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Foreword

Little did he know...

Litarary cliché

Welcome, dear reader, to my thesis. The title hasn’t been subject to a lot
of change, even though I suggested three: the one on the cover, “computational
illumination optics manifesto”, and “journey of the sorcerer” possibly with some
suitable subtitle. Needless to say my supervisors preferred the more traditional
option. “Manifesto” seemed a good choice to me as I consider this thesis a
first exploration and delineation of what is arguably a new field. The word
“sorcerer” is an oblique reference to Clarke’s third law. “Journey” was inspired
by the fact that I see a PhD as a deeply personal experience. One embarks
on an epic quest of discovery, setting out to push the frontier of knowledge.
In my opinion, this personal aspect is perhaps slightly underlit, especially in
the thesis. To give some glimpses into my experiences, opinions and thought
processes, I’ve therefore added a few footnotes throughout this work. They’re
meant to show that behind the cold logic and austere mathematics, there’s
someone who actually had to dream up all this stuff. And I’d like you to get to
know him a little better as well through reading this dissertation.

Another thing I’d like to get out of the way is the utilisation of contractions
like “we’re”, “it’s”, “doesn’t”, etc. Almost everyone who’s read a draft version
of my thesis has advised me against using them. However, I insisted and as such
I think I owe an explanation. First, I believe contractions read and sound more
natural, which is of course the reason they were invented in the first place. But
there’s another, slightly finer point: they do carry information. Like rhythm
and metre indicated by punctuation, there’s a subtle difference between using a
contraction and not doing so. In particular, not using a contraction puts more
emphasis on the word that’s otherwise contracted. For instance: “contrary
to popular belief it’s true” versus “contrary to popular belief it is true”. In
the second sentence, because “it is” is written out in full, the word “is” is
slightly emphasised. If even more emphasis is needed, I’d consider italics, but
sometimes you only need a little bit of emphasis. Conversely, using a contraction
reduces the risk that a reader inadvertently interprets the emphasis of a sentence
different than what was intended. Using the same example, in the first case
there’s absolutely no way someone might read it and think “it’s” should be
stressed. This allows the writer to focus the attention on the reader on the
fact that will inevitably follow. In the second sentence, on the other hand, the
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contradiction itself is emphasised. Therefore, I consider the deliberate usage
of contractions simply a writing technique that can be employed to produce
more effective writing. As a writer, why would anyone restrict their range of
expression?

Then for a more technical note. Part of this work is based on some research
articles I’ve produced over the years, while another part of it has yet to be
converted into a few scientific papers. Specifically, the published articles I’ve
authored are:

• “A novel scheme for Liouville’s equation with a discontinuous Hamiltonian
and applications to geometrical optics,” Journal of Scientific Computing,
vol. 68, no. 2, pp. 739 – 771. Chapters 4 and 8 are an elaboration of the
contents found in the article.

• “Embedded WENO: a design strategy to improve existing WENO schemes,”
Journal of Computational Physics, vol. 330, pp. 529 – 549. A large
part of the article is exhibited verbatim in Chapter 5. For the complete
story, I recommend reading the research article. I’ve chosen not to put it
in entirely since it’s fairly long and deals predominantly with the Euler
equations of fluid dynamics.

• “High-order embedded WENO schemes,” in Spectral and High Order Meth-
ods for Partial Differential Equations ICOSAHOM 2016, Springer, 2016.
This proceedings contribution is an extension of the work of the previous
article. It isn’t covered here, please read the conference proceedings if
you’re interested.

• “Full linear multistep methods as root-finders,” Applied Mathematics and
Computation, vol. 320, pp. 190 – 201. This article is the basis for Chap-
ter 3.

There are a further three articles in preparation. Their prospective content
can be found inside this thesis. The titles aren’t fixed yet, but to give an
indication:

• A scientific article titled “The Magic Bullet: a ray tracing method that is
almost guaranteed to find the correct intersection point” is in preparation.
Chapter 2 is an elaboration of the intended paper.

• Chapters 6 and 9 are based on another article that’s in preparation titled
“An active flux scheme for Liouville’s equation of geometric optics.”
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• Chapters 10, 13 and 14 will be compiled into an article titled “Optimal
design in geometric optics through optimal control of Liouville’s equation.”

With this list of my scientific articles, be they published or intended, there’s
only one thing left for me to do now. I’d like to wish you, dear reader, good
luck and happy readings.

Cheers,
Bart van Lith.
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Part I

Fundamentals of
illumination optics
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Chapter 1

Introduction

“Begin at the beginning,” the
King said, very gravely, “and go
on till you come to the end: then
stop.”

Lewis Caroll
Alice in Wonderland

Illumination optics deals with designing optics for lighting systems. A whole
system, consisting of a light source and an optic, is called a luminaire [1, 2].
Suppose you wish to illuminate a room and you want the lighting to be as
uniform as possible. Assuming a given source, the optic of each luminaire has
to be designed accordingly. Conversely, if you want a nicely focussed spotlight
for use in the theatre, again, the optic has to suit the task.

There are two a priori reasons why we’d like to investigate computational
methods for illumination optics. The first one is pragmatic: the current state-
of-the-art is ray tracing methods, which take a relatively long time for a com-
putation. Reducing the return time allows optical engineers to carry out more
iterations of their design, leading to better optics. The second reason is more
abstract: a deeper theoretical understanding of computational optics may lead
to new ways of thinking and designing.

The ultimate goal in both cases is to provide tools that improve illumination
optics design. One example is all that is needed to motivate this desire. We live
in an age where we can send people and equipment to space relatively easily.
For instance, the International Space Station is continuously occupied [3]. If

3
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you were to look out of the window from the ISS while in orbit over Europe,
you’d see something like Figure 1.1.

Figure 1.1: Europe from space, courtesy of NASA Earth Observatory [4].

The figure shows, roughly, what a human would see from space with the
naked eye. It’s easy to identify major cities and population centres. The logic
of improving optics is simple: all the light that you can see from space is wasted
energy, radiated out to places we don’t care for lighting in the first place. We
don’t want to light the universe, we only want to light our houses, streets and
cities. Improving optics would allow us to direct the light to where we want
it to go. The upshot is that we’d need less energy for lighting, something that
should resonate with everyone in this time of ecological awareness.

1.1 Foundations of optics

Illumination optics is a branch of optics, which is itself again a branch of elec-
trodynamics [5, 6]. The inclusions are as follows

illumination optics ⊂ optics ⊂ electrodynamics.

We restrict ourselves to the geometrical-optics part of illumination optics. Hence,
we’ll now derive the basic governing equations of geometric optics from the fun-
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damental equations of electrodynamics to provide a complete overview. Elec-
trodynamic phenomena are governed by a set of differential equations known as
Maxwell’s equations. Although the basic laws were nearly complete at the time,
around 1862 Maxwell fixed a crucial inconsistency in the theory by introducing
the displacement current [7]. He then used the completed theory to show that,
as Maxwell put it: “we can scarcely avoid the inference that light consists in
the transverse undulations of the same medium which is the cause of electric
and magnetic phenomena” [8].

James Clerk Maxwell.

Behold Maxwell’s equations:1

∇ ·D = ρq (Gauß’s Law), (1.1a)

∇ ·B = 0 (no name), (1.1b)

∇× E = −∂B
∂t

(Faraday’s Law), (1.1c)

∇×H = Jq +
∂D
∂t

(Ampère’s Law), (1.1d)

where E is the electric field, B is the magnetic field,
D is the displacement field, H the magnetizing field2,
Jq is the free current density, all in R3 [6]. Finally, ρq
is the free charge density. The term ∂D

∂t is due to Maxwell himself and is called
the displacement current. We assume linear constitutive relations D = εE and
µH = B. This form of Maxwell’s equations (1.1) is valid in a bulk material
where ε is the permittivity and µ the permeability. The vacuum parameters are
usually indicated with a subscript zero. These equations describe all classical
electric and magnetic phenomena, including all electronics.

From (1.1), it’s possible to derive wave solutions that propagate without end:
electromagnetic waves. Assuming for simplicity that the material parameters ε
and µ are constant and there are no free charges or currents, taking the curl of
Faraday’s and Ampère’s laws (1.1c) - (1.1d) leads us to the wave equation, i.e.,

∇×∇× E = −∇× ∂B
∂t

= −µ ∂
∂t
∇×H = −µε∂

2E
∂t2

, (1.2a)

∇×∇×B = µε∇× ∂E
∂t

= µε
∂

∂t
∇× E = −µε∂

2B
∂t2

. (1.2b)

1Teus Tukker, who was one of my supervisors before he moved to ASML, once told me:
“all good optics textbooks start with Maxwell’s equations.” Naturally therefore, I wanted to
start this work with Maxwell’s equations as well.

2There’s some debate about the names of B and H. Griffiths, for instance calls B the
magnetic field and simply refuses to give a name to H [6].
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The vector identity ∇×∇×~v = ∇(∇ ·~v) − ∇2~v, together with the zero-
divergence conditions (1.1a) - (1.1b) produces the wave equation for both E
and B, i.e.,

∂2E
∂t2

=
1

µε
∇2E , (1.3a)

∂2B
∂t2

=
1

µε
∇2B. (1.3b)

The coefficient on the right-hand sides form the square of the speed of light in a
material, v = 1√

µε . In vacuum the speed of light is c = 1√
ε0µ0

≈ 3.00 · 108 m/s.

The refractive index of a material is defined as the ratio of the speed of light in
vacuum and the speed of light in the material v, i.e.,

n =
c

v
. (1.4)

As it turns out, the speed of light in vacuum is the fastest speed there is, hence
n ≥ 1 for any material.

The wave equations (1.3) support radiation of any frequency, thereby form-
ing an entire spectrum. Visible radiation, or just light for short, is only the
tiniest sliver of all these possible frequencies. Lighting is therefore, at its core,
a special case of electrodynamics as described by Maxwell’s equations. In daily
life, however, the wave character of light is never directly apparent. Our famil-
iar surroundings tend to be much larger than any length scale associated with
light. Typical wavelengths of light are in the 300 to 800 nm range, which is to
a handful of orders of magnitude smaller than everyday objects.

For these reasons, illumination is described in terms of geometric optics, dis-
regarding the microscopic wave character of light and distilling out the macro-
scopic behaviour. As we’ll see, this leads to a description in terms of purely
geometric objects such as light rays. Nonetheless, the basic laws of geometric
optics follow inexorably from Maxwell’s equations.

1.2 The geometric optics limit

Geometric optics can be formally defined as the high-frequency limit of Maxwell’s
equations, implying infinitely short wavelengths [9]. For illumination this makes
a lot of sense, as our to-be-lit objects are humongous compared to the wave-
length of light. The previous discussion argued that light is a wave phenomenon,
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so we should use propagating waves as a trial solution. The finite speed of light
results in identifiable wave fronts, so that the spatial dependence of the phase
is determined by a single function [9]. This function, denoted S, measures the
optical path length. The wave fronts are given by level sets of S. Hence, our
ansatz should read

E(~x, t) = ~E(~x)ei(κS(~x)−ωt), (1.5a)

B(~x, t) = ~B(~x)ei(κS(~x)−ωt), (1.5b)

with κ = ω
c the vacuum wave number and ω the angular frequency. The vacuum

wave number is also related to the wavelength by κ = 2π
nλ . The spatial field

vectors ~E and ~B are yet to be determined. Furthermore, we again assume that
there are no free charges or currents, so that ρq = 0 and Jq = ~0. We allow
ε and µ to vary in space, but we do assume that they’re independent of time.
Inserting (1.5) into Maxwell’s equations (1.1), together with the application of
the product rules for curl and divergence, yields

∇× ~E + iκ∇S× ~E = iω ~B, (1.6a)

∇× ~B + iκ∇S× ~B − 1
µ∇µ× ~B = −iωµε ~E, (1.6b)

∇ · ~E + iκ ~E ·∇S = 0, (1.6c)

∇ · ~B + iκ ~B ·∇S = 0. (1.6d)

Next, we use (1.4) to rewrite µε in terms of n and c. After dividing by iκ, we are
in a position to let the frequency tend to infinity, so that κ→∞. The resulting
set of equations is given by3

∇S× ~E = c ~B, (1.7a)

∇S× ~B = −n
2

c
~E, (1.7b)

∇S · ~E = 0, (1.7c)

∇S · ~B = 0. (1.7d)

Conditions (1.7c) and (1.7d) tell us essentially that light is a transverse elec-

tromagnetic wave with ~E, ~B ⊥ ∇S. Conditions (1.7a) and (1.7b) furthermore

3I find these equations rather appealing. Compare them with Maxwell’s equations, which
specify the curl and divergence of the electric and magnetic fields. The nabla operators
are shifted onto an auxiliary function S, while the time derivative is replaced with a simple
multiplication by a scalar.
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imply that ~E ⊥ ~B. An equation involving only S and n can be found by dividing
(1.7a) by c and substituting the result into (1.7b), after which we obtain

1

c

(
(∇S · ~E)∇S − ‖∇S‖2 ~E

)
= −n

2

c
~E, (1.8)

where we’ve again used the identity ~u×(~v× ~w) = (~u · ~w)~v − (~u ·~v)~w. Next,
applying the fact that the waves are transverse, (1.7c), and realising that the

resulting relation must hold for all field directions ~E leads to the eikonal equa-
tion, i.e.,

‖∇S‖2 = n2. (1.9)

To see what this equation tells us, we consider a contour, or isosurface, where S
is constant, see Figure 1.2. In this case, the eikonal equation tells us that the
gradient of S has length n. Thus, for any isosurface, say S = S0, the gradient of
S is simply the local normal multiplied by n. Fix some point ~q on the contour
and move a small distance δ

n out along the normal. A Taylor expansion of S
reveals that

S(~q + δ ~ν) = S +
δ

n
~ν ·∇S +O(δ2) = S ± δ +O(δ2). (1.10)

The sign ambiguity comes from the fact that we only know the norm of ∇S, but
not whether it’s parallel or antiparallel to the normal of the isosurface. Hence,
doing this for all points on the isosurface leads to a new isosurface with value
S0 ± δ. Let’s denote the actual distance between the two contours ∆ = δ

n , so
that we may alternatively write the value at the second contour as S±n∆. If the
sign is positive, we know we’re making a shortest possible step since the gradient
is parallel to the normal. If the sign is negative, this indicates an extremum as
well, since for any unit vector ~v we have −n ≤ ~v ·∇S ≤ n. Therefore, the small
step from one contour to the other is extremal.

Between two arbitrary isosurfaces with values S0 and S1, we can perform a
large number of such small steps. Incidentally, some numerical methods that
numerically solve the eikonal equation (1.9) are based on this idea [10]. In the
limit of vanishing step size, the result is that S1−S0 measures an extremal path,
weighted by the refractive index n, between the two contours. This is related
to the definition of the optical path length.
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S = S0

∇S

S = S0 + δ

Figure 1.2: Sketch of two isosurfaces of a solution to the eikonal equation for
n = 1, where C is a constant and δ is a small step.

Let C be a curve with endpoints ~q0 and ~q1, then its optical
path length is defined as

∫

C

n(~q(s)) ds, (1.11)

where s is the arc length.

Our previous discussion shows that for solutions S to the eikonal equation
(1.9), S(~q1) − S(~q0) is given by a extremum of the optical path length, where
we have to extremise over all curves C with fixed endpoints ~q0 and ~q1.

1.2.1 Energy transport and rays

Going back to Maxwell’s equations (1.1), the energy stored in an electromagnetic
field is defined as

u = 1
2E ·D + 1

2B ·H = ε
2‖E‖2 + 1

2µ‖B‖2. (1.12)
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Since the material properties do not depend on time, the time derivative of this
quantity in the absence of free currents is determined easily enough, i.e.,

∂u

∂t
= εE · ∂E

∂t
+

1

µ
B · ∂B

∂t

= E · ∂D
∂t

+H · ∂B
∂t
.

(1.13)

Using Faraday’s and Ampère’s laws (1.1c)—(1.1d), we find that

∂u

∂t
= E ·(∇×H)−H ·(∇× E)

= −∇ ·(E×H),
(1.14)

where in the second step we’ve used the identity ∇ ·(~u×~v) = ~u ·(∇×~v) −
~v ·(∇× ~u). This is a special case of Poynting’s theorem and the vector P =

E×H is called the Poynting vector . Just as for ~E and ~B, we remove the phase
dependence of the Poynting vector by setting P = ~P exp

(
2i(κS − ωt)

)
. It can

be shown that the Poynting vector is directed4 along ∇S by applying (1.7a) -
(1.7b), i.e.,

~P =
1

µ
~E× ~B

= − 1

n2µ
(∇S× ~B)×(∇S× ~E)

= − 1

n2µ

[(
∇S ·( ~B× ~E)

)
∇S −

(
∇S ·( ~B×∇S)

)
~E
]
,

(1.15)

where we’ve applied the vector algebra identity ~u×(~v× ~w) = (~u · ~w)~v−(~u ·~v)~w,
and the fact that the scalar triple product admits cyclic permutations. The
second term in the square brackets is identically zero due to the properties of
cross and inner products. In particular, the cross product results in a vector
that’s orthogonal to both input vectors, while the inner product vanishes for
orthogonal vectors. Moreover, we can again identify ~P itself, so that we find

~P =
1

n2

(
∇S · ~P

)
∇S. (1.16)

Bearing in mind the eikonal equation (1.9), we see that the right-hand side of

(1.16) is the projection of ~P onto ∇S, we see that ~P is parallel to ∇S. Hence,
we conclude that energy transport occurs along the normals of the wave fronts.

This motivates the definition of a light ray .

4I prefer to write that it poynts.
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A light ray is the integral curve of a wave front normal. As
such, rays are the pathways along which energy is transported.

The eikonal equation allows us to find a differential equation for a ray,
parametrised by its arc length s, i.e.,

d~q

ds
=
∇S
‖∇S‖ =

1

n
∇S. (1.17)

Note that s is the arc length so that
∥∥∥d~q

ds

∥∥∥ = 1. The ray is the entire curve

described by ~q = ~q(s).
As it turns out, the ray can be determined independently from S, which can

be shown by multiplying (1.17) by n and differentiating once more with respect
to s, i.e.,

d

ds

(
n

d~q

ds

)
=

d

ds
∇S = HS

d~q

ds
, (1.18)

where HS is the Hessian matrix of S, the matrix of second derivatives of S
defined as the Jacobi matrix of ∇S. Next, we apply the vector calculus identity
1
2∇‖~v‖2 = J(~v)~v, where J(~v) is the Jacobi matrix of ~v. We set ~v = ∇S, so that
we obtain HS∇S = 1

2∇(‖∇S‖2) = 1
2∇n2 by the eikonal equation (1.9). This

yields the ray equation5, i.e.,

d

ds

(
n

d~q

ds

)
=

1

n
HS∇S =

1

2n
∇n2 = ∇n. (1.19)

The ray equation allows us to find the energy pathways through an optical
system in a relatively easy fashion. A single ray can be found without solving
the eikonal equation (1.9), a nonlinear PDE, first. Moreover, from the ray
equation it’s straightforward to see that rays travel in straight lines whenever
the refractive index is constant, since the right-hand side of the ray equation
then equals zero.

5Compare the ray equation to Newton’s second law of motion. Interestingly, the refractive
index acts as both mass and potential.
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1.2.2 Hamiltonian optics

William Rowan Hamilton.

The ray equation, a second-order equation, can
be cast into a Hamiltonian system, two first-order
equations [11]. This is possible by defining the
momentum as

~p = n
d~q

ds
. (1.20)

Clearly, using this definition (1.19), we can rewrite
the ray equation into a first-order system of ODEs,
given by

d~p

ds
= ∇n, (1.21a)

d~q

ds
=
~p

n
. (1.21b)

Rewriting the second-order ODE in terms of two
first-order ODEs is a standard trick in ODE theory. However, the system can
also be formulated as a Hamiltonian system with Hamiltonian H(~q, ~p ) = ‖~p ‖−
n(~q ). Hamilton’s equations are defined as

d~q

ds
= ∇~pH =

~p

‖~p ‖ , (1.22a)

d~p

ds
= −∇~qH = ∇n. (1.22b)

Note that the Hamiltonian system is equivalent to (1.21) and consequently the
ray equation (1.19) only if H = 0. We could compute solutions to the Hamilto-
nian system for any value of the Hamiltonian, but only for the case that H = 0
will the pair (~q, ~p ) represent a physical ray. From here on out, we’ll only look
at physical rays that have H = 0.

The momentum of a light ray must lie on Descartes’ sphere,
i.e., it must satisfy ‖~p ‖ = n.

Fortunately, one particular property of Hamiltonian systems is that the
Hamiltonian is constant if it does not explicitly depend on s, which is easily
demonstrated,

dH

ds
= ∇~qH · d~q

ds
+∇~pH · d~p

ds
= 0. (1.23)
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Hence, if the initial momentum lies on Descartes’ sphere, the condition H = 0
will be satisfied for all s > 0, so that Hamilton’s equations (1.22) are indeed
equivalent to the ray equation (1.19).

To complete our review of geometric optics, we’ll now derive Fermat’s prin-
ciple, which follows directly from the fact that rays satisfy Hamilton’s equations.

Fermat’s principle states that a light ray travelling between
two points in space will follow a path such the that optical path
length is stationary. Given the collection of all curves C with
fixed endpoints ~q0 and ~q1, a light ray will make (1.11) stationary,
i.e., a maximum, minimum or saddle point.

This is the modern version of Fermat’s principle. Fermat’s original principle
stated shortest travel time, which is actually equivalent to shortest optical path
length. Fermat, however, didn’t know that there are also physical solutions that
maximise travel time. A Hamiltonian system is equivalent to an extremal of the
action [12], given by

S =

∫

C

~p · d~q

ds
−H ds, (1.24)

where we denote the action S since we’ll later show that it’s equal to the optical
path length. The action S attaches a real number to each curve C that has fixed
endpoints ~q0 and ~q1. The integrand is called the Lagrangian L = d~q

ds · ~p − H.
Contrary to the Hamiltonian, which is interpreted as a function of ~q and ~p, the
Lagrangian is to be interpreted as a function of ~q and ~q ′ = d~q

ds , where ~q ′ is
considered the independent variable using the relation (1.20). Applying small
variations δ~q and δ~p, we see that

∫

C

(~p+ δ~p ) · d

ds
(~q + δ~q )−H(~q + δ~q, ~p+ δ~p ) ds =

S +

∫

C

dδ~q

ds
· ~p+

d~q

ds
· δ~p− ∂H

∂~q
· δ~q − ∂H

∂~p
· δ~p ds+ o (‖δ~q ‖) + o (‖δ~p ‖) ,

(1.25)

where ∂
∂~q = ∇~q, etc. Integration by parts yields of the term involving the

derivative of δ~q yields

δS =

∫

C

(
d~q

ds
− ∂H

∂~p

)
· δ~p−

(
d~p

ds
+
∂H

∂~q

)
· δ~q ds+ ~p · δ~q1 − ~p · δ~q0, (1.26)
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where the boundary term vanishes since the endpoints of the ray are fixed,
meaning δ~q0 = ~0 and δ~q1 = ~0. This produces Hamilton’s equations (1.22) if
we demand that δS vanishes for all small variations in position and momentum
by the Fundamental Lemma of the Calculus of Variations [13, 14]. Hence, the
trajectory of a ray results in an extremum of the action. All that’s left to do is
to show that the action is equal to the optical path length to recover Fermat’s
principle. For this, we need to take a closer look at the Lagrangian.

For physical rays we saw that H = 0, while moreover using ~p = n(~q )~q ′ yields

S =

∫

C

n
(
~q(s)

)
ds, (1.27)

which is nothing but the optical path length (1.11). As we’ve already seen,
Fermat’s principle provides the formal solution to the eikonal equation (1.9).
As advertised light rays, physical solutions to (1.22), therefore extremise the
optical path length6.

Note that S is a path integral, so that we should actually use L(~q, ~q ′) =
n(~q )‖~q ′‖. This is important to note, since we may then interpret the ray equa-
tion as the Euler-Lagrange equation for the extremum of the optical path length
(1.11), i.e.,

~0 =
d

ds

∂L

∂~q ′
− ∂L

∂~q
=

d

ds

(
n
~q ′

‖~q ′‖

)
−∇n, (1.28)

which yields the ray equation (1.19) if we use again the fact that ‖~q ′‖ = 1.
Thus, we’ve found four equivalent formulations of geometric optics: the eikonal
equation (1.9), the ray equation (1.19), the Hamiltonian system (1.22) and fi-
nally Fermat’s principle that the optical path length (1.27) is stationary. The
logical structure is as follows:

Maxwell’s eqs ⇒ eikonal eq

Fermat

Hamilton’s eqs
⇔

⇔
ray eq ⇔

⇔

All are equivalent since we’ve shown a cycle of implications: the eikonal equa-
tions implies the ray equation, while the ray equation implies Hamilton’s equa-

6Usually, the relation between Fermat’s principle and Hamilton’s equations is presented
the other way around. Fermat’s principle is proved from Lagrange’s integral invariant, which
in turn follows from the fact that the ray direction field has zero curl.
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tions, which in turn implies Fermat’s principle. Fermat’s principle, finally, im-
plies the eikonal equation since it provides its formal solution. All have their use
and application, but depending on the problem there can be one that is most
easy to work with. We’ll focus on the Hamiltonian formulation.

1.2.3 Conservation of étendue

Hamiltonian systems satisfy another interesting property: phase space volume
is conserved. Any volume element will have constant volume under transforma-
tions generated by Hamilton’s equations. As this statement requires a bit more
work to prove, we’ve formulated it in the following theorem. First, however, we
present a basic lemma from fluid dynamics, from which the result will follow
immediately.

Lemma 1.1. ( [15], pp. 15) Given the motion of a fluid particle that is defined
by a velocity field ~v, i.e.

d~x

dt
= ~v(t, ~x), (1.29)

the Jacobian determinant J = det
(
∂~x
∂~x0

)
of the transformation satisfies the

following ODE along the motion of the fluid particle,

dJ
dt

= J∇ ·~v. (1.30)

Thus, the following theorem is evident.

Theorem 1.1. ( [12], Chapter 3, Section 16, pp. 69, Theorem 1) For a suffi-
ciently smooth Hamiltonian, volume is conserved under the action of Hamilton’s
equation (1.22), i.e., let J be the determinant of the Jacobi matrix of the trans-
formation (~q0, ~p0) 7→ (~q(s), ~p(s)), then J = 1.

Proof. It’s sufficient to prove that the velocity field defined by Hamilton’s equa-
tions (1.33) is divergence-free. In particular, we have ~v = (∇~pH,−∇~qH),
whereby the divergence of this velocity field is given by

∇~q ·(∇~pH)−∇~p ·(∇~qH) = 0.

The order of the differential operators can be interchanged since H is assumed
sufficiently smooth. Moreover, the initial condition of the Jacobian matrix is
the identity matrix, so that J (0) = 1.
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In optics, the concept of volume in phase space is known as étendue7.

Étendue, i.e., volume in phase space, is conserved under the ac-
tion of Hamilton’s equations. In particular, any volume element
has a constant size.

1.2.4 Illumination setting

In illumination optics, it’s not very useful to describe the system in terms of the
arc length along each ray. It’s often more desirable to know the light distribution
as a function of the spatial coordinates. For instance, it’s often more useful to
know the light distribution on a wall rather than on some deformed sphere of
fixed optical path length.

