Therefore, by Definition 5, we obtain
[l Alplx < o1 A ).

On the left-hand-side, we have S(int(p) — int([ely)) = S(int(p)) +
SGnt(lely)) +3 = 1+ Sp) + 1+ SUely) +3 = 5+ S(p) +
4S5(p)S(¥) + 165(y). However, S([lint(y)) = 4S((¢) + 4 S(int(y)) =
45((p) + H(S(Y) + 1) = 16 + 4S(p) + 4S(p)S(¥) + 16S(¥). Therefore,
S(int(p) — int([pl¥)) < S([elint(y)). As in case (7.3) the [-depth of both
formulas is the same. Therefore, int(¢) — int([p]y) <;§ [@lint(yr).

By Definition 3, we have that S([—[¢]—int(¥)]x) = 4(S(=[p]—int(y)) +
HS(x) = 45+4S(@+H2+SW)))S(x) = 45(x)(37+8S5(p)+16S(¥)+
4S(¢)S(¥)). On the other hand, S([p][¥]1x) = 4(S(p) + HA(SW) +
4HS(x) = 4S()(64 + 16S(p) + 16S(¢¥) + 4S(¢)S(¥)). Thus, as for any
X € LarALy» 1 =< S(x), S([=lel—int(¥)]1x) < S(lel[¥1x). Further, we
observe that d([=[¢]—int(¥)]x) = max{d(p), d({¥), d(x)} = d((el[¥1x).
Therefore, [=[@]—int(Y)1x <} [@][¥]x.

2.2 Background on topology

In this section, we introduce the topological concepts that will be used throughout this
paper. All the concepts in this section can be found in Dugundji (1966).

Definition 8 A topological space is a pair (X, 7), where X is a non-empty set and t
is a family of subsets of X containing X and @, and is closed under finite intersections
and arbitrary unions.
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The set X is called the space. The subsets of X belonging to t are called open sets
(or opens) in the space; the family T of open subsets of X is also called a topology on
X. If for some x € X and an open U C X we have x € U, we say that U is an open
neighborhood of x.

A point x is called an interior point of aset A C X if there is an open neighborhood
U of x such that U C A. The set of all interior points of A is called the interior of A
and denoted by Int(A). We can then easily observe that for any A C X, Int(A) is an
open set and is indeed the largest open subset of A.

Definition 9 A family B C t is called a base for a topological space (X, ) if every
non-empty open subset of X can be written as a union of elements of B.

We can also give an equivalent definition of an interior point by referring only to a
base B for a topological space (X, t): forany A C X, x € Int(A) if and only if there
isanopenset U € Bsuchthatx € U and U C A.

Given any family ¥ = {A, | « € I} of subsets of X, there exists a unique, smallest
topology (%) with £ C t(X) (Dugundji 1966, Theorem 3.1, p. 65). The family 7 (%)
consists of ¢, X, all finite intersections of the A,, and all arbitrary unions of these
finite intersections. X is called a subbase for t(X), and 7(X) is said to be generated
by X. The set of finite intersections of members of X forms a base for 7(X).

2.3 Multi-agent topological model

In this section we define multi-agent models based on topological spaces.

Definition 10 Given a topological space (X, t), a neighbourhood function set ® on
(X, ) is a set of (partial) neighbourhood functions 6 : X — A — 1 such that for all
x € D), foralli € A, and forall U € t:

1. x € 0(x)(@),

2. 0(x)(0)) € D),

3. forally € X,if y € 0(x)(i) then y € D(#) and 8 (x) (i) = 0(y)(i),
4. 0|y € &,

where D(6) is the domain of 6, and |y is the neighbourhood function with D(0|y) =
D@O)NU and Oy (x)(@) =60(x)@)NU.

Definition 11 A multi-agent topological model (topo-model) is a tuple M =
(X, 7, @, V), where (X, 7) is atopological space, ® a neighbourhood function set, and
V : Prop — P(X) a valuation function. The tuple X = (X, t, ®) is a multi-agent
topological frame (topo-frame).

A pair (x, 0) is called a neighbourhood situation if x € D(0). The open set 6 (x) (i)
is called an epistemic neighbourhood at x of agent i. An epistemic neighbourhood
0(x)(i) serves as the actual, truthful observation set of the agent i at state x. This
representation is important as we study a notion of knowledge based on observation
as in Moss and Parikh (1992). If (x, ) is a neighbourhood situation in M we write
(x,0) € M.Similarly, if (x, 8) is aneighbourhood situation in X’ we write (x, #) € X.
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The following lemma shows that the domain of every neighbourhood function is
open.

Lemma 12 Forany (X, t, ®) and 0 € ®, we have D(0) € 7.

Proof Let (X, t, ®) be a topo-frame, 0 € ® and x € D(0). By Definition 10, we
have x € 6(x)(i) € 7 and O(x)(i) € D(O). Therefore, x € Int(D(0)). Hence,
D) = Int(D(0)),i.e.,D@O) €. O

2.4 Semantics

Definition 13 Given a topo-model M = (X, 7, ®, V) and a neighbourhood situation
(x,0) € M, the semantics for the language L4par,, is defined recursively as:

M, (x,0) = p iff x e V(p)

M, (x,0) E —p iff not M, (x,0) E¢
M, x,0) Epny iff M, (x,0) Egpand M, (x,0) = ¢

M, (x,0) E Kip iff (Vy € 0()@)HM, (v,0) E ¢)

M, (x,0) = int(p) iff x e Int([¢]?)

M, (x,0) E lely iff M, (x,0) = int(p) implies M, (x,0%) = ¢
M) EDp  iff (Y € Loar, )M, (x.60) = [¥1p)

where p € Prop, [¢]’ = {y € D©®) | M, (v,0) = ¢} and an updated neighbourhood
function 0¥ : X — A — 1 is defined such that 6% = 0];,,,0. More precisely,

DO%) = Int([¢]l?) and 69 (x) (i) = 6(x) (i) N Int([@]l?) for all x € D(H?).

Aformulag € Lapar,, is valid in a topo-model M, denoted M |= ¢, iff M, (x, 0) =
@ for all (x,0) € M; ¢ is valid, denoted = ¢, iff for all topo-models M we have
M = . Soundness and completeness with respect to topo-models are defined as
usual.

Let us now elaborate on the structure of topo-models and the above semantics we
have proposed for Lapar,,. Given a topo-model (X, t, ®, V), the epistemic neigh-
bourhoods of each agent at a given state x are determined by (partial) functions
6 : X -~ A — 1t assigning an open neighbourhood to the state in question for
each agent. We allow for partial functions in @, and close ® under restricted functions
Oy where U € t (see Definition 10, condition 4) so that updated neighbourhood
functions are guaranteed to be well-defined elements of ®. As in the standard subset
space semantics, by picking a neighbourhood situation (x, 6), we first localize our
focus to an open subdomain, in fact to D(0) (see Lemma 12), including the state x and
the epistemic neighbourhood of each agent determined by 6 at x. The function 6 (x)
then designates an epistemic neighbourhood for each agent i in 4. It is guaranteed
that every agent i is assigned a neighbourhood by 6 at every state x in D(6), since
each 6(x) is defined to be a toral function from A to 7. Moreover, condition (1) of
Definition 10 ensures that () cannot be an epistemic neighbourhood, i.e., 0 (x) (i) # @
forall x € D(0) and i € A. Finally, conditions (1) and (3) of Definition 10 make sure
that the S5 axioms for each K; are sound with respect to all topo-models. We will see
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in Sect. 5 that our setting allows us to work with the weaker S$4 notion of knowledge
by relaxing the conditions on the neighbourhood functions in ®.

The semantics proposed for the propositional variables and the Booleans is rather
usual both for the standard Kripke semantics and for the classical subset space seman-
tics (Moss and Parikh 1992). In fact, as stated in Proposition 14 below, the truth value
of the non-modal formulas depends only on the actual state. While neighbourhood
functions, and thus the neighbourhoods defined, play no role in the truth values of
these formulas, they are essential in the evaluation of modal formulas, and in captur-
ing observation-based knowledge and information dynamics. We now take a closer
look at the semantic clauses for the modalities in L4p4r,,, With a particular focus on
K; and int.

As also mentioned in Sect. 1, the opens of a topo-model M = (X, 7, D, V) are
considered to be the possible observation sets. In other words, opens of a topology can
be considered as the propositions that the agents can in principle observe (but might
not have observed yet).2 On the other hand, 8 (x) (i) gives us the truthful observation
agent i currently has at the actual state x. Stating the semantic clause for knowledge
given in Definition 13 in a slightly different way gives us that

int

M, (x,0) E Kip iff 0(x)(0) € [[¢]°,

i.e, according to our proposed semantics, agent i knows ¢ at x (with respect to 0) iff his
current truthful observation entails ¢. In particular, this semantic clause implies that the
agents cannot know a proposition ¢ unless it is entailed by some possible observation,
i.e., by an open set. In this sense, the topology of the model in question restricts the
set of propositions the agents can know, based on what they can and cannot observe.
We therefore capture an observation-based notion of knowledge in a subset space-
like setting by using topological spaces. This obviously goes beyond and enriches the
formal treatment of knowledge in terms of the standard relational semantics as the
standard relational semantics lacks the ingredients that make it possible to talk about
the nature and grounds of acquired knowledge.

The operator int can be thought of as the most curious modality of the language
L4PAL;,- Commonly in public announcement logics, it is sufficient for the announce-
ment to be true in order to be announced. But in our logic, following Bjorndahl
(2017), the requirement is stronger, capturing an observation-based interpretation of
public announcements. More precisely, Bjorndahl (2017) requires not only that the
announced formula be true, but also that it be entailed by a piece of truthful observa-
tion that the agent could possibly obtain. Given that the elements of t are taken to be
possible observation sets, this can be captured naturally by the topological interior.

2 The epistemic use of topological spaces in the same spirit as information structures can be traced back
to the 1930s and 1940s, where topological spaces served as models for intuitionistic languages, and open
sets are considered to be ‘pieces of evidence’, ‘observable properties’ concerning the actual state (see, e.g.,
Troelstra and van Dalen 1988). This interpretation assigned to open sets constitutes the basic epistemic
motivation behind our use of topological models in this paper as well. Variations of this idea can also be
found in domain theory in computer science (Abramsky 1987, 1991; Vickers 1989), and guide the research
program of “topological” formal learning theory initiated by Kelly (1996), Schulte and Juhl (1996), Kelly
et al. (1995), Kelly and Lin (2011), Baltag et al. (2015) in formal epistemology.
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By spelling out the definition of the topological interior operator, we obtain
M, (x,0) = int(p) iff QU € 1)(x € U C [[¢]?).

As can be seen in the semantic clause of the public announcement modality, int behaves
as the precondition of the announcement, which constitutes a stronger requirement
for announcing ¢ than the truth of ¢ since Int([[ga]]e) - |[<p]]9 (see Bjorndahl 2017,
for differences between these two requirements). The precondition int(¢) therefore
requires the existence of a truthful observation set entailing the announcement formula
¢. In other words, the precondition of an announcement is it being (in principle)
observable. In this respect, a true proposition cannot be announced if it does not have
any open subsets including the actual state. For example, on a topo-model with no
singleton opens, the agents can never know the actual state (as in Example 1, p. 149 of
Georgatos 1994). It is this observation-based interpretation of public announcements
that makes Bjorndahl-style topological public announcements different from standard
public announcement operators (interpreted via model restrictions). In a framework
where knowledge is based on the agent’s current observation set, and every possible
observation the agent might acquire later is represented within the given model in terms
of open sets of a topology, the operator int as the precondition for learning something
seems to be the right notion to consider. It is a good fit with the intuition behind
the subset space/topological semantics. Strengthening the precondition of a formula-
parametrized epistemic action is also common in logics of protocols (van Benthem
et al. 2009). There is also an obvious, one-way relation between the modalities K; and
int. While the semantics of K;¢ refers to a particular open of the form 6(x)(i) that
represents the agent’s current, truthful observation entailing ¢, the truth condition for
int(¢) demands only existence of such an open (without referring to any particular
element of T or to any agent i € A). Therefore, the former claim “having a truthful
observation entailing ¢” implies the latter existential claim on observation. We thus
have K;¢ — int(¢) valid with respect to our topological semantics (see also Table 1,
axiom (K;)), however, the other direction does not always hold: existence of an open
U with x € U C [[¢]? does not guarantee that U = 6(x) (7).

