143 research outputs found

    Efficient Multiband Algorithms for Blind Source Separation

    Get PDF
    The problem of blind separation refers to recovering original signals, called source signals, from the mixed signals, called observation signals, in a reverberant environment. The mixture is a function of a sequence of original speech signals mixed in a reverberant room. The objective is to separate mixed signals to obtain the original signals without degradation and without prior information of the features of the sources. The strategy used to achieve this objective is to use multiple bands that work at a lower rate, have less computational cost and a quicker convergence than the conventional scheme. Our motivation is the competitive results of unequal-passbands scheme applications, in terms of the convergence speed. The objective of this research is to improve unequal-passbands schemes by improving the speed of convergence and reducing the computational cost. The first proposed work is a novel maximally decimated unequal-passbands scheme.This scheme uses multiple bands that make it work at a reduced sampling rate, and low computational cost. An adaptation approach is derived with an adaptation step that improved the convergence speed. The performance of the proposed scheme was measured in different ways. First, the mean square errors of various bands are measured and the results are compared to a maximally decimated equal-passbands scheme, which is currently the best performing method. The results show that the proposed scheme has a faster convergence rate than the maximally decimated equal-passbands scheme. Second, when the scheme is tested for white and coloured inputs using a low number of bands, it does not yield good results; but when the number of bands is increased, the speed of convergence is enhanced. Third, the scheme is tested for quick changes. It is shown that the performance of the proposed scheme is similar to that of the equal-passbands scheme. Fourth, the scheme is also tested in a stationary state. The experimental results confirm the theoretical work. For more challenging scenarios, an unequal-passbands scheme with over-sampled decimation is proposed; the greater number of bands, the more efficient the separation. The results are compared to the currently best performing method. Second, an experimental comparison is made between the proposed multiband scheme and the conventional scheme. The results show that the convergence speed and the signal-to-interference ratio of the proposed scheme are higher than that of the conventional scheme, and the computation cost is lower than that of the conventional scheme

    Wavelet-based multi-carrier code division multiple access systems

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Coding of synthetic aperture radar data

    Get PDF

    Principles of computational illumination optics

    Get PDF

    The History of the Quantitative Methods in Finance Conference Series. 1992-2007

    Get PDF
    This report charts the history of the Quantitative Methods in Finance (QMF) conference from its beginning in 1993 to the 15th conference in 2007. It lists alphabetically the 1037 speakers who presented at all 15 conferences and the titles of their papers.

    Geometrical Optimisation of Receivers for Concentrating Solar Thermal Systems

    Get PDF
    In concentrated solar thermal technologies, the receiver converts concentrated solar radiation into high-temperature heat. Solar receivers are commonly simulated with a stochastic integration method: Monte-Carlo ray-tracing. The optimisation of the geometry of receivers is challenging when using existing optimisation methods for two reasons: each receiver evaluation using Monte-Carlo ray-tracing requires significant computational effort and the outcome of a simulation involves uncertainty. A series of novel optimisation techniques are proposed to enable gradient-free, stochastic and multi-objective optimisation adapted to such problems. These techniques address the computational load difficulty and the challenge of conducting stochastic optimisation based on uncertain evaluations by introducing the concepts of “Progressive Monte-Carlo Evaluation (PMCE)”, “Intermediate Ray Emission Source (IRES)” and adaptive view-factor calculation. A new “Multi-Objective and Evolutionary PMCE Optimisation (MOEPMCE-O)” method is then built around PMCE to enable multi-objective geometrical optimisation of receivers. PMCE is shown to be able to reduce the computational time of a random search optimisation by more than 90% and is used in the geometrical design of a new receiver for the Australian National University SG4 dish concentrator that achieved 97.1% (±2.2%) of thermal efficiency during on-sun testing. MOE-PMCE-O is applied to a multi-objective tower receiver problem where liquid sodium is used as the receiver heat-carrier in a surround configuration heliostat field. A series of useful geometrical concepts emerge from the results, with geometrical features able to maintain high efficiency while keeping acceptable incident peak flux values with a moderate receiver total mass. Finally, a more fundamental look at the impact of the interaction of concentrating optics on the exergy of radiation available at the receiver location highlights the major role played by concentrator surface slope error in lowering the exergy in concentrated solar thermal systems and quantifies the exergy loss associated with non-ideal match between flux and surface temperature in receivers

    Digital signal processing algorithms and structures for adaptive line enhancing

    Get PDF
    Imperial Users onl

    Advanced Geoscience Remote Sensing

    Get PDF
    Nowadays, advanced remote sensing technology plays tremendous roles to build a quantitative and comprehensive understanding of how the Earth system operates. The advanced remote sensing technology is also used widely to monitor and survey the natural disasters and man-made pollution. Besides, telecommunication is considered as precise advanced remote sensing technology tool. Indeed precise usages of remote sensing and telecommunication without a comprehensive understanding of mathematics and physics. This book has three parts (i) microwave remote sensing applications, (ii) nuclear, geophysics and telecommunication; and (iii) environment remote sensing investigations

    The detection of unknown waveforms in ESM receivers: FFT-based real-time solutions

    Get PDF
    Radars and airborne electronic support measures (ESMs) systems are locked in a tactical battle to detect each other whilst remaining undetected. Traditionally, the ESM system has a range advantage. Low probability of intercept (LPI) waveform designers are, however, more heavily exploiting the matched filter radar advantage and hence degrading the range advantage. There have been literature and internal, SELEX Galileo proposals to regain some ESM processing gain of low probability of intercept (LPI) waveforms. This study, however, has sought digital signal processing (DSP) solutions which are: (1) computationally simple; (2) backward-compatible with existing SELEX Galileo digital receivers (DRxs) and (3) have low resource requirements. The two contributions are complementary and result in a detector which is suitable for detection of most radar waveforms. The first contribution is the application of spatially variant apodization (SVA) in a detection role. Compared to conventional window functions, SVA was found to be beneficial for the detection of sinusoidal radar waveforms as it surpassed the fixed window function detectors in all scenarios tested. The second contribution shows by simulation that simple spectral smoothing techniques improved DRx LPI detection capability to a level similar to more complicated non-parametric spectral estimators and far in excess of the conventional (modified) periodogram. The DSP algorithms were implemented using model-based design (MBD). The implication is that a detector with improved conventional and LPI waveform detection capability can be created from the intellectual property (IP). Estimates of the improvement in SELEX Galileo DRx system detection range are provided in the conclusion

    Cognitive Radio Systems

    Get PDF
    Cognitive radio is a hot research area for future wireless communications in the recent years. In order to increase the spectrum utilization, cognitive radio makes it possible for unlicensed users to access the spectrum unoccupied by licensed users. Cognitive radio let the equipments more intelligent to communicate with each other in a spectrum-aware manner and provide a new approach for the co-existence of multiple wireless systems. The goal of this book is to provide highlights of the current research topics in the field of cognitive radio systems. The book consists of 17 chapters, addressing various problems in cognitive radio systems
    corecore