To facilitate matters, we recast the Hamiltonian system (1.22) in terms of
the third component of ~q, which we call z. As z will be used as the evolu-
tion coordinate, the remaining positional degrees of freedom are the first two
components of the position, which are collected into the now two-dimensional
vector q. Similarly, we’ll call pz the third component of ~p and p the remaining
components, leading to

~q =

(
q
z

)
and ~p =

(
p
pz

)
. (1.31)

Since the momentum ~p is confined to Descartes’ sphere, we only need to specify
the first two components of the momentum and the sign of pz to recover the
three-dimensional vector ~p, i.e., pz = ±

√
n2 − |p|2. The manifold of all positions

and momenta q and p is called phase space P. Hence, a point in phase space
together with the sign of pz is sufficient to completely specify a ray. Note that
phase space is only the product of position space Q and momentum space P if
the refractive index is constant.
It’s often useful to take z as the optical axis, as most optics have some axis of
symmetry. A plane given by some fixed z is called a screen, which is a plane
orthogonal to the optical axis in the case of Cartesian coordinates. The relations
between q and p and their three-dimensional cousins are sketched in Figure 1.3.

The coordinate z doesn’t necessarily need to be some rectilinear coordinate,
it may equally well be the radial distance if the problem is easier to treat in

7Gilles Vissenberg, Function Owner Illumination Optics at Philips Lighting, was an in-
structor for the Philips HTO course at the time I did it. He instilled in me the understanding
of just how important conservation of étendue is.
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q~q

z z

~p
p

pz

Figure 1.3: Sketch of the screen at z and the relation between the two forms of
position and momentum.

spherical coordinates. We can describe geometric optics in terms of z due to
the stationary nature of lighting, lamps tend to be fixed. Alternatively, we
may use an argument similar to the geometric optics limit: the time scales
involved in everyday life are much longer than the time it takes light to travel
everyday distances, even if the lighting itself changes rapidly in terms of human
perception. The speed of light might as well be infinite as far as we’re concerned.

The quantities q and p also satisfy a Hamiltonian system, which can be de-
rived from (1.22). Moving along z a little bit changes the position and momen-
tum of each ray on the screen. The relation between s, z and the displacement
on the screen can be related to the momentum and its z-component. These
relations are sketched in Figure 1.4.

ds

dz

dq

n

pz

p

θθ

Figure 1.4: Sketch of the relation between ds,dz and the displacement dq on
the screen as related to the momentum and its components.

To find how q and p evolve as functions of z, we apply the chain rule and
use (1.33), yielding

dq

dz
=

dq

ds

ds

dz
=

p

n

ds

dz
, (1.32a)

dp

dz
=

dp

ds

ds

dz
=
∂n

∂q

ds

dz
, (1.32b)

where ∂n
∂q is composed of the first two components of ∇n. Since z is the third

component of ~q, we see that ndz
ds = pz, so that ds

dz = n
pz

. Clearly, since ‖~p ‖ = n,
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we have that ‖p‖ ≤ n, which can be expressed by stating that the momentum
on the screen has to lie within Descartes’ disc.

The evolution of q and p can be formulated as a Hamiltonian
system, i.e.,

dq

dz
=
∂h

∂p
= σ

p√
n(z,q)2 − ‖p‖2

, (1.33a)

dp

dz
= −∂h

∂q
= σ

n(z,q)√
n(z,q)2 − ‖p‖2

∂n

∂q
. (1.33b)

The Hamiltonian is now given by

h(z,q,p) = −σ
√
n(z,q)2 − ‖p‖2 = −pz, (1.33c)

with σ = sgn
(

ds
dz

)
representing backward (σ = −1), marginal

(σ = 0, propagating perpendicular to z) or forward travelling
rays (σ = 1), respectively. Throughout this work, we use σ = 1
unless mentioned otherwise.

Note that now the Hamiltonian may depend explicitly on z, since n depends
on ~q. The z-evolution of the Hamiltonian is now given by

dh

dz
=
∂h

∂q
· dq

dz
+
∂h

∂p
· dp

dz
+
∂h

∂z
=
∂h

∂z
. (1.34)

Hence, the Hamiltonian will only be preserved in the special case that n doesn’t
depend on z. Such optics are called guides [16].

1.3 Snell’s law and Snell’s function

In the absence of smoothly varying refractive index fields, Snell’s law and the
law of specular reflection are the basic laws of geometric optics. Snell’s law was
discovered over a millennium ago and has been lost and rediscovered several
times over the course of history. Supposedly, Ptolemy of Alexandria had an
approximate law roughly 100 AD, while Ibn Sahl had an accurate representation
in 984 AD [17, 18]. Independently, Alhazen also formulated an approximate
law around 1021 [19]. These works were unknown in western science, where
Thomas Harriot discovered the law in 1602, but did not publish his findings
[20]. The law was eventually named after Willebrord Snellius, a Dutch scientist
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who described it in 1621 [21]. Snellius didn’t publish his findings either, but
Christiaan Huygens popularised Snellius as the discoverer. It was, in the end,
Descartes who first published the sine law in his Dioptrique of 1637 [22].

Willebrord Snellius.

With all our previous machinery in place, Snell’s
law is straightforward to derive. Suppose a ray hits
an interface at some point, where the refractive index
jumps from n1 to n2, while the interface has local unit
normal ~ν. We align the z-axis with the normal, while
we choose the origin of the position such that the ray
hits the surface at ~q = ~0. Using the Hamiltonian sys-
tem (1.33), we see that ∂n

∂q vanishes for this particular
choice of coordinate system. Hence, we see that p is
conserved across the interface, which is the tangen-
tial momentum. However, due to the orientation of
the z-axis, p represents the momentum parallel to the
interface, so that the change in momentum can only
occur perpendicular to the interface. From this rea-

soning, we immediately find that the transmitted momentum must lie in the
plane spanned by ~pi and ~ν. This plane is called the plane of incidence. Further-
more, since the change in momentum is in the same direction as the normal, we
have

~ν = ± ~pi − ~pt

‖~pi − ~pt‖
, (1.35)

where ~pi is the incident momentum and ~pt is the transmitted momentum. The
sign of ~ν is such that ~pi ·~ν ≤ 0. This statement (1.35) provides a full description
of Snell’s law, but we’ll now manipulate it somewhat to lead to a more familiar
form. The cross product of any vector with itself is zero, hence taking the cross
product of (1.35) with ~ν yields

~pi ×~ν = ~pt ×~ν. (1.36)

This is again the same statement that tangential momentum is preserved, ex-
pressed differently. Using another property of cross products, we find

‖~pi‖ sin θi = ‖~pt‖ sin θt (1.37)

where θi is the angle of incidence and θt is the angle of transmittance. Due to
the sine, there is an ambiguity in the definition of the angles. The convention is
that both θi and θt are always measured positive, see Figure 1.5. Furthermore,
the momenta have to lie on Descartes’ sphere, so that ‖~pi‖ = n1 and ‖~pt‖ = n2,
where n1 and n2 are the refractive indices.
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Consider a light ray propagating in a medium with refractive
index n1 that’s incident to an interface where the refractive in-
dex changes to n2. Snell’s law states that the direction of a
light ray is changed discontinuously according to

n1 sin θi = n2 sin θt. (1.38)

The transmitted ray lies in the plane of incidence, i.e. the plane
spanned by the incident ray and the local surface normal.

Snell’s law should look familiar to anyone who went to high school. Note
that it uses only local information, which is to say only the surface normal at
the point of impact of the incident ray is needed. Hence, for a given ray, Snell’s
law does not depend on the curvature of the surface.

The careful reader will now realise that Snell’s law doesn’t necessarily always
admit a solution θt. In particular, when n1 > n2, there’s a range of angles where
(1.38) doesn’t admit a real-valued solution θt. Incident rays with angles in this
range suffer total internal reflection (TIR). For the situation that n1 > n2, we
can define a critical angle θc, where rays incident at the critical angle will cause
a transmitted ray with angle π

2 . Hence, by definition, rays with θi > θc are
reflected and rays with θi ≤ θc are transmitted. The critical angle is can be
found by setting θt = π

2 in Snell’s law, yielding

θc = arcsin

(
n2

n1

)
. (1.39)

As angles are represented by momenta in phase space, we can associated with
the critical angle a set of critical momenta.

By convention, the incident angle is always positive, while a reflected ray an-
gle is always negative. Therefore, the law of specular reflection can be expressed
as

θr = −θi, (1.40)

again together with the restriction that the reflected ray lies in the plane of
incidence. Note that using n2 = −n1 in (1.38) results in sin θr = − sin θi,
implying (1.40). Hence, a mirror can be thought of as an optical transition to
the negative refractive index.

The conclusion of all the above considerations is presented in the following
theorem. The result of the theorem is, of course, well known. However, we be-
lieve the derivation is new. Alternative derivations can be found in for instance
Chaves, see [2], Chapter 12, pp. 403–407.
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n1 n2

~i

~ν

~t

θi

~e1

~e2

θt
−θi

~r

Figure 1.5: Incoming ray with unit vector ~i is refracted to the transmitted ray
with unit vector ~t. The reflected ray has unit vector ~r.

Theorem 1.2. Snell’s function
Consider a ray with momentum p incident on an interface with surface normal
~ν at the point of incidence. At the interface the refractive index changes discon-
tinuously from n1 to n2. The ray’s momentum after encountering the interface
is given by p′ = S(p;n1, n2,ν), with S defined as,

S (p;n1, n2,ν) :=

{
p−

(
ψ + sgn (n2)

√
δ
)
ν if δ ≥ 0,

p− 2ψν if δ < 0,
(1.41a)

where
δ := n2

2 − n2
1 + ψ2 (1.41b)

and ψ := ~p ·~ν. Here, ~p and ~ν are the R3-vectors, while p and ν are their first
two components, respectively.

Remark. Note: ν can be used as an input parameter for S instead of ~ν. The
first two components of ~ν provide us with enough information, since ‖~ν‖ = 1.
In particular, we have

ψ = p ·ν ±
√
n2

1 − |p|2
√

1− |ν|2, (1.41c)

where we have to choose the sign such that ψ ≤ 0, which follows from the angle
convention discussed earlier.
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Proof. 1. To simplify our calculations, we’ll first construct an orthonormal
basis {~e1, ~e2} that spans the plane of incidence. Due to the angle convention,
an obvious choice for the first basis vector is

~e1 = −~ν.

The second basis vector can be found by applying the Gram-Schmidt procedure
to the incident unit vector ~i = ~pi

n1
, yielding

~e2 =
~i− ϕ~ν√

1− ϕ2
,

where ϕ :=~i · ~ν ≤ 0. Since the vectors occurring in the expression of ϕ are unit
vectors, we have ϕ = − cos θi, so that we can write the sine of θi as

sin θi =
√

1− ϕ2.

Applying (1.38), we find

sin θt = η12

√
1− ϕ2, cos θt =

√
1− η2

12(1− ϕ2),

where η12 := n1

n2
. Due to our choice of basis vectors, the direction vector of the

transmitted ray can be expressed as

~t = cos θt~e1 + sin θt~e2.

Hence, we find ~t as

~t = η12
~i−

(
η12ϕ+

√
1− η2

12(1− ϕ2)

)
~ν.

Recall that the three-dimensional momentum vector lies on Descartes’ sphere,
meaning ~pt = n2~t and ~pi = n1

~i, whence

~pt = ~pi −
(
ψ + sgn (n2)

√
δ
)
~ν, (∗)

with ψ := n1ϕ = ~pi · ~ν and δ := n2
2 − n2

1 + ψ2.
2. Whenever n2 < n1, there are angles at which δ < 0, giving imaginary

momenta. These are not physical solutions to Snell’s law and must therefore
be discarded. In these instances, light suffers total internal reflection and we
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must apply the law of specular reflection. As one can see in Figure 1.5, the
component of ~i in the direction of ~ν is reversed, so that we have

~r =~i− 2(~i · ~ν)~ν.

Multiplying with n1, we obtain the law of specular reflection in momentum
form,

~pr = n1~r = ~pi − 2ψ~ν,

where ψ is as defined earlier.
3. The phase space quantity p is composed of the first two components of ~p.

Likewise, ν is defined as the first two components of ~ν. Compiling all previous
information into a single function, we obtain (1.41).

Remark. We’ll often write p′ = S(p) and take the parameters as understood.

Remark. We’ve left the sign of n2 in the expression of (1.41a) so that Snell’s
function can accommodate mirrors embedded in a medium of refractive index
n1 by choosing n2 = −n1. This results in

√
δ = |ψ|, while ψ ≤ 0 so that

ψ + sgn(n2)
√
δ = 2ψ. In this case, the refraction part of Snell’s function is

therefore equal to the reflection part.

We’ll refer to S defined in (1.41) as Snell’s function, which also allows us to
tackle the reverse problem: given a ray with momentum p′ in a medium with
index n2, find a ray with momentum p in a medium with index n1 such that,
when refracted, S(p;n1, n2,ν) = p′.

Corollary 1.1. Backward ray problem
Given a ray with momentum p′, the ray with momentum p such that, when
refracted, will end up with momentum p′ is given by

p = −S (−p′;n2, n1,−ν) . (1.42)

Proof. We apply the Helmholtz reciprocity principle [9], to find that we can re-
verse ray directions with impunity. Recalling the angle convention and applying
Snell’s function results in (1.42).

1.4 Overview of this work

With this quick overview of geometric optics, we conclude the first chapter of
this thesis. The rest is organised in the following way.



24 CHAPTER 1. INTRODUCTION

• Part one, which includes this chapter, discusses the fundamentals of illu-
mination optics. This includes a discussion on ray tracing techniques and
a more global approach based on phase space distributions and Liouville’s
equation, a hyperbolic PDE.

• Part two discusses computational methods for hyperbolic PDEs in antici-
pation of the third part. We visit three numerical methods in their original
setting.

• Part three presents methods for the numerical solution of Liouville’s equa-
tion. The numerical schemes discussed in the previous part are applied to
Liouville’s equation. All of them require some adaptation to the unique
challenges posed by optical interfaces.

• Part four discusses optimal design, the application of optimal control the-
ory to Liouville’s equation. We discuss both the optimal design of smooth
refractive index fields and freeform interfaces.

• Part five presents conclusions and future research suggestions.



Chapter 2

A magic bullet

Do it right or don’t do it at all.

Ray Charles

In the previous chapter, we showed that rays are the pathways along which
electromagnetic energy is transported. Light, as seen by humans, is nothing
more than a sensation of that energy. More energy in a single spot means the
spot looks brighter. We’re therefore interested in how the energy gets directed
given a light source and an optic. This will at once show what the arrangement
of light will look like. Ray tracing is a straightforward approach that allows us
to find out where the energy ends up [23,24].

It’s also possible to do what’s known as backward ray tracing, starting at
the target and tracing the rays back to the source. This method is in general
preferable as it resolves many of the issues that plague forward ray tracing,
such as the lack of energy conservation. However, in many cases, it’s unknown
beforehand where the light is going to end up. Forward ray tracing is then first
needed to determine the boundaries of the light distribution on the target, see
e.g. Filosa et al. [25]. For this reason, whenever we’re talking about ray tracing,
we’ll mean forward ray tracing.

We can identify three important ingredients of any ray tracing method to
compute a light distribution. First, a suitable set of initial conditions, meaning
ray starting positions and angles, or a good method of generating them. Second,
the actual ray tracer that computes the energy pathways through a given optic.
Taking a hint from Ray Charles, this part should work well and give reliable

25
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results. Third and finally, a reconstruction technique to determine the energy
distribution from a set of point values.

In this chapter, we’ll focus mainly on the second part of such a method,
the actual ray tracer. We won’t concern ourselves with the generation of initial
conditions or the reconstruction of an energy distribution. We’ll simply take
those as given.

2.1 Elementary ray tracing strategies

There are roughly two types of optics that occur in practice: optics with
smoothly varying refractive index fields, and optics with piecewise constant
refractive index fields. The first are somewhat rare to encounter, but with the
advent of 3d printing technologies, perhaps they’ll be a lot more common in the
future [26–30]. The second type of optics are dominant by far, mainly due to
the relative ease of production. Examples include mirrors, lenses and free-form
surfaces.

2.1.1 Smooth refractive index fields

A smoothly varying refractive index field is not so common in practice, although
there are such things as gradient index (GRIN) lenses and certain fibre optics
that use smooth index fields to contain light. Whenever the refractive index
field n is sufficiently smooth, Hamilton’s equations (1.33) are well-posed and
admit classical solutions, i.e. rays themselves are smooth curves.

In this case, it’s prudent1 to use special structure-preserving integrators [31].
We’ll not go into it here, but it’s well known that Hamilton’s equations generate
symplectic transformations. The essential property of such transformations is
that they preserve the symplectic two-form2 [12]. We’ll not go into the specifics
here, but one can think of it as a more general version of the conservation of
étendue. In fact, preservation of the symplectic two-form implies conservation
of volume in phase space. A nonexhaustive selection of numerical integrators
that respect this property are the leap-frog method, their generalisations in the
form of Yoshida integrators [32] and specialised Runge-Kutta integrators [33,34].
Noteworthy among the last one are the methods that bear Gauß’s name [35].

1I’ve always failed to see the necessity of symplectic integrators for most optics, see the
appendix for a short essay.

2This is a concept from differential geometry, a branch of mathematics I find rather beauti-
ful. Some authors, like Vladimir Arnold, claim that no study of classical mechanics is complete
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Figure 2.1: Elliptic guide with n0 = 1.4 and κ chosen such that n(1) = 1. Several
rays, meaning solutions to Hamilton’s equations (1.33), starting at q = 0 have
been plotted for various momenta.

Figure 2.1 shows several rays in an elliptic guide, given by

n(q) =

{√
n2

0 − κ2q2 if |q| ≤
√
n2
0−1

κ ,

1 otherwise,
(2.1)

which is a smooth guide meant to contain light much like an optical fibre.
The refractive index must be great than 1 everywhere, so that n0 > 1. The
sign of κ doesn’t matter for the shape of the profile, but for convenience we’ll
assume κ > 0. We’ll look for forward travelling (σ = 1) solutions of Hamilton’s

equations (1.33) that remain inside the region |q| ≤
√
n2
0−1

κ . Note that n doesn’t
depend on z, which is the definition of a guide, so that h is a constant, see (1.34).
Therefore, we have h = −

√
n2

0 − κ2q2 − p2 is a constant from which it follows
that

κ2q2 + p2 = n2
0 − h2. (2.2)

Whereas the right-hand side is constant, q and p on the left-hand side change
dynamically as we traverse along z. Hence, each ray orbits in a closed elliptical
path in phase space, which is why this guide is called elliptic.

The elliptical GRIN profile provides an interesting special case that can
be solved exactly. We first manipulate Hamilton’s equations (1.33) a little by
rewriting them as

dq

dz
= − p

h
,

dp

dz
=
∂h

∂q
=
n

h

dn

dq
=

1

2h

dn2

dq
.

(2.3)

without studying the differential geometric side of it.
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Plugging in the elliptic guide profile (2.1) results in

dq

dz
= − p

h
,

dp

dz
=
κ2

h
q.

(2.4)

Once again, κ and h are both constants, so that differentiating the position
equation with respect to z and using the momentum equation results in

d2q

dz2
= −κ

2

h2
q. (2.5)

Hence, rays are sinusoidal in the elliptic wave guide, though it has to be noted
that the spatial frequency κ

|h| depends on the initial conditions through the

Hamiltonian3. Using the ansatz q(z) = A sin
(
κ
|h|z
)
+B cos

(
κ
|h|z
)

quickly results

in the general solution

q(z) = q0 cos

(
κ

|h|z
)

+
p0

κ
sin

(
κ

|h|z
)
,

p(z) = p0 cos

(
κ

|h|z
)
− κq0 sin

(
κ

|h|z
)
,

(2.6)

where the initial conditions are given by (q(0), p(0)) = (q0, p0). In the paraxial
approximation, meaning |q0| � 1 and |p0| � 1, we have h = −n0 + O(p2

0) +
O(q2

0). Therefore, rays that stay close to the origin have nearly the same spa-
tial frequency and thus will be approximately in sync. As we progress down
the optical axis, the rays will increasingly de-sync with an accumulating phase
difference, which is clearly visible in Figure 2.1.

2.1.2 Piecewise constant refractive index fields

Conventional optics, represented by piecewise constant refractive index fields,
are by far the most common type of setting for optical and illumination prob-
lems. Such fields are identified with shaped optical interfaces like mirrors and
lenses. Snell’s law and the law of specular reflection in conjunction with specif-
ically designed interfaces are what guides light toward its eventual target. The

3Compare (2.5) to the motion of a massive particle in a quadratic potential, ẍ = − k
m
x,

with k the spring constant and m the mass. To me, this is the clearest example of how the
refractive index plays the double role of both mass and potential.
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basic strategy is to compute the intersection point of a ray with an interface
and to change the ray direction there accordingly. This process is repeated
until the target is reached. Such methods are also symplectic, albeit implic-
itly, since Snell’s law and the law of specular reflection are in fact canonical
transformations [16,36,37].

Ray tracing, put in the simplest possible terms, is a four-step process de-
scribed by the following.

Algorithm 1 Basic ray tracing procedure

Choose a suitable initial condition for the ray.
repeat

Find the intersection point with the first surface the ray encounters.
Apply Snell’s law or the law of specular reflection accordingly.

until the target surface is reached.

Clearly, these steps should be repeated for each ray independently, which
gives some potential for a parallel implementation. Any ray tracing method
uses an infinite straight-line representation of the ray, hence the reliability of
this process comes down to the reliability of finding intersection points of the
line with optically active surfaces. In the simplest situation, therefore, this
means selecting the interface that is intersected first along the line. In more
complicated cases, the line can intersect a curved surface multiple times and
the proper intersection point has to be found. As it turns out, there are no ray
tracing methods that come with a guarantee to find the proper intersection point
for general optics, at least not that we’re aware of. We’ve developed a method
that gives full guarantees in two-dimensional optics and some guarantees in the
case of rotationally symmetric three-dimensional optics.

2.2 Magic Bullet

In two-dimensional optics, constructing robust ray tracing methods is relatively
easy, which is due to the fact that rays are straight lines in the plane. As such,
we’ll start with a ray tracing algorithm that is guaranteed to succeed for two-
dimensional optics. We’ll then later extend this method to three-dimensional
optics that exhibit rotational symmetry. Both algorithms are referred to as the
Magic Bullet4.

4One of the things I like about composing algorithms is that you get to name them.
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For either version of the problem, the following theorem is of the utmost
importance.

Theorem 2.1. (Bolzano) Let f : [a, b] → R be a continuous function such
that f(a) · f(b) < 0. Then there exists at least one root of f in the open interval
(a, b). Furthermore, if f is monotone on [a, b], the root is unique.

Bolzano’s Theorem is a special case of the Intermediate Value Theorem,
which was proved by Bolzano in his original text [38, 39]. We’ll not provide a
proof here, though we mention that the proof involves the completeness of the
real numbers.

One of the simplest possible methods to subsequently find such a root is the
bisection method , see e.g. Gautschi [40]. The method starts with the interval
[a, b] and iteratively halves the interval while maintaining the sign change. As
an algorithm, bisection requires a stopping criterion, which is usually taken to
be that the relative size of the interval falls below a specified tolerance5. Thus,
taking as input the function f , the values a, b and tolerance ε, the bisection
method can be implemented as Algorithm 2.

Algorithm 2 Bisection

while |b− a| ≤ ε|b| do
m← a+ b−a

2 .
if f(m) = 0 return m
if f(a)f(m) > 0 then

a← m
else

b← m
end if

end while
return b

This simple little algorithm is the basis of many robust root-finding methods
and the reason is explained by the following lemma.

Lemma 2.1. Under the assumptions of Bolzano’s Theorem, the bisection algo-
rithm is guaranteed to converge. That is, it returns either an approximation to
the root with relative error ε, or it returns the exact root.

5There’s a subtle difference between methods and algorithms: mathematical methods can
run forever, while a sound algorithm must terminate after a finite number of steps. Often, an
exit condition must be specified to turn a method into an algorithm. The line separating the
two is often blurry, but I’ll try to be precise.
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Proof. Suppose that the exit conditions are not met, then the interval size is
halved at every step. Thus, as long as the exit conditions are not met the
interval size can only get smaller. Furthermore, it’s easy to check that int[a, b]
always brackets a sign change. By Bolzano’s Theorem, the root is therefore
always contained in the interval. Note that b has at most an absolute error
of |b − a|. Therefore, if the exit conditions are met, b has at most a relative
error of ε. Finally, we remark that if m happens to hit upon an exact root, the
algorithm exits with the exact root.

The combination of these two insights allows us to identify the goal of a
robust ray tracing algorithm, namely to identify a “good bracket”. That is to
say an interval, also called a bracket, enclosing the correct root with a sign
change. Once we’ve found one, Bolzano’s Theorem and the bisection algorithm
guarantee that we can compute the correct root. Hence, if we specify in any of
our algorithms to find a root using a bracket, one can imagine that the bisection
algorithm is performed. In practice, we’d use a root-finder that is faster and
more efficient, but more on this in the next chapter.

2.2.1 Two-dimensional optics

Let the ray be parametrised by its arc length s, so that

x(s) = x0 + sv, s ≥ 0, (2.7)

where x0 = (x0, z0)T and v = (L,N)T a unit vector. The surface is described
by a piecewise smooth function ζ, called the surface sag, i.e.,

z = ζ(x), (2.8)

for a ≤ x ≤ b. In the following, the surface sag ζ is assumed to be at least
piecewise twice differentiable. Finding the impact point of a ray with the surface
amounts to finding the first intersection point between the smooth function ζ
and a straight line. With some abuse of terminology, we’ll refer to this straight
line as the ray as well. Hence, we’re looking for the smallest s > 0 such that

∆z(s) = ζ(x0 + sL)− (z0 + sN) = 0, (2.9)

where ∆z is called the vertical signed distance function. We assume without loss
of generality that ∆z(0) > 0, i.e., the ray starts below the surface and moves
towards it so that N > 0. For rays starting above the surface we simply flip the
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whole problem upside down. Rays starting below the surface with N < 0 will
never hit it.

The main idea behind the Magic Bullet Algorithm is to first find out whether
or not the ray intersects the surface. If the answer is positive, the algorithm
should also provide a suitable search bracket containing a unique root. The
approach is to divide the surface into pieces that are either convex or concave.
This for two reasons: first, a convex or concave function intersects a straight
line at most twice; second, the second derivative of ∆z has the same sign as ζ ′′.
The first property allows us to identify the correct intersection point, whereas
the second property provides smooth convergence for the eventual root-finder.

The division of the surface is done by performing the following algorithm.

Algorithm 3 Bounding triangles

1: Find all points where ζ ′′(x) = 0 or ζ ′(x) = 0 and the endpoints a and
b. If the surface is given piecewise, include the breakpoints. Collect these
x-values into the ordered set R.

2: Construct the bounding triangles of each segment by the secant line and the
two tangent lines.

An example of a result returned from this preprocessing step is shown in
Figure 2.2.