In general in public announcement logics, the effect of a public announcement is
interpreted as model restriction by eliminating the states where the announced formula
is not true (van Ditmarsch et al. 2007; Balbiani et al. 2013; van Benthem 2007).
Therefore, information gain via public announcements leads to a model change with
respect to the aforementioned approach. However, inspired by the intuition behind
the subset space semantics and its dynamic modality effort, the information increase
in our setting is modelled locally as shrinkage of the initial open neighbourhood to
a smaller open neighbourhood without leading to a global change of the model in
question.

As usual, the announcement of a formula by an external source in our setting
does not depend on the epistemic state of the agents but depends only on whether its
precondition is satisfied in the actual state, more specifically in our case, whether it
is satisfied by the actual neighbourhood situation. Therefore, given that knowledge of
each agent at a neighbourhood situation (x, 6) is evaluated within the open set defined
by the function 6 at the state x, we want the effect of an announcement of ¢ to be the
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shrinkage of D(0) to its largest open subset where ¢ is true with respect to the same
neighbourhood function. Since the modality int is evaluated as the topological operator
Int, we obtain exactly the desired result as a consequence of the announcement of ¢:
(1) we preserve the evaluation structure by restricting the initial open state space D(0)
to an open set again, in particular, to the open set Int([¢]?) induced by the formula ¢
with respect to the neighbourhood function 6, (2) since the topological interior operator
Int gives the largest open set where ¢ is true with respect to 6, the precondition of
an announcement in this setting is not too strong compared to the precondition of
being merely true in the sense that the agents can obtain knowledge only via opens
sets. To this end, the int operator enables us to control the shrinkage induced by an
announcement in an optimal way.

We now provide some semantic results. As usual in the subset space setting, the
truth of non-modal formulas only depends on the state in question:

Proposition 14 Given a topo-model M = (X, t, ®, V), neighbourhood situations
(x,61), (x,62) € M, and a formula ¢ € Lpy, (x,01) E ¢ iff (x,62) E ¢.

Moreoever, the precondition modality int corresponds exactly the topological inte-
rior operator Int:

Proposition 15 Given M = (X, 1, ®,V), 0 € ® and ¢ € Lapar,

int’

[int ()1 = Int([o1").
Proof

[int(@)1° = {y € D©) | (y,0) = int(p)}
={y e D®) |y € Int([¢]")}
= Int([p1%) (since Int([¢]%) € D(H))

Corollary 16 For any topo-model M = (X, 7, ®, V), 0 € ® and ¢ € Lapar

1. Int([int()1?) = Int(Int([e1?)) = Int([¢1°), and
2. 0% = gine),

int’

Proof Here we only show the second item. By Definition 13 and Proposition 15, we
obtain

DO%) = Int([e]l”) = Int([int()1°) = DEO™@).

Therefore, both 8¢ and 67 are defined for the same states. Moreover, for any
x € D@%)and any i € A,

0% (x)(i) = 0(x) (i) N Int([e]?) = 6(x) (i) N Int([int(p)17) = 6™ (x) ().

Therefore, ¢ = 9(@) O
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Proposition 17 1. |= [¢]y <> [int(p)]¥
2. | (int(p) A {@)int(y)) < (@)int ()

Proof We only show the first item.

(x,0) = loly
iff (x,0) Eint(p) implies (x, 60%) = ¥
iff (x,0) | int(int(¢)) implies (x, 0%) = ¢ (by Corollary 16.1)
iff  (x,0) = int(int(p)) implies (x, 0™ @) =  (by Corollary 16.2)
iff  (x,0) = lint(p) 1y

Proposition 18 For any topo-model M = (X, 1, P, V), 0 € ®and ¢, ¥ € LapaL,,
we have

L [y = [e)y]’, and
2. (69)Y = plorin),

Proof Let M = (X, t, @, V) be a topo-model, 8 € ® and ¢, ¥ € Lapar

int *

L. [¥1” =y € D) | (v, 6%) = V)

{y e (lel”) | (v,69) = ¥} )
{y €D©) |y € In(le]’) and (y,6%) = ¥} (%)
{yeDO) | (y.0) = ()}

L)1

(%): since D(0%) = Int([@]?) and (**): since Int([¢]?) < D(®).

2. By Definition 13, we have that D(0‘?)™ W)y = Int([{)int(y)]?), and D((69)?)
= Int([y1°"). Proposition 18.1 implies [int(¥)1?° = [(@)int(¥)]°. Then, by
Proposition 15, we obtain

D6*)Y) = Int([y1°")
= [Lint(y)1%
— Int([Lint(¥) )
= Int([{g)int(¥)1)
— D(Q(W)im(l//)).

Therefore, both (69)¥ and 8'?)"¥) are defined for the same states. Moreover, for
any x € D((6¥)¥) and i € A, we have
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OV (x) ()
= 0% (x)() N Int([y1%)
= 0(x) (@) N Int([e]”) N Int([Y 1)
= 0(x)() N [int(@)1° N [int(¥)1* (by Proposition 15)
= 0(x) (i) N [int()]? N [{)int(y)]®  (by Proposition 18.1)
= 0(x)(i) N [int(p) A (g)int(Y)]°
= 0(x)(i) N [{g)int(Y)T° (by Proposition 17.2)
= 60(x)(i) N Int([{g)int (¥)]) (since [{p)int(¥)]° € 1)
= @) (x) (i)

where [[()int(y)]° € t follows from Proposition 15 and Proposition 18.1 by

It 1% = Lint()1°" = [g)int(yY)1°.

Therefore, we conclude that (§%)V = g{@)nt(¥)

2.5 The least topological model

Recalling the semantics for Lapar,,, proposed in Sect. 2.4, given a topo-model M =
(X, 7, @, V) every formula is evaluated with respect to a pair called neighbourhood
situation (x, 8) in M such that x € D(9) € X. Since the neighbourhood functions
may be partial and the epistemic neighbourhoods are defined via these functions, we do
not necessarily use the whole domain of the topo-model in question in the evaluation
of the formulas but only the states for which a neighbourhood function is defined. In
other words, for any topo-model M = (X, t, @, V), only the states in

D(D) : =U{D(9) |6 € ®)

are concerned with the truth value of the formulas in Lapaz,,. In this section we
describe topo-models that are indistinguishable on that domain restriction. Roughly
speaking, we will categorize the topo-models with respect to their neighbourhood
function sets and show that the class of all topo-models having the “equivalent” neigh-
bourhood function sets can be partitioned in such a way that the elements of the same
equivalence class are modally equivalent with respect to L4par,;,, and each equivalence
class has a minimal element.

In order to be able define such a partition, we first need to make precise what we
mean by partial functions, and correspondingly, neighbourhood function sets being
equivalent. Given any two partial functions # : X — Y and 6’ : X' — Y/, we say 0
and 0’ are equivalent, denoted by 6 = ¢’ iff

1. D) = D(®'), and
2. forall x € D(0), 0(x) = 0" (x).

int

Informally speaking, two partial functions are equivalent if and only if they give the
same total function when they are restricted to their respective domains. In particular,
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for any two equivalent partial functions 0 : X — Y and 0’ : X’ — Y’, it might be
the case that X # X’. Similarly, we say two neighbourhood function sets ® and @’
(defined on (X, 7) and (X', /), respectively) are equivalent, denoted by ® = @/, iff
there is a bijection f : ® — @' such that = f(0) forall € ®.

Let § (R) denote the class of all topo-frames (topo-models) and §¢ (R ) denote the
class of all topo-frames (topo-models) whose neighbourhood function set is equivalent
to @. Intuitively speaking, even if the topo-frames in §¢ can be based on different
topological spaces (both the spaces and the topologies may vary), §¢ groups together
the topo-frames whose neighbourhood functions behave exactly the same way, in
particular, as the ones in ®. We therefore slightly abuse the notation and denote
the neighbourhood function set of each topo-frame (topo-model) in F¢ (Rep) by D.
Essentially, every topo-frame in §¢ has the same set of neighbourhood situations
(modulo the above defined equivalence) and we write (x,0) € Fo if (x,0) is a
neighbourhood situation of a topo-frame in §¢ (and similarly for R¢). Moreover, for
al X = (X, 7, P) € Fo, we have (1) D(P) € X and 2) {0 (x)(@) | (x,0) € X,i €
A} C 7 (otherwise ® could not be defined on (X, t), see Definition 11). Lastly, given
a topo-model M = (X, 7, , V) € Ko, we define

Koy =M € Ro |IM' =X',7,®, V') and V'Ip@) = ViIpw}

i.e., R v is the class of all topo-models carrying the neighbourhood function set ®
and whose valuation functions coincide with V on D(®). Observe that the set of all
Ro.v C Ro partitions the class Re.

For any frames X = (X1, 11, ®), X2 = (X2, 12, ) € Fo,

XICp Xr iff X1 X, and 11 C 1.

Clearly, C ¢ is also a partial order. We say M = (X, t, ®, V) is a minimal model in
Ro,v if its frame is a minimal frame in §¢ with respect to Cg.

Proposition 19 1. There exists a unique minimal frame (the least frame) in each § ¢.
2. There exist a unique minimal model (the least model) in each K¢,y .

Proof 1. Let X = (X, t, ®) be a topo-frame in §. Consider the topology 7o gen-
erated by g : ={0(x)(@) | (x,0) € Fo,i € A}, i.e, by the set of all epistemic
neighbourhoods defined by the neighbourhood functions in . As ¥¢ covers
D(D), the generated topology 74 constitutes the smallest topology on the domain
D(®) satisfying conditions (1) D(®) € X and (2) {#(x)(@) | (x,0) € X,i €
A} C 1¢. Therefore, for all X = (X, 7, ®) € Fo, D(P) € X and 79 C 7, i.€.,
(D(®), 19, ®) Ep X.

2. By definition of K¢ v, the valuation function of each topo-model in this class
coincides on D(®), therefore, the least model in Ko, v is
(D(®), 19, @, VIp(a))-

O

Theorem 20 For each class Koy, all topo-models in Re vy are modally equivalent
with respect to Lapar,

int*
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Proof We show that for any M| = (X1, 71, @, V1), My = (X2, 12, D, V) € RCD,V’
(x,0) € Rp, and ¢ € Lapar,,:

The proof follows by <§ induction on ¢, where the case ¢ = [Y¥]x is proved
by a subinduction on x. Here we only show the base case ¢ = p, the case for
¢ = int(yr), and the subinductive clauses x = p and x = Oo for case announcement
¢ = [¥]x. The inductive cases negation, conjunction and K; follow from Lemma 6.2,
and the subinduction on y for case announcement ¢ = [y/]x follows from Lemma 7,
and finally the case for ¢ = [y follows from Lemma 6.5.

Base Case: ¢ : =p

My, (x,0) = p iff x e Vi(p)
iff x € Vi(p) ND(P) since x € D(O)
iff x € Vo(p) ND(P) since Vi(p) N D(P) = Vo(p) N D(P)
iff x € Va(p) since x € D(0)
iff Mo, (x,0) =p

Inductive Hypothesis (IH): For all formulas v € Lapar,,, if ¥ <§ ¢, then

My, (x,0) E ¢ iff My, (x,0) = ¢, for any (x, 0) € Ro.

Case ¢ : =int(y).

Let Int; and Int, denote the interior operators of the topological spaces (X1, 71)
and (X2, 10), respectively.

(=) Suppose My, (x,0) = int(¥), ie., x € Int{{y € D@O) | M1, (v,0) &= ¥}.
By Lemma 6.2 and (IH) we have

{y eDO) | M1, (y.0) =¥} ={y € DO) | M2, (y.0) |= ¥},

thus, x € Int1{y € D) | M», (v, 60) = ¥}. Therefore, there is an open U € 1|
such that

xeUCc{yeD®O) | Mz, (y.0) =yl

Now consider the set D(0) N U. It is non-empty since x € D(6) N U. Moreover,
DO)NU =D@O|y)and 0|y € ®. Therefore, D(0|y) € 13 since My € K. And,
obviously, x € D) NU = D@B|y) € {y € D@O) | Mz, (y,0) &= ¥}, hence,
x € Intr{y € DO) | M2, (v,60) = ¥} meaning that M», (x, 0) k= int(Y).

(<) Similar to the above case.

Case ¢ : =[V]x.

This case follows from a subinduction on x. Here we only show the case x = p
and x = o, and the other cases are equally elementary and follow from Lemma 7
and the validities (R2)—(R6) appear in the axiomatization in Table 1.
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Subcase ¢ : =[¥]p

My, (x,0) = [v]lp iff My, (x,0) Eint(¥) - p by the validity (R1)
iff Mo, (x,60) Eint(y) - p by Lemma 7.1 and (IH)
iff Mo, (x,0) =E[v¥]p by the validity (R1)

Subcase ¢ : =[¢]Uo
Foralln € Lpar,,. [¥1lnlo <3 [v]0o, as [y 0o has one more [ than [y ][n]o.

My, (x,0) = [¢]0o
iff My, (x,0) = int(y) implies M, (x,0Y) = Oo
iff My, (x,0) = int(y) implies (V9 € Lpa,) (M1, (x,0Y) = [n]o)
iff (Y € Lpar,,) (M, (x,0) = int(¥) implies M1, (x, 6Y) [= [n]o)
iff  (Vn € Lpar,,)(My, (x,0) = [¥]n]o)
iff  (Yn € Lpar,,,) (M2, (x,0) = [¥]n]o) *
iff My, (x,0) =[¥]0o  (by asimilar argument)

(*): by [¥1nle <) [¥]0o and (IH)

]

Corollary 21 Each class Rey can be represented by its least element
(D(®), 10, @, V|p@)) up to modal equivalence.

2.6 Examples

In this section we present two examples demonstrating how our multi-agent topological
semantics works. The first example is a multi-agent version of an example presented in
Bjorndahl (2017) for Bjorndahl’s single-agent setting and the second one is concerned
with two agents learning bit by bit (finite) prefixes of a pair of infinite binary sequences.

2.6.1 The Jewel in the Tomb

We illustrate our semantics by means of a multi-agent version of Bjorndahl’s example
in Bjorndahl (2017) about the jewel in the tomb. Indiana Jones (i) and Emile Belloq
(e) are both scouring for a priceless jewel placed in a tomb. The tomb could either
contain a jewel or not, the tomb could have been rediscovered in modern times or
not, and (beyond Bjorndahl 2017), the tomb could be in the Valley of Tombs in Egypt
or not. The propositional variables corresponding to these propositions are, respec-
tively, j, d, and t. We represent a valuation of these variables by a triple xyz, where
x,y,z € {0, 1}. Given the carrier set X = {xyz | x, y, z € {0, 1}}, the topology t that
we consider is generated by the basis consisting of the subsets {000, 100, 001, 101},
{010}, {110}, {011}, {111} (see Fig. 1). The idea is that one can only conceivably
know (or learn) about the jewel or the location on condition that the tomb has been
discovered. Therefore, {000, 100, 001, 101} has no strict subsets besides the empty
set: if the tomb has not yet been discovered, no one can have any information about
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000 001 i 010 1 110

100 101 | 011 | 111

Fig. 1 Dashed squares represent the elements of the basis generating the topology ©

the jewel or the location. However, provided that the tomb has been discovered, the
agents might know whether or not it contains a jewel, and/or whether it is the Valley
of Tombs in Egypt. In this example, we stipulate that the actual state is 111.

A topo-model M = (X, t, @, V) for this topology (X, t) has ® as the set of all
neighbourhood functions that are partitions of X for both agents, and restrictions of
these functions to open sets. A typical 6 € & describes complete ignorance of both
agents and is defined as 6(w) (i) = 6(w)(e) = X for all w € X. A more interesting
neighbourhood situation in this model is one wherein Indiana and Emile have different
knowledge. Let us assume that Emile has the advantage over Indiana so far, as he knows
the location of the tomb but Indiana does not. This is the 6’ such that for all w € X,
0'(w)(i) = X, whereas the partition for Emile consists of sets {000, 100, 001, 101},
{110,010}, {111, 011}, i.e., 8'(111)(e) = {111, 011}, etc (see Fig. 2).

We now can evaluate what Emile knows about Indiana at 111. Firstly, Emile knows
that the tomb is in the Valley of Tombs in Egypt

M, (111,0) |= Kt (H

and he also knows that Indiana does not know that:
M, (111,0") = Ke—(K;—t v K1) (2
The statement (2) involves verifying M, (w, 8') = K;t and M, (w, 0') = K;—t for
allw € 0/(111)(e) = {111, 011}, which is Emile’s current epistemic range. And this is
true for both elements 111 and 110 of 8’(111)(e), because 6'(110)(i) = 0'(111)(i) =
X, and 000, 001 € X, and while M, (001, 8") |= ¢, we also have M, (000, 8') = —t.

We can also check that Emile knows that Indiana considers it possible that Emile
doesn’t know the tomb’s location:

M, (111,8") = K Ki=(K.t v Ko—t) 3)

T
'
|

000 001 010" + 110

|
100 101 011 | 111

0’(011)(e)
0’(001)(e)

Fig. 2 Patterned sets represent Emile’s neighbourhoods defined by 6’: 6'(111)(e)
{111,011}, 6/(010)(e) = @O'(110)(e) = {010, 110}, 6’(000)(e) = 6’(100)(e)
6’(101)(e) = {000, 100, 001, 101}
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Evaluating this goes beyond Emile’s initial epistemic range {111, 011} because, e.g.,
for 111 € 6’(111)(e), we have M, (111,0") &= I%,-—-(Ket Vv K,—t) iff there exists
vo € 0’(111)(i) such that (yg, 8") = =K.t A —-Iee—m Therefore, such an element yg
cannot be in Emile’s initial epistemic range {111, 011}, since (111,0") &= K.t and
(011, 0) = K.t. In fact, it has to be the case that yy € {000, 001, 100, 101}. This
situation however does not create any problems in our setting since (yg, 8”) is a well-
defined neighbourhood situation, and Emile’s epistemic range at yq is defined by 6’
as 0’ (yp)(e) = {000, 001, 100, 101}.

Given their prior knowledge, announcements will change Emile and Indiana’s
knowledge in different ways. Consider the announcement of j. An important point to
notice is that the announcement of j does not only convey the information [[ j i
{100, 101, 110, 111} but that it also leads to learning Int([[j]]el) = {110, 111}. This
corresponds exactly to the fact that one can know about the jewel on the condition that
the tomb has already been rediscovered. Therefore, the announcement of j evidences
the fact that the tomb has already been discovered, hence, it conveys more information
than only j being true. This results in Emile knowing everything but Indiana still being
uncertain about the location:

M, (111,0") = 1K (G Ad A AKi(jAd) A=(Kit V Ki=t)) “)

Model checking this involves computing the epistemic ranges of both agents given by
the updated neighbourhood function (6’ ) at 111 (see Fig. 3). Note that Int([[ j ]]9/) =
{111, 110}. Therefore, (6")/(111)(e) = Int([[j]](’/) Ne'(111)(e) = {111}, and for
Indiana (0)/ (111)(i) = Int([[j]]e/) NO'(111)@E) = {111, 110}.

There is an announcement after which Emile and Indiana know everything (for
example the announcement of j A 1):

M, (111,0) E QK (jAd AE)ANKi(jADAL)).
Observe that Int([j A t]?) = {111}, thus, (0")/ (111)(e) = (8")/ (111)(j) = {111}.
Again, the announcement of j A ¢ carries the implication that the tomb has been

rediscovered. On the other hand, as long as the tomb has not been discovered, nothing
will make Emile (or Indiana) learn that it contains a jewel or where the tomb is located:

ME=d = O=(Kej V Ke=j) A =(Kot V Ko=t)).

000 001 . 010 | 110

1

—

Fig.3 AsD(®")/) = Int([j1°") = {111, 110}, the updated neighbourhood function (6")/ is defined only
for these points. Patterned sets again represent Emile’s neighbourhoods defined by ©")/:(8") (111)(e) =
{111} and (8")7 (110)(e) = {110}. For Indiana, we have (9)/ (111)(j) = (¢")/ (110)(i) = {111, 110}
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2.6.2 Binary strings

We begin the example by defining a topology over the set of ordered pairs of binary
strings, i.e., the domain of our topology is X = {0, 1}°*° x {0, 1}°°.

Note that we can consider X to be points in the unit square [0, 1] x [0, 1], by looking
at each element of {0, 1}°° as the binary representation of a real number in [0, 1].
So for example, (01000. .., 11000...) represents (.25, .75). This correspondence is
not one-to-one, however, because many points in [0, 1] have more than one possible
representation as binary strings. For example, 1000 ... and 0111 ... both represent
0.5. In fact, every fraction of the form 2’7 for some i,k € N with 0 < i < 2k
has two possible representations, while every other element of [0, 1] has a unique
representation. Therefore, every element of [0, 1] x [0, 1] has either one, two, or four
possible representations in {0, 1}°° x {0, 1}*°. So, we can consider each element of
{0, 1}*° x {0, 1}°° to represent one element of [0, 1] x [0, 1], but every element of
[0, 1] x [0, 1] does not represent a unique element of {0, 1}°° x {0, 1}°.

Let us now introduce some notation. If s € {0, 1}*°, for n € N*, we let s|,, be
the first n bits of s, and we let s[n] be the nth bit of s. As usual, we let {0, 1}* be
the set of finite strings over {0, 1} and for d € {0, 1}*, |d| is the length of d. For
d € {0, 1}* we define Sy = {x € {0, 1}°° | x|jq| = d}, in other words, S, is the set of
all infinite binary strings that have d as a prefix. Note that S¢ is {0, 1}°°, since € is the
empty string. Note also that when we consider the elements of {0, 1}°° as points on
the unit interval, we can think of S; as a certain subinterval of the unit interval. More
precisely, each S, is the interval bounded by ﬁ and ‘;idll when d is viewed as the
binary representation of a natural number. As above, we cannot, however, go in the
opposite direction and consider all such intervals to be sets of the form S, since there
are multiple possible representations of some of the points in [0, 1] as binary strings.

Now consider the topology t generated by the set

B={S4|d e {0, 1}

It is not hard to see that 3 indeed constitutes a base over the domain {0, 1}°°:

1. Since S¢ € B, we have | B = {0, 1}*°.
2. Forany Uy, U € B,wehaveeither Uy NUy = B, U NU, = Uyor U NU, = Us.
Therefore, B is closed under finite intersections.