The bounding triangles are used to test for an intersection with the smooth
surface. We construct two piecewise linear surfaces from the bounding triangles,
one which is entirely above the surface and the other entirely below. Clearly,
any ray that intersects both surfaces must also intersect the smooth surface in
between. Since the surfaces are piecewise linear, the intersection with the ray can
be calculated analytically. In particular, if the surface is locally concave, there
is no way in which the ray can intersect the bottom surface without intersecting
the top surface as well, see Figure 2.3.

In two dimensions, regular rays may be classified by the fact that they in-
tersect both the top and bottom surface.

Lemma 2.2. A regular ray intersects the surface exactly once while ∆z(sB) > 0
and ∆z(sT ) < 0.

Proof. 1. By construction of the top and bottom surfaces, we have ∆z(sB) > 0
and ∆z(sT ) < 0. Likewise, we must have both ∆z′(sB) < 0 and ∆z′(sT ) < 0,
as the ray is moving towards the surface at sB and away from the surface at sT .
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Figure 2.2: Smooth surface (blue) with critical points, p1 and p3 are extrema,
p2 is an inflection, and p4 marks edge of the optic. Points p∗1, p∗2 and p∗3 are the
intersections of the tangent lines on a single piece. The top surface is drawn in
red, while the bottom surface is drawn in green.
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b

Figure 2.3: Two-dimensional situations for a ray that intersects both bottom
and top surfaces. The intersection with the bottom surface is indicated with B,
while the one of the top surface is indicated with T .

2. The second derivative of ∆z is given by

∆z′′(s) = L2ζ ′′(x0 + sL). (2.10)

We note that ζ ′′ has a single sign by construction of the bounding triangles.
Thus, ∆z′ is monotone, whereby we find that ∆z′(s) < 0. Thus, we can conclude
that ∆z is monotone and by Bolzano’s Theorem there is a unique root in the
bracket [sB , sT ].

Thus, regular rays only intersect the surface once, while the [sB , sT ] provides
a suitable search bracket. There is an edge case where the ray is the tangent line
at one of the endpoints. This edge case is captured by any decent root-finding
algorithm that checks first if ∆z(sB) = 0 or ∆z(sT ) = 0. Naturally, the smaller
of the two should be used, which is by assumption sB . In the following, we’ll
assume these edge cases are covered by the root-finder.

On a convex piece, there is a possibility that a ray intersects only the bottom
surface without hitting the top surface. Such rays are classified as skimming
rays and extra care must be taken with them. We mark the points where
they intersect the bottom surface B1 and B2 and the associated arc lengths
sB1 < sB2 . They may or may not intersect the surface, and when they do,
there are at most two intersection points. The solution is to search first for the
minimal vertical signed distance, see Figure 2.4.

The minimal distance is found by solving the nonlinear equation

∆z′(s) = Lζ ′(x0 + sL)−N = 0, (2.11)

the solution of which is sD.
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Figure 2.4: Two-dimensional situations for a skimming ray. The first intersec-
tion with the bottom surface is indicated with B1, while the second intersection
point is indicated with B2. The minimal vertical signed distance to the surface
is indicated with D.

Lemma 2.3. Let ζ : [a, b] → R be a smooth convex function, i.e., ζ ′′(x) > 0.
Given a skimming ray, there is a unique root of (2.11), given by sD ∈ int[sa, sb].
Here, x(sa) = a and x(sb) = b.

Proof. 1. The function ∆z′ is monotonous on the interval int[sa, sb], since

∆z′′(s) = L2ζ ′′(x0 + sL),

so that ∆z′′(s) > 0 by the fact that ζ ′′(s) > 0.
2. Consider the two edges as a piecewise linear function on [a, b] and note
that this function is convex. Since the ray is a skimming ray, this means it’s a
secant line of the piecewise linear function. The derivative dz

dx = N
L of the ray

is therefore bounded as

ζ ′(a) <
N

L
< ζ ′(b). (∗)

Two edge cases can be identified where the secant line of the piecewise linear
function overlaps with one of the edges of the bounding triangle. In these cases,
the ray has an intersection at one of the end-points.
3. From (∗), we observe that Lζ ′(a) < N < Lζ ′(b) if L > 0 and Lζ ′(a) > N >
Lζ ′(b) if L < 0. Therefore, if L > 0 we find ∆z′(sa) < 0 and ∆z′(sb) > 0.
On the other hand, if L < 0, we have ∆z′(sa) > 0 and ∆z′(sb) < 0. In both
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cases ∆z′ exhibits a sign change between sa and sb. Furthermore, ∆z′ is a
continuous monotone function, so that Bolzano’s Theorem tells us there is a
unique root.

Evaluating ∆z at sD reveals whether or not the ray intersects the surface.
In particular, if ∆z(sD) > 0, the ray doesn’t intersect the interface. On the
other hand, if ∆z(sD) < 0, we know there must be a unique root in the inter-
val [sB1

, sD], since ∆z′ has a single sign on that interval. The upshot is that
[sB1

, sD] now provides a suitable bracket to find the correct intersection point
of the ray with the surface. The total procedure for one ray may be summarised
by Algorithm 4.

Algorithm 4 Ray intersection

for each bounding triangle do
if the ray is a regular ray then

Set [sB , sT ] as the search bracket and find the root s of (2.9).
if s > 0 return s, end if

else if the ray is a skimming ray then
Compute sa and sb and set [sa, sb] as the search bracket
to find the root sD of (2.11).
if sD < 0 then

Set [sB1, sD] as the search bracket and find the root s of (2.9).
if s > 0 return s, end if

end if
end if

end for
return no intersection

The order of inspection of the triangles should be starting at the smallest s
and towards increasing s. This way, the first intersection point of the surface
and the ray will be found. Note that the special cases where the ray origin is
extremely close to the source, for instance when sB < 0, are caught by checking if
the root is positive. The Magic Bullet Algorithm consists of using Algorithms 3
and 4 as subroutines. Of course, if many rays are to be traced, the bounding
triangle subroutine can be considered a preprocessing step and only has to be
performed once per surface, whereas the ray trace intersection subroutine has
to be performed at least once for each ray. Due to the previous lemmas, we can
conclude the following.
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Theorem 2.2. (Magic Bullet in 2d)
Given a piecewise smooth surface and a ray, the Magic Bullet Algorithm is
guaranteed to find the correct intersection, or else return that the ray does not
intersect the surface.

2.2.2 Rotationally symmetric optics

For rotationally symmetric optics, the problem still reduces to the problem of
finding the intersection between two curves in the (r, z)-plane, since the rays
are now hyperbolae. This complicates the goal of finding the intersection with
the smallest s-value somewhat, though the task is still manageable. As for a
guarantee as strong as Theorem 2.2, all bets are off. First, however, we explore
some basic facts about ray tracing in this setting. A ray is now given by a line
in three dimensions, i.e.,

x(s) = x0 + sv, s ≥ 0, (2.12)

where x0 = (x0, y0, z0)T and v = (L,M,N)T .

Lemma 2.4. Rays are hyperbolae in the (s, r)-plane, i.e., a ray satisfies the
equation

r2

r2
w

− (s− sw)2

β2
= 1, (2.13a)

where

sw = −x0L+ y0M

L2 +M2
, (2.13b)

r2
w = x2

0 + y2
0 −

(x0L+ y0M)2

L2 +M2
. (2.13c)

β =
rw√

L2 +M2
. (2.13d)

Furthermore, rays are also hyperbolae in the (r, z)-plane, i.e., a ray satisfies the
equation

r2

r2
w

− (z − zw)2

N2β2
= 1, (2.14a)

where

zw = z0 +Nsw. (2.14b)
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Proof. We compute the radial coordinate of a straight line given by (2.12), i.e.,

r(s) =

√
(x0 + sL)

2
+ (y0 + sM)

2

=
√
x2

0 + y2
0 + 2(x0L+ y0M)s+ (L2 +M2)s2.

Without loss of generality, we can assume that the origin point (x0, y0)T is
orthogonal to (L,M)T , as we can shift s by the appropriate amount sw. Thus,
we find

r(s) =
√
r2
w + (L2 +M2)(s− sw)2,

where rw ans sw are defined by (2.13b) - (2.13c). Hence, rearranging terms
somewhat gives (2.13a). Furthermore, z is an affine function of s, in fact we
have s = z−z0

N , which yields (2.14a) when plugged into (2.13a).

Remark. The point where a hyperbola approaches the origin closest is some-
times called the waist, hence the subscript w on all the waist coordinates.

Remark. The radial coordinate r is a convex function of s, in particular, we
have

r′′(s) =
(L2 +M2)r2

w

(r2
w + (L2 +M2)(s− sw)2)

3
2

> 0. (2.15)

This can only break down if rw = 0, in which case the ray actually consists of
two straight lines in the (r, z)-plane.

We can redefine the bounding triangle subroutine of the previous section on
a rotationally symmetrical surface by applying it in the (r, z)-plane. Each edge
of a bounding triangle is now rotationally symmetric as well, so that it’s in fact
a nappe. However, for simplicity we’ll still refer to the complex shape that the
three nappes make as the bounding triangle. Like in the two-dimensional case,
the intersections of a straight line and the edges of the bounding triangle can
be found analytically, which we’ll now demonstrate. Given a nappe described
by the equation z = a+ br, we look for intersection with a ray given by (2.12),
thus

a+ br(s) = z(s). (2.16)

Subtracting a and squaring gives

b2
(
r2
0 + 2(x0L+ y0M)s+ (L2 +M2)s2

)
= (z0 − a)2 + 2(z0 − a)Ns+N2s2,

(2.17)
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which is a quadratic equation in s, i.e., Ds2 + Es+ F = 0, where

D = b2(L2 +M2)−N2, (2.18a)

E = 2
(
b2(x0L+ y0M) +N(a− z0)

)
(2.18b)

F = b2r2
0 − (z0 − a)2. (2.18c)

We can characterise the number of intersections by the discriminant, i.e., E2 −
4DF , which as usual allows the distinction of two roots when positive, one when
zero and none when negative.

As with the two-dimensional case, the collection of bounding triangles form
a top and bottom surface, which are both nappes. If on a single piece the
ray doesn’t intersect any of the three edges of the bounding triangle, we can
confidently state that the ray doesn’t intersect the smooth surface. However,
unlike in the two-dimensional case, whenever the ray intersects the bottom and
top surfaces in a single triangle, we can only state with certainty that there is
at least one intersection. Indeed, there may be more than one.

⊗

bb

b

b

b

b

B1

B2

T

z

r

Figure 2.5: Three-dimensional rotationally symmetric optical surface (blue)
with a ray (green) that intersects the bottom surface twice and the top sur-
face once. The source of the ray is indicated with a crossed circle.

Another complication will come from the fact that a ray may intersect the
bottom surface twice and afterwards intersect the top surface, see Figure 2.5.
To avoid any confusion, when we talk about a ray being classified in one way
or another, we’ll mean that it’s classified on a certain interval. The interval is
spanned by a pair of consecutive intersections with the nappes.
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A zoo of rays

Consider the vertical signed distance function ∆z(s) = ζ(r(s)) − (z0 + sN),
where ζ is the surface sag. The surface is given by z = ζ(r) and ζ is assumed to
be piecewise twice differentiable. Like in the two-dimensional case, we assume
without loss of generality that the ray starts underneath the surface, so that
∆z(0) > 0 and N > 0.

We wish to find conditions under which we are guaranteed to find the correct
intersection point, which is given by the smallest s > 0 such that ∆z(s) = 0.
In the best case, we find an interval where ∆z is monotone and exhibits a
sign change. Bolzano’s theorem and the bisection algorithm provide us with a
guarantee that we can close in on the root. Furthermore, if ∆z is monotone,
the root is unique, this happens when the derivative has a single sign. The
derivative of ∆z is straightforwardly found, i.e.,

∆z′(s) = ζ ′
(
r(s)

)
r′(s)−N. (2.19)

Unlike in the two-dimensional case, the intersections with the edges of the
bounding triangle provide only limited information on the derivative dz

dr = N
r′(s)

of the ray. Hence, we must look to the second derivative of ∆z to glean any
information on the monotonicity of ∆z, which is given by

∆z′′(s) = ζ ′′(r(s)) [r′(s)]
2

+ ζ ′(r(s))r′′(s). (2.20)

Note that both ζ ′ and ζ ′′ determine the sign of ∆z′′(s), since r′′(s) > 0.
In this particular case of rotationally symmetric optics, we can also describe

the ray’s z-coordinate as a function of r. This leads to a slightly different
formulation of the signed vertical distance, which we’ll write

δz(r) = ζ(r)− z(r). (2.21)

Clearly, we have the relation ∆z(s) = δz
(
r(s)

)
. The ray is now given by the

curves

z(r) = zw ±Nβ
√
r2

r2
w

− 1, (2.22)

from Lemma 2.4. Note that the ray is now described by two curves, one for
z < zw and one for z ≥ zw. As a function of r, the curve z ≥ zw is increasing
concave, while the curve z < zw is decreasing convex. The derivatives of δz are
simply given by δz′(r) = ζ ′(r) − z′(r) and δz′′(r) = ζ ′′(r) − z′′(r). The sign of
δz′′ is now constant whenever ζ ′′ and z′′ have opposite sign. This discussion
leads us to the following definition.
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Regular rays intersect the bottom and top surfaces in a bounding
triangle where one of the following conditions is met:

• ζ ′′ > 0 and sB > sw,

• ζ ′′ < 0 and sT < sw,

• ζ ′′ · ζ ′ > 0.

B

T

T
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b

b

b

b

b

b

b

b

bW

b

W b

b

z

r

Figure 2.6: Sketch of some regular rays with intersection points B and T indi-
cated, together with the waist W .

Lemma 2.5. Regular rays intersect the surface exactly once while ∆z(sB) > 0
and ∆z(sT ) < 0.

Proof. 1. We start with the third case of the regular rays, namely ζ ′′(r) ·ζ ′(r) >
0. Immediately, we see that ∆z′′(s) has a single sign for all s ∈ (sB , sT ),
according to (2.20) and (2.15). Due to the fact that the ray intersects the top
and bottom surfaces, we furthermore have that ∆z′(sB) < 0 and ∆z′(sT ) < 0.
Thus, ∆z′ < 0 over the entire interval (sB , sT ) and hence ∆z is monotone.
Again, due to the fact that the top and bottom surfaces are both intersected,
we have ∆z(sB) > 0 and ∆z(sT ) < 0. By Bolzano’s Theorem, there is a unique
root in the interval [sB , sT ].
2. Next, consider the first case of the regular rays. We note that the condition
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s > sw is equivalent to z > zw and correspondingly s < sw is equivalent to
z < zw. This is due to the fact that the z-coordinate of the ray can be written
as z(s) = zw + (s− sw)N , while N > 0 by assumption. Thus, sB > sw implies
only the positive branch of (2.22) is used, so that z′′(r) < 0. We therefore find
that δz′′(r) > 0, so that δz′ is monotone. Furthermore, due to the fact that the
ray intersects both top and bottom surfaces, we also have δz′(r) < 0 at both
r(sB) and r(sT ). Thus, δz′(r) < 0 over the whole interval. Again, we note that
δz(r(sB)) > 0 while δz(r(sT )) < 0. By Bolzano’s Theorem, there is a unique
root in the interval [r(sB), r(sT )].
3. The second case of the regular rays is completely similar to 2, with the
only difference being δz′′(r) < 0. However, we still have δz′(r) < 0 over the
whole interval and a sign change in δz over the interval [r(sT ), r(sB)]. Applying
Bolzano’s Theorem once more proves the claim.

Some examples of regular rays are sketched in Figure 2.6, while the ray
sketched in Figure 2.5 would be classified as a regular ray on the interval
[sB1 , sT ]. An algorithm to find the proper intersection of a regular ray is easy
to construct, see Algorithm 5.

Algorithm 5 Regular ray subroutine

Set [sB , sT ] as the search bracket and find the root s of ∆z.
if s > 0 return s, end if
return no intersection

The second class of rays that we discuss are rays that only intersect the
bottom surface, akin to the skimming rays in the two-dimensional case.

Skimming rays intersect the bottom surface twice in a piece
where ζ ′′ · ζ ′ > 0.

Lemma 2.6. For skimming rays with ζ ′′(r) > 0, there is at most one root of
δz in the interval [rw, r(sB1

)] with z < zw and there is a unique minimum in δz
over the interval [rw, r(sB2)] for z > zw.
For skimming rays with ζ ′′(r) < 0, there are no intersections.

Proof. 1. Consider the case ζ ′′(r) > 0 , so that ζ ′(r) > 0.
1a. Suppose z < zw or equivalently s < sw. Here, we know that z is monotoni-
cally decreasing in r while ζ is monotonically increasing. Thus, δz is monotone
and any intersection point must be unique. However, as δz

(
r(sB1)

)
> 0, this
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Figure 2.7: Sketch of a skimming ray with intersection points A and B indicated,
together with D, the point of minimum ∆z.

can only happen if δz(rw) ≤ 0. Therefore, we either have a suitable interval
with sign change, namely [rw, r(sB1

)], or we immediately find the correct root
in the case that δz(rw) = 0.
1b. Suppose now that z > zw or equivalently s > sw. Here, z is concave so that
z′′(r) < 0 whereby δz′′(r) > 0. Smooth convex functions have unique minima,
provided the derivative δz′(r) undergoes a sign change. This must occur since
the ray is moving towards the surface at rw and away at r(sB2) by the fact that
it’s a skimming ray. Thus, there is a unique minimum of δz over the interval
[rw, r(sB2

)].
2. Consider the case ζ ′′(r) < 0, so that ζ ′(r) < 0.
2a. In this case, a skimming ray can only occur for z < zw. Suppose we have
a skimming ray for z > zw, which means z′(r) > 0, implying that δz′(r) < 0.
However, to be a skimming ray it must also exit through the bottom surface,

so that
∫ r(sB1

)

rw
δz′(r) dr > 0. Since rw < r(sB1

), the Mean Value Theorem then

implies that there exists some r? where δz′(r?) > 0, causing a contradiction.
Hence, skimming rays cannot occur for z < zw in this case.
2b. Since z < zw, we have z′′(r) > 0, so that δz′′(r) < 0 and thus δz is con-
cave on int[r(sB1

), r(sB2
)]. Any concave function must lie entirely above the

line segment connecting δz on the endpoints of the interval, hence there is no
intersection.
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An example of a skimming ray is sketched in Figure 2.7, while the ray
sketched in Figure 2.5 would be classified as a skimming ray on the interval
[sB1 , sB2 ]. The lemma guarantees that we can deal with skimming rays by
visiting each of the cases. An algorithm that finds the proper intersection, or
determines that there isn’t any, is given by Algorithm 6.

Algorithm 6 Skimming ray subroutine

if ζ is convex on the bounding triangle then
Compute rw.
if δz(rw) < 0 then

Set [rw, r(sB1
)] as the search bracket

and find the root r of δz with z < zw.
s← z(r)−z0

N .
if s > 0 return s, end if

else
Set [rw, r(sB2

)] as the search bracket
and find the root rD of δz′ with z > zw.
if δz(rD) < 0 then

Set [rw, rD] as the search bracket
and find the root r of δz with z > zw.
s← z(r)−z0

N .
if s > 0 return s, end if

end if
end if

end if
return no intersection

Unlike two-dimensional optics, it’s also possible for a ray to intersect the
bottom surface twice in concave pieces, i.e., pieces where only the secant edge
of the bounding triangle is below the surface. This follows from the fact that
there are two solutions of (2.17).

Dipping rays intersect the bottom surface twice in a piece
where ζ ′′ · ζ ′ < 0.

Lemma 2.7. For dipping rays with ζ ′′(r) < 0, there is at most one root of δz
in the interval [rw, r(sB1

)] with z < zw, while there is at least one minimum of
δz on [rw, r(sB2)] with z > zw.
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Figure 2.8: Sketch of a dipping ray with intersection points B1 and B2 indicated,
together with D, the point of minimum vertical distance.

Dipping rays where ζ ′′(r) > 0 can only occur for z < zw and there is at least
one minimum of δz on [rw, r(sB1

)].

Proof. 1. Consider first the case that ζ ′′(r) < 0, so that ζ ′(r) > 0.
1a. Like with the proof of Lemma 2.6, in the case that z < zw, there can only
be at most one intersection point, since δz is monotone. Hence, if δz exhibits a
sign change on [rw, r(sB1

)], there is a unique root.
1b. In the case that z > zw, we know there is a sign change in δz′, with
δz′(rw) < 0 and δz′(r(sB2

)) > 0, as the ray only intersects the bottom surface,
again analogous to the proof of Lemma 2.6. Thus, by Bolzano’s Theorem there
is at least one minimum in δz on the interval [rw, r(sB2)]. 2. Consider now the
case that ζ ′′ > 0, so that ζ ′ < 0.
2a. Consider the case that z > zw and hence z′(r) > 0, implying δz′(r) < 0.
However, the ray must eventually leave through the bottom surface, so that∫ r(sB2

)

rw
δz′(r) dr > 0. Since r(sB2) > rw, by the Mean Value Theorem there

then exists some r? where δz′(r?) > 0, which is a contradiction. Hence, dipping
rays for z > zw and ζ ′′ > 0 cannot occur.
2b. If z < zw, we have that δz′(r(sB2))) < 0 while δz′(r(sB1)) > 0, whence by
Bolzano’s Theorem there is at least one root of δz′ on the interval.

An example of a dipping ray6 is sketched in Figure 2.8. It must be remarked

6The name is new and motivated by the fact that the ray in the (r, z)-plane seems to dip
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that it’s possible for a dipping ray to have multiple intersections with the sur-
face. We’ll show a construction that allows any number of intersections with the
surface and a ray. Hence, this limits somewhat our ability to correctly process
dipping rays. However, we must note that finding a minimum in δz allows us
to find the correct root provided the ray has at most two intersections with the
surface on [rw, r(sB2

)] with z > zw or on [rw, r(sB1
)] with z < zw. An algo-

rithm that finds some intersection point of a dipping ray, or otherwise concludes
that there is no intersection, is given by Algorithm 7. The dipping ray subrou-
tine calls a function find minimum, given by Algorithm 8, which determines a
minimum with the smallest possible s > 0.

Algorithm 7 Dipping ray subroutine

if ζ is concave on the bounding triangle then
Compute rw.
if δz(rw) < 0 then

Set [rw, r(sB1
)] as the search bracket

and find the root r of δz with z < zw.
s← z(r)−z0

N .
if s > 0 return s, end if

else
rD ← find minimum([rw, r(sB2)],true)
if rD is defined and δz(rD) < 0 then

Set [rw, rD] as the search bracket
and find the root r of δz with z > zw.
s← z(r)−z0

N .
if s > 0 return s, end if

end if
end if

else
rD ← find minimum([rw, r(sB1

)],false)
if rD is defined and δz(rD) < 0 then

Set [rw, rD] as the search bracket
and find the root r of δz with z < zw.

end if
end if
return no intersection

into the bounding triangle through one edge.
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Algorithm 8 Function that finds a minimum of δz. The inputs are such that
a, b ∈ R and topbranch is a logical.

procedure find minimum([a, b],TOPBRANCH)
Check that δz′(a) < 0 and ∆z′(b) > 0.
s← 0
repeat

Find a root r̃ of δz′ on the bracket.
s̃← z(r̃)−z0

N
if δz′′(r̃) ≥ 0 and s̃ > 0 then r ← r̃,s← s̃
if TOPBRANCH then

Set the bracket to [a, r̃ − ε].
else

Set the bracket to [r̃ + ε, b].
end if

until δz′′(r̃) ≥ 0
if s > 0 then

return r
else

return no minimum
end if

end procedure

For dipping rays, we do know there must be an even number of intersections,
if we count with the multiplicity. Let’s order the roots of δz and label them,
taking into account the multiplicity. The first root, the one we wish to find,
has δz′(r) < 0, since the ray is going into the surface there. Sadly, there’s no
way to distinguish the first root from any odd-numbered root, since all those
will have δz′(r) < 0. The best we can do, therefore, is to ensure that we find
an odd-numbered root. Immediately to the left of any even-numbered root, say
a step the size of the tolerance, δz will be negative. Thus, any even-numbered
root provides us with a smaller bracket that exhibits a sign change in ∆z.

The keen reader will notice there’s one final class of rays missing, those that
intersect the top and bottom surfaces and we have ζ ′′ < 0 and ζ ′ > 0, i.e., rays on
increasing concave pieces. Unfortunately, it’s impossible to say anything useful
about these rays other than the fact that there’s at least one intersection with
the surface, which follows from Bolzano’s Theorem. However, monotonicity of
∆z is not guaranteed for arbitrary hyperbolae. In other words, for a given ray,
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it’s always possible to construct a surface that intersects the ray an arbitrary
number of times while being concave and increasing. This can be demonstrated
with the following construction.

Recall that a chord is a line segment connecting two points on a curve. The
secant line, on the other hand, is the whole infinitely extended line connecting
those same two points. Consider, then, the fact that a chord of a concave func-
tion lies completely below it, while a secant line minus the chord lies completely
above it. Therefore, we can set any number of pairs of points and draw the
secant lines. Next, we cut the secant lines off where they intersect with their
neighbours. This produces a concave piecewise linear surface that has a positive
derivative almost everywhere and intersects the ray an even number of times,
see Figure 2.9 (a).

(a) (b)

u

u
u

u

u

Figure 2.9: Pathological construction for an arbitrary ray (green, curvature is
exaggerated for ease of presentation). (a) Two secant lines (blue) result in four
intersections (red). The dashed line can be added to cause an odd number
of intersections. (b) Replacing the intersection by a smooth connection (light
blue).

Odd numbers of intersections can be achieved by adding a horizontal line
after the right-most intersection point. Finally, the intersections of the secant
lines can be replaced by smooth transitions, see Figure 2.9 (b). The end result of
this construction is a smooth uniformly increasing concave surface that features
any number of intersections with the ray. This construction works for one
specific ray, and it’s rather contrived, but the point is that in general, there’s
no bound on the number of intersections.

Naturally, the example can be flipped in the z-direction, so that the same
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construction works for decreasing convex surfaces and rays with z < zw. This
motivates the last class of rays7.

Skipping rays are not regular rays and intersect the bottom
and top surfaces in a piece where ζ ′′ · ζ ′ < 0.

b
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u

u

Figure 2.10: Sketch of a skipping ray with intersection points A and B indicated.
The correct intersection is indicated with a green circle, while the other two
intersections are indicated with a red triangle.

Lemma 2.8. Skipping rays have at least one root of ∆z in the interval [sB , sT ].

Proof. The fact that both bottom and top surfaces are intersected implies that
∆z(sB) > 0 and ∆z(sT ) < 0. Bolzano’s Theorem implies that there is at least
one root.

An example of a skipping ray with multiple intersections is sketched in Fig-
ure 2.10. Unfortunately, just as with dipping rays, for skipping rays there’s
once again no guarantees that we’ll find the correct root if there are multiple
intersections. However, we can again guarantee that we find an intersection
where ∆z′(s) < 0. An algorithm that finds some intersection of skipping rays,
or otherwise conclude that there are none, is given in Algorithm 9.

7The name ‘skipping ray’ is new too and it’s motivated by the fact that a flat rock can
skip multiple times if you throw it at oblique angles over a water surface.
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Multiple ad hoc ways of dealing with skipping rays can be thought of, though
none will in fact provide a guarantee to find the correct root. In other words,
it’s impossible, or at least it would be very hard indeed, to construct a method
that allows a theorem like Theorem 2.2. In practice, however, skipping rays that
actually have multiple roots are rare to encounter, the “probability” decreasing
with the number of roots. Naturally, if a skipping ray only has a single inter-
section, we’re guaranteed to find it using bisection. Here, we’ll simply handle
skipping rays by finding an odd root as outlined above.