For our example, we use the product space ({0, 1}*° x {0, 1}°°, ¢ x 7) and we have
two agents a and b. Intuitively speaking, agent a is concerned with the bits of the first
coordinate and agent b is concerned with the bits of the second coordinate encoded
as infinite binary strings. Let 0 ((x, y))(a) = 6<((x, y))(b) = {0, 1}*° x {0, 1}*°, and
fori € NT,let6;((x, y))(a) = Sy, x {0, 1}*, and let 6; ((x, y))(b) = {0, 1} x S,
where D(6;) = {0, 1}*° x {0, 1}*°. In other words, for agent a, 6; gives the set of
pairs where the first component of the pair agrees with x in the first i bits, with any
possible second value for the pair. Similarly for agent b. We note that 6;; always is
more informative than 6;. Finally, in order to obtain our neighbourhood function set
@, we must close the set of functions described above under open domain restriction,
sowelet ® ={0: X — {a,b} - v |3i e NFU{e},U e tsuchthatd = 6;|U}. It
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is easy to see that @ satisfies the properties of a neighbourhood function set given in
Definition 10.
In order to evaluate formulas on this topo-frame, we define atomic propositions

Prop = {x; | i e N} Ul{y; | i € N}
where

V(x;) = {(x,y) € {0, 1} x {0, }*° | x[i] = 1};
V(y) = {(x,y) € {0, 1}% x {0, 1}*° | y[i] = 1}.

Intuitively speaking, the propositional variables refer to the x- and y-coordinates
of the pairs of infinite binary strings. We read x; as “the ith bit of the x-coordinate is
I” and y; as “the ith bit of the y-coordinate is I”.

We can now evaluate some formulas on the topo-model

M=({0,1}*° x{0,1}*, 7 x 7, D, V)

at the state (x, y) = (010000. .., 110110...) and given the initial situation described
by the function 0. In other words, we have that a knows that the first bit of x is 0, b
knows that the first bit of y is 1, and both are ignorant about the other’s bits, and this
is common knowledge. In formulas, we have

M, ((x,¥),01) E Kqa—x a knows that x[1] = 0
M, ((x, ), 01) = Kpyi b knows that y[1] = 1
M, ((x,y),01) = Ki—(Kpx1 V Kp—Xx1) a knows that b

does not know the value of x[1]
Mv ((.X, y)s 91) '= Kb_'(Kayl \% Ka_‘y1) b knows that a

does not know the value of y[1]
...etc., etc.

Now consider announcements of the following form: given ((x, y), 6,) (wherein a
and b know up to the nth bit of x and y, respectively), the announcement <p;’+1 is of
the form ‘if the nth bit of x is 1, then the (n 4 1)st bitis j, and if the nth bit of x is 0,
then (n + 1)st bit of x is 1 — j’ with the restriction that the announcement is indeed
truthful and where j € {0, 1}. So it can only be announced for j = O or j = 1 but
not for both. In other words, (p;”r] is either of the form ‘the nth bit of x is equal to its
n 4+ 1st bit’ or of the form ‘the nth bit of x is different from its (n 4 1)st bit’ but they
cannot be announced at the same time as only one of them can be truthful. Then this
announcement informs a but not b of the value of the (n + 1)st digit of x.

For b itis merely an extension of the initial sequences (that he is unable to distinguish
anyway, as we will see) with either 1 or 0. But he does not know which is the real
one. Then, the next announcement <p;’+1 informs b of the n + 1th bit of y, ‘if the nth
bit of y is 1, then the (n + 1)st bit of y is j, and if the nth bit of y is 0, then (n + 1)st
bit of y is 1 — j’. We observe that 6, successively restricted to the denotation of go)’j"’l

and go;l"’l is a restriction of 6,1 1. We can go on in the same way, and successively
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Fig. 4 Initial situation where a
knows the 1st bit of x is 0 and b
knows the first bit of y is 1, and
both are ignorant about the
other’s bit. We have

0((x, y))(a) = Sp x {0, 1}*°
and 6((x, y))(b) = {0, 1}*°

x 81

Fig. 5 After the announcement
of (p%, we obtain the following
smaller neighbourhoods given
2
by the updated function 6%x:
2
695 (x, y)(a) = So1 x {0, 1}*°,
2
and 6%x (x, y)(b) = (So1 U S10)
x 81

Fig. 6 After further announcing
w%, the updated function

2 2
(09%)%y gives the
neighbourhoods:
2 2
699 (x, y)(@) =
So1 x (Soo U S11), and
2 2
095" (x, y)(b) =
(So1 U S10) x S11

0(x,)(b)
So 0(x,y)(a)
So S
U (©2)
6% (x,)(b)
s | (@
So 6% (2, )(a)

Soo So1 S0 Su

U (w2)

(07275 (2, ) (D)

(0¢2)%% (2, y)(a)

Soo So1 S0 Su

announce the first n bits of both sequences by public announcements in such a way that
a learns every prefix of x and b learns every prefix of y up to length n, as desired; but a
remains uncertain about every bit in the y-prefix that b learnt, and b remains uncertain
about every bit in the x-prefix that a learnt. For example, given that the agents a and b

only learnt their first bits and that x = 010000. ..

announcements are now:

and y = 110110.. ., the next two

2
@7 = (0X] = X2) A (X] = TX2)

9} = (y1 = ¥2) A (2y1 — —¥2)
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where
nt (Ig217 ) = Sor x {0, 1)U S1p x {0, 1)

Int ([[¢§n91) — {0, 1) x S11 U {0, 1} x Soo.

Figures 4, 5 and 6 depict the neighbourhood transformations that result from the
announcement go% and, after that, the announcement of 905, consecutively. One can
show (details omitted) that

M, ((x,9),0) E OKax
M, ((x,9).01) E (92)(KaXa A =(KpXz V Kp—X2))
M, ((x.¥).01) E (0} @2) (Kpyz A =(Kay2 V Ka=y2))
M, ((x,9),6) | Kaxa

We can observe that 6; |g0§c+1 |<p;,Jrl is arestriction of 6; 41, as required in this modelling.
After every finite sequence of such announcements, a knows a prefix of x and b knows a
prefix of y, and a is uncertain between two dual prefixes of y and b is uncertain between
two prefixes of x. So, for example, after 10 announcements, a is uncertain whether y
starts with 110110 or 001001, etc.

3 Axiomatization

We now provide the axiomatizations of EL;,;, PAL;jn:, and APAL;,;, and prove their
soundness and completeness with respect to the proposed semantics.

Definition 22 The axiomatization APAL;,, is given in Table 1. The axiomatization
PAL;,; is the one without (DRS5) and (R7). We get EL;,, if we further remove axioms
(R1)=(R6), ([]-K) and the rule (DR4).3

In Table 1, the items (DR1) to (DR5) are the derivation rules and the other items are
the axioms. While the derivation rules (DR1)—-(DR4) are standard necessitation rules
for the modalities in the language Lpay,,,, the rule (DRY) is infinitary. In an infinitary
proof system the notion of a derivation is non-standard since a derivation of a formula
can involve infinitely many premises; in our system an application of the rule (DRY)
requires infinitely many premises. We can think of a derivation as a finite-depth tree
with possibly infinite branching, where the leaves are axioms or premises, the root is
the derived formula, and a step in the tree from child nodes to parent node corresponds
to the application of a derivation rule. We write I' F ¢ if ¢ is derived from a set of
formulas I' in this way, and I ¢ when ¢ is derived only from axioms. Note that, due
to the infinitary derivation rule (DRS) of APAL;,;, the set of formulas I deriving ¢
within this system can be infinite (see e.g. Rybakov 1997, Chapter 5.4 for a precise

3 The axioms (R3) and (R4) are in fact derivable from the other axioms and rules in PAL;;,;, and in APAL;;,;.
Here we prefer to use the most standard axiomatizations.
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Table 1 The axiomatization APAL;,; [minus (**): PAL;,,; and minus additionally, (*): EL;,;]

P) All instantiations of propositional tautologies

(K-K) Ki(p = ¥) — (Kip — K;¥)

(K-T) Kip — ¢

(K-4) Kip — K;Kip

(K-5) —Kijp = Ki—K;—¢

(int-K) int(o — ) — (int(¢) — int(Y))

(int-T) int(p) — ¢

(int-4) int(p) — int(int(p))

(Kint) Kip — int(p)

([1-K) [pl(x = ¥) — ([elx — lo]¥) *
(R1) [elp < (int(¢) — p) *
(R2) [pl=y < (int(9) — —lel¥) *
(R3) [pl(¥ A x) < (el Alelx) *
(R4) [plint(y) < (int(p) — int([@]y)) *
(R5) [o]Kiy < (int(p) — Kilol¥) *
(R6) [ell¥]x < [—lel—int(Y)]x *
(R7) Up — [xlp where x € Lpar,, wE
(DR1) From ¢ and ¢ — v, infer ¢

(DR2) From ¢, infer K; ¢

(DR3) From ¢, infer int(¢)

(DR4) From ¢, infer [{]p *
(DR5) From &([y]x) for all y € Lpay,,,, infer §([Ox) wE

treatment of infinitary calculi). We define APAL;,; to be the set of all ¢ € Lapar,,
such that - ¢. Equivalently, APAL;,, is the smallest subset of L4par,, containining
the axioms in APAL;,; and closed under its derivation rules. An element of APAL;,;
is called a theorem (of APAL;,;). We similarly define the systems EL;,; and PAL;y,
from axiomatizations EL;,; and PAL;,,, respectively. However, derivations of ELj,,
and PAL;,; are of the form of finite-depth trees with finite branching, since EL;;,; and
PAL;,; contain only finitary derivation rules.

Proposition 23 APAL;,; is sound with respect to the class of all topo-models.

Proof The soundness of the axiomatization APAL;,; is, as usual, shown by proving
that all axioms are validities and that all derivation rules preserve validities. Having
proved that, soundness follows by induction on the depth of the derivation tree.

We prove six relevant cases: the first case shows the validity of the reduction axiom
for K;, the next two illustrate the need for the constraint in Definition 10.3, the third
is concerned with the relation between the knowledge and the interior modalities, and
the last two prove validity of the axiom and validity preservation of the inference
rule involving the arbitrary announcement modality [1. Let M = (X, 7, ®, V) be a
topo-model, (x,0) € M and ¢, ¥, x € LapaL

int *
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(R5) Suppose (x, 0) = [¢]K;v. This means that if (x, 8) = int(¢) then (x, 8%) =
K;vr. Also suppose that (x, 0) = int(p) and let z € 6(x) (i) such that (z, ) = int(p),
i.e., that z € Int([@]?). Then, by assumption, the former implies that (x, 6¢) = K; .
In other words, (v, 0%) = v for all y € 69(x)(i). Recall, by Definition 13, that
09 (x)(i) = 0(x)(@) NInt([e]?). Thus, since z € 8(x) (i) NInt([@]?) = 09 (x) (i), we
obtain (z, %) = ¢ implying that (z, ) = [¢]¥. Since z has been chosen arbitrarily
from 6(x)(i), the results holds for every element of 6(x)(i). Therefore, (x,60) &=
Ki[ply. Since we also have (x,0) = int(p), we conclude (x,60) = int(p) —
K;[¢]¥. The converse direction follows similarly.

(K-4) Suppose (x,0) = K. This means, (y,0) = ¢ for all y € 6(x)(7). Let
y € 0(x)(i) and z € 6(y)(i). By Definition 10.3, 6(y)(i) = 6(x)(i) and Definition
10.1 guarantees that 6(y) (i) # @. Therefore, by assumption, (z, 0) = ¢.

(K-5) Suppose (x, 0) = —K;@. This means, (yg, ) & ¢ for some yy € 6(x)(i).
Lety € 6(x)(i). By Definition 10.3,8(x) (i) = 6(y)(i). Therefore, as yp € 0(y)(i) by
assumption, we have that there is a z € 6(y) (i), namely z = yp, such that (z, 8) = ¢.

(Kins) Suppose (x, 0) = K;. This means, (y, 0) = ¢ forall y € 6(x)(i). Hence,
0(x)(i) < [[(p]]e. By Definition 10, 6(x)(i) is an open neighbourhood of x, therefore
we obtain x € Int[[¢]’, i.e., (x,0) = int(p).

(R7)Let x € Lpar,, and suppose (x, 8) = Og. By the semantics, we have (x, 6) =
O iff (V¢ € Lpar,,)((x, 0) = [V]e). Therefore, in particular, (x, 0) = [x]e.

(DRS) The proof follows by induction on the complexity of £ (f).

In case £(f) = 1, we have £§([Y]x) = [¥]x. Suppose E([V]x) is valid for all
Y € Lpar,,. By assumption, we have that []x is valid for all € Lpag,,. This
implies M, (x, 0) = [¥]x for all € Lpay,,, all topo-models M, and (x, 0) € M.
Therefore, by the semantics, M, (x,0) = Oy, ie., M, (x,0) = £x).

All other, inductive cases are similar, so here we present only the case for
E() = int(&'()). In this case, we have £([V]x) = int(&'([¥]1x)). Suppose that
int(§'([¥1x)) is valid for all ¥ € Lpar,,. This implies that &' ([ ]x) is valid for all
Y € Lpar,, . Otherwise, there is a topo-model M = (X, 7, ®, V) and (x,0) € X
such that M, (x, ) & &'([y]x) for some ¥ € Lpar,,. This means x ¢ [&'([v]1x)]°.
Since Int([&"([¥1x)1°) < [&'(¥1x)1°. we also obtain that x ¢ Int([€"([¥1)1").
ie, M, (x,0) W& int(§'([¥]1x)) contradicting validity of int(&’([v/1x)). Then, by
IH, we have &’(0y) valid. This means that [[S’(Dx)]]e = D(0) for all topo-model
M = (X,7,®,V) and all 6 € ®. As D) € 1 (by Lemma 12), we have
D®) = Int(DO)) = Int([&"(T))1?) = [int(E’'(@x)1°. We can then conclude
that int(§'(Oy)) is valid. O

Corollary 24 EL;,; and PAL;,; are sound with respect to the class of all topo-models.

4 Completeness

We now show completeness for EL;,;, PAL;y;, and APAL;,, with respect to the class
of all topo-models. Completeness of EL;,; is shown in a standard way via a canon-
ical model construction and a Truth Lemma that is proved by induction on formula
complexity. Completeness for PAL;,, is shown by reducing each formula in Lp4y,,, to
an equivalent formula of Lg, .. The proof of the completeness for APAL;,, becomes

int *
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more involved. Reduction axioms for public announcements no longer suffice in the
APAL;,; case, and the inductive proof needs a subinduction where announcements
are considered. Moreover, the proof system of APAL;,; has an infinitary derivation
rule, namely the rule (DRY), and given the requirement of closure under this rule, the
maximally consistent sets for that case are defined to be maximally consistent theories
(see, Sect. 4.2). Lastly, the Truth Lemma requires the more complicated complexity
measure on formulas defined in Sect. 2. There, we need to adapt the completeness
proof of Balbiani and van Ditmarsch (2015) to our setting.

4.1 Completeness of EL;,; and PAL;,;

Let us start with introducing some standard notions used in the completeness proof.
These notions can also be found in Blackburn et al. (2001). A set x of formulasin Lgz,,
is called consistent if x ¥ 1, and inconsistent otherwise. A formula ¢ is consistent if
{¢} is consistent. A set of formulas x is called maximally consistent if x is consistent,
and any set of formulas properly containing x is inconsistent.

We would like to point out that the logic EL;y; is in fact familiar to modal logicians.
Its axiomatization consists of the S4-type modality int, the S5-type modalities K;
and the connecting axioms (Kj,;). In fact, this axiomatization has been introduced by
Goranko and Passy (1992) in a more general way as an extension of normal modal
logics with the global modality, where our (Kj,;) plays the role of the so-call “inclu-
sion” axiom scheme. As also studied in Blackburn et al. (2001, Chapter 7.1), from
the syntactic point of view, the system EL;,; can be treated as a normal multi-modal
logic. Therefore, proofs of Lemma 25 and Lemma 26 (below) are standard (see, e.g.
Proposition 4.16 and Lemma 4.17 in Blackburn et al. 2001, p. 199, respectively).

Lemma 25 For any maximally consistent set x of formulas in EL;jy,:

1. x is closed under (DR1),

2. ELjnt < x,

3. for all formulas ¢ € Lgr,,, ¢ € X or ~¢ € x,

4. for all formulas ¢, ¥ € Lgr,,, ¢ ANV € xiffo € x and ¢ € x.

Let X¢ be the set of all maximally consistent sets of EL;,,;. We define relations ~; on
XCasx ~; yiffVo € Lg,, (Kip € x iff K;p € y). Notice that the latter is equivalent
to: Yo € Lgr,, (Kip € x implies ¢ € y) since K; is an S5 modality. As each K; is of
S5 type, every ~; is an equivalence relation, hence, it induces equivalence classes on
X¢. Let [x]; denote the equivalence class of x induced by the relation ~;. Moreover,
we define ¢ = {y € X¢ | ¢ € y}. Observe that x € ¢ iff ¢ € x.

Lemma 26 (Lindenbaum’s Lemma) Each consistent set can be extended to a maxi-
mally consistent set.

Definition 27 We define the canonical model X¢ = (X¢, t¢, ®¢, V) as follows:

e X¢ is the set of all maximally consistent sets of EL;;;
e 7€ is the topological space generated by the subbase

S =[x} Nint(g) | x € XS, ¢ € Lg,. and i€ A);

int
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e x € V°(p)iff p € x, forall p € Prop;
o ®° = {0y | U € ¢}, where we define 6 : X - A — t¢as 6°(x)(i) = [x];,
forx € X¢andi € A.

We first need to show that (X€, ¢, ®°) is indeed a topo-frame.
Lemma 28 (X¢, t¢, ®°) is a topo-frame.

Proof In order to show the above statement, we need to show that (X€, 7€) is a
topological space, and ®¢ satisfies the conditions in Definition 10. For the former,
we only need to show that ¥ covers X¢, i.e., that | J £ = X, since t° is generated
by a subbase, namely by X (in the way described in Sect. 2.2). Since every element
of T is a subset of X, we obviously have | J ¥ C X¢. Observe moreover that, since
int/(\"l') = X¢ we have [x]; N mt/(\T) = [x]; € X foreachx € X¢andi € A.
Now let x € X€. Since every ~; is an equivalence relation, in particular, each ~;
is reflexive, we have x € [x];. Therefore, we obtain UXe yelxli = X¢ € | JZ for
any i € A. Hence, we conclude | J ¥ = X implying that (X¢, 7¢) is a topological
space. We now show that @€ satisfies the conditions in Definition 10. Let 6 € €.
Thus, by definition of ®¢, we have 8 = 6¢|y for some U € t°¢ (in particular, note that
¢ = 0| xc). Therefore, we have that D(#) = DO)NU = X°NU = U C X and
0(x)(i) =0°(x)(()NU = [x]; NU forany x € D) and i € A. As argued above,
[x]; € X forall x € X and eachi € A. We therefore obtain that function 6 is defined
as a partial function such that 6 : X — A — t°. For condition (1), let x € D(6).
Since D(@) = U and 0(x)(i) = [x]; N U, we also have x € [x]; N U = 0(x)(@)
for all i € A. Moreover, since 0(x)(i) = [x]; N U € U = D(H), we also satisfy
condition (2). For condition (3), let y € 0(x)(i). As 8(x)(i) = [x]; N U, we have
y € [x]; and y € D(0). While the latter proves the first consequent of condition (3),
the former implies [y]; = [x]; since [x]; is an equivalence class. We therefore obtain
0(y)(@) =[yliNU = [x]; N U = 6(x)(i). Condition (4) is satisfied by definition of
Pe, O

Lemma 29 (Truth Lemma) For every ¢ € Lgp,, and for each x € X, ¢ €
X iff X, (x,0° = @.

Proof The case for the propositional variables follows from the definition of V¢ and
the cases for the Booleans are straightforward. We only show the cases for K; and int.

Case ¢ = K; ¥

(=) Suppose K;y € x and let y € 6°(x)(i). Since y € 6°(x)(i) = [x];, by
definition of ~;, we have K;{ € y. Then, by T-axiom for K;, we obtain » € y. Then,
by IH, X¢, (v, 6¢) &= . Therefore X°, (x, 6°) = K;.

(<) Suppose K; ¢ x. Then, {K;y | K;y € x} U {—=y} is a consistent set.
We can then extend it to a maximally consistent set y. As {K;y | K;y € x} C vy,
we have y € [x]; meaning that y € 0°(x)(i). Moreover, since = € y, ¥ ¢ y.
Therefore, we have a maximally consistent set y € 6¢(x)(i) such that ¢ ¢ y. By (IH),
X, (v, 69 & . Hence, X€, (x,0°) & K.

Case ¢ = int(y)

(=) Suppose int(Yr) € x. Consider the set [x]; ﬁint/(w\) forsomei € A. Obviously,
x € [x]; ﬂint/(% and [x]; ﬂm isopen (sinceitisin X). Nowlet y € [x]; ﬂint/(%.
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Since y € m int(y) € y. Then, by (int -T), since y is maximal consistent, we
have ¢ € ey Thus, by IH, we have (y, 6°) &= . Therefore y € [[1#]]0 This implies
[x); Nint(¥) (W] . And, since x € [x]; N int(¥) € €, we have x € Int[y %,
ie., (x,0° E int(y).

(<) Suppose (x,6°) = int(y), i.e., x € Int[¥]° . Recall that the set of finite
intersections of the elements of ¥ forms a base, which we denote by By, for €.
X € Int[[lp]]gc implies that there exists an open U € By such that x € U C [ynee.
Given the construction of By, U is of the form

U= ﬂ[xl]iﬂ"'m[xk]iﬂ ﬂ m

iel iely, neFormgp

where I, ..., I, are finite subsets of A, x1, ..., xx € X and Formg, is a finite subset
of Lgr,,- Since int is a normal modality, we can simply write

int *

U= (bl 0 (el O ine(),

iel iel,

where /\,,EFOrmﬁn n:=y.Sincexisineach[x;]; withl < j < k,wehave [x;]; = [x];

for all such j. Therefore, we have

xeU=(\lxl)nint(y) < [¥1",
iel
where [ = 1 U---U I,. -
This implies, for all y € ((;¢;[x];), if y € int(y) then ¢ € y. From this, we
can say Uiel{K,-o | Kioc € x} F int(y) — . Then, there is a finite subset I’ C
Uiei{Kio | Kio € x} such that = A\, . A — (int(y) — ). It then follows:

L. Fint(N\,cp 2 — (int(y) — ) (DR3)
2.+ int(/\)\er A) — int(int(y) — V¥)) (int-K) and (DR1)
3. F (Njer int(A) — int(int(y) — ¥)) (int-K)

Observe that each A € I is of the form K j« for some K ;o € | J;;{Kio | Kio € x}
and we have - K;¢ < int(K;p). Therefore, (/\/\er A) — int(int(y) — ¥)).
Thus, since \,.rA € x (by I' € x), we have int(int(y) — v)) € x. Then, by

(int-K), (DR1) and since - int(int(y)) <> int(y) and x € m/t(y\) (i.e., int(y) € x),
we obtain int(y) € x. m|

Our canonical model construction is similar to the one for the single-agent case in
Bjorndahl (2017). We give a comparison in Sect. 6.

Theorem 30 EL;,; is complete with respect to the class of all topo-models.

Theorem 31 PAL;y,; is complete with respect to the class of all topo-models.
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Proof This follows from Theorem 30 by reduction in a standard way: using the size
measure S(¢) of Definition 3 for the language Lpar,, provides the desired result via
Lemma 7 (note that the strict orders <5 and <5 given in Definition 5 are equivalent
on the language Lpaz,,). We refer to van Ditmarsch et al. (2007, Chapter 7.4) for a
detailed presentation of the completeness method via reduction, and in particular to
Wang and Cao (2013, Theorem 10, p. 111) for an analogous proof. A similar proof
for single-agent EL;,, is also presented in Bjorndahl (2017, Section 4).