Ray intersects top and bottom surface?

YesNo

Yes

ζ′′ · ζ′ > 0

t0 < ta and ζ′′ > 0
or

t0 > tb and ζ′′ < 0

Regular

No Yes

Yes

No

No

Dipping Skimming

Skipping

?

?

ζ′′ · ζ′ > 0

Figure 2.11: Logical structure of the ray zoo in a flow chart. Rays that for
which we have a guarantee to find the correct root are indicated with a check
mark. For skipping and dipping rays, we don’t have a guarantee to find the
correct root, hence the question mark.

Algorithm 9 Skipping ray subroutine

Set [sB , sT ] as the search bracket and find the root s̃ of ∆z.
if ∆z′(s̃) ≤ 0 and s̃ > 0 then s← s̃
while ∆z′(s̃) > 0 do

Set [sB , s̃− ε] as the search bracket
and find the root s̃ of ∆z.
if ∆z′(s̃) ≤ 0 and s̃ > 0 then s← s̃

end while
return s
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The logical structure of the ray zoo can be captured in a flow chart, which
is shown in Figure 2.11. To the left, we have the two classes of rays that may or
may not intersect the surface and we have to determine the minimum vertical
signed distance first to decide. To the right are the two classes of rays that
exhibit at least one intersection with the surface. For the regular rays, we know
for sure there’s only one intersection, while for the skipping rays all bets are off.
The only thing we know about them is that there is at least one root and there
have to be an odd number, counting multiplicity. With this logical structure in
place, Magic Bullet can be composed of the earlier subroutines.

Much like the two-dimensional case, the Magic Bullet Algorithm is the amal-
gamation of the bounding triangle subroutine and the above subroutines dealing
with each class of ray. The bounding triangle subroutine is run once for each
surface and can be considered a preprocessing step. For each ray, we run through
the triangles in ascending order of the arc length and classify the ray, after which
the appropriate ray class subroutine is performed. In the algorithm, there are
then roughly two ways of finding an intersection point: if there is a root we find
it, if there is a minimum we find that one first to determine if there is a root. In
the cases of regular and skimming rays this leads to a foolproof procedure. In
the cases of dipping and skipping rays, whether or not we’ve found the correct
intersection cannot be ascertained. Therefore, analogous to the two-dimensional
case, we have a the following theorem, which is slightly weaker.

Theorem 2.3. (Magic Bullet for rotationally symmetric optics)
Given a piecewise smooth surface and a ray, the Magic Bullet Algorithm is
guaranteed to find the correct intersection, or else return that the ray does not
intersect the surface under the following conditions:

• There are no dipping rays with more than 2 intersections.

• There are no skipping rays with multiple intersections.

Remark. When dealing with a single point source on the z-axis, rays are in fact
straight lines, so that the problem reduces to the two-dimensional case. Hence,
dipping rays do not occur and skipping rays have at most one intersection. Con-
sequently the Magic Bullet algorithm is guaranteed to succeed.

In practice, the assumptions of the theorem aren’t very restrictive. For
instance, if the source is sufficiently far from the optic, the rays in the (r, z)-
plane are quite closely approximated by straight lines, as hyperbolae converge
rather quickly to their asymptotes. In terms of the theory developed here this
means that zw is usually well below the surface.
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2.3 Example

Here, we show an example of a surface where more naive ray tracing algorithms
occasionally fail. For instance, simply using Newton iteration without search
bracket or using a single bounding box on the entire surface. For the surface,
we’ll use an aspheric surface with a very strong polynomial part, given by

ζ(r) =
cr2

1 +
√

1− (1 + κ)c2r2
+

p∑

i=1

air
i, (2.23)

where c is the curvature, κ is the conic constant and the sum represents the
polynomial correction with ai the polynomial coefficients. In this example, we
choose c = 1

21 , κ = 0 and a polynomial order of p = 4 with coefficients a1 = 0,
a2 = −3 · 10−2, a3 = 0 and a4 = −10−5. The maximum radius of the surface is
r = 20. As a root-finder for the Magic Bullet, we’ve used the bracketed method
that will be introduced in the next chapter in Section 3.6.

For the special case where all the rays originate at the origin, rays are straight
lines and the problem reduces to the two-dimensional version of Section 2.2.1.
Incidentally, Newton iteration is now also guaranteed to converge as the vertical
signed distance becomes a convex or concave function on each search bracket
[rk, rk+1]. In this special case, Newton iteration converges monotonically, so
that if we start at the smaller end of the search bracket, convergence to the
proper intersection point is guaranteed. We therefore use the collection of rays
given by x0 = (0, 0,−3)T and

v =
1√

( j4 )2 + 1



j
4
0
1


 , (2.24)

with j = 0, 1, . . . , 40, see Figure 2.12. Simply using Newton’s method evidently
converges to the same roots as bisection. For both algorithms, we’ve used the
tolerance criterion of a relative difference in iterations of twice the machine
precision, i.e., between two iterations sk, we stop when |sk−sk−1| ≤ 2εmach|sk|.
To avoid infinite loops or uncontrollable runaway divergence, the maximum
number of iterations for Newton’s method was set to 100.

Next, we trace a collection of rays that do not originate from r0 = 0, so that
the rays in the (r, z)-plane become hyperbolae. For this example, Newton’s
method has no convergence guarantee. We set x0 = (0, y0,−1)T and we use 40
equidistant points between 0 and 20 for y0, see Figure 2.13.
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Figure 2.12: The Magic Bullet Algorithm applied to a collection of rays all
starting with (r0, z0) = (0,−3). Newton’s method finds the same roots. The
red crosses are the search bracket endpoints.

As advertised, the Magic Bullet Algorithm finds the correct intersection
points for all rays. Newton’s method is applied to the rays that are determined
by the Magic Bullet Algorithm to hit the surface. However, Newton’s method
does not converge for all rays, even for what we’ve called regular rays. It should
be noted that Newton iteration alone finds the majority of the correct inter-
section points. Therefore, Newton’s method represents here the more naive ray
tracing algorithms. The Magic Bullet Algorithm provides not only a guarantee
that an intersection is present, but also an enclosing bracket with a sign change.
As such, any bracketing method is guaranteed to find the root. The difference
may be illustrated somewhat more dramatically by increasing the density of
rays from 40 to 5000, see Figure 2.14.

The figure shows that Newton’s method misses quite a few rays, 465 out of
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Figure 2.13: The Magic Bullet Algorithm applied to a collection of 40 rays and
Newton’s method applied to the same rays. Rays for which the proper root
was found are plotted in green, while for purple rays Newton’s method did not
converge. The red crosses are the search bracket endpoints.

5000, about 9.3%. We furthermore see that Newton’s method finds most of the
rays in the region where the surface is concave. Where the surface is convex,
quite a lot of intersection points are missed. Another interesting fact is that
Newton’s method simply diverges for these cases, instead of for instance finding
the wrong intersection point. The Magic Bullet, on the other hand, finds all the
correct intersection points.
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Figure 2.14: The Magic Bullet Algorithm applied to a collection of 5000 rays.
Rays for which the proper root was found are plotted in green, while for purple
coloured rays Newton’s method did not converge.
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Chapter 3

Finding roots fast

Money, so they say, is the root of
all evil today.

Pink Floyd
Money

In the previous chapter, we’ve focussed on producing a good search bracket
to find a root of a sufficiently smooth nonlinear function, i.e., f : R → R and
we’re asked to solve the equation

f(x) = 0. (3.1)

Provided with a good search bracket that encloses a root, bisection is guaranteed
to converge. In the previous chapter, we’ve used the bisection algorithm mostly
as a theoretical tool to prove theorems, rather than a practical root-finder. We’ll
now focus on the other side of the story, which is to find the root as efficiently as
possible. The bisection method converges rather slowly, as every bisection step
gains one bit of accuracy on the root. For double precision numbers therefore,
the bisection algorithm takes at most 52 steps, since then the machine precision
is reached. Typical runs of the bisection algorithm are close to the maximum
number of steps. Obviously, we’d like to obtain a method that converges in
fewer steps and ideally does less work.

Let’s focus on the abstract problem posed by (3.1). This archetypical prob-
lem is ubiquitous in all fields of mathematics, science and engineering. Clearly,
we have ray tracing in the backs of our minds, but the applications are legion.

57
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For instance, implicit ODE solvers are often formulated like (3.1), after which
a root-finder of some kind is applied [35]. Depending on the properties of the
function f , there are several methods that present themselves. We’ll discuss
some well-known examples in the next section.

Recently, a new interpretation of root-finding methods in terms of ODEs
has been proposed by Grau-Sánchez et al. [41–43]. Their idea is to consider
the inverse function derivative rule as an ODE, so that any explicit ODE solver
may be converted to a root-finding method. Indeed, Grau-Sánchez et al. have
successfully introduced root-finders based on Adams-type linear multistep and
Runge-Kutta integrators. It goes without saying that only explicit ODE solvers
can be usefully converted to root-finding methods. However, predictor-corrector
pairs are possible, as those methods are indeed explicit.

The main theoretical result of this chapter is a theorem on the convergence
rate of root-finders based on explicit linear multistep methods (LMMs). We
furthermore prove a barrier on the convergence rate of LMM-based root-finders.
It turns out that adding a few history points quickly boosts the convergence rate
close to the theoretical bound. However, adding many history points ultimately
proves an exercise in futility due to diminishing returns in the convergence rate.

Looking back to applications such as ray tracing, we also discuss a robust
LMM-based method combined with bisection to produce an algorithm that can
been seen as an extension of Brent’s method [44] with information from the
derivative added. Similar to Brent’s method, our algorithm is guaranteed to
converge to a root whenever an enclosing starting bracket is provided1, i.e., an
interval [a, b] with f(a)f(b) < 0.

3.1 Classes of root-finders

At the highest conceptual level, there are two major classes of root-finders: those
with memory and those without. Over the last few decades, research effort has
been mainly focusses on memoryless root-finders. As the name suggests, these
methods are defined locally and make no reference to previous iterations. They
can, however, work in multiple steps or use information from derivatives. Clas-
sical examples of memoryless root-finders include Newton’s method [45], which
we’ll discuss in the next section, and Halley’s method [46]. The memoryless

1While working on the Magic Bullet, I originally used Brent’s method to close in on the
roots after obtaining a good search bracket. Not knowing any better, I felt it was a bit of
a waste not to use the derivative as well. This observation was the basis of the full LMM
root-finders.
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methods are epitomised by the Kung-Traub conjecture, which states that a
memoryless method using w evaluations has an optimal order of 2w−1 [47]. An
evaluation here simply means an evaluation of the function f or its derivatives.
Methods that achieve this convergence rate are referred to as optimal methods
and there is no shortage of them, see for instance [48–56]. We’ll not be exploring
this class of root-finders though, as we’ll be focussing on the other class.

Root-finders with memory do store their previous iterations, or at least some
part of it. The function values and possibly derivative values of the previous
iterations are used to enhance the accuracy of the next iteration. As such, they
can provide high accuracy with only minimal computational effort in terms of
function evaluations. However, they often do require more storage compared to
the memoryless methods. The proposed full LMM root-finders that we’ll discuss
over the course of this chapter fall in this class. Indeed, the distinguishing
characteristic of LMM solvers for ODEs is that they use previous iterations of
the numerical solution to increase accuracy. In the same way, we’ll show that
adding information from the iteration history also results in faster root-finders.
First, however, we’ll discuss some basic examples and concepts.

3.2 Some famous root-finders

For completeness, we’ll discuss some of the more well-known specimens of root-
finders. A more complete theory can be found in any textbook on numerical
analysis, such as Gautschi [40] or Quarteroni2 [57]. Central to root-finders is
the rate of convergence, which is defined as the real number p such that

lim
k→∞

|xk − x?|
|xk−1 − x?|p

= C > 0, (3.2)

where xk is the sequence generated by the root-finder and x? is the root. The
efficiency measure of a root-finder is defined as p

1
w , where w is the number of

evaluations per iteration. Bisection, for example, converges linearly (p = 1) and
costs one function evaluation per iteration, assuming we store the function value
of the previous iteration, thus exhibiting an efficiency measure of 1.

2When on my second conference, to ICOSAHOM2016 in Rio de Janeiro, I was sitting next
to Alfio on the bus to the cultural activity. He introduced himself to me and looked at me
expecting some kind of response but all I had to say was “nice to meet you.” Now, I’ve used
several of the textbooks he wrote or co-authored and I imagine the conversation would have
been quite different.
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The most ubiquitous root-finder in computational practice is probably New-
ton’s method, also known as the Newton-Raphson method [58, 59]. Geometri-
cally, the method consists of successively finding the roots of tangent lines. The
tangent line at the current iteration xk is given by L(x) = f(xk)+f ′(xk)(x−xk).
Hence, we use the root of the tangent line at the current iteration as the next
iteration, so that

xk+1 = xk −
f(xk)

f ′(xk)
. (3.3)

Newton’s method is an example of a memoryless method and as such, it re-
quires a single point x0 as an initial guess to the root. Provided the initial
guess is sufficiently close to the root, the sequence generated by (3.3) converges
quadratically (p = 2) to the root, which we’ll prove later in a more general
setting. Under the assumption that f and f ′ cost roughly the same to evaluate,
Newton’s method has an efficiency measure

√
2 ≈ 1.41.

Next, the secant method can be interpreted as Newton’s method where the
derivative is approximated by the secant line spanned by the current and pre-
vious iterations, thus

xk+1 = xk − f(xk)
xk − xk−1

f(xk)− f(xk−1)
. (3.4)

Consequently, the secant method is a method with memory, one memory slot so
to speak, hence it requires two points by way of an initial guess. The convergence

rate is given by the golden ratio, p = 1+
√

5
2 ≈ 1.62, which is slower than Newton’s

method, but faster than bisection. If we store the function value of the previous
point, the secant method can do with a single function evaluation per iteration,
producing an efficiency measure of 1.62.

Methods like Newton’s and the secant method are called open root-finders
because they don’t start with a search bracket. They may exhibit runaway
divergence for poorly behaved functions. Methods like bisection, on the other
hand, require an enclosing bracket as an initial guess, those methods are called
closed or bracketed methods. Dekker’s method3 was constructed to fix the
drawback of the open secant method by combining it with bisection [60]. The
result is a fast and robust root-finder. It requires two points, called a and b,
as its initial guess. They span an interval int[a, b] such that f(a) · f(b) < 0,
so they’re said to bracket a sign change. The point b is the best estimate of
the root so far, meaning |f(b)| is the smallest function value up to the current
iteration. The point a is the contrapoint, which simply means f(a) · f(b) < 0.

3I had the privilege of meeting Theodorus Dekker at the 2015 WSC Woudschoten meeting.
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Finally, the previous value of b is also stored and it’s denoted c. Initially, c is
set to a.

The basic idea is to perform a secant step unless it’s outside the bracket
int[a, b]. The method computes the midpoint of the interval int[a, b] and a
provisional point by the secant method applied to b and c. Given a tolerance ε,
the algorithm is described by choosing one of the following three options:

• A minimal step if the secant step is within the tolerance of the interval
endpoints.

• A secant step if it lies in the within the interval int[a, b], but at least ε
away from the endpoints.

• A bisection step otherwise.

A minimal step is a step of size ε. During each iteration, the definitions
of a, b and c are maintained as invariants, so the appropriate swaps are made
on occasion. The algorithm stops under the same condition as the bisection
method, namely that |a − b| ≤ ε|b|. In essence, Dekker’s method tries to make
a secant step, but if it fails the fall-back is bisection.

Dekker’s method is the progeny of the bisection and secant methods, in-
heriting all their favourable properties and few of the bad ones. As such, it’s
guaranteed to converge, see Lemma 2.1, while under reasonable circumstances it
provides a convergence rate of approximately 1.62. If the function values of the
points a, b and c are stored, the method furthermore uses only a single function
evaluation per iteration, resulting in an efficiency measure of 1.62 as well in the
best case.

Unfortunately, it’s possible that Dekker’s method takes a long time to con-
verge, being far slower than the bisection method in the worst case. An example
is f(x) = x3 with a starting bracket [−1, 1], where the secant step will exactly
hit the origin, but the stopping criterion fails to recognise the root. The method
then takes minimal steps until the interval is sufficiently small. In the worst case,
therefore, Dekker’s method converges quite slowly indeed, as it’s essentially try-
ing every number that can be represented with floating point arithmetic in the
search interval.

Historically, Brent’s method is again an improvement over Dekker’s, where
several other checks are performed [44]. It uses the same definitions of a, b and
c, so that b is the best estimate of the root, c is the previous value of b and a
is the contrapoint. Brent spotted that a quadratic can be constructed from the
three available points, although the problem is that it may have zero, one or
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two real roots. To fix this, Brent’s method uses quadratic interpolation on the
inverse, so that the root is always well-defined as long as a 6= c and f(a), f(b)
and f(c) are different. The algorithm is described by a choice of the following
four possibilities:

• If a 6= c and f(a), f(b) and f(c) are unique, use inverse quadratic inter-
polation to compute a provisional point. Else, use the secant method for
this.

• Accept the provisional point if it lies within the interval int[a, b], but at
least ε away from the endpoints.

• Use a bisection step if the provisional point lies within tolerance of an
endpoint or outside the interval [a, b].

• If the step size of the provisional point is smaller than the tolerance,
perform a minimal step.

The stopping criterion is again the same as Dekker’s and bisection, but Brent’s
method additionally checks if it has accidentally hit an exact root. Brent’s
method comes with a stronger guarantee than Dekker’s, as it converges to the
root in at most twice the number of steps as bisection. For reasonably well-
behaved functions, it will converge with a rate of approximately 1.84. By the
same token as Dekker’s method, it only needs one function evaluation per iter-
ation, so that the efficiency measure is also 1.84 in the best case. Of course, it
converges linearly in the worst case and thus the worst-case efficiency is 1.

3.3 Barriers on LMM root-finders

As mentioned earlier, Grau-Sánchez et al. introduced a new paradigm for the
root-finding problem in [41]. It’s based on reformulating the problem in such a
way that it’s equivalent to solving an ODE. Using this elegant reinterpretation,
any ODE solver can be converted to a root-finder. The ODE formulation can
be derived by assuming that the function f is sufficiently smooth and invertible
in the vicinity of the root. Under these assumptions, the chain rule applied to
x = f−1

(
f(x)

)
results in

dx

dy
= [f−1]′(y) =

1

f ′
(
x
) = F (x), (3.5)
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which we may interpret as an autonomous ODE for the inverse with y as the
independent variable4. Integrating (3.5) from an initial guess x0 with function
value y0 = f(x0) to y = 0 yields

x(0) = x0 +

∫ 0

y0

F
(
x(y)

)
dy. (3.6)

Immediately, we see that applying the forward Euler method to (3.5) with step
size hn+1 = yn+1 − yn = −f(xn) gives Newton’s method. From (3.6), we see
that the step size of the integrator should be taken as 0−y0 = −f(x0). However,
Newton’s method may also be interpreted as an inverse linear Taylor method,
i.e., a method where the inverse function is approximated by a first-order Taylor
polynomial. Indeed, any linear numerical integration method applied to (3.5)
can be interpreted as inverse polynomial interpolation.

As such, explicit linear multistep methods applied to (3.5) will also produce
a polynomial approximation to the inverse function. Such methods have the
form

xn+s +

s−1∑

k=0

a
(n)
k xn+k = hn+s

s−1∑

k=0

b
(n)
k F (xn+k). (3.7)

The right-hand side cannot depend on xn+s, otherwise we end up with an
implicit root-finder, which would not be terribly useful. The coefficients of

the method, {a(n)
k }s−1

k=0 and {b(n)
k }s−1

k=0, will depend on the previous step sizes
and will therefore be different each step. The step sizes are given by hn+k =
yn+k − yn+k−1, that is the differences in y-coordinates. Since we wish to find
the root, we set yn+s = 0, leading to hn+s = yn+s − yn+s−1 = −yn+s−1. Fur-
thermore, the y-coordinates are of course given by the function values of the
root estimates, yn+k = f(xn+k), so that

hn+k = f(xn+k)− f(xn+k−1) for k = 1, . . . , s− 1. (3.8)

Like an ODE solver, we may use an implicit LMM in tandem with an explicit
LMM to form a predictor-corrector pair, the whole forming an explicit method.
Unlike an ODE solver, we may construct derivative-free root-finders based on

the LMM approach by setting all b
(n)
k = 0 for k = 0, . . . s− 1 and for all n > 0,

e.g., the secant method. For an ODE solver this would obviously not make
sense. Similar to ODE solvers, we may introduce higher derivatives of f by

4I thought this was an incredibly clever formulation of the root-finding problem.
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using

xn+s+

s−1∑

k=0

a
(n)
k xn+k = hn+s

s−1∑

k=0

b
(n)
k F (xn+k)+h2

n+s

s−1∑

k=0

c
(n)
k F ′(xn+k)+. . . (3.9)

The following theorem provides the convergence rate for any method of the
form (3.9). Furthermore, it provides a fundamental barrier on the convergence
rates of LMM-based root-finders. Under certain conditions, it also rewards our
intuition in the sense that methods using more information converge faster to
the root.

Let’s introduce some notation first. We denote with d the number of deriva-
tives of f used in the method (3.9). Higher derivatives of the inverse are found
by iteratively applying the inverse function derivative rule. Methods defined by
(3.7) are the special case of (3.9) with d = 1. We also introduce coefficients σk
that indicate whether the coefficients a

(n)
k are arbitrarily fixed from the outset

or left free to maximise the order of convergence, i.e., σk = 1 if a
(n)
k is free and

σk = 0 otherwise.

Theorem 3.1. For simple roots, the convergence rate p for any method of the
form (3.9), where the coefficients are chosen so as to give the highest order of
convergence, is given by the largest real root of

ps =

s−1∑

k=0

pk(d+ σk), (3.10)

for all s ≥ 1 and d ≥ 1, or s ≥ 2 and d = 0. The convergence rate is bounded
by p < d + 2. Additionally, if σk = 1 for all k = 0, . . . , s − 1, the convergence
rates form a monotonically increasing sequence in s and p→ d+ 2 as s→∞.

Proof. 1. Any method of the form (3.9) implicitly uses inverse polynomial (Her-
mite) interpolation, i.e., polynomial interpolation applied to the inverse function
f−1. Let’s call the resulting interpolation H. Since H interpolates the inverse,
H(0) is an approximation to the root. Let yn+k, k = 0, . . . , s − 1 be the inter-
polation points. At each point yn+k, d+ σk values are interpolated, the inverse
function value xk if σk = 1 and d derivative values. Thus, the polynomial
interpolation error formula, see e.g. [40], gives

f−1(y)−H(y) =
[f−1](N+1)(υ)

(N + 1)!

s−1∏

k=0

(y − yn+k)d+σk ,
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where υ is in the interval spanned by the interpolation points and N = sd +∑s−1
k=0 σk. The approximation to the root is then computed as xn+s = H(0).

Let’s denote the exact value of the root as x?, then

|xn+s − x?| =
|[f−1](N+1)(υ)|

(N + 1)!

s−1∏

k=0

|yn+k|d+σk .

Define εn+k = xn+k − x? and recognise that yn+k = f(xn+k) = f(x? + εn+k) =
f ′(x?)εn+k +O(ε2

n+k), where f ′(x?) 6= 0. Thus, we find

|εn+s| ≈ A0|εn+s−1|d+σs−1 · · · |εn|d+σ0 ,

where A0 > 0 is a constant depending on [f−1](N+1)(υ), s and f ′(x?). The error
behaviour is of the form

|εl+1| = C|εl|p, (∗)
asymptotically as l → ∞. Here, C > 0 is a constant. Applying (∗) s times on
the left and s− 1 times on the right-hand side leads to

|εn|p
s ≈ A1|εn|

∑s−1
k=0 p

k(d+σk),

where all the constants have been absorbed into A1. Thus, (3.10) is established.
2. For methods that only use a single point, we have s = 1 and σ0 = 1

so that (3.10) simplifies to p = d + 1. Hence, also in the case s = 1, we have
p < d+ 2.

3. Finally, by its definition we can bound σk ≤ 1, so that we obtain

ps ≤ (d+ 1)

s−1∑

k=0

pk = (d+ 1)
ps − 1

p− 1
.

Simplifying, we obtain

ps+1 − (d+ 2)ps + d+ 1 ≤ 0. (?)

Note that p = 1 is always a solution if we impose equality. However, the maximal
convergence rate is given by the largest real root, so that we look for solutions
p > 1. Dividing by ps yields,

p− (d+ 2) ≤ −d+ 1

ps
< 0,
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which holds for all s ≥ 1. Hence, we obtain p < d+ 2.
4. Suppose now that σk = 1 for all k = 0, . . . , s− 1, so that the convergence

rate satisfies (?) with equality. Rewriting, we obtain

d+ 2− p =
d+ 1

ps
.

We can interpret this equation geometrically, where each side is considered a
function of p. Hence, we see that the convergence rate is given by the intersection
point of a straight line and an inverse power law. First, we observe that there
is always an intersection at p = 1. Furthermore, the slope of the straight line
is −1, while the slope of the inverse power law at p = 1 is given by −s(d + 1).
Therefore, the slope of the right-hand side is smaller than the slope of the left-
hand side for all s ≥ 1 and d ≥ 1, or d = 0 and s ≥ 2. Thus, immediately to the
right of p = 1, the inverse power law is below the straight line. Combined with
the fact that d+1

ps is a convex function for p > 0 and s > 0, we see that a second
intersection point exists and is unique. Fix s and call the second intersection
point, i.e., the convergence rate, p∗(s). Finally, we note that for p > 1, we have

d+ 1

ps+1
<
d+ 1

ps
,

so that p∗(s+ 1) will be moved towards the right compared to p∗(s). Thus, we
find

p∗(s+ 1) > p∗(s)

for all d ≥ 1 and s ≥ 1, or d = 0 and s ≥ 2. The result now follows from the
Monotone Convergence Theorem [61].

From Theorem 3.1, we find several special cases, such as the derivative-
free interpolation root-finders, i.e., d = 0. Note that derivative-free root-finders
with s = 1 simply don’t exist, as then the inverse is interpolated with a constant
function. Constant functions, of course, don’t have roots unless the constant
happens to be zero. However, for a root-finder, this means it would only work
if the exact root is already found, which isn’t terribly useful.

Corollary 3.1. Inverse polynomial interpolation root-finders, i.e., d = 0 re-

sulting in all b
(n)
k = 0 in (3.7), can attain at most a convergence rate that is

quadratic. Their convergence rates are given by the largest real root of

ps+1 − 2ps + 1 = 0, (3.11)
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for all s ≥ 2. The convergence rates are bounded by p < 2 and form a mono-
tonically increasing sequence in s, with p→ 2 as s→∞.

Proof. The coefficients {a(n)
k }s−1

k=0 are chosen to maximise the order of conver-
gence, so that σk = 1 for all k = 0, . . . , s− 1, while d = 0, leading to

ps =

s−1∑

k=0

pk =
ps − 1

p− 1
.