4.2 Completeness of APAL;y;

We now reuse the technique of Balbiani and van Ditmarsch (2015) in the setting of
topological semantics. Given the closure requirement under derivation rule (DRY) it
seems more proper to call maximally consistent sets of APAL;,; maximally consistent
theories, as further explained below.

Definition 32 A set x of formulas is called a theory iff APAL;,;; C x and x is closed
under (DR1) and (DRS). A theory x is said to be consistent iff L ¢ x. A theory x is
maximally consistent iff x is consistent and any set of formulas properly containing
X is inconsistent.

The set APAL;,; constitutes the smallest theory. Moreover, maximally consistent
theories of APAL;,, posses the usual properties of maximally consistent sets:

Proposition 33 For any maximally consistent theory x, ¢ ¢ x iff ~¢ € x,and p A\ €
xiffo € x and ¥ € x.

In the setting of our axiomatization based on the infinitary rule (DRS), we will
say that a set x of formulas is consistent iff there exists a consistent theory y such
that x € y. Obviously, maximal consistent theories are maximal consistent sets of
formulas. Under the given definition of consistency for sets of formulas, maximal
consistent sets of formulas are also maximal consistent theories.

Definition 34 Let ¢ € Lapaz,, andi € A. Thenx + ¢ : ={¢y | ¢ —> ¢ € x},
Kix : ={p | K;p € x}, and int(x) : ={p | int(¢) € x}.

Lemma 35 For any theory x of APAL;y; and ¢ € Lapar,,,

1. x + @ is a theory that contains x and ¢,
2. K;x is a theory,

3. int(x) is a theory, and

4. int(x) C x.

Proof Follows in a similar way as in the proof of Balbiani et al. (2008, Lemma 4.11),
and here we only prove items 3 and 4. Suppose x is a theory of APAL;,, and ¢ €
LAPAL;y, -

3. Suppose ¢ € APAL;y;. Since ¢ is a theorem, by (DR3), int(¢) is a theorem of
APAL;,; as well. Therefore, int(¢) € x meaning that € int(x). Hence, APAL;,; <
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int(x). Let us now show that inz(x) is closed under (DR1). Suppose ¢, ¢ — ¢ €
int(x). This means, by definition of int(x), that int(¢), int(p — ) € x. By
(int-K) and x being closed under (DR1), we obtain int({¥) € x, i.e., ¥ € int(x).
Finally we show that int(x) is closed under (DRS). Let £([{/]1x) € int(x) for all
Y € PALjy;. This means int(§([y]x)) € x for all ¥ € PALjy. As int(E([¥]x)) is
also a necessity form and x is closed under (DRY), int(§(Lx)) € x meaning that
&(dyx) € int(x). We therefore conclude that int(x) is a theory.

4. Suppose ¢ € int(x). This means int(¢) € x. Therefore, by (int-T) and (DR1),
we obtain ¢ € x. As ¢ has been taken arbitrarily from inz(x), we conclude that
int(x) C x.

Lemma 36 Let ¢ € Lapar,,. For all theories x, x + ¢ is consistent iff —¢ ¢ x.

Proof Let ¢ € Lapar,, and x be a theory. Then —¢ € x iff ¢ — L € x (as
—¢ <> ¢ — L is atheorem) iff L € x + ¢. Therefore, x + ¢ is inconsistent iff
—@ € x,1.e., x + ¢ is consistent iff —¢ ¢ x. O

Lemma 37 (Lindenbaum’s Lemma Balbiani et al. 2008) Each consistent theory can
be extended to a maximal consistent theory.

Lemma 38 If K;¢ ¢ x, then there is a maximally consistent theory y such that
KixCyando ¢ y.

Proof Let ¢ € Lapar,, and x be such that K;¢ ¢ x. Thus, ¢ ¢ K;x. Hence, by
Lemma 36, K;x + —¢ is consistent. Then, by Lemma 37, there exists a maximally
consistent set y such that K;x + —¢ C y. Therefore K;x C yand ¢ ¢ y. O

Lemma 39 Forall ¢ € Lapar,, and all maximally consistent theories x, Ug € x iff
forally € Lpar,, . [V]p € x.

Proof Let ¢ € Lapar,, and x be a maximally consistent theory.

(=) Suppose U € x. Then, by (R7) and (DR1), we have [¥]¢ € x for all
V € LPALyy-

(<) Suppose [¥]g € x for all ¥ € Lpar,,. Consider the necessity form #. By
assumption, §([¢]g) forall v € Lpar,, . Then, since x is closed under (DRS), #(Og) €
x, 1.e., Oy € x as well. O

The definition of the canonical model for APAL;,; is the same as for EL;,;, except
that the maximally consistent sets are maximally consistent theories of APAL;,,;. We
now come to the Truth Lemma for the logic APAL;,;. Here we use the complexity
measure <3 ¢,and we recall that 6¢ : X — A — t¢isdefined as 0°(x)(i) = [x];,
forx € X°andi € A.

Lemma 40 (Truth Lemma) For every ¢ € LapaL
x iff X, (x,60° E .

and for each x € X¢ ¢ €

int

Proof Let ¢ € Lapar,, and x € X°. The proof is by <3-inducti0n on ¢, where the
case ¢ = [{]x is proved by a subinduction on . We therefore consider 13 cases.
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Casep=p

xep iff x eV (p)
iff(x, 09 = p

Induction Hypothesis (IH): For all formulas ¢ € Lapar,,, if ¥ <§ @, then ¥ €
x iff X, (x,0°) = .

The cases negation and conjunction are as in Truth Lemma 29 for EL;,;, where
we observe that the subformula order is subsumed under the <§ order (see Lemma
6.2). We proceed with the knowledge and interior modalities, i.e., cases ¢ = K;{ and
¢ = int(yr) respectively, and then with the subinduction on y for case announcement
¢ = [¥]yx, and finally with the case ¢ = L.

Case ¢ = K; ¥

For the direction from left-to-right, see Truth Lemma 29. For (<), suppose K;{ ¢
x. Then, by Lemma 38, there exists a maximally consistent theory y such that K;x C y
andy ¢ y. By ¢ <*d9 Ky and (IH), (y, 0¢) = . Since K;x C y, we have y € [x];
meaning that y € 6¢(x)(i). Therefore, by the semantics, X, (x, 6°) = K;{.

Case ¢ = int(y)

For the direction from left-to-right, see Truth Lemma 29. For (<=), suppose int () ¢
x. We want to show that x ¢ Int([[l/f]]ec), i.e., show that for all U € By withx € U,
we obtain U ;(_ [[1//]]95, where By is the base of X constructed by closing ¥ under
finite intersections (as in the proof of Truth Lemma 29). Let U € By such that x € U.
Given the construction of By, U is of the form

U= (ﬂ[x],-) Nint(y),

iel

where / and int(y) are as in Truth Lemma 29. In order to complete the proof, we
construct a maximally consistent theory y € U such that y ¢ [¥1° . Therefore, this
maximally consistent theory y should satisfy the following properties:

1' UiEI{KiU | K[U € -Xlg\_)“ i'e'7 y € miel[-x]i’

2. int(y) € y,i.e., y € int(y),

3. =y €y, or equivalently, ¥ ¢ y.

Toward the goal of finding this maximal consistent y, we first construct a consistent
theory z (that we then later expand to the maximal consistent theory y). Consider the
set of formulas

20 : =|JiKio | Kio € x} U {int(y)} UAPALjy,
iel

and close zo under (DR1) and (DR5) to obtain z. It is guaranteed that z is a theory since
itincludes APAL;,; and itis closed under (DR 1) and (DR5). Moreover, zg C x, since (1)
Ui/ {Kio | Kio € x} C x and (2) int(y) € x because x € U = ([);;[x]i) Nint(y),

and thus, x € int(y). Therefore, zo € x and since z is the smallest theory containing zg
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(by construction), we obtain z C x. It follows that z is consistent since x is consistent,
being a maximally consistent theory. We now consider the set inf(z). Similarly, int(z)
is a consistent theory such that inf(z) € z € x (by Lemma 35.3—4 and x being
a maximally consistent theory). Furthermore, | J;,;{Kio | Kio € x} U {int(y)} €
int(z), since - K;o < int(K;o) and K;o € z for each i € I, and similarly since
F int(y) < int(int(y)) and int(y) € z. In fact, given that z is the smallest theory
constructed from zg by closing zo under (DR 1) and (DRS5) and int(z) is also a consistent
theory such that zg C int(z) < z, we obtain inf(z) = z. Observe that, since int () ¢ x
and z € x, we have int(y) ¢ z. Therefore, the fact that int(y) ¢ int(z) = z implies
that s ¢ z. Finally, we extend the consistent theory z to the set of formulas z4+—1 . By
Lemma 35.1, we know that z+—1 is atheory such thatz € z+—v and ~y € z+—Y.
Moreover, since ¥ ¢ z, Lemma 36 implies that z + —1 is a consistent theory. Thus,
by Lemma 37, there exists a maximally consistent set y such that z4—y C y. Hence,
we have a maximally consistent set y such that:

1. Ui {Kio | Kio € x} C y,since | J;;{Kio | Kijo e x} Sz Cy,
2. int(y) € y, since int(y) € z C y, and
3. = € y,since ~¢ € z+ Y C y.

Therefore, y € (ﬂiel[x]i) N m/t(y\) = U (by (1) and (2)) such that y ¢ llw]]ec (by
IH)). Thus, U ¢ [¥]° implying that x ¢ Int([y1%).

Case ¢ = [y]p
[VIpex iff int(y)—> pex (R1)
iff (x,0° Eint(y) - p ((H) and Lemma 7.1)
iff  (x,0 E[¥lp (RD)

Case ¢ : =[{/]-n Use (R2) and (IH) and, by Lemma 7.2, int(y) — —[¢/1n <3
[V ]—-n.

Case ¢ : =[¥](n A o) Use (R3) and (IH) and, by Lemma 7.3, [V]n A [{]o <3
[(Y1(n A o).

Case ¢ : =[¢]int(n) Use (R4) and (IH) and, by Lemma 7.4, int(y) —
int([yrn) < [ lint ().

Case ¢ : =[y/]K;n Use (R5) and (IH) and, by Lemma 7.5, int(Y) — K;[¥]n <5
[VIKin.

Case ¢ : =[¥/][n]o Use (R6) and (IH) and, by Lemma 7.6, [—[y ]—int(n)]o <3
[¥1nlo.

Case ¢ : =[y]0o For all n € Lpar,,, [¥]1nlo <3 [v¥]0o, as [¥]0o has
one more [J than [v][n]o. Therefore, it suffices to show [Y]o € x iff Vi €
LpaLy,» [¥]nlo € x.

(<) Consider the necessity form [y]# and assume that for all n € Lpar,,,
[V]1lnlo € x,ie., forall n € Lpar,,. [V13([nlo) € x. As x is closed under (DRS),
we obtain [y ]4(0o) € x, i.e., [Y]0o € x.
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(=) Suppose [ ]0o € x. We have

FOo — [nlo, forall n € Lpar,, (R7)
F[¥]1(do — [nlo) forall n € Lpag,, (DR4)
F[y10o — [¥linlo, foralln € Lpar, ([1-K), (DRI)

Therefore, for all n € Lpar,,, [¥1nlo € x. As [{]nlo <ds [¥]0o for all n €
Lpar,, . by (IH), we have for all n € Lpaz,,,, (x, 6°) = [¥]1[n]o. We then obtain

(Yn € Lpar,;,)(x, 6 = [¥]nlo
iff  (Yn € Lpar,,)(x, 0°) | int(y) implies (x, (09)V) = [n]o)
iff  (x, 0 [ int(y) implies (Vi € Lpar,,)((x, (0)Y) = [n]o)
iff (x,0% = int(y) implies (x, 06)¥) k= Oo
it (x, 69 = [y 100

Case ¢ : =0y Again note that for all n € Lpag,,. [n]¥ <5 O, as Ly has one
more [J than [n]y (see Lemmas 6.4 and 6.5). Therefore, we obtain

Oy ex iff (Yne Lpar,)nlY¥ € x) Lemma 39
iff (Vi € Lpar,,)(x,0° = [nly  (IH)
iff (x,0° Oy semantics

Theorem 41 APAL;,; is complete with respect to the class of all topo-models.