Simplifying yields (3.11). Furthermore, the condition that σk = 1 for all
k = 0, . . . , s − 1 is satisfied so that the convergence rates form a monotoni-
cally increasing sequence that converges to d+ 2 = 2.

Inverse polynomial root-finders such as the secant method (s = 2) or inverse
quadratic interpolation (s = 3) are derivative-free, so that their highest con-
vergence rate is 2 according to Theorem 3.1. The first few convergence rates
for derivative-free inverse polynomial interpolation methods are presented in Ta-
ble 3.1. The well-known convergence rates for the secant method and the inverse
quadratic interpolation method are indeed reproduced. As becomes clear from
the table, the rates quickly approach 2 but never quite get there. The increase
in convergence rate becomes smaller and smaller as we increase the number of
interpolation points. The law of diminishing returns is unrelenting, it seems.

Table 3.1: The first few convergence rates for s points for derivative-free meth-
ods.

s p
2 1.62
3 1.84
4 1.92
5 1.97

Next, we cover the Adams-Bashforth methods also discussed in [41]. As
ODE solvers, Adams-Bashforth methods are explicit integration methods that
have order of accuracy s [31]. However, as Theorem 3.1 suggests, as root-
finders they will have a convergence rate that is smaller than cubic, since d = 1.
In fact, the convergence rate of Adams-Bashforth root-finders is bounded by
3+
√

5
2 = 2.62 as was proven by Grau-Sánchez et al. [41]. The following corollary

is a generalisation of their result.
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Corollary 3.2. The Adams-Bashforth root-finder methods with s ≥ 2 exhibit
convergence rates given by the largest real root of

ps+1 − 3ps + ps−1 + 1 = 0, (3.12)

for all s ≥ 1. The convergence rates are bounded by p < 3+
√

5
2 and form a

monotonically increasing sequence in s, with p→ 3+
√

5
2 as s→∞.

Proof. 1. Adams-Bashforth methods have a
(n)
k = 0 for k = 0, . . . , s − 2, and

a
(n)
s−1 = 1, resulting in σk = 0 for k = 0, . . . , s − 2 and σs−1 = 1. We may

write σk for simplicity as a Kronecker delta, i.e., σk = δk,s−1. Furthermore, the
methods use a single derivative of f−1 so that d = 1. The s = 1 method is
equal to Newton’s method, which has a quadratic convergence rate. For s ≥ 2,
we find from Theorem 3.1 that

ps = ps−1 +

s−1∑

k=0

pk = ps−1 +
ps − 1

p− 1
.

Simplifying yields (3.12). Again, we assume that p > 1 and we divide by ps−1,
so that

p2 − 3p+ 1 = − 1

ps−1
< 0,

which holds for all s ≥ 2. This implies that p < 3+
√

5
2 for all s ≥ 2.

2. The proof that the convergence rates make up a monotonically increasing
sequence is similar to the one given for Theorem 3.1. First, we note that (3.12)
always has a root at p = 1. Next, we rewrite it to read

3− p =
1

p
+

1

ps
.

The left-hand side is a straight line with slope −1 while the right-hand side is
a convex function that has slope −(1 + s) at p = 1. Thus, immediately to the
right of p = 1, the convex function is below the straight line. This implies that
there is a unique intersection point with p > 1, which is the convergence rate.
For fixed s, call the second intersection point p∗(s). Finally, we note that

1

p
+

1

ps+1
<

1

p
+

1

ps
, (3.13)

for p > 1, from which we see that the intersection point is moved to the right
for larger s, i.e., p∗(s+ 1) > p∗(s). The result again follows from the Monotone
Convergence Theorem.
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The first few convergence rates for the Adams-Bashforth root-finder methods
are given in Table 3.2 and agree with the rates found by Grau-Sánchez et al.
As becomes clear from the table, the convergence rates quickly draw near the
bound of 2.62. Yet again we’re met with steeply diminishing returns as we
increase the number of history points s.

Table 3.2: The first few convergence rates for Adams-Bashforth root-finder
method using s points.

s p
1 2
2 2.41
3 2.55
4 2.59
5 2.61

The Adams-Bashforth root-finder methods cannot attain a convergence rate
higher than 2.62, which is still some way off the cubic bound given by Theo-
rem 3.1. Using another linear multistep method may therefore result in con-
vergence rates closer to cubic. For ODE solvers, trying to obtain a higher
convergence rate by increasing the number of points often leads to instabili-
ties. In fact, polynomial interpolation on equispaced points can even lead to
diverging results, e.g., Runge’s phenomenon [57]. However, root-finders gener-
ate a convergent set of interpolation points, thereby avoiding instabilities. As
root-finders, adding more history points does result in higher convergence rates.

Let’s inspect the convergence rates of different LMM-based root-finders using
Theorem 3.1, see Table 3.3. These convergence rates are computed under the
assumption that all derivatives and point values are used, i.e., σk = 1 for k =
0, . . . , s−1 in Theorem 3.1. The convergence rate of a d-derivative method can be
boosted by at most 1, and the table shows that this mark is attained very quickly
indeed. Adding a few history points raises the convergence rate significantly, but
finding schemes with s > 3 is likely to be a waste of time. Adding derivatives,
however, is of course the way to obtain arbitrary convergence rates.

3.4 Full LMM-based root-finders

Let’s investigate full LMM-based root-finders that use a single derivative, thus
methods of the form (3.7). Recall that the current step size is given by hn+s =
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Table 3.3: The first few convergence rates for s points (vertical) using all func-
tion values and the first d derivatives (horizontal).

s\d 1 2 3 4
1 2 3 4 5
2 2.73 3.79 4.82 5.85
3 2.91 3.95 4.97 5.98
4 2.97 3.99 4.99 5.996

−f(xn+s−1). Let’s define q
(n)
k as

q
(n)
k =

f(xn+k)

f(xn+s−1)
, k = 0, . . . , s− 2, (3.14)

so that hn+sq
(n)
k = −f(xn+k) is the total step between yn+k and yn+s = 0. The

Taylor expansions of x(yn+k) and x′(yn+k) about yn+s are then given by

x(yn+k) = x(yn+s) +

∞∑

m=1

1

m!
(−hn+sqk)mx(m)(yn+s), (3.15a)

x′(yn+k) = x′(yn+s) +

∞∑

m=1

1

m!
(−hn+sqk)mx(m+1)(yn+s), (3.15b)

where we’ve dropped the superscript (n) for brevity. Substituting these into
(3.7) with x′(y) = F (x), we obtain

x(yn+s)

[
1 +

s−1∑

k=0

ak

]
− hn+sx

′(yn+s)

[
s−1∑

k=0

akqk + bk

]

+

∞∑

m=2

1

(m− 1)!
(−hn+s)

mx(m)(yn+s)

s−1∑

k=0

[
1
mq

m
k ak + qm−1

k bk
]

= 0.

(3.16)

Eliminating the leading-order terms in (3.16) gives what are referred to in the
ODE context as the consistency conditions, i.e.,

s−1∑

k=0

ak = −1, (3.17a)

s−1∑

k=0

akqk + bk = 0. (3.17b)
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This gives us two equations for 2s coefficients, so that we can eliminate another
2s− 2 remaining terms in (3.16), resulting in the order conditions

s−1∑

k=0

qmk
m
ak + qm−1

k bk = 0, (3.18)

where m = 2, . . . , 2s− 1.

3.4.1 The s = 2 method

The s = 2 LMM-based method is given by

xn+2 + a1xn+1 + a0xn = hn+2

(
b1F (xn+1) + b0F (xn)

)
, (3.19)

where we’ve again suppressed the superscript (n) on the coefficients. Here,
hn+2 = −f(xn+1) so that we may write q = q0, i.e.

q =
f(xn)

f(xn+1)
. (3.20)

Applying (3.17) and (3.18), we find a set of linear equations, i.e.,

a1 + a0 = −1, (3.21a)

a1 + qa0 + b1 + b0 = 0, (3.21b)
1
2a1 + 1

2q
2a0 + b1 + qb0 = 0, (3.21c)

1
3a1 + 1

3q
3a0 + b1 + q2b0 = 0. (3.21d)

These equations are solved, provided q 6= 1, to yield

a0 =
1− 3q

(q − 1)3
a1 = −1− a0, (3.22a)

b0 =
q

(q − 1)2
b1 = qb0. (3.22b)

The condition q 6= 1 is equivalent to f(xn+1) 6= f(xn). This condition isn’t very
restrictive, as stronger conditions are needed to ensure convergence.

The above method may also be derived from the inverse polynomial inter-
polation perspective, using the ansatz

H(y) = h3

(
y − f(xn+1)

)3
+ h2

(
y − f(xn+1)

)2
+ h1

(
y − f(xn+1)

)
+ h0, (3.23)
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where hi, i = 0, 1, 2, 3 are undetermined coefficients. The coefficients are fixed
by demanding that H interpolates f−1 and its derivative at y = f(xn+1) and
y = f(xn), i.e.,

H
(
f(xn)

)
= xn, (3.24a)

H
(
f(xn+1)

)
= xn+1, (3.24b)

H ′
(
f(xn)

)
=

1

f ′(xn)
, (3.24c)

H ′
(
f(xn+1)

)
=

1

f ′(xn+1)
. (3.24d)

Solving for hi, i = 0, 1, 2, 3 and setting y = 0, we find the same update xn+2 as
(3.19) with coefficients given by (3.22).

The stability of the s = 2 LMM method depends on the coefficients of
the LMM in much the same way as an ODE solver. Indeed, we can set the
sequence x̃n = xn + zn where xn is the sequence generated by exact arithmetic
we wish to find while zn is a parasitic mode. The undesired parasitic mode is
the homogeneous solution of (3.19), i.e.,

zn+2 + a1zn+1 + a0zn = 0, (3.25)

so that it will grow unbounded if the roots are greater than 1 in modulus. Using
the ansatz zn = Bλn and the fact that a1 = −(1+a0), we find the characteristic
polynomial of the s = 2 method, i.e.,

ρ(λ) = λ2 − λ (1 + a0) + a0 = (λ− 1) (λ− a0) , (3.26)

where the roots can simply be read off. Stability of the root-finder is ensured
if the stability polynomial of the method has a single root with λ = 1, while
the other roots satisfy |λ| < 1. This property is called zero-stability for linear
multistep ODE solvers. Thus, to suppress parasitic modes we need

|a0| =
∣∣∣∣

1− 3q

(q − 1)3

∣∣∣∣ < 1. (3.27)

This reduces to q being either q < 0, or q > 3, so that |q| > 3 is a sufficient
condition. Thus, if the sequence {|f(xn)|}∞n=1 is decreasing fast enough, any
parasitic mode is suppressed. We estimate q as a ratio of errors, since for simple
roots we have f(xn) = f ′(x?)εn +O(ε2

n), so that

q ≈ εn
εn+1

. (3.28)
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Using εn+1 = Cεpn with p = 1 +
√

3 given by Theorem 3.1, we find that

∣∣∣∣
εn
εn+1

∣∣∣∣ =
1

C
|ε|−

√
3 > 3. (3.29)

Rearranging terms, we discover that we should satisfy the condition

|εn| < C1, (3.30)

with C1 =
(

1
3C

) 1√
3 . Furthermore, for each iteration, |q| will increase since

∣∣∣∣
εn+1

εn+2

∣∣∣∣ =

∣∣∣∣
εn
εn+1

∣∣∣∣
1+
√

3

.

Hence, if |q| > 3 for the first iteration, all following iterations will have |q| > 3.
We conclude that the method will be stable if the initial errors are smaller than
the constant C1, which depends on the details of the function f in the vicinity
of the root. This condition translates to having the starting values sufficiently
close to the root. This is a rather typical stability condition for root-finders.

3.4.2 The s = 3 method

We again apply (3.17) - (3.18) to find a method with s = 3, this time there are
6 coefficients, given by

a0 =
q2
1(q0(3 + 3q1 − 5q0)− q1)

(q0 − 1)3(q0 − q1)3
, b0 =

q0q
2
1

(q0 − 1)2(q0 − q1)2
, (3.31a)

a1 =
q2
0(q1(5q1 − 3q0 − 3) + q0)

(q1 − 1)3(q0 − q1)3
, b1 =

q2
0q1

(q0 − q1)2(q1 − 1)2
, (3.31b)

a2 =
q2
0q

2
1(3q1 − q0(q1 − 3)− 5)

(q0 − 1)3(q1 − 13)
, b2 =

q2
0q

2
1

(q0 − 1)2(q1 − 1)2
, (3.31c)

where q0 = f(xn)
f(xn+2) and q1 = f(xn+1)

f(xn+2) . Here, we have the conditions q0 6= 1 and

q1 6= 1, reducing to the condition that all y-coordinates must be unique. Again,
this condition isn’t very restrictive for reasons detailed above.

Methods with a greater number of history points are possible, however, the
gain in convergence rate from s = 3 to s = 4 is rather slim, as indicated by
Table 3.3. If such methods are desirable, they can be derived by selecting
coefficients that satisfy (3.17) - (3.18).
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3.5 Comparison with Newton’s method

Like the secant method, the s = 2 full LMM root-finding method needs two
starting points for the iteration. However, as the analytical derivative is avail-
able, we choose to simply start the LMM-based method using Newton’s method
on the first point, say x0, giving x1. The s = 3 method needs three starting
values, therefore the next value x2 is obtained from the s = 2 LMM method.
The LMM-based methods can be efficiently implemented by storing the function
value and derivative value of the previous step, thus resulting in a need for only
one function and one derivative evaluation per iteration.

Recall that the efficiency measure is defined as p
1
w with p the order of con-

vergence and w the number of evaluations per iteration [40]. Assuming the
function itself and the derivative cost the same to evaluate, the s = 3 LMM-
based method has an efficiency measure of

√
2.91 ≈ 1.71, using the convergence

rate from Table 3.3. Compared to Newton’s method, with an efficiency measure
of
√

2 ≈ 1.41, this is certainly an improvement. Even compared to memoryless

methods that have an optimal efficiency of 2
w−1
w according to the Kung-Traub

conjecture, our s = 3 method still holds up for w = 4. Hence, in terms of the ef-
ficiency measure, our method should weigh up to eighth-order optimal methods.
It would take a sixteenth-order optimal method, such as Geum and Kim’s [62],
to produce a higher efficiency.

3.5.1 Numerical examples

Here, we provide a number of test cases and show the number of iterations LMM-
based root-finders take versus Newton’s method, see Table 3.4. We’ve used a
selection of different test cases with polynomials, exponentials, trigonometric
functions, square roots and combinations thereof. For each of the test problems
shown, the methods converged within a few iterations. Some problems were
deliberately started near a maximum or minimum to see the behaviour when
the derivatives are small.

The test computations were performed using the variable-precision arith-
metic of MATLAB’s Symbolic Math Toolbox. The number of digits was set to
300 while the convergence criterion used was

|xl+1 − xl| ≤ 10−η, (3.32)

with η = 250. The numerical convergence rates were computed with the error
behaviour

|εl+1| = C|εl|p, (3.33)
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asymptotically as l→∞. The limiting value of the estimates for p is displayed
in Table 3.4.

Table 3.4: Test cases with iterations taken for Newton’s method (subscript N)
and the LMM-based method with s = 2 (subscript 2) and s = 3 (subscript 3)
method.

function root x0 #itsN #its2 #its3 p2 p3

x+ ex −0.57 1.50 11 8 8 2.73 2.93√
x− cos(x) 0.64 0.50 9 7 8 2.74 2.91

ex − x2 + 3x− 2 0.26 0.00 10 8 7 2.72 2.94
x4 − 3x2 − 3 1.95 1.30 17 14 14 2.73 2.92
x3 − x− 1 1.32 1.00 12 9 9 2.73 2.64
e−x − x3 0.77 2.00 13 10 10 2.73 2.92
5
(

sin(x) + cos(x)
)
− x 2.06 1.50 11 9 9 2.73 2.92

x− cos(x) 0.74 1.00 9 7 7 2.72 2.93
log(x− 1) + cos(x− 1) 1.40 1.60 12 9 9 2.73 2.92√

1 + x− x 1.62 1.00 9 7 7 2.73 2.92√
ex − x− 2x 0.54 1.00 11 8 7 2.73 2.92

Total number of iterations 124 96 95

We didn’t display Newton’s method in the table since it consistently exhib-
ited a quadratic convergence rate. The LMM-based methods, on the other hand,
generally have a higher convergence rate that may vary somewhat from problem
to problem. This is due to the fact that the step sizes may vary slightly while
the convergence rates of the LMM-based methods only holds asymptotically,
even with so many digits.

3.5.2 Pathological functions

A classical example of a pathological function for Newton’s method is the hyper-
bolic tangent tanh(x). Undergraduates newly introduced to Newton’s method
often believe that it converges for any monotone function until they’re asked to
find the root of tanh(x). Hence, we’ve used this function as a test case using
standard double precision floating point arithmetic and a convergence criterion
reading

|xl+1 − xl| ≤ 2εmach, (3.34)

with εmach the machine precision. Newton’s method fails to converge for starting
values with approximately |x0| ≥ 1.089, see Table 3.5. Our s = 2 LMM-based



76 CHAPTER 3. FINDING ROOTS FAST

Table 3.5: Convergence history for tanh(x) of the three methods: Newton (sub-
script N) and the LMM-based methods with s = 2 and s = 3. Note that the
root of tanh(x) is at x = 0.

xN x(s=2) x(s=3)

1.239 1.239 1.239
−1.719 −1.719 −1.719

6.059 0.8045 0.8045
−4.583 · 104 0.7925 −0.6806

Inf −0.7386 1.377
-6.783 · 10−3 −0.7730
9.323 · 10−6 3.466 · 10−2

|x(s=2)| < ε −3.032 · 10−4

1.831 · 10−11

|x(s=3)| < ε

method extends this range somewhat more and converges for any starting value
with roughly |x0| ≤ 1.239. This value was determined experimentally by trial-
and-error. The behaviour of the s = 3 LMM-based method is similar, though it
does take two more iterations to converge.

Starting at x0 = 1.239, Newton’s method diverges quickly, returning −inf
after only 4 iterations. The LMM-based method, on the other hand, bounces
around positive and negative values for about 5 iterations until it’s close enough
to the root. After that, the asymptotic convergence rate sets in and the root is
quickly found, reaching the root within machine precision at 7 iterations.

Donovan et al. [63] developed another test function for which Newton’s
method fails. The test produces a false convergence result for any initial guess
other than the root x = 0, satisfying (3.34) while the sequence xk itself diverges
very slowly. The test function is given by

h(x) = 3
√
xe−x

2

, (3.35)

which is, in fact, infinitely steep near the root x = 0, though it’s continuous,
see Figure 3.1. Again, we used double precision arithmetic and (3.34) as a
stopping criterion. Newton’s method slowly moves away from the root with
a decreasing step size, eventually resulting in satisfying (3.34) without having
found the root. The s = 2 and s = 3 LMM-based methods converge when
starting with |x0| ≤ 0.1147 for this problem, see Table 3.6. Again, this starting
value was determined experimentally by trial-and-error.
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Table 3.6: Convergence history for h(x) from (3.35) of the three methods: New-
ton (subscript N) and the LMM-based methods with s = 2 and s = 3. Note
that the root is at x = 0.

xN x(s=2) x(s=3)

0.1147 0.1147 0.1147
−0.2589 −0.2589 −0.2589

1.0402 0.1016 0.1016
1.6084 9.993 · 10−2 −5.648 · 10−2

1.9407 −0.2581 0.1959
2.2102 9.840 · 10−2 −0.1611
2.4445 9.810 · 10−2 5.021 · 10−2

2.6549 −0.2344 −7.190 · 10−2

2.8478 6.602 · 10−2 4.947 · 10−2

3.0270 6.021 · 10−2 −3.777 · 10−3

3.1953 −4.939 · 10−2 3.027 · 10−4

3.3543 −4.019 · 10−4 −6.875 · 10−6

3.5056 1.288 · 10−4 1.216 · 10−9

3.6502 2.028 · 10−10 −4.652 · 10−15

3.7889 −5.308 · 10−15 |x(s=2)| < ε
3.9225 |x(s=2)| < ε
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Figure 3.1: Pathological test function h(x) from (3.35).

Starting at the maximal x0 = 0.1147 for instance, the LMM-based methods
bounce several times between positive and negative x-values without making
much headway. After that, the root is close enough and asymptotic convergence
sets in, reaching the root to within machine precision in a few steps.

We believe the reason that the LMM-based method has increased stability is
due to the fact that it uses two points to evaluate the function and its derivative.
In both cases, the iterations jump between positive and negative values, enclos-
ing the root. In this fashion, the LMM-based method acts much like the regula
falsi method. Once the iterates are close enough to the root, the asymptotic
convergence rate sets in and the iterates converge in but a few steps.

3.6 A robust implementation

As with most open root-finding algorithms, the conditions under which the
method is guaranteed to converge are rather restrictive. Therefore, we’ve de-
signed a bracketed version of the LMM-based method that’s guaranteed to con-
verge. The algorithm is based on Brent’s method, using similar conditions to



3.6. A ROBUST IMPLEMENTATION 79

catch either slow convergence or runaway divergence. This version of the LMM-
based method does, however, require an enclosing bracket int[a, b] on which the
function changes sign, i.e., f(a)f(b) < 0. Alternatively, such a method can start
out as an open method, switching to the bracketed method once a sign change
is detected.

The algorithm consists of a cascade of methods increasing in accuracy but
decreasing in robustness, again analogous to Brent’s method. At the lowest level
stands the most robust method, bisection, guarding against steps outside the
current search bracket. On the highest level we use the full s = 3 LMM-based
method discussed in the previous section. Thus, in the best possible case, the
method will converge with a rate of 2.91 with an efficiency measure of 1.71. The
method is, by virtue of the bisection method, guaranteed to converge to a root.

Like Brent’s method and Dekker’s method, the LMM-based method keeps
track of three points a, b and c. Here, b is the best estimate of the root so far,
c is the previous value for b while a is the contrapoint so that int[a, b] encloses
the root. Ideally, all three values are used to compute the next value for b.
However, extra conditions are added to ensure the inverse actually makes sense
on the interval int[a, c].

Consider the case where the sign of f ′(c) is not equal to the sign of f(b)−f(a)
b−a ,

but the sign of f ′(b) is, see Figure 3.2. It follows that there is an extremum
between b and c, and the inverse function does not exist in the entire interval
int[a, c], leading to an error if we were to compute the inverse interpolation. By
discarding derivative information at c, we can define an inverse function that
makes sense on the entire interval.

a

b c

Figure 3.2: Sketch of the three points and the chord (dotted line) over [a, c].
The function f has no inverse on the entire interval.
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From the previous argument, we see that the following condition should be
applied to each derivative value: the sign of the derivative needs to be the same
as the sign of the secant slope on int[a, b], i.e.,

sgn (f ′(z)) = sgn

(
f(b)− f(a)

b− a

)
, (3.36)

where z = a, b, c. The derivative at each point can only contribute sensibly if the
derivative at a point satisfies (3.36). Otherwise we’d be trying to compute an
inverse to a function that doesn’t have one. If (3.36) is violated, the derivative
information should be discarded, leading to a lower-order interpolation and a
root-finder with a smaller convergence rate. If all derivatives are discarded, the
algorithm switches to inverse quadratic interpolation or the secant method.

Ultimately, the method provides an interval on which the function f changes
sign with a relative size of some given tolerance ε, i.e.,

|a− b| ≤ ε|b|. (3.37)

We’ll use ε = 2εmach in all our examples, with εmach the machine precision.
As an input, the algorithm has f , f ′, a and b such that f(a) · f(b) < 0. The
algorithm can be described in the following way:

1. If all three function values are different, use s = 3, otherwise use s = 2.

2. Check the sign of the derivatives at each point a, b and c, discard the
derivative if (3.36) is violated.

3. Try interpolation. If interpolation is worse than bisection, or outside the
interval int[a, b], use bisection.

4. If the step is smaller than the tolerance, use the tolerance as step size.

5. If the convergence criterion is met, exit, otherwise go to 1.

Moreover, the usual definitions of a, b and c are maintained as invariants
throughout the algorithm by making suitable swaps. In the algorithm, the first
step determines the number of history points that can be used. The second
step determines which derivative values should be taken into account. In effect,
only the second step is essentially different from Brent’s method, with all the
following steps exactly the same. The details of determining if the interpolation
step is worse than bisection are rather technical, but they allow for a worst-case
performance of twice the number of steps as bisection [44].
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The conditions on the derivatives gives rise to a veritable smörg̊asbord of
possible root-finders, including inverse quadratic interpolation and the secant
method. For each point, there are two alternatives, either the derivative is used
or not. Hence, for s = 3, there are 23 = 8 possible combinations and for s = 2
there are 22 = 4 possible combinations. Each combination defines a separate
root-finder, resulting in a total of 12 possibilities. Our method can therefore
be seen as stacking another 10 options on top of Brent’s method. The methods
are in fact exactly the same when none of the derivatives are suitable for use.
Naturally, sufficiently close to a simple root, the derivative conditions will be
satisfied at all three points and the method will use the full LMM method with
s = 3.

3.6.1 Comparison with Brent’s method

Here, we give a few examples of the robust LMM-based root-finding algorithm
discussed above compared to Brent’s method. As a performance measure, we
use the number of iterations. Standard double precision arithmetic is employed,
as that provides sufficient material for comparison. For both methods, the
stopping criterion is given by (3.37), i.e., the relative size of the interval must
be sufficiently small.

Table 3.7 shows that for most functions, both Brent’s method and the LMM-
based method take a comparable number of iterations. However, in some cases,
the difference is considerable. In the worst case considered here, or rather the
most favourable for our algorithm, Brent’s method takes 7.5 times as many
iterations to converge. In terms of efficiency index, Brent’s method should be
superior with an efficiency index of 1.84 against 1.71 of the LMM-based method.
Taken over the whole set of test functions, however, Brent’s method takes more
than three times as many iterations in total, leading to a significant increase in
function evaluations. We conclude therefore that practically, the LMM-based
root-finder is a better choice.

3.7 Concluding remarks on ray tracing

Our discussion on algorithms for ray tracing has come to an end. We started
the previous chapter by presenting a philosophy of high reliability. As such, our
aim was focussed at building robust and efficient tools for ray tracing. In the
previous chapter we’ve explored algorithms that reliably provide a good search
bracket for the correct intersection between a ray and a surface. In this chapter,
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Table 3.7: Test cases with iterations taken for Brent’s method and the LMM-
based method. Subscript B represents Brent while subscript LMM represents
the LMM-based method.

function root [a, b] #itsB #itsLMM

x+ ex −0.57 [−1, 1] 6 4√
x− cos(x) 0.64 [0, 2] 8 4

ex − x2 + 3x− 2 0.26 [−1, 1] 5 3
x4 − 3x2 − 3 1.95 [1, 3] 10 8
x3 − x− 1 1.32 [0, 2] 29 6
e−x − x3 0.77 [0, 2] 9 4
5
(

sin(x) + cos(x)
)
− x 2.06 [0, 4] 45 6

x− cos(x) 0.74 [0, 1] 7 3
log(x− 1) + cos(x− 1) 1.39 [1.2, 1.6] 31 4√

1 + x− x 1.62 [0, 2] 5 3√
ex − x− 2x 0.54 [−1, 2] 9 4

Total number of iterations 164 49
Total number of function evaluations 164 98

we’ve provided an equally impeccable root-finder that can swiftly close in on
the root.

Overall, then, our foray into the classical approach to illumination optics,
namely ray tracing, has been quite successful. However, to truly discover new
lands and virgin territories, we must look towards new avenues of attack. The
rest of this thesis is therefore dedicated to Liouville’s equation, which is the
topic of the next chapter.



Chapter 4

Liouville’s equation

Ich unterstelle natürlich Leser, die
etwas Neues lernen, also auch
selbst denken wollen.

Karl Marx

Joseph Liouville.

So far, we’ve looked at a ray-tracing approach to
computational illumination optics. In the industry,
ray tracing is indeed the go-to method for solving such
problems. However, if we’re serious in our desire to
find new, and hopefully faster, methods in computa-
tional optics, we need to try and break away from
this paradigm. Alternative approaches may avoid the
fundamental problems that plague ray tracing.

The first issue to avoid is sensitivity to the set
of initial conditions. For any method based on ray
tracing, the choice of initial conditions can have a
big influence on the result. Approaches where the
initial conditions of the rays are chosen in a regular

grid on phase space often give bad results. Randomly drawing from a uniform
distribution, called Monte Carlo ray tracing, is a popular option [23, 24, 64].
However, Monte Carlo ray tracing converges rather slowly. Moreover, using a
stochastic method to approximate a deterministic quantity always results in a
random error. The solutions computed by Monte Carlo ray tracing exhibit some

83
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amount of noise.
The second issue is energy conservation. Methods based on ray tracing will

always need a reconstruction technique to compute the energy distribution. One
reasonable request for the reconstruction would be that it’s conservative, i.e.,
the total reconstructed energy should equal the total source energy. However,
typical reconstruction techniques, such as bin-count, don’t conserve energy! Us-
ing forward ray tracing, it would be very hard, if not impossible, to construct a
conservative method. Conservative ray tracing schemes do exist, but they use
a combination of forward and backward ray tracing [65].

These two issues can be circumvented entirely by switching to methods based
on Liouville’s equation, which in the context of geometric optics can be inter-
preted as the statement of conservation of energy. In the absence of attenuation
or diffusion, the energy carried by a ray is constant. If we assume that the opti-
cal situation is static and time doesn’t play a role, power is also constant along
rays. As mentioned already in Section 1.2.4, the light source may also move
slowly with respect to the time it takes light to go through the optic, which
practically means any lighting situation. Indeed, the speed of light may as well
be infinite as far as human perception is concerned.

We can define a power density on phase space, ρ, which is power per unit
area per solid angle. The power carried by a ray is then given by ρdy with
dy the phase space volume element of the ray. Conservation of étendue implies
that the volume of dy is constant. Therefore, since power is constant along a
ray, we should have that

ρ
(
z + ∆z,q(z + ∆z),p(z + ∆z)

)
= ρ
(
z,q(z),p(z)

)
, (4.1)

which must hold for any ∆z. In radiometric terms, ρ is the radiance, while in
photometric terms it’s called the brightness or luminance. Photometric quanti-
ties are scaled with the sensitivity of the human eye. Hence, we can interpret ρ
either way, the difference being only a constant factor.

This equation, (4.1), is probably the most important equation in this the-
sis, because it characterises physical solutions to Liouville’s equation. Its most
significant feature is that it also holds even when the rays are refracted or re-
flected, since it’s derived from the very physics of rays itself. Assuming sufficient
smoothness, we may subtract the right-hand side and divide by ∆z. The limit
as ∆z → 0, yields

d

dz
ρ
(
z,q(z),p(z)

)
=
∂ρ

∂z
+
∂h

∂p
· ∂ρ
∂q
− ∂h

∂q
· ∂ρ
∂p

= 0, (4.2)

where we’ve applied Hamilton’s equations (1.33).
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Now we can interpret q and p as fixed coordinates and (4.2) becomes a
partial differential equation that determines the evolution of ρ. Another way
to put it’s that Hamilton’s equations provide the characteristics of Liouville’s
equation. This is the strong form of Liouville’s equation, which requires ρ and
h to be differentiable to make any sense1. Near an optical interface, (4.2) is not
valid as everything ceases to be smooth, but (4.1) provides us with the correct
physical solution. In particular, taking limits from both sides of the interface
yields

ρ
(
z+,q+,p+

)
= ρ
(
z−,q−,S(p−)

)
, (4.3)

where S is Snell’s function from Theorem 1.2. The pluses and minuses in the
superscript denote one-sided limits toward the interface. This equation simply
says that across an interface, the ray carries along its energy from one side to
the other, even though the ray itself is affected by Snell’s law or the law of
specular reflection.

Finally, (4.1) also allows us to find the exact solution to (4.2) based on the
initial conditions. In particular, we set ∆z = −z and find

ρ
(
z,q(z),p(z)

)
= ρ0

(
q(0),p(0)

)
, (4.4)

where ρ0 is the initial brightness distribution. Again, we note that (4.4) is
valid even when optical interfaces are present. We’ll use it to derive analytical
solutions to Liouville’s equation for certain special cases in Section 4.2.

The brightness, ρ, is one of the most fundamental quantities of illumination
optics. If we know ρ for a given source, we can pretty much compute anything
we’d like to know. For instance, the luminous intensity , the luminous power
per solid angle, is obtained by integrating ρ over all positions, i.e.,

I(p) =

∫

Q

ρdq. (4.5)

Recall that the momenta are related to angles defined with respect to the optical
axis, so that (4.5) can be converted to an angular distribution if so desired. On
the other hand, if we’re interested in the illuminance, the luminous power per
squared meter, we simply integrate over all momenta, yielding

E(q) =

∫

P

ρdp. (4.6)

1It’s funny that Liouville’s equation was never even considered by Joseph Liouville himself.
It was first derived by Josiah Willard Gibbs in [66]. He used an identity discovered by Liouville
in [67].
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Note that the converse is not necessarily true, if we know both the luminous
intensity I and the illuminance E, the brightness ρ can in general not be re-
constructed. In some sense, therefore, ρ provides more information than both
I and E combined. The difference is that ρ is a phase space distribution, while
phase space provides a complete description of geometric optics. Just consider
the fact that Hamilton’s equations (1.33) compose a first-order system of ODEs.
Therefore, a single point in phase space provides all necessary and sufficient in-
formation to recover the entire ray. On the other hand, the ray equation (1.19) is
a second-order ODE, so that simply providing an initial position is insufficient.

Information on phase space, therefore, provides everything there is to know
about a luminaire in the context of geometric optics. As such, considering
illumination optics on phase space brings certain advantages over considering
only intensity or illuminance or even both. Rausch and Herkommer were to first
to point this out [68,69].

4.1 From Lagrange to Euler

Joseph-Louis Lagrange.

What we did in going from Hamilton’s equations
(1.33) to Liouville’s equation (4.2) was switch from a
moving frame of reference to a fixed reference frame
in describing what happens to the energy. In the
moving frame situation, we travel along with the
ray, tracing its position in phase space while keeping
the energy carried by the ray in the back of our
minds. In the other case, we have an independent
coordinate system and we see some energy pass by
as it’s carried along by rays.

The moving frame picture is called a Lagrangian
description while the other is the Eulerian descrip-
tion. One old saw of mathematics holds that La-
grange is the kind of person who likes to sit in a boat adrift on a river and
describe what happens directly around him, while Euler likes to stand on the
shore describing what comes by. Another way of putting it’s that Lagrangian
information is local, while Eulerian information is global.

In illumination optics, we are interested in global information. We wish
to know the entire energy distribution on a wall, for instance. If we compute
Lagrangian (local) information by ray tracing, we therefore have to somehow
convert it to Eulerian (global) information. This is precisely the reconstruction
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step. Solving Liouville’s equation (4.2) directly means we do all the work in the
Eulerian frame and consequently there is no need for a reconstruction step.

Leonhard Euler.

If we think about it a little bit, we see that the con-
version step to global information is what introduces
all the errors for Lagrangian methods. The ray loca-
tion itself can be computed exactly when dealing with
optical interfaces, given exact arithmetic. On a com-
puter, this means the error will be close to machine
precision. However, performing a bin-count, for in-
stance, wastes all this exactness since it’s a first-order
reconstruction method. It produces a piecewise con-
stant approximation indiscriminate of the accuracy of
each individual ray.

In the Eulerian picture, Liouville’s equation can-
not be solved exactly, but it can be numerically ap-
proximated to high accuracy. By trading near-exact
computation for high-order accuracy, we can let go of

the reconstruction step entirely. Eulerian methods produce higher-order global
information directly. For illumination optics, therefore, it makes much more
sense to focus on Eulerian methods.

Another consequence is that no special integrators are needed. For Eulerian
methods the reference frame is fixed, so the structure of phase space is preserved
no matter what. By switching to the Eulerian picture, we only need to worry
about energy conservation. The reasoning is the following, consider some subset
of phase space, Ω and its indicator function 1Ω, i.e., the function that has value
1 for every point in Ω and 0 elsewhere. Conservation of étendue, volume on
phase space implies, among other things, that the integral over phase space
is constant when 1Ω is used as an initial condition for Liouville’s equation.
Furthermore, this condition must hold for all possible Ω. Hence, conservative
numerical methods in the Eulerian frame fulfil more or less the same role as
symplectic integrators in the Lagrangian frame.

4.2 Analytical solutions

Liouville’s equation admits analytical solutions only in the very simplest of
problems. These are constructed by means of an analytical version of ray
tracing, known as the method of characteristics in the context of hyperbolic
PDEs [70, 71]. It is, in principle, possible to wrench out a closed-form expres-
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sion for any number of optical interfaces, provided the exact intersection with an
arbitrary ray can be found. In practice, however, the staggering complications
in cases occurring in the solution will compound swiftly and without mercy. For
this reason, we consider here only simple propagation in a constant medium and
a single flat interface. Such analytical solutions are nevertheless important as
test cases to verify the numerical solvers we propose in later chapters.

4.2.1 Propagation in a constant medium

The first special case we consider is a constant refractive index. In this case,
ρ is simply propagated along a single direction with constant speed. For a
constant refractive index, the Hamiltonian is given by h(p) = −

√
n2 − |p|2, so

that Liouville’s equation reads

∂ρ

∂z
+

p√
n2 − |p|2

· ∂ρ
∂q

= 0. (4.7)

Note that this a linear advection equation with advection speed p√
n2−|p|2

. This

means that for every p, the advection speed will be different. If we denote the
initial condition with ρ0, then the solution is given by

ρ(z,q,p) = ρ0

(
q− z p√

n2 − |p|2
,p

)
, (4.8)

which can be easily checked.

4.2.2 The bucket of water

Another case which may be solved exactly is what we dub the bucket of water
problem: a simple transition from refractive index n1 to n2 with a flat interface.
The refractive index field is therefore given by

n(q) =

{
n1 if q1 ≤ 0

n2 if q1 > 0,
(4.9)

where q1 is the first component of q and 1 ≤ n2 < n1. This problem, for n1 = 1.4
and n2 = 1, resembles a torch being shone under water towards the flat water-air
transition. As such, it represents the simplest problem that contains all of the
important physics of light: propagation, refraction and total internal reflection.
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Even though the problem is relatively simple and of no real practical interest, it
represents an important test case that we’ll use again and again as a benchmark
throughout this work.

Clearly, this problem reduces to a two-dimensional optics problem, as the
q2-direction is parallel to the flat interface. The q2-direction is therefore straight-
forward propagation described by a one-dimensional version of (4.8). To simplify
the presentation, we’ll switch to a two-dimensional optics setting, i.e., ignoring
the q2 and p2-directions. We’ll write q = q1 and p = p1, whence Liouville’s
equation becomes

∂ρ

∂z
+

p√
n(q)2 − p2

∂ρ

∂q
= 0, (4.10)

for q 6= 0.

Remark. A special note for optical engineers and physicists: the momentum
is related to the choice of the optical axis, i.e., p = n sinφ, where φ is measured
with respect to the optical axis, see Figure 4.1. In this case, the optical axis is
parallel to the surface, rather than perpendicular to it2. Snell’s law is formulated
in terms of angles measured with respect to the surface normal. Therefore, in
terms of φ, Snell’s law becomes a cosine law.

We formulate the bucket of water problem with this choice of optical axis
since otherwise there’d be nothing much to see. Consider the more “natural”
choice of choosing the z-axis normal to the interface. Since p is parallel to the
flat interface at the point of impact, we have that ∂n

∂q = 0 and Snell’s law reduces

to p′ = p. In such a case, we’d apply Snell’s law instantaneously to the whole
distribution ρ in crossing the interface. As a consequence, the only difference
between the phase space distributions before and after the interface would be
that some part is reflected due to total internal reflection. Clearly, this situation
wouldn’t be much of an example. Hence the “strange” choice of axes.

For simplicity we’ll also assume that there is only one source region, given
by {q < 0, p ≥ 0}. The initial condition can only have non-zero values in the
source region. To find how the two regions left and right of the interface are
linked, we have to apply Snell’s law at the interface. For completeness, we’ll
also quote Snell’s law in its two-dimensional form, given by

S (p;n1, n2, ν) :=

{
p−

(
ψ + sgn (n2)

√
δ
)
ν if δ ≥ 0,

p− 2ψν if δ < 0,
(4.11a)

2You don’t want to know how many times I’ve had to explain this over the years. Comments
ranged from “counterintuitive” to plain “stupid”.
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q

z

n1 n2

φ

p = n sin φ

Figure 4.1: The momentum and its relation to the angle with respect to the
optical axis φ.

where

δ := n2
2 − n2

1 + ψ2 and ψ := pν ±
√
n2

1 − p2
√

1− ν2. (4.11b)

Recall that the sign has to be chosen such that ψ ≤ 0.
Let ’s consider the source region first, {q < 0, p ≥ 0}. In this region, only

simple propagation occurs as the light beam doesn’t encounter the interface.
Second, we consider the region {q > 0, p < 0}, which is the lower-right quadrant
of phase space. The advection speed in this region is negative, the flow is towards
the left. This region therefore also exhibits only simple propagation. The only
way any light could come here is by coming from further towards the right, but
it happens to be completely dark there by assumption, i.e., ρ = 0. This region
will be called the dark region. The situation is sketched in Figure 4.2.

Next, consider the region {q > 0, p ≥ 0}, which we call the refracted region
for reasons that will soon become apparent. We are looking for a ray with
initial coordinates (q(0), p(0)) such that the ray passes through phase space
coordinates (q(z), p(z)) = (q, p) at z. The advection speed is positive, so that
light can only come from the left, i.e., the source region. Any light from the
source region will first encounter the interface. Hence, we need to figure out
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refractedsource

reflected dark

n2n1

Figure 4.2: Sketch of phase space for the bucket of water problem.

what distance along the optical axis the ray travels to reach the point (q, p)
from the interface, call it ∆z. Hence, if we trace the ray back from its terminal
position (q(z), p(z)) = (q, p) to the interface, this also takes a z-interval of
length ∆z. From the interface to the final position, the rays are subject to
simple propagation in medium n2, so that

0 = q(z −∆z) = q −∆z
p√

n2
2 − p2

, (4.12)

from which ∆z can be easily found, i.e.,

∆z =
q

p

√
n2

2 − p2. (4.13)

Note that ∆z depends on the terminal position in phase space. If z−∆z > 0, we
can trace the ray further back to some initial coordinates in the source region,
so that

0 = q(z −∆z) = q(0) + (z −∆z)
p′√

n2
1 − p′2

, (4.14)

where p′ is the momentum in the source region such that S(p′) = p, using
Corollary 1.1. The initial position q(0) can be easily isolated. The solution for
ρ in this region can be found by first computing ∆z from (4.12) and then using



92 CHAPTER 4. LIOUVILLE’S EQUATION

(4.4), yielding

ρ(z, q, p) =

{
ρ0

(
(∆z − z) p′√

n2
1−p′2

, p′
)

if ∆z < z,

0 otherwise.
(4.15)

Finally, we consider the region {q ≤ 0, p < 0}, which we call the reflected
region. The advection speed is negative, while there’s no light further towards
the right, in the dark region. Therefore, light can only enter due to total internal
reflection off the interface. Recalling Snell’s function from Theorem 1.2, we find
first that ν = −1 so that ψ = −p for p > 0. Total internal reflection therefore
occurs whenever n2

2−n2
1 + p2 < 0, so that we can define the critical momentum

pc =
√
n2

1 − n2
2, (4.16)

while we need p > −pc when tracing backwards for TIR to occur. For a water-
air transition, the critical momentum is pc ≈ 0.9798. Again applying the same
trick, we first propagate the ray backwards from the location (q(z), p(z)) = (q, p)
to the interface. This leads to

0 = q(z −∆z) = q −∆z
p√

n2
1 − p2

, (4.17)

whence we again can find ∆z = q
p

√
n2

1 − p2. The reflection is particularly easy

to compute, since ν = −1, so that p(0) = p′ = −p. Hence, if z − ∆z > 0, we
can again propagate backward from the interface to some initial condition in
the source region. This yields

0 = q(z −∆z) = q(0) + (z −∆z)
−p√
n2

1 − p2
, (4.18)

from which q(0) can be found quite easily. Simplifying and using (4.4), we find

ρ(z, q, p) =

{
ρ0

(
z p√

n2
1−p2

− q,−p
)

if p > −pc and ∆z < z,

0 otherwise.
(4.19)

It turns out that due to the compact support of ρ0 in the source region, we can
simply ignore the cases where ∆z > z. In either case, even though the answer is
wrong, the initial condition is computed to lie outside the source region, thereby
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returning ρ = 0 anyway. The global solution can therefore be compiled as

ρ(z, q, p) =





ρ0

(
q − z p√

n2
1−p2

, p

)
if q < 0, p ≥ 0,

ρ0

(
z p√

n2
1−p2

− q,−p
)

if q < 0,−pc < p < 0,

ρ0

(
(∆z − z) p′√

n2
1−p′2

, p′
)

if q > 0, p ≥ 0,

0 otherwise,

(4.20)

with p′ such that S(p′) = p, pc defined by (4.16) and ∆z given by

∆z =
q

p

√
n2

2 − p2. (4.21)

4.2.3 Compound parabolic concentrator

The compound parabolic concentrator (CPC) is a pair of mirrors that have a
parabolic shape. We’ll discuss the two-dimensional CPC, as the three-dimensional
version is usually constructed from rotating the two-dimensional CPC around
the z-axis. A CPC is fixed by two parameters: the exit aperture a and the
acceptance angle θ, see Figure 4.3. The spatial aperture width is 2a, while
the angular aperture width is 2θ. In two dimensions, the CPC is a perfect
concentrator, which means any light falling into the entrance aperture with
an angle less than the acceptance angle is directed to the exit aperture. Any
ray with a larger angle is rejected by various reflections [2]. The exit aperture
looks like a Lambertian light source, which means the brightness is constant on
[−a, a]× [−π2 , π2 ].

The right wall of the CPC can be constructed by tilting a parabola with
respect to the z-axis over angle θ and shifting it such that its focal point is at
(−a, 0). Finally, the focal distance is such that the parabola goes through the
point (a, 0). The right wall consists of the part of the parabola with q > 0 and
z > 0. The left wall is simply the right wall reflected in the z-axis, see Figure
4.3. The right wall of the CPC is given by q = Qr(z), with

Qr(z) =
c1z + b1 +

√
c2z + b2

2 cos2 θ
. (4.22a)
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Figure 4.3: The CPC is constructed by tilting and shifting two parabolas.

where the coefficients are given by

c1 = − sin(2θ), (4.22b)

b2 = a
(

cos(2θ)− 3− 4 sin θ
)
, (4.22c)

c2 = 8a
(
2 cos θ + sin(2θ)

)
, (4.22d)

b2 = 8ab1. (4.22e)

The left wall is given by q = −Qr(z). The normal can be found straightfor-
wardly, since Qr is differentiable. The shape of a CPC with exit aperture a and
acceptance angle θ is completely fixed. The optic has a length Z, given by

Z = a
(1 + sin θ) cos θ

sin2 θ
. (4.23)

In two dimensions the CPC is a perfect concentrator, which means the spatial
concentration is as high as possible. However, this entails also maximal dilution
in the angular coordinate, due to étendue conservation, see Theorem 1.1.

We can apply étendue conservation to find how a distribution that is constant
on the entrance aperture is transformed when traversing the CPC. The exit
aperture has width 2a, while maximal angular dilution implies that the angular
range of the exit is [−π2 , π2 ], meaning [−1, 1] in terms of momentum. Thus, the
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exit aperture has étendue 4a. The entrance aperture has angular range [−θ, θ],
or [− sin θ, sin θ] in terms of momentum, whereby the half-width of the entrance
aperture is given by

a′ =
a

sin θ
. (4.24)

Thus, if the initial condition is given by the characteristic function of [a, a]×
[−1, 1] at the exit aperture, i.e.,

ρ0(q, p) =

{
1, for − a ≤ q ≤ a,−1 ≤ p ≤ 1,

0, otherwise,
(4.25)

it follows that the solution at z = Z, the entrance aperture, is given by the
characteristic function of [−a′, a′]× [− sin θ, sin θ], i.e.,

ρ(Z, q, p) =

{
1, for − a ≤ q sin θ ≤ a,− sin θ ≤ p ≤ sin θ,

0, otherwise.
(4.26)

4.3 Scaling arguments

So far, we’ve only argued with hand-waving arguments that Eulerian methods
are more suitable to solve illumination problems than ray tracing. To recap: ray
tracers are usually not energy conserving; information is generated at a local
level, which requires a conversion to the global level; and ray tracers are wasteful
of the computational accuracy of individual rays. We’d like quantify the effects
of these objections by looking at scaling arguments, in particular time scaling
and error scaling. At the same time, we’ll also take a closer look at the scaling
behaviour of Eulerian methods.

4.3.1 Ray tracing

Ray tracing with a bin-count reconstruction works by laying down a collection
of E bins on d-dimensional phase space, where d ∈ {2, 4}, and determining the
averages by a Monte Carlo process. Here, d = 2 for two-dimensional optics
and d = 4 for three-dimensional optics, since we choose d as the phase space
dimension. For each bin, the average is approximated by the Monte Carlo
average, i.e.,

1

|Ωi|

∫

Ωi

ρdy ≈ 1

Ni

Ni∑

k=0

ρk. (4.27)
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where Ni is the number of rays incident to bin i, represented by a domain Ωi in
phase space. The initial condition of each ray is random, so that Ni is random,
as well as each ρk. The estimate for the average on bin i converges with a

standard deviation of O
(
N
−1/2
i

)
[64]. Although this is a statistical measure for

the error, we’ll simply use the standard deviation as an estimate of the error of
the Monte Carlo method.

After obtaining the averages, the local approximation on the bin is com-
pleted by defining the numerical solution of ρ to be constant hence equal to its
average over the bin. This results in a piecewise constant approximation to the
brightness ρ, which is first-order accurate. Let’s say there are E bins and let’s
assume that they’re roughly the same size. This means the number of rays in
each bin will be close to the average number of rays per bin, i.e., Ni ≈ N

E with
N the total number of rays. The total error of the Monte Carlo ray tracing
method is the sum of the two contributions and will therefore scale as

eRT = O
(√

E

N

)
+O

(
1

E1/d

)
. (4.28)

This error will be minimal when the two terms scale the same way. The logic is
straightforward: if the Monte Carlo error dominates, we should use more rays,
while if the discretisation error dominates, we’re using too many rays. There
is, therefore, an optimal scaling for bins versus rays, which occurs whenever
the two error contributions scale alike3. The result is that the number of rays
should scale as

N = O
(
E1+2/d

)
. (4.29)

For two-dimensional optics d = 2 and N ∼ E2, while for three-dimensional
optics d = 4 and N ∼ E3/2.

Computing the location of a single ray on the target usually takes constant
time, meaning O(1), after which the correct bin has to be found. We’re ignoring
some pathological cases here, such as the whispering modes of a CPC, which
reflect an infinite number of times. Once a ray location has been computed,
a naive search will typically require linear time O(E), while a more advanced
strategy might achieve logarithmic time. For instance, a binary structure may
be imposed on the bins, allowing the right bin to be found in logarithmic time,
O(logE). However, it’s unclear how to do such things on unstructured grids.

3You can also obtain this condition by setting the derivative of eRT with respect to E to
zero after assuming some constants for each term.
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Therefore, we’ll assume a simple linear search over the elements, so that each
ray will take linear time to process, resulting in

tRT = O
(
E2+2/d

)
, (4.30)

which is simply the number of rays multiplied by the computation time per
ray. For two-dimensional optics, we find tRT ∼ E3, while for three-dimensional
optics we have tRT ∼ E

5/2. This looks like it suggests that ray tracing in
four dimensions is actually faster, but remember that E is the total number of
elements. Choosing a product grid of M points per dimension, i.e., E ∼Md, the
computation time on the regular grid becomes O(M2d+2), which does increase
for higher dimensions.

Second-order accurate ray tracing

Whereas our previous illustration of a ray tracing method produces a first-order
accurate ray tracing scheme, it’s actually possible to define a second-order ray
tracer. This is due to the fact that the Monte Carlo sum (4.27) supplies averages
and not point values directly. The midpoint rule, applied in reverse, tells us that
the midpoints of each bin actually converges with second order. Indeed, for any

smooth function f : [a, b]→ R with average value f̄ = 1
b−a

∫ b
a
f(x) dx, we have

f̄ − f
(
a+ b

2

)
=

1

b− a

b∫

a

f ′
(
a+ b

2

)(
x− a+ b

2

)
dx+O((b− a)2)

= O
(
(b− a)2

)
.

(4.31)

This estimate also holds for higher dimensions under some mild conditions on
the shape of the domain. However, in the context of our ray tracer, this means
that defining the result of the Monte Carlo process as the midpoint value of each
bin, the result is second-order accurate. Linearly interpolating between nearest
neighbours then results in second-order accuracy globally on phase space.

The Monte Carlo process is not changed, hence its contribution to the error
is unchanged. Therefore, using this alternative reconstruction procedure, we
find a different error scaling for second-order ray tracing, namely

eRT2 = O
(√

E

N

)
+O

(
1

E2/d

)
. (4.32)
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Performing the same analysis as above and finding the optimal scaling for the
number of rays results in

N = O
(
E

4/d+1
)
. (4.33)

In particular, this yields N ∼ E3 for d = 2 and N ∼ E2 for d = 4. Assuming
a constant computation time per ray and a linear search to find the correct
element, we find therefore that

tRT2 = O
(
E

4/d+2
)
. (4.34)

Again, it may seem that ray tracing on a four-dimensional phase space is faster
than on a two-dimensional phase space, but if we use a product grid of M points
per dimension, we have E ∼Md and consequently N ∼M2d+4.

Though we remark that second-order ray tracing is indeed an option, we’ve
chosen not to use it, because the time scaling is simply too unfavourable. Indeed,
throughout this work we’ll focus on two-dimensional optics problems, where
we’d suffer tRT2 ∼ E4. Even though this is polynomial, practically speaking
computation times will become unwieldy very quickly. For example, gaining
another decimal point in accuracy on a two-dimensional phase space would
increase the computation time by a factor of 10.000. As such, we accept a lower
accuracy at the benefit of a better time scaling.