Proof Let ¢ € Lapar,, such that ¥ ¢, ie., ¢ ¢ APAL;y; (Recall that APAL;y, is the
smallest theory). Then, by Lemma 36, APAL;,; + —¢ is a consistent theory and, by
Lemma 35.1, —¢ € APAL;,;+—¢. By Lemma 37, the consistent theory APAL,,; +—¢
can be extended to a maximally consistent theory y such that APAL;,;+—¢ < y. Since
y is maximally consistent and —¢ € y, we obtain ¢ ¢ y (by Proposition 33). Then,
by Lemma 40 (Truth Lemma), X, (y, 0) ~ ¢. O

5 S4 knowledge on multi-agent topo-models

In the literature of epistemic logic, not only S5 but also weaker systems such as S4
(Hintikka 1962), §4.2 (Lenzen 1978; Stalnaker 2006), and $4.3 (van der Hoek 1991,
Baltag and Smets 2008) have commonly been studied as epistemic logics for agents
with different reasoning powers. Among the aforementioned systems, S4 especially is
of topological importance since it has been proven (due to McKinsey and Tarski 1944
in a different but still topological setting, where the knowledge modality is interpreted
as the interior operator) that S4 is the logic of all topological spaces. In this section
we propose a weaker topological semantics for the language L£4par,,, making only S4
axioms for knowledge sound, rather than the S5 axioms. This way we show that our
multi-agent topo-models are more general than (Moss and Parikh 1992; Dabrowski
et al. 1996; Bjorndahl 2017; Wang and Agotnes 2013a), in the sense that they can be
adapted to model this weaker notion of knowledge, namely S4 type of knowledge.
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This result further suggests that we might be able to model intermediate knowledge
notions such as S§4.2 and S4.3 type knowledge on similar structures and poses the
question of identifying such structures, which we aim to pursue in future work.

The S4 type of knowledge does not satisfy the axiom K-5: =K;¢ — K;—K;—p,
and the topo-models on which it is interpreted are therefore also different. We define the
logic wEL;y,; interpreted on weak topo-models, its axiomatization, and corresponding
extensions to wPAL;,; and wAPAL;,;.

Definition 42 A weak multi-agent topological model (weak topo-model) is a topo-
model M = (X, 7, &, V) as in Def. 10 with clause 3 replaced by

3. forall y € X, if y € 6(x)(i) then y € D(0) and 0(y)(i) C O(x)(i).

A weak topo-frame is defined analogously to Definition 11.

Definition 43 The axiomatization of wEL;,; is that of EL;,; minus the axiom K-5.
The axiomatizations for wPAL;,; and wAPAL;,; are the obvious further extensions
with the * and *x-ed axioms. (See Table 1).

Soundness of wEL;,;, wPALjy;, and wAPAL;,, follow from Proposition 23 and
Corollary 24. As for completeness, we again use a canonical model construction similar
to the one for the stronger logics, however, adapted for the S4-type knowledge. Let us
first introduce some notation and basic concepts.

Let X¢ be the set of all maximally consistent sets of wEL;,;, where a maximally
consistent set of wELjy,, is defined similarly as in Sect. 4.1. We define relations RZ.C on
X¢ as

xR{yiff Vo € Lgr,,(Kip € x implies ¢ € y).
Let R{ (x) denote the upward closed set generated by x with respect to the relation RY,
ie, R{(x) = {y € X° | xR{y}. Moreover, we define ¢ = {y € X° | ¢ € y}. Observe
that x € @ iff ¢ € x.

Definition 44 We define the (weak) canonical model X¢ = (X¢, ¢, ®¢, V°) as fol-
lows:

e XC€ is the set of all maximally consistent sets of wEL;,;;
e 7€ is the topological space generated by the subbase

% = (RS(x) Nint(p) | x € X, ¢ € Lpr,, and i€ A);

e x € V°(p)iff p € x, forall p € Prop;
o O° = {0y | U € €}, where we define 6¢ : X¢ - A — 1°as 0°(x)(i) =
Rf(x),forx € X andi € A.

Observe that (X¢, 7¢, ®°) is a weak topo-frame. This can be shown as in the proof
of Lemma 28. As in the previous case we have mt/(\"l’) = X¢, thus, each R{(x) is an
open set in t¢. Moreover, ®¢ satisfies the required properties of the elements of &
given in Definition 42. Observe that D(6¢) = X and D(6¢|y) = U forall U € t°.
Moreover, 6|y (x)(i) = Rf(x) NU whenx € U.
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Lemma 45 (Truth Lemma) For every ¢ € Lgy,, and for each x € X¢

pex Iff X (x,09Fo.

Proof Proof is similar to the proof of Lemma 29 except that that we replace each [x];
by R{ (x). O

Theorem 46 wEL,;, wWPALjy;, and wAPAL;y; are complete with respect to the class
of all weak topo-models.

Proof For completeness of wEL;,,, let ¢ € Lgg,,, such that wEL;,; ¥ ¢. This implies
that {—¢} is a consistent set. Then, by Lindenbaum’s Lemma, it can be extended
to a maximally consistent set x such that —¢ € x. Therefore, by Truth Lemma 2
(Lemma 45), X€, (x, 0) = ¢. For completeness of wPALj,;, see proof of Theorem
31. The completeness proof of APAL;,; follows similarly as in Theorem 41, however,
the canonical model is the same as for wEL;y;, except that the maximally consistent
sets are maximally consistent theories of wWAPALj;.

We therefore obtain that the semantic behaviour of the epistemic modality K; in our
setting depends on the properties of the neighbourhood functions similar to the case for
the standard neighbourhood semantics (see, e.g., Chellas 1980) rather than the subset
space setting where S5 type of knowledge seems intrinsic to the semantics. Moreover,
by appropriate modifications on condition (3) of Definition 42, we can generalize our
setting further to work with knowledge modalities of intermediate strength, such as
S4.2 and §4.3 type of knowledge. If we add further conditions to Definition 42, we
obtain $4.2 and S4.3 types of knowledge. More precisely, for S4.2 we add

3. forall y,z € X,if y,z € 0(x)(i) then y,z € D(@) and 0(y) (i) N O(z) (i) # ¥
and for S4.3 we add
3. forally, z € X,if y, z € 0(x)(i) then y, z € D(#) and either 8 (y) (i) C 0(z)(i)
or8(z)()) € 0(y)(@).

Soundness and completeness results for these cases follow similarly as in the above
case.

On the other hand, it is not trivial whether and how our semantics can be adapted
to versions of wEL;,; in which the modalities K; are weaker than S4. It is not hard to
see that we can obtain such semantics that makes K T-, and even K -type modalities
sound, by simply dropping the conditions (3) and also (1) of Definition 42, respectively.
However, it is an open question whether these systems are complete with respect
to the corresponding semantics. Roughly speaking, in the current setting, what also
makes K; a topological modality that interacts well with the interior operator is it
being at least an S4 type modality (see, e.g., van Benthem and Bezhanishvili 2007,
Section 2 for this connection). A closer look at the canonical model constructions and
the corresponding truth lemmas (Lemmas 29, 40 and 45) reveals that it is crucial in
the completeness proofs that the canonical relations for the K; modalities are reflexive
and transitive. Topological semantics for these weaker modalities is left for future
research.
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6 Comparison to other work

In this section we compare our work in greater detail to some of the prior literature
that we already referred to. In this comparison, a justified large position is taken
by an embedding from single-agent topological semantics to multi-agent topological
semantics and vice versa, wherein the (single-agent) work of Bjorndahl (2017) plays a
large role. His use of the interior operator and topological semantics motivated our own
approach: our semantics for Lgz,,, and Lpaz,,, are essentially multi-agent extensions
of Bjorndahl’s semantics for the single-agent versions of these languages. This is the
first subsection. The subsection after that contains a review of other related works.

int

6.1 From multi-agent to single-agent and vice versa

We show that we can construct a point-wise modally equivalent topo-model
(X, 7, @, V) from a topological model without functions (X, 7, V) as in Bjorndahl
(2017) and vice versa. To recall, Bjorndahl (2017) uses subset space models based on
topological spaces, i.e., his models are the same as our topological models without
functions; denoted by It = (X, t, V). Moreover, just as in the standard subset space
semantics (Moss and Parikh 1992; Parikh et al. 2007), he evaluates the formulas with
respect to pairs of the form (x, U) where x € U € t. The crucial modalities K ¢,
int(p) and [ ] are therefore interpreted as

(x,U) EKg ifft (Vy e U)((y,U) E¢)
(x,U) = int(p) iff x e Intfe]Y

U EWle  iff (x,U) k= int(p) implies (x, Int([e]Y)) b= ¢

where p € Prop, and [¢]Y ={y e U | (v, U) = ¢}.

In the single-agent case, it is clear that a neighbourhood situation (x, 8) of a given
topo-model M = (X, t, ®, V) reverts to an epistemic scenario (x, U) of M~ =
(X, 7, V) as in Bjorndahl (2017) and van Ditmarsch et al. (2014), where M~ denotes
M = (X, 1, d, V) without the ® component and U = 0(x)(i) (and where i is
the unique agent, i.e., A = {i}). For the other direction, given a model (without a
neighbourhood function set) M = (X, 7, V), for each epistemic scenario (x, U) € 9N,
we define a neighbourhood function 6y : X — {i} — t such that D(fy) = U and
0(x)(i) = U for all x € U. We therefore define the neighbourhood function set for
M as

Qop = {0 | (x,U) € M},

where @9y denotes the neighbourhood function set constructed from 9 in the above
described way. It is not hard to see that ®gy satisfies the properties given in Definition
11, and thus it is indeed a neighbourhood function set on the underlying topological
space of M. Therefore, M = (X, 7, Doy, V) is a topo-model given any M =
(X, 1, V).

@ Springer



Synthese (2019) 196:2927-2969 2963

Theorem 47 1. Forany M = (X, t, V), any (x,U) € M and any ¢ € Lpar,,,

M, (x, V) o iff M, (x,00) = ¢.

2. Forany M = (X, 7, ®, V), any (x,0) € M, and any ¢ € Lpar,,,

M, (x,0) E o iff M™,(x,0(x)0) = .

Proof The proofs for both items follow in a similar way by induction on the size of
the formulas in Lpay,,: using the size measure S(¢) from Definition 3 provides the
desired result via Lemma 7. The cases for the propositional variables, Booleans and the
modalities K and int are standard. The case ¢ : =[v]x for the public announcement
modality follows by subinduction on x . Itis crucial for this case that our semantics and
Bjorndahl’s semantics make the same reduction axiom schemes, namely the axiom
schemes (R1)-(R6) given in Table 1, valid. Here we present only the subcase for
x = p of item (1). The other cases follow in a similar way.
Subcase ¢ : =[{]p

M, (x,U) =[y]lp iff M, (x,U) Eint(y) — p by the validity (R1)*
iff 9T, (x,0y) = int(y) — p by Lemma 7.1 and (IH)
ifft  MF, (x,00) = [¥]p by the validity (R1)**

*: with respect to the semantics in Bjorndahl (2017)
*%: with respect to the semantics given in Definition 13. O

In other words, Theorem 47.1 states that 91, (x, U) and 9", (x, 6y) are modally
equivalent with respect to Lpay,,,. Moreover, for all ¢ € Lpaz,,,, M = ¢ iff M = o,
i.e., MM and IMT are (globally) modally equivalent with respect to the same lan-
guage. Further, Theorem 47.2 shows that M, (x, #) and M ™, (x, 6(x)(i)) are modally
equivalent with respect to Lpayz,,,. However, M is not necessarily (globally) modally
equivalent to M, as the following example demonstrates.