Low-dimensional ray tracing

The ray tracers illustrated above are valid methods for solving Liouville’s equa-
tion, or in other words, to compute the brightness distribution. However, ray
tracing is more commonly employed to compute either the luminous intensity or
the illuminance. To jog the memory, intensity is the power per solid angle and
illuminance is the power per unit area. Hence, compared to the brightness, com-
puting these profiles provides lower-dimensional information. For phase space
dimension d ∈ {2, 4}, these distributions live in a d

2 -dimensional world. Conse-

quently, the number of bins will be roughly
√
E if E bins are used for the phase

space distribution.

Let’s denote by F the number of bins in the lower-dimensional problem. As-
suming a second-order ray tracer is used, the discretisation error of the numerical
solution will be O(F

2/d̃), where d̃ = d
2 , with d the phase space dimension. There-

fore, denoting together with the Monte Carlo random error, the low-dimensional
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ray tracer will achieve an error of

eRTL = O
(√

F

N

)
+O

(
1

F 4/d

)
, (4.35)

assuming a second-order ray tracer as discussed above. The minimum error is
achieved when

N ∼ F 8/d+1, (4.36)

so that N ∼ F 5 for d = 2 and N = F 3 for d = 4. In terms of the number of
bins F , a two-dimensional ray tracer admits a truly horrendous scaling. The
time scaling is of course worse, since an additional bin search is needed. However,
for two-dimensional optics problems a one-dimensional distribution is computed,
which means the correct bin can be found in logarithmic time. Moreover, the
correct bin can be found in constant time when the grid is uniform. In the case
that d = 4, we assume for simplicity that a linear search is used, yielding

tLRT =





O(F 5 logF ), for a general grid and d = 2,

O(F 5), for a uniform grid and d = 2,

O(F 4), for d = 4.

(4.37)

The time scaling is pretty bad, but it’s useful to compare it to first-order ray
tracing on phase space, i.e., using F ∼

√
E, so that the time scaling gives

tLRT ∼ E
5/2 (d = 2, uniform grid) or tLRT ∼ E2 (d = 4). In both cases, it’s

therefore quicker by a square root factor of E. The difference will, of course, be
more pronounced as the number of bins increases.

Low-dimensional ray tracers of any order can be defined by adjusting the
number of rays. For instance, choosing N ∼ F 1+2/d leads to a first-order ac-
curate method, i.e., the error scales as O(F−2/d). As expected, choosing a
lower-order ray tracer improves the computation time. Redoing the maths of
before leads to times scaling with t ∼ F 2 logF for d = 2 and t ∼ F 5/2 for d = 4.

4.3.2 Liouville solvers

Now let’s look at the Eulerian approach, where we solve Liouville’s equation
with a discretisation method of order γ ≥ 1. For a fair comparison, we take
as the number of elements or grid points the number of bins, E. Therefore, by
definition the discretisation error of such a method is given by

eLS = O
(

1(
E1/d

)γ
)
. (4.38)
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The time scaling is the effort per z-step times the number of z-steps. With ex-
plicit Eulerian methods, we usually have to observe a CFL condition, restricting
z-steps to a size ∆z ≤ C hmin

bmax
, with C > 0, bmax the maximum velocity and hmin

the smallest size. The constant C depends on the discretisation method, while
bmax is a property of the problem. Therefore, both C and bmax do not de-
pend on E. The smallest size, however, does depend on the grid and scales as
hmin = O(E−1/d), while ∆z should scale as hmin by the CFL condition. For some
fixed integration time Z, the number of z-steps, Z

∆z , will therefore be O(E
1/d).

The effort per element or grid point may depend on the order of accuracy of
the discretisation and the dimension. For instance, a γth order finite difference
scheme can be constructed by a stencil of size γ + 1 for each dimension, while
the central point can be used by each dimension, so that the total effort of
a z-step would be proportional to γd + 1. In general, for each element on
grid point, the update requires information to be drawn from a finite number of
neighbours. The exact number of neighbours in communication with an element
is a constant that can depend on the order of accuracy γ. Therefore, the time
cost per element will be a polynomial of the dimension d and the order γ. The
dimension is either 2 or 4, so that assuming a fixed order γ leads to a z-step
taking effort O(E).

In the presence of optical interfaces, momentum is transferred from one part
of phase space to another, while the position is continuous. Therefore, a space
with half the dimensionality of phase space will have to be searched for every el-
ement or grid point near the interface. Again, we might use some kind of binary
structure to make the search faster, but to keep the comparison fair we’ll also
assume a linear search here. The number of elements that need to be searched
will depend on the dimension d. In particular, an interface manifests itself a
surface in position space, so that the dimension of the interface in phase space
is d − 1. The number of elements that need to be searched will therefore scale
as O(E

d−1
d ). The total time scaling is the product of the number of elements E,

the effort per element per time step, O(E
d−1
d ) for interface elements and con-

stant otherwise, and the number of time steps, i.e., tLS ∼ E(C +E
d−1
d )E

1
d . Of

course, the effort for interface elements will dominate the constant, so that we
find

tLS = O
(
E2
)
. (4.39)

Again a gentle reminder: E is the total number of bins, which scales as O(Md)
for a d-dimensional regular grid of M points per dimension. On a regular grid,
therefore, Eulerian methods should scale with O(M2d).
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Collapsing to lower-dimensional distributions

As we’ve pointed out in the beginning of this chapter, lower-dimensional infor-
mation such the intensity and illuminance can be obtained from the brightness.
This is done by integrating out the unwanted dimensions. For instance, to ob-
tain the illuminance, the brightness is integrated over all momenta. It’s there-
fore possible to obtain lower-dimensional information by means of a Liouville
solver. This is especially useful for three-dimensional optics, since humanity
hasn’t mastered the trick of plotting distributions in four dimensions yet.

Integrating the brightness over d
2 dimensions should be considered a post-

processing technique applied to the numerical solution. However, it’s still useful
to know how long this will take. Suppose we want to integrate over the mo-
menta and we fix, for the moment, the position. The fixed position defines a
surface in phase space where d

2 dimensions are fixed and d
2 are left free. There

are, therefore, O(
√
E) elements that will connect to the surface. For each posi-

tion we have to integrate over O(
√
E) elements, while there are of course also

O(
√
E) positions to consider. Hence, the computation will scale linearly with

the number of elements. Of course, if we fix the momentum and integrate over
the positions, we obtain the same scaling. Next, we need to figure out how much
effort each element takes.

Integration over an element typically takes an effort that depends on the
order γ and the dimension d. Using as an example again a finite difference
method of order γ, we’d also need to use a quadrature rule of order γ for each
grid point. If d = 2, we need to apply the quadrature over one direction, while
if d = 4, we need to apply the quadrature over two dimensions. In general the
effort per element will depend polynomially on the order γ and the dimension
d. Hence, we find that computing either intensity or illuminance from the
brightness takes linear time in the number of elements, i.e., O(E).

The accuracy of this approach also has order γ, so that we find an error of
O
(
E−

γ
d

)
. In terms of the number of elements on the lower-dimensional space,

F ∼ E2, this provides an accuracy of O(F−
2γ
d ). As a method for finding both

intensity and illuminance, the computation is dominated by solving Liouville’s
equation, which is done in quadratic time O(E2). Since E ∼ F 2, the compu-
tation time scales quartic O(F 4) with the number of elements on the lower-
dimensional grid. As a consequence, even if the desired quantities are intensity
and illuminance, it’s theoretically faster, or equally fast, to first compute the
numerical solution to Liouville’s equation compared to second-order ray tracing.
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4.3.3 Summary of scaling arguments

We summarise the scaling arguments for the lower-dimensional ray-tracers in
Table 4.1. These methods should be used if one wishes to know the luminous
intensity or the illuminance. The ray tracers are compared to first solving
Liouville’s equation and integrating over either all positions or all momenta to
obtain the desired information.

Table 4.1: Overview of the scaling behaviour for lower-dimensional methods as a
function of the number of elements in the low-dimensional grid F , the dimension
of phase space d ∈ {2, 4} and the order γ.

error time

first-order ray tracing F−2/d F 2 logF (d = 2) or F
5/2 (d = 4)

second-order ray tracing F−4/d F 5 logF (d = 2) or F 4 (d = 2)

Liouville + integration F−
2γ
d F 4

In this case, as can be read from the table, solving Liouville’s equation first
and then integrating to obtain the lower-dimensional information is equally fast
or faster than second-order ray tracing. First-order ray tracing is faster by
quite a margin, even if we choose a first-order Eulerian method. We’ll mostly
be comparing the Liouville solvers to the first-order ray tracer on phase space,
but we’ll also see one example of the lower-dimensional approach.

Table 4.2 shows the conclusion of each the scaling arguments for phase space
methods at a single glance. As advertised, Eulerian methods have much better
scaling behaviour. We should note for Liouville solvers, the time scaling constant
will depend polynomially on the order γ and the dimension of phase space d.
However, γ and d are usually fixed, so that we are mostly interested in the
scaling behaviour with respect to the number of elements E.

Table 4.2: Overview of the scaling behaviour for phase-space methods as a
function of the number of elements E, the dimension d ∈ {2, 4} and the order γ.

error time

first-order ray tracing E−1/d E2+2/d

second-order ray tracing E−2/d E2+4/d

Liouville solver E−γ/d E2
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Perhaps surprisingly, the scaling arguments suggest that any Eulerian method
should perform better than first-order ray tracing. In particular, even a first-
order Eulerian method, with γ = 1, should achieve the same accuracy as the ray
tracer while providing an improved time scaling. Higher-order methods should
give even better accuracy while still exhibiting a superior time scaling. We’ll
therefore start our investigation with a first-order method as a proof of concept.
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Part II

Computational methods for
hyperbolic PDEs
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Before we discuss implementation of Eulerian schemes for Liouville’s equa-
tion, we’ll show a few methods in their native environment, i.e., hyperbolic
PDEs. A typical example of a hyperbolic PDE is given by

∂u

∂t
+∇ · f(u) = 0,

for a given flux function f , where t denotes time and ∇ · is the divergence op-
erator. Liouville’s equation fits in this form for smooth Hamiltonians, provided
we allow f to depend on space and time as well. Our basic idea is to use off-the-
shelf methods away from an interface. Close to an interface, we locally adjust
the schemes to incorporate Snell’s law via (4.3).

For evolution equations, PDEs that depend on time, one common strategy
is to discretise space first, leading to a large number of coupled ODEs. This
approach is known as the method of lines (MOL), see e.g. [70]. The large set of
coupled ODEs is then solved using a general-purpose numerical integrator like
Runge-Kutta methods. All methods we present here fit into this paradigm.
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Chapter 5

Upwind and WENO

Everybody knows.

Leonard Cohen

Perhaps the simplest numerical methods for partial differential equations are
finite difference methods. In these methods derivatives are approximated by, as
the name suggests, finite differences. Usually, such methods are applied on a
regular grid where all grid points are equidistant. Taylor expansions provide a
way to design and analyse such methods. The collection of grid points needed
to approximate the derivative at a particular grid point is called the stencil [70].

We showcase here two numerical schemes that operate on regular grids. The
first one is the first-order upwind method, which is elementary in the sense that
it’s simple yet contains all the major concepts that more elaborate methods also
use. The second is the more sophisticated WENO scheme, which still clearly
has its roots in finite differences.

5.1 First-order upwind

To illustrate the first-order upwind method, we consider a one-dimensional linear
advection equation

∂u

∂t
+ b

∂u

∂x
= 0, (5.1)

for t ∈ [0, T ] and x ∈ [0, 1]. The velocity field b is allowed to depend on time
and space. We’d like to solve this PDE numerically with first-order accuracy on

109
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a regular grid. Before we describe the method in detail, we make a small detour
to a slightly older method.

5.1.1 The CIR scheme

The roots of the upwind method can be traced back to a method proposed by
Courant, Isaacson and Rees in 1952 [72]. The CIR scheme integrates backward
along the characteristics that terminate in a grid point. Linear interpolation in
space is then performed to update the approximate values on the grid points.
Consider the quantity u? defined by

u?(t) = u
(
t, x(t)

)
, (5.2)

for some curve x : R→ R. The time derivative of u? is given by

du?

dt
=
∂u

∂t
+

dx

dt

∂u

∂x
. (5.3)

A special choice of the curve x turns it into a characteristic, namely, the choice
that x satisfies

dx

dt
= b
(
t, x(t)

)
. (5.4)

The result is that (5.3) becomes identically zero due to (5.1), whence u? becomes
a constant. Thus, the solution to the advection equation is constant along
characteristics, which are curves defined by (5.4).

We now introduce a spatial discretisation as

xj = (j − 1)∆x, (5.5)

with ∆x = 1
N−1 and j = 1, . . . , N and a time discretisation

tn = n∆t, (5.6)

with ∆t = T
M , with n = 0, . . . ,M . The approximation to the exact solution

u(·, ·) is denoted unj ≈ u(tn, xj). Using the forward Euler method to integrate
(5.4) backward in time from xj , we find that

u(tn+1, xj) ≈ u(tn, xj − bn+1
j ∆t), (5.7)

where bn+1
j is shorthand for b(tn+1, xj). We restrict the time step ∆t to be

such that xj−1 ≤ xj − bn+1
j ∆t ≤ xj+1. The stencil therefore consists of
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{xj−1, xj , xj+1}. Note that the sign of b determines whether xj − bn+1
j ∆t lies

to the left or right of xj . It’s in this sense that integrating backwards along
characteristics leads to upwinding. Going backwards in time leads to travelling
in some definite direction in space, i.e., against the direction of the velocity field
b.

Clearly, we’d like to have the numerical solution satisfy (5.7) in a discrete
sense. For the moment, therefore, assume that we know the exact solution
on the grid points. Since we don’t know the exact solution anywhere else, we
must perform an interpolation to find the actual update. For instance, the
interpolation at time tn between xj−1 and xj is given by

ũn(x) = unj−1 +
x− xj−1

xj − xj−1

(
unj − unj−1

)
, (5.8)

where a similar expression is used for the interpolation between xj and xj+1.
Using the interpolation, we simply define the time stepping as un+1

j = ũn(xj −
bn+1
j ∆t). The time update therefore depends on the sign of b, and is given by

un+1
j =





unj −
bn+1
j ∆t

∆x

(
unj − unj−1

)
, if bn+1

j ≥ 0,

unj −
bn+1
j ∆t

∆x

(
unj+1 − unj

)
, if bn+1

j < 0.

(5.9)

Note that this is an explicit method, as we don’t have to solve any algebraic
system of equations to advance in time. Furthermore, whenever b is a constant,
the forward Euler method gives the exact solution for the characteristics. The
error in the numerical solution in this case therefore comes completely from the
linear interpolation.

5.1.2 Upwinding differences

The upwind scheme is more easily derived than the CIR scheme. It’s based
on finite differences, though the previous discussion is useful as it shows the
underlying ideas explicitly. The main insight is to use upwind-biased differences
to approximate the spatial derivative, i.e., ∂u

∂x (tn, xj) is approximated by





unj −unj−1

∆x if bnj ≥ 0,

unj+1−unj
∆x if bnj < 0.

(5.10)
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Together with a forward Euler time integrator, this produces the scheme

un+1
j − unj

∆t
=

{
−bnj

unj −unj−1

∆x if bnj ≥ 0,

−bnj
unj+1−unj

∆x if bnj < 0.
(5.11)

which, after isolating un+1
j , is almost identical to the CIR scheme except for the

fact that the velocity field is evaluated at the current time level tn. This doesn’t
change the order of accuracy since we have bnj = bn+1

j + O(∆t). The major
insight of upwinding the differences, however, is harder to explain without a
discussion of characteristics.

The global error behaviour of this upwind method is first order in space in
time, thus

eglobal = O(∆x) +O(∆t). (5.12)

This error behaviour can be derived more rigorously, but here it suffices to note
that forward Euler is first-order accurate in time while the biased difference is
first-order accurate in space. The idea of an upwind solver can be generalised
to stencils of any size, giving schemes of any order. The time integrator has to
be chosen accordingly. The guiding principle to constructing upwind schemes is
that the number of grid points upwind of xj should be larger than the number
of downwind points.

Upwind schemes, like most explicit hyperbolic discretisation methods, are
subject to the Courant-Friedrichs-Lewy (CFL) condition, first discussed in [73],
which roughly states that the highest velocity has to fit on the grid. To be more
precise, the numerical domain of dependence for any grid point must contain
the analytical domain of dependence. This relation is usually expressed in terms
of the CFL number c = bmax∆t

∆x , where bmax is the maximum velocity occurring
in the system. The CFL condition then implies that

|c| ≤ 1. (5.13)

If the CFL condition is violated, the scheme can become unstable, meaning the
numerical solution blows up.

5.2 WENO schemes

As mentioned earlier, constructing higher-order upwind methods isn’t hard in
principle, simply using larger stencils will get you there. However, obtaining a
good numerical solution is not all that straightforward, as Godunov pointed out
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in his famous theorem [74]. It states that linear schemes that preserve mono-
tonicity of the numerical solution can be at most first-order accurate. Therefore,
nonlinear interpolation schemes are needed, such as weighted essentially non-
oscillatory schemes. What follows is a near verbatim version of our article on
embedded WENO schemes [75].

In a seminal paper in 1987, Harten and Osher introduced the essentially non-
oscillatory (ENO) reconstruction technique [76]. The basic idea of ENO is to
construct several different candidate polynomial interpolations of the numerical
solution and to choose the smoothest approximation to work with. The choice
is facilitated by means of smoothness indicators, which become larger as the
interpolation varies more rapidly.

Building further on the ENO scheme, Liu, Osher and Chan introduced
the weighted essentially non-oscillatory (WENO) reconstruction technique in
1994 [77]. The WENO technique comes from the realisation that the several
approximations of ENO can be combined to construct a higher-order approxima-
tion. Instead of the logical statements inherent in the ENO scheme, the WENO
scheme weighs every lower-order approximation according to its smoothness in-
dicator. Thus, in smooth regions, WENO gives a better approximation, while
reducing to ENO near discontinuities.

WENO schemes are commonly used in science and engineering, with ap-
plications in fluid dynamics, astrophysics, or any other application involving
convection-dominated dynamics [78, 79]. The technique is mainly applied in
the context of hyperbolic and convection-dominated parabolic PDEs. However,
since it’s a highly advanced interpolation technique, it also has applications in
fields that don’t use it as part of a PDE solver, such as computer vision and
image processing [80,81].

The standard WENO scheme as it’s most commonly used today was devised
by Jiang and Shu [82], and is sometimes referred to as the WENO-JS scheme.
Recently, several variants of the WENO scheme have appeared that improve
the order of accuracy near points where the first derivative vanishes. Examples
include the WENO-M [83, 84], WENO-Z [85–87] and WENO-NS [88] schemes.
For a comparison of the performance of these schemes, see Zhao et al. [89].
Other efforts have focused on creating energy-stable WENO schemes such as
those constructed by Yamaleev et al. [90,91], or decreasing numerical dissipation
by using central discretisations such as considered by Hu et al. [92].

The most common implementations of WENO schemes use a five-point sten-
cil, which can be subdivided into three three-point stencils. WENO schemes
switch seamlessly between the third- and fifth-order reconstructions that are
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possible on the five-point stencil. The idea is straightforward: when all three
smoothness indicators are roughly equal, a WENO scheme switches to the fifth-
order mode. When one or more smoothness indicators are large, a WENO
scheme switches to the third-order mode.

In this formulation, it seems obvious that information is discarded when
only one out of three smoothness indicators is large. When this happens, the
two smooth approximations could still be used to obtain better accuracy. The
current WENO methods don’t allow for control over the numerical solution in
this situation. However, one very recent scheme which does feature this type
of functionality is the targeted ENO scheme of Fu et al. [93]. Their approach
is completely novel and uses a combination of ideas from ENO and WENO
schemes. Here, we propose a design strategy that aims to adapt existing WENO
schemes such that they utilise the maximum number of grid points that form a
smooth substencil. Moreover, we’ll explicitly construct variants of two existing
WENO schemes that exhibit this property.

Apart from the order of convergence, one can also analyse a WENO scheme
in terms of its spectral properties [94]. WENO schemes switch non-linearly
between linear modes of operation and as such, it’s possible to investigate the
spectral properties by analysing the underlying linear schemes [95]. We’ll also
show that our method allows for tuning of spectral properties such as dispersion
and dissipation.

5.2.1 The classical WENO scheme

The WENO method is an advanced interpolation technique that aims to sup-
press spurious oscillations. It’s commonly used as part of a high-resolution
scheme for hyperbolic conservation laws, e.g.,

∂u

∂t
+

∂

∂x
f(u) = 0, (5.14)

where f is the flux function. We once again use a regular grid introduced in
(5.5). With each point xj , we associate a cell centred on xj of width ∆x, i.e.,
the interval (xj− 1

2
, xj+ 1

2
). Taking the average of the conservation law over a cell

leads to
dūj
dt

+
f(u(t, xj+ 1

2
))− f(u(t, xj− 1

2
))

∆x
= 0, (5.15)

where uj± 1
2
(t) = u(t, xj± 1

2
). Note that the representation (5.15) is exact and

therefore conservative. In this setting, we approximate point values u(t, xj± 1
2
)

from their average values ūj(t).
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Figure 5.1: The five-point stencil S, with substencils S0, S1 and S2. Note that
the stencil is asymmetric around the interpolation point.

In the following, we’ll suppress the explicit time dependence of u, as we
interpolate in space for fixed time. The first order of business is to replace the
exact flux by a numerical flux F (u, v), e.g. the Lax-Friedrichs flux [96]. The
numerical flux usually depends on two values, which are the left and right of u
limits toward the cell edges, yielding as the semi-discrete numerical scheme

dūj
dt

= − 1

∆x

(
F (u+

j+ 1
2

(t), u−
j+ 1

2

(t))− F (u+
j− 1

2

(t), u−
j− 1

2

(t))
)
, (5.16)

where u+
j± 1

2

(t) are the cell edge right limits and u−
j± 1

2

(t) are the cell edge left

limits. This way, discontinuities at the cell edges are handles by the numerical
flux. The second thing to do is to introduce some kind of interpolation scheme
to approximate u on the cell edges. If we’d naively use polynomial interpolation,
this would inadvertently introduce spurious oscillations. To avoid them, we need
a more advanced interpolation technique. WENO is such a technique especially
designed to suppress oscillations.

The classical WENO scheme, or WENO-JS, can be constructed by con-
sidering a five-point stencil around xj , i.e., S = {xj−2, xj−1, xj , xj+1, xj+2}.
The large stencil can be divided into three smaller substencils, viz., S0 =
{xj−2, xj−1, xj}, S1 = {xj−1, xj , xj+1} and S2 = {xj , xj+1, xj+2}; see Fig-
ure 5.1.

On each of these substencils, Sk with k = 0, 1, 2, we can approximate uj± 1
2
≈

u(xj± 1
2
) by constructing a second-degree polynomial pk that has cell averages
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as ūj , i.e.,

1

∆x

x
j+1

2∫

x
j− 1

2

pk(x) dx = ūj . (5.17)

Introducing the auxiliary vector v = (ūj−2, ūj−1, ūj , ūj+1, ūj+2)T representing
the averages on the large stencil S, the three lower-order approximations of
uj+ 1

2
can be represented as

uj+ 1
2

= Cv, (5.18)

with C a 3 × 5 matrix. It’s straightforward to show that one can obtain a
fifth-order approximation by taking a linear combination of the third-order ap-
proximations in (5.18). The fifth-order upwind approximation is therefore given
by

u
(UW5)

j+ 1
2

= γTCv, (5.19)

with γ being a column vector. The matrix C and the linear, or optimal, weights
γ, can be represented in a tableau inspired by Butcher Tableaux [35],

C γ . (5.20)

Organised this way, it contains all the coefficients involved in a WENO scheme,
thus giving a concise overview of the underlying linear method. The tableau for
the five-point WENO scheme looks as follows [82],

2
6 − 7

6
11
6

1
10

− 1
6

5
6

2
6

6
10

2
6

5
6 − 1

6
3
10

,
(5.21)

where zero entries have been left out for clarity.
The previous discussion shows how a fifth-order approximation can be con-

structed from three third-order underlying approximations. However, whenever
there is a discontinuity on the stencil, the fifth-order approximation incurs spuri-
ous oscillations and a third-order approximation might actually be more robust,
i.e., be less oscillatory.

This idea can be realised by introducing smoothness indicators βk, k =
0, 1, 2. There are several smoothness indicators available, each one exhibiting
some desirable property [97,98]. A very popular set of indicators, however, was
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introduced by Jiang and Shu, see [82], they’re given by

βk :=

x
j+1

2∫

x
j− 1

2

(p′′k(x))
2

∆x3 + (p′k(x))
2

∆x dx. (5.22)

A tedious but straightforward calculus exercise shows that

β0 =
13

12
(ūj−2 − 2ūj−1 + ūj)

2 +
1

4
(ūj−2 − 4ūj−1 + 3ūj)

2, (5.23a)

β1 =
13

12
(ūj−1 − 2ūj + ūj+1)2 +

1

4
(ūj−1 − ūj+1)2, (5.23b)

β2 =
13

12
(ūj − 2ūj+1 + ūj+2)2 +

1

4
(3ūj − 4ūj+1 + ūj+2)2, (5.23c)

where one can recognise undivided finite differences. Provided that u is suf-
ficiently smooth, a Taylor expansion reveals that βk = O(∆x2), where the
coefficients of the expansion contain various derivatives of u, either squared or
multiplied with higher order derivatives, i.e.,

β0 = (u′j)
2∆x2 +

(
13
12 (u′′j )2 − 2

3u
′
ju
′′′
j

)
∆x4 −

(
13
6 u
′′
j u
′′′
j − 1

2u
′
ju
′′′′
j

)
∆x5 +O(∆x6),

(5.24a)

β1 = (u′j)
2∆x2 +

(
13
12 (u′′j )2 + 1

3u
′
ju
′′′
j

)
∆x4 +O(∆x6), (5.24b)

β2 = (u′j)
2∆x2 +

(
13
12 (u′′j )2 − 2

3u
′
ju
′′′
j

)
∆x4 +

(
13
6 u
′′
j u
′′′
j + 1

2u
′
ju
′′′′
j

)
∆x5 +O(∆x6),

(5.24c)

where u′j is shorthand for ∂xu(xj), etc. Whereas an ENO scheme uses a logical
statement to select the interpolation with the lowest smoothness indicator, a
WENO scheme proposes to use a convex combination of the third-order inter-
polations, much like (5.19). To this end, the nonlinear weights ωk are intro-
duced, which are functions of the smoothness indicators. Collecting the nonlin-
ear weights into a column vector ω, a WENO scheme uses a linear combination
of the form

u
(WENO)

j+ 1
2

= ωTCv. (5.25)

Consistency requires that the nonlinear weights ωk (k = 0, 1, 2) sum to unity.
Hence, to construct nonlinear weights that satisfy the requirements discussed
earlier, we first compute the unnormalised nonlinear JS weights, indicated with
a superscript JS, as

ω̃JS
k =

γk
(βk + ε)p

, (5.26)
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with ε > 0 a small number to avoid division by zero and p > 0. Typical values
are ε = 10−6 and p = 2. In any WENO scheme the unnormalised weights are
subsequently normalised to obtain the nonlinear weights

ωk =
ω̃k
2∑
l=0

ω̃l

. (5.27)

The WENO-JS scheme gives fifth-order accuracy whenever u is smooth, i.e.,
u′j = O(1) and consequently βk = O(∆x2), or if ε is sufficiently large compared
to the second-order terms in the expansions (5.24), otherwise only third-order
is attained [83]. At the same time, it gives third-order accuracy whenever a
substencil contains a discontinuity, since then the corresponding smoothness
indicator becomes large. By using only one of the smooth substencils instead of
all three, oscillations are suppressed.