Example 48 The reason why M and M~ are not necessarily modally equivalent is
that while M ™ reverts to using the full topology 7, the view on that in M is restricted
by ®. For a counterexample, consider the topo-model M = (X, t, ®, V) where
X = {1, 2} and 7 is the discrete topology on X. We set ® = {0} where D(0) = {2}
and 0(2) = {2}. Hence, the only neighbourhood situation of M is (2, ). Finally we
let V(p) = {1}. Therefore, M, (2, 6) = =K p and as (2, 0) is the only neighbourhood
situation of the model, we obtain M = —K p of item. On the other hand, (1, {1}) is
an epistemic scenario of M~ and M~, (1, {1}) &= Kp, therefore, M~ = —=Kp.

Moreover, as demonstrated in Sect. 6.1, the single-agent version of our proposal
does not lead to any restriction compared to Bjorndahl (2017) and even provides a
larger class of models to work with.
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6.2 Survey of the literature

In this section, we compare mainly three aspects of our work to that of others in the
relevant literature:

Multi-agent epistemic systems. Multi-agent epistemic systems with subset space-
like semantics have been proposed in Heinemann (2008, 2010), Bagkent (2007) and
Wing and Agotnes (2013a), however, none of these are concerned with public or arbi-
trary public announcements. An unorthodox approach to multi-agent knowledge is
proposed in Heinemann (2008, 2010). Roughly speaking, instead of having a knowl-
edge modality K; for each agent as a primitive operator in his syntax, Heinemann uses
additional operators to define K; and his semantics only validates the S4-axioms for
K. The necessitation rule for K; does not preserve validity under the proposed seman-
tics (Heinemann 2008, 2010). On the other hand, we follow the methods of dynamic
epistemic logic in our multi-agent generalization by extending the single-agent case
with a knowledge modality K; for each agent and propose a multi-agent topological
semantics for this language general enough to model both S4 and S5 types of knowl-
edge, and flexible enough for further generalizations as shown in Sect. 5. Another
multi-agent logic of subset spaces is developed in Wang and Agotnes (2013a). This
setting uses multi-agent versions of both knowledge K; and effort [J;, where, for
example, 1 K7 p is read as “agent 1 comes up with evidence so that agent 2 gets to
know p” (Wing and Agotnes 2013a, p. 1160). They have left the question of how to
model an agent-independent effort operator open, while pointing out its connection to
the arbitrary announcement modality of Balbiani et al. (2008). Besides, no announce-
ments or further generalizations (unlike in their other, single-agent, work Wéng and
Agotnes 2013b) are considered in Wang and Agotnes (2013a), and a purely topolog-
ical case is left for future research. To this end, we believe our work at least partially
answers some of their open questions. Their use of partitions for each agent instead of
a single neighbourhood is compatible with our requirement that all neighbourhoods
for a given agent be disjoint. A further difference from the existing literature is that we
restrict our attention to topological spaces and prove our results by means of topolog-
ical tools. For example, our completeness proofs employ direct topological canonical
model constructions without a detour referring to different types of semantics and
completeness results therein.

Completeness proof. We applied the new completeness proof for arbitrary public
announcement logic of Balbiani and van Ditmarsch (2015) to a topological setting.
The modality inf in our system demands a different complexity measure in the Truth
Lemma of the completeness proof of APAL;,, than in Balbiani and van Ditmarsch
(2015). Moreoever, we modified the complexity measure given in van Ditmarsch
et al. (2015b) to make it work for both the completeness of APAL;,,; and of PALjy;.
The canonical modal construction is as in Bjorndahl (2017) with some multi-agent
modifications. We defined the set ¥ from which the topology of the canonical model
is generated in a similar way as in Bjorndahl (2017), however, having multiple agents
renders this set weaker in the sense that while it constitutes a base in the single-agent
case, it becomes a subbase in the multi-agent setting.

Single agent case. In standard (single-agent) subset space semantics (Moss and Parikh
1992; Dabrowski et al. 1996) and in the later extensions (Wang and Agotnes 2013b;
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Bjorndahl 2017; Balbiani et al. 2013; van Ditmarsch et al. 2014), the modality K
quantifies over the elements of a given open neighbourhood U that is fixed from the
beginning of the evaluation. This makes K behave like a universal modality within U,
therefore, S5 as an underlying epistemic system becomes intrinsic to the semantics.
However, in our proposal, the soundness of the epistemic axioms (i.e., axioms involv-
ing only the modality K) depends on the constraints posed on the neighbourhood
functions and relaxing these constraints enables us to work with weaker notions of
knowledge, such as $4 as shown in Sect. 5. In this sense, our approach generalizes the
epistemic aspect of aforementioned literature. Moreover, Balbiani et al. (2013) pro-
posed subset space semantics for arbitrary announcements, however, their approach
does not go beyond the single-agent case and the semantics provided is in terms of
model restriction.

Temporal epistemic logics and protocol logics. We can compare the logics we have
presented here to some other dynamic modal logics. When modelling dynamic oper-
ators, there are two main approaches: one can either start with an initial model and
then view operators as changing or transforming the initial model, or one can include
the dynamic operators in the initial model, and view operators as transitions within
this unchanging model. In our logics we take the second approach: the dynamic oper-
ators are not model transformers but are interpreted by a shift of perspective in the
unmodified initial model, represented by an updated neighbourhood function. Our
dynamic systems APAL;,; and PAL;,, are therefore in contrast with the framework of
traditional dynamic epistemic logic; in fact they are also akin to, for example, temporal
epistemic logics (Halpern et al. 2004; van der Meyden and Wong 2003) or dynamic
(PDL-type) logics (Harel et al. 2000), and more specifically to the subset logic for rea-
soning about change (Georgatos 2011). In such logics temporal/action operators are
also interpreted by a perspective shift, i.e., by a relation within the model representing
such modalities. For example, in PDL-style, if x is a world, then M, x = [a]p if and
only if (x, y) € R, implies M, y &= p. A similar PDL-stype approach is adapted to
a subset space logic by Georgatos (2011), and he studied an action-based knowledge
change in this framework. In temporal epistemic logics the interaction is slightly more
involved, so we have, for example, that when xxpx3 is a path, M, x;xox3 = Xp if
M, xox3 = p, involving a similar shift of perspective or state, rather than a model
transformation. In APAL;,;, our ‘designated points’ are pairs (x, @) which we can see
as a multi-agent generalization (viewed as, (x, 0(x)(a), 8(x)(b))) of the pairs (x, U)
in subset space logic. One difference from the PDL and temporal operator interpreta-
tion is that the perspective shift for public announcement interpretation is in the second
argument of the pair, the neighbourhood function, rather than in the first argument,
which represents the agent’s actual state: M, (x, 0) = [¢g]p iff M, (x, 0) k= int(q)
implies M, (x, 89) = p. Another difference from many temporal logics is that sub-
ject to executability, the public announcement is a ‘computable’ dynamic modality:
although it is a perspective shift, the shift is computed from the announcement formula
and not a given in the underlying model, as in LTL or CTL, where we have maximum
freedom to specify the underlying model. However, the executability precondition int
is also reminiscent of other logics, namely (dynamic epistemic, or dynamic) logics of
protocols, see e.g. Wang (2010) and Hoshi (2009). In such logics, public announce-
ments, or other epistemic actions, cannot be executed merely if the announcement

@ Springer



2966 Synthese (2019) 196:2927-2969

formula is true, but only if the announcement formula is in the list of ‘permitted for-
mulas to be announced’, i.e., allowed according to the protocol. A strong link between
logics of protocols, dynamic epistemic logics, and temporal epistemic logics is pro-
vided in works van Benthem et al. (2009) and Dégremont et al. (2011): instead of,
as in dynamic epistemic logic, thinking of an initial model that is transformed by
successive dynamic modalities (such as for announcement), we can also see these
dynamic transitions as interpreted by internal shifts in a larger model, namely the so-
called protocol-generated tree that consists of the initial model plus the transformed
model(s) in relation. To illustrate this, for a final example, given M, x = [¢]p in
standard public announcement logic, instead of interpreting the announcement of g
as a model restriction, i.e., as M|q, x = p, we can also consider the disjoint union of
M and M|q plus a pair (xg, x1) linking them, and see the interpretation of [¢] as a
shift along (xq, x1) in M @ M|q. This is instructive, because here we see again that,
unlike in APAL;,;, the shift can be seen as occurring in an accessibility relation, and
does not have to consist of shrinking a neighbourhood from (x, 0) to (x, 67).

7 Conclusions

We have proposed a multi-agent topological semantics for knowledge, public and
arbitrary announcements in the style of subset space semantics. In particular we pro-
vided a multi-agent semantic framework, based on topological spaces, that eliminates
the so-called problem of “jumping out of the epistemic range” in the evaluation of
higher-order knowledge formulas involving different agents. In our setup all agents
have the same observational power in the sense that they have access to exactly the
same collection of potential evidence, represented by each topo-model carrying only
one topology. In order to model the informational attitudes of a group of agents
with different observational powers, one could associate a possibly different topology
with each agent together with a “common” topology representing all potential evi-
dence. Moreover, the studied notions of dynamics of learning something brought about
by announcements were of public nature, and the information source was assumed to
be external. van Ditmarsch et al. (2017) generalizes the topological public announce-
ment semantics of this chapter for semi-private announcement, again assuming the
information source to be external. We can further generalize our setting to an arbitrary
epistemic action logic.

Our goal was not so much to provide a multi-agent generalization of SSL or
topologic per se, but to have an intuitively appealing interpretation of the effort-like
modality [J (information change brought about by any announcement) in a multi-
agent setting, by way of modelling it as “open-set shrinking”. In this respect, our work
complements (Georgatos 2011; Bjorndahl 2017), and can be seen as a step toward
discovering the interplay between dynamic epistemic logic and topological reasoning.

Unsurprisingly, working with S5-type of knowledge required a partitioning of the
(sub)domain of a topological space. This might seem like a restrictive requirement
since it rules out working with more familiar spaces such as the natural topology of
open intervals on the real line or the Euclidean space. However, as long as multiple
S5-type agents are concerned, we believe it is hard to avoid such a restriction, if it is
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possible at all. We then axiomatized the multi-agent logic of observation-based knowl-
edge EL;,;, its extension with public announcements PAL;,;, and also with arbitrary
public announcements APAL;,;. The arbitrary announcement modality [ capturing
“stability of the truth of ¢ after any announcement” comes close to the intuition behind
the effort modality [y as “stability of the truth of ¢ after any effort”. In Baltag et al.
(2017), these two modalities are even proven to be equivalent in the single-agent
setting. However, the appropriate interpretation of effort in the multi-agent setting
and its connection to the arbitrary announcement modality still remain elusive. The
connection between the effort modality and the arbitrary announcement modality has
also been observed in Wang and Agotnes (2013a), however, providing a formal anal-
ysis regarding the link between these two modalities in a multi-agent setting is not
straightforward: there is not yet agreement on how to interpret the effort modality
in a multi-agent framework (see Sect. 6 for a comparison with other work on multi-
agent subset space semantics). The existing proposals neither agree on the general
framework, nor are they entirely compatible with one another or with our multi-agent
topological setting. We leave this question as future work.

We are currently investigating expressivity and (un)decidability. If the logic APALjy;
is decidable, this would contrast nicely with the undecidability of arbitrary public
announcement logic (French and van Ditmarsch 2008). Otherwise, there may be decid-
able fragments when restricting the class of models to particular topologies.
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