A modern incarnation of the WENO scheme is given by the WENO-Z scheme
of Borges et al. [85], who showed that a sufficient condition for fifth-order accu-
racy is

ωk = γk +O(∆x3). (5.28)

The WENO-JS scheme attains ωk = γk + O(∆x2), however it does satisfy a
more complicated condition ensuring fifth-order accuracy. Unfortunately, near
critical points, i.e., where a (higher) derivative vanishes, the WENO-JS scheme
only provides third-order accuracy as pointed out by Henrick et al. [83]. WENO-
Z was designed to satisfy (5.28) and thereby restore optimal convergence near
critical points. The unnormalised weights, indicated with a superscript Z, are
given by

ω̃Zk = γk

(
1 +

(
τ

βk + ε

)p)
, (5.29)

where τ = |β2−β0| is called the global smoothness indicator. Using (5.24), one
can show that τ = O(∆x5) and so WENO-Z satisfies the sufficient condition
(5.28) for any p ≥ 1.

WENO schemes fit perfectly into the method of lines paradigm, where one
leaves time continuous while discretising space. The result of the scheme can
be represented by the following system of ODEs,

du

dt
= L(u), (5.30)

where L represents the action of the WENO scheme. After the spatial discretisa-
tion, one discretises time by setting time levels tn = n∆t, n = 0, 1, . . .. The time
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integrators of choice are the strong stability preserving Runge-Kutta methods
(SSPRK) [99, 100]. These are explicit Runge-Kutta methods that have a high
order of accuracy and do not incur spurious oscillations due to time integration.
The golden standard for five-point WENO schemes is the SSPRK(3,3) method,
a three-stage third-order SSP time integrator. One time step of this method is
given by

u(1) = un + ∆tL(un), (5.31a)

u(2) = 3
4un + 1

4u(1) + 1
4∆tL(u(1)), (5.31b)

un+1 = 1
3un + 2

3u(2) + 2
3∆tL(u(2)). (5.31c)

Wang and Rong have shown that this method is also linearly stable when com-
bined with a five-point WENO scheme [101].

5.2.2 Embedded WENO

We now pose the question of what happens when the solution on two adjacent
substencils is smooth with no critical points and the third one contains a discon-
tinuity. Specifically, either the solution is smooth on S0 and S1 and not smooth
on S2, or the solution is smooth on S1 and S2 and not on S0. The answer
is that the WENO-JS scheme provides third-order accuracy while suppressing
oscillations. However, the scheme generates a linear combination of the two
smooth substencils that is forced by the fifth-order mode, i.e., the user cannot
choose the resulting weights. Being able to choose the resulting weights results
in direct control over the truncation error and the numerical dissipation and
dispersion.

As a shorthand whenever the solution is smooth on a substencil Sk, we call
the substencil smooth. In the following, we ignore critical points for the moment.
Let’s examine the normalised JS weights, indicated with the superscript JS, from
the definition (5.26) - (5.27) we find that

ωJS
k

ωJS
l

=
ω̃JS
k

ω̃JS
l

=
γk
γl

(
βl
βk

)p
, (5.32)

where we’ve assumed ε is negligible compared to the smoothness indicators.
Thus, the proportions of the nonlinear weights only depend on the local smooth-
ness of Sk and Sl, as one has for k 6= l,

βl
βk

=

{
1 +O(∆x3) if k = 0, l = 2 or k = 2, l = 0,

1 +O(∆x2) otherwise,
(5.33)
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which follows from the Taylor expansions of the smoothness indicators (5.24).
Therefore, the ratios of the nonlinear weights satisfy

ωJS
k

ωJS
l

=
γk
γl

(1 +O (∆xs)) , (5.34)

with s ≥ 2, provided ε is much smaller than βk and βl.
A similar computation for the WENO-Z weights, indicated with a superscript

Z, shows that this relation also holds, i.e.,

ωZk
ωZl

=
γk

(
1 + ( τβk )p

)

γl

(
1 + ( τβl )

p
) =

γk

(
βpl + τp( βlβk )p

)

γl (β
p
l + τp)

. (5.35)

Again using (5.33), we find that now independent of the value of τ ,

ωZk
ωZl

=
γk
γl

(1 +O (∆xs)) , (5.36)

again with s ≥ 2. Like with WENO-JS, this relation only depends on the local
smoothness of Sk and Sl. Note that when the entire stencil S is smooth, the
lower bound is increased to s ≥ 3p. This is due to the fact that τ = O(∆x5) in

this situation and hence
(
τ
βk

)p
= O(∆x3p).

Now consider S0 and S1 being smooth, but S2 contains a discontinuity. In
this case, both JS and Z schemes will result in ω0

ω1
= γ0

γ1
+O(∆x2). This leads

to ω0 ≈ 1
7 and ω1 ≈ 6

7 for both JS and Z schemes, from which the WENO
approximation becomes

u
(WENO)

j+ 1
2

− u(xj+ 1
2
) = 1

28u
′′′
j ∆x3 +O(∆x4), (5.37)

by a Taylor expansion of the third-order approximations. However, this may not
be the optimal choice of weights, as it leads to a third-order linear combination
while, for instance, a fourth-order combination is possible if ω0 ≈ 1

4 and ω1 ≈ 3
4

for this situation.
Relations (5.34) and (5.36) therefore show the flaw that we address: when the

large stencil S is not smooth, WENO-JS and WENO-Z immediately revert to
lowest-order modes, even when there are multiple adjacent smooth substencils.
In such cases, being able to choose the resulting linear combination has some
advantages. If anything, it allows for more control over the numerical solution.
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More control over the numerical solution in this case means reducing dissipation
and increasing resolution.

We propose a technique that allows for a choice of the resulting nonlinear
weights in the situation when either β0 = O(1) or β2 = O(1) and the other
substencils are smooth. Consequently, this allows for direct control over the
truncation error of the numerical solution in these situations. We call this new
type of scheme an embedded WENO scheme. Similarly to conventional WENO
schemes, fifth-order accuracy is demanded whenever the numerical solution is
smooth on the entire stencil S. Moreover, it should reduce to an ENO scheme
when two out of three substencils contain a discontinuity.

Let’s set the question of how to achieve this aside for the moment and first
introduce some terminology. The overall third-to-fifth-order accurate scheme is
called the outer scheme. The resulting scheme when there are only two adjacent
smooth substencils is called the inner scheme, see Figure 5.2. For instance, an
obvious choice is a fourth-order inner scheme in combination with WENO-JS
as the outer scheme.

Examining Figure 5.2 more closely, it becomes clear that if S2 contains the
discontinuity and S0 and S1 are smooth, then the discontinuity must lie in the
interval (xj+1, xj+2). Consequently, there are four grid points on which there is
a smooth solution to interpolate. From the two remaining substencils, a four-
point stencil can be constructed where the inner scheme is defined. When S2

contains the discontinuity, the available four-point stencil is S0,1 := S0 ∪ S1.
When S0 contains the discontinuity, the four-point stencil is S1,2 := S1 ∪ S2 to
use for the inner scheme.

Even though a higher formal order of convergence may be obtained, Banks
et al. [102] have pointed out that one often obtains sublinear convergence near
linearly degenerate discontinuities, such as discontinuities in linear hyperbolic
equations or the contact waves of the Euler equations. They estimate that the
convergence rate becomes m

m+1 for a scheme with formal convergence rate m.

In our case, this suggests the convergence rate is increased from 3
4 to 4

5 . Thus,
the benefits might be less great as a naive estimate would suggest. However,
aside from the increased convergence rate, embedded WENO also allows more
control over spectral properties.

With the terminology in place we can turn to the basic question: how to
embed one WENO scheme into another. Thus, we’d like the nonlinear weights
to converge to the inner scheme whenever there are two adjacent smooth subs-
tencils and the third one is not smooth. Otherwise, they should remain approx-
imately equal to the nonlinear weights of the outer scheme. This suggests that
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Figure 5.2: The five-point stencil S, with substencils S0, S1 and S2, and inner
scheme stencils S0,1 and S1,2.

we multiply the unnormalised weights ω̃k of the outer scheme by a correction
that is ordinarily close to unity, but activates when either β0 or β2 becomes
O(1). The correction is constructed such that it adjusts the proportions found
in (5.34) and (5.36).

Suppose the inner scheme is given by the linear weights α
(2)
0 , α

(2)
1 , α

(0)
1

and α
(0)
2 . We write the stencils containing a discontinuity in parenthesis in

the superscript and the substencil index in the subscript. The desired convex
combination then becomes

u
(0,1)

j+ 1
2

:= α
(2)
0 u

(0)

j+ 1
2

+ α
(2)
1 u

(1)

j+ 1
2

, (5.38a)

u
(1,2)

j+ 1
2

:= α
(0)
1 u

(1)

j+ 1
2

+ α
(0)
2 u

(2)

j+ 1
2

. (5.38b)

We consider two possible choices for the linear weights of the inner scheme, see
Table 5.1. The first is the fourth-order linear combination which is possible
on the four-point stencil. The second choice consists of placing the superfluous

weight onto the middle substencil, i.e., using the approximation u
(k)

j+ 1
2

≈ u
(1)

j+ 1
2

for k = 0, 2. The fourth-order choice is motivated from an order-of-convergence
perspective, while the third-order choice comes from a spectral point of view.

The nonlinear weights must at all times sum to unity to ensure consistency.
Therefore, any correction we introduce must be incorporated into the unnor-
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Table 5.1: Possible choices for the inner scheme.

4th 3rd

α
(2)
0

1
4

1
10

α
(2)
1

3
4

9
10

α
(0)
1

1
2

7
10

α
(0)
2

1
2

3
10

malised nonlinear weights and still work after normalisation.

Furthermore, what’s happening in substencil S2 must influence both subs-
tencils S0 and S1 and mutatis mutandis substencil S0 must influence both S1

and S2. It follows that the corrections must be functions of multiple smoothness
indicators and thus enforce that the resulting WENO scheme is nonlocal. As
a final note, we’ve seen from (5.34) and (5.36) that the nonlinear weights are
simply a redistribution of the linear weights. We therefore have to influence the
proportions of the linear weights, hence the linear weights should be multiplied
with some relative proportions c2 and c0. The role of the relative proportions
will become clear later, they’re defined as

α
(2)
0 : α

(2)
1 = c2γ0 : γ1, (5.39a)

α
(0)
1 : α

(0)
2 = γ1 : c0γ2. (5.39b)

The naming convention is again to label the relative proportions with the in-
dex of the substencil that is not smooth. We can thus compute the relative
proportions using the inner weights suggested in Table 5.1, see Table 5.2.

Table 5.2: Relative proportions for the 4th order and 3rd order inner schemes.
The 3rd order inner scheme places the superfluous weight on the middle stencil.

4th 3rd

c2 2 2
3

c0 2 6
7

We’ll now briefly summarise the conditions that should be satisfied by an
embedding correction.
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1. (Implementation) The unnormalised nonlinear weights must be multiplied
with a correction.

2. (Nonlocality) The corrections cannot be functions of only the local smooth-
ness indicators.

3. (Consistency) Wherever the solution is smooth on the full stencil, the
embedded scheme must reproduce the original scheme.

4. (Embedding) When there is a discontinuity present, the scheme must pro-
duce the inner weights on the smooth substencils.

General framework

Here, we construct a general framework for embedded WENO schemes. The
implementation and consistency conditions suggest that our correction is ordi-
narily close to a constant, while according to the nonlocality condition it may
not be a function of a single smoothness indicator. Therefore, we propose using
a general starting point given by

ω̃
(E)
k = ω̃

(O)
k


akk +

∑

l 6=k

aklβl
βk + ε


 , (5.40)

where the outer scheme is denoted with superscript (O) and the embedded
scheme with (E). This is probably the simplest possible nonlocal correction:
a linear combination of ratios. Here, akl (k and l in the range 0, 1, 2) are a
collection of undetermined coefficients and ε is small constant to avoid division
by zero. We’ll refer to (5.40) as the general form of an embedded WENO scheme
and the term in parenthesis as the general form of a correction.

The consistency condition will give us a set of equations that has to be
satisfied by the coefficients akl. It tells us that when the solution is smooth all
corrections must be close to 1. Let’s assume that the outer scheme satisfies,

whenever the solution is smooth with no critical points, ω
(O)
i = γi + O(∆xq),

then the corrections must satisfy

akk +
∑

l 6=k

aklβl
βk + ε

= 1 +O(∆xq), (5.41)
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which must hold for all k = 0, 1, 2. Using (5.33), and assuming βk = O(∆x2)
for all k = 0, . . . , r − 1, where r is the number of substencils, this yields

r−1∑

l=0

akl = 1, k = 0, 1, . . . , r − 1. (5.42)

If q = 2, this is sufficient to satisfy the consistency condition. If q > 2, for
instance for WENO-Z, the coefficients akl must also provide linear combinations
of smoothness indicators that cancel out the lower order terms in the Taylor
expansions (5.24).

To achieve this, the general form (5.40) is adjusted. In this case, at least the
first term in the error expansion of (5.41) must vanish. The constant term in
the correction must still equal 1, which suggests we adjust the general form to
read

ω̃
(E)
k = ω̃

(O)
k


1 +




∣∣∣
∑r−1
l=0 aklβl

∣∣∣
βk + ε



p
 , (5.43)

where r is again the number of substencils, p ≥ 1 and ε is a small constant to
avoid division by 0. We’ll refer to (5.43) as the second general form. Setting

ω̃
(O)
k = γk, it becomes clear this form can be considered as a generalisation

of the WENO-Z weights (5.29). Here, at least the lowest-order term from the
smoothness indicators (5.24) must vanish, leading to

r−1∑

l=0

akl = 0, k = 0, 1, . . . , r − 1. (5.44)

Regardless of which general form is chosen, (5.40) or (5.43), further equations
for the coefficients akl are obtained by the embedding condition. These can be
derived by examining the possible positions of a discontinuity and setting the
resulting weights equal to the inner weights.

The conditions (5.42) and (5.44) hold for any number of substencils r. In
deriving the embedding equations, we’ll also take a more general view.

Theorem 5.1. (Embedding equations) Let ω̃k be the unnormalised nonlin-
ear weights of a WENO scheme that has r substencils and satisfies ω̃k

ω̃l
→ γk

γl
as ∆x → 0 whenever Sk and Sl are smooth. Let the unnormalised embedded
WENO weights be given by

ω̃
(E)
k = ω̃kgk, gk = akk +

∑

l 6=k

aklβl
βk + ε

, k = 0, 1, 2, . . . , r − 1, (5.45)



126 CHAPTER 5. UPWIND AND WENO

where gk is the correction factor from the first general form (5.40). Let K be
the set of indices such that βn = O(1) for n ∈ K, i.e. Sn is not smooth, and let
βk ↓ 0 for k 6∈ K as ∆x→ 0. Then, the embedding equations are given by

γk

α
(K)
k

∑

m∈K
akm =

γl

α
(K)
l

∑

n∈K
aln, (5.46)

with k, l 6∈ K, n,m ∈ K. Here α
(K)
k are the desired inner weights and γk the

linear weights.

Proof. 1. Fix some set K and assume that ε is so small it may be safely ignored.
Let Sk and Sl be smooth, then the ratio of their two embedded weights is given
by

ω
(E)
k

ω
(E)
l

=
ω̃

(E)
k

ω̃
(E)
l

=
ω̃k
ω̃l

gk
gl
. (∗)

2. For Sk not smooth, the correction becomes

gk =
∑

n 6∈K
akn +

∑

n∈K
akn

βn
βk

+O(∆xs),

where s ≥ 2 from (5.33). Next, we use that βn = O(1) if Sn is not smooth, so
that we obtain

gk =
C

∆x2

∑

n∈K
akn +O(1), (?)

where C > 0 is some constant.
3. Next, (?) is substituted into (∗) leading to

ω̃
(E)
k

ω̃
(E)
l

=
ω̃k
ω̃l

∑
n∈K akn +O(∆x2)∑
m∈K alm +O(∆x2)

.

We let ∆x ↓ 0 so that ω̃k
ω̃l
→ γk

γl
, therefore

ω
(E)
k

ω
(E)
l

=
γk
γl

∑
n∈K akn∑
m∈K alm

.

This ratio has to be equal to the ratio of inner weights, so that

α
(K)
k

α
(K)
l

=
γk
γl

∑
n∈K akn∑
m∈K alm

,

which can be simplified to (5.46).
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Remark. The assumption that the outer weights should satisfy ω̃k
ω̃l
→ γk

γl
as

∆x → 0 includes the choices of JS weights, Z weights and simply using the
linear weights ω̃k = γk.

Theorem 5.2. Under the same assumptions as Theorem 5.1 and using the
second general form (5.43), the embedding equations are given by

(
γk

α
(K)
k

) 1
p ∑

m∈K
akm = ±

(
γl

α
(K)
l

) 1
p ∑

n∈K
aln, (5.47)

Proof. 1. Repeating the steps of the previous proof with k 6∈ K, the correction
for the second form now equals

gk = 1 +

∣∣∣∣∣∣
C

∆x2

∑

n∈K
akn +

∑

n 6∈K
akn

(
1 +O(∆x2)

)
∣∣∣∣∣∣

p

,

so that
gk
gl

=
|∑n∈K akn +O(∆x2)|p
|∑m∈K alm +O(∆x2)|p .

2. Passing to the limit ∆x ↓ 0, we find

ω
(E)
k

ω
(E)
l

=
γk
γl

∣∣∣∣
∑
n∈K akn∑
m∈K alm

∣∣∣∣
p

.

Setting the left-hand side equal to
α

(K)
k

α
(K)
l

, this yields

(
γk

α
(K)
k

) 1
p
∣∣∣∣∣
∑

n∈K
akn

∣∣∣∣∣ =

(
γl

α
(K)
l

) 1
p
∣∣∣∣∣
∑

m∈K
alm

∣∣∣∣∣ .

Thus, if the coefficients satisfy (5.47), the embedded weights will converge to
the inner weights.

Remark. There is a freedom in the choice of sign of the coefficients for the
second form (5.43). Interpreting the coefficients as elements of a matrix A, any
row may be multiplied with −1 with impunity. From here on out, we use the
positive sign in (5.47).
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The embedding equations are a set of linear equations for the coefficients akl,
since the inner weights are given or rather chosen by the user. The embedding
equations relate the weights of the inner scheme to the linear weights. Together
with the equations coming from the consistency condition, this will provide
a number of linear equations for the coefficients akl. For five-point WENO
schemes, we find that K can be either {0} or {2}, the other cases being already
included in the WENO weights. In each case for K there are only two remaining
smooth substencils. We thus end up with two equations

(
γ0

α
(2)
0

) 1
p

a02 =

(
γ1

α
(2)
1

) 1
p

a12, (5.48a)

(
γ2

α
(0)
2

) 1
p

a20 =

(
γ1

α
(0)
1

) 1
p

a10, (5.48b)

where the p = 1 equations also apply to the first form (5.40). These may be
simplified using our earlier definition of the relative proportions c0 and c2 (5.39),
i.e.,

a02

a12
= (c2)

1
p , (5.49a)

a20

a10
= (c0)

1
p , (5.49b)

where once again, the p = 1 equations apply to both forms provided c2 > 0 and
c0 > 0, for the second form one can use p > 1.

5.2.3 Implementation

Embedded WENO-JS

We’ll now show how to construct embedded WENO schemes using the WENO-

JS scheme as an outer scheme. We’ll assume the inner weights α
(2)
0 , α

(2)
1 , α

(0)
1

and α
(0)
2 are given, e.g., chosen from Table 5.1. From the inner weights, we can

find their relative proportions as measured against the outer weights by (5.39),
see Table 5.2. We’ll use the general form (5.40) as a template. Furthermore,
we have that q = 2, so that (5.42) provides three equations that are sufficient
to ensure that the scheme is unaltered when the solution is smooth. The two
embedding equations for a five-point WENO scheme are given by (5.49). Hence,
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we have five equations for nine coefficients that can be solved to yield a four-
parameter family of embedded schemes, given by

a00 = 1− a01 − a02, (5.50a)

a11 = 1− a20

c0
− a02

c2
, (5.50b)

a22 = 1− a20 − a21, (5.50c)

a12 =
a02

c2
, (5.50d)

a10 =
a20

c0
, (5.50e)

where a01, a02, a20 and a21 can be chosen freely. We’ve experimented with
a number of possible choices, all seemed to provide improvements over the
WENO-JS scheme. However, different choices resulted in schemes with dif-
ferent behaviour, much like choosing a different flux limiter in a total variation
diminishing (TVD) scheme.

We’ll continue with the embedded scheme that appears to have the best
all-round performance, it can be constructed using the choices a01 = a21 = 0,
a20 = c0

3 and a02 = c2
3 . For this particular choice of embedded WENO, we may

even choose the linear weights as the outer scheme, such that we obtain

ω̃0 = 1
3γ0

(
3− c2 + c2

β2

β0 + ε

)
, (5.51a)

ω̃1 = 1
3γ1

(
1 +

β2

β1 + ε
+

β0

β1 + ε

)
, (5.51b)

ω̃2 = 1
3γ2

(
3− c0 + c0

β0

β2 + ε

)
. (5.51c)

This scheme yields a convex combination of the underlying third-order approx-
imations when all weights are positive, thus we must have c0 < 3 and c2 < 3,
which includes the choices presented in Table 5.2.

To show that we may use this choice, we apply a Taylor expansion to the
normalised weights, under the assumption of smooth solutions without criti-
cal points. A lengthy computation or symbolic calculation will show that the
weights from (5.51) satisfy

ωk − γk = 1
3

(
ωJS
k − γk

)
+O(∆x3), (5.52)

regardless of the values of c0 and c2. Therefore, the embedded WENO scheme
(5.51) also provides fifth-order convergence. Under the assumption that only
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one substencil is smooth, the weights (5.51) also provide the proper behaviour.
Indeed, fix k and set βk = O(∆x2) and βl = O(1) with l 6= k, then we find that
ω̃k = O( 1

∆x2 ) and ω̃l = O(1). Therefore, with only one smooth substencil, we
find ωk = 1 +O(∆x2) and ωl = O(∆x2).

We conclude that the embedded WENO scheme given by (5.51) is equivalent
to the standard WENO-JS scheme for smooth solutions without critical points
or having only a single smooth substencil. When there are two adjacent smooth
substencils and the third one is not smooth, we obtain the inner scheme.

To verify that the embedded schemes have the same order of convergence for
smooth functions, a short test is performed. As was shown by Borges et al., the
conservative difference in (5.15) can be interpreted as a differentiation operator,
call it D, if applied to the original function instead of its averages [85]. This
provides an easy to implement convergence test for WENO schemes. WENO-JS
only features optimal convergence for smooth functions without critical points,
therefore the first test consists of applying WENO differentiation to a test func-
tion given by

u1(x) = tanh (10x) . (5.53)

The boundary conditions are supplied exactly using fictitious grid points. For
functions featuring first-order critical points, WENO-JS provides fourth-order
accuracy. Therefore, the second test function is given by

u2(x) = sin

(
πx− sin(πx)

π

)
. (5.54)

In both tests, the error is computed using the scaled absolute sum

e =

N∑

j=1

∣∣Duj − u′(x)
∣∣∆x, (5.55)

where D is the WENO differentiation operator. The parameter ε is set to 10−40

and c2 = c0 = 2 in this example. The number of grid points N is repeatedly
chosen such that the grid size ∆x is halved each time. The results are given
in Table 5.3 and clearly demonstrate optimal convergence for smooth functions
with no critical points and fourth-order convergence for smooth functions with
first-order critical points. Thus, the embedded WENO-JS scheme provides the
same or similar performance as the original scheme for smooth functions.
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Table 5.3: Convergence test for the embedded WENO-JS scheme applied to
(5.53) (subscript 1) and (5.54) (subscript 2) with c2 = c0 = 2 and ε = 10−40.

N error1 order1 error2 order2

101 2.0 · 10−4 1.6 · 10−6

201 7.1 · 10−6 4.8 7.2 · 10−8 4.5
401 2.3 · 10−7 4.9 3.8 · 10−9 4.2
801 7.3 · 10−9 5.0 2.1 · 10−10 4.2
1601 2.3 · 10−10 5.0 1.3 · 10−11 4.0

Embedded WENO-Z

A more contemporary version of WENO schemes is represented by the WENO-
Z scheme of Borges et al. [85]. As mentioned earlier, the WENO-JS scheme has
the property that ωk = γk+O(∆x2) for smooth solutions, whereas the WENO-Z
weights given by (5.29) satisfy ωZ

k = γk+O(∆x3p), with p the power parameter.
Consequently, at critical points, the WENO-Z scheme avoids loss of convergence.
A side-effect of the new weights is faster convergence to the linear weights in
smooth regions. This also results in sharper resolution of discontinuities. The
unnormalised weights for the WENO-Z scheme are defined as in (5.29).

Embedding an inner scheme into the WENO-Z scheme is somewhat easier,
since the second general form (5.43) is a generalisation of WENO-Z. In the
context of our framework, we have to satisfy the consistency conditions (5.44),
i.e.,

∑
l akl = 0 for k = 0, 1, 2. At the same time, we can obtain extra equations

from (5.24), where we find the fourth-order term must cancel out as well, i.e.,

ak0 − 1
2ak1 + ak2 = 0, k = 0, 1, 2. (5.56)

By Theorem 5.2, the two embedding equations are now given by (5.49). Thus,
for an embedded version of WENO-Z, we have six equations from consistency
and two embedding equations to solve for nine coefficients, yielding a one-
parameter family of schemes, given by

ω̃0 = γ0

(
1 + µc2

(
τ

β0 + ε

)p)
, (5.57a)

ω̃1 = γ1

(
1 + µ

(
τ

β1 + ε

)p)
, (5.57b)

ω̃2 = γ2

(
1 + µc0

(
τ

β2 + ε

)p)
, (5.57c)
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where µ is the free parameter, set to 1
4 unless mentioned otherwise, and again

τ = |β0−β2|. The scheme given by (5.57) is stable for µ > 0, c0 > 0 and c2 > 0,
which includes the options presented in Table 5.2. The power parameter is set
to p = 2 throughout the rest of this work.

As earlier, we perform a convergence test to verify that the embedded
WENO-Z scheme has the same order of convergence as its standard counterpart
for smooth functions. The details can be found in the previous subsection as
the test procedure is exactly the same. WENO-Z with p = 2 attains optimal
convergence for smooth functions that may have first-order critical points. Only
third-order accuracy is attained when the order of the critical points is higher.
Therefore, only the second test is performed with initial condition (5.54), which
features two first-order critical points. We furthermore set c2 = c0 = 2 and
ε = 10−40. The results are given in Table 5.4 and once again show optimal
convergence.

Table 5.4: Convergence test for the embedded WENO-Z scheme applied to
(5.54) (subscript 2) with c2 = c0 = 2 and ε = 10−40.

N error2 order2

101 6.0 · 10−7

201 1.8 · 10−8 5.1
401 5.9 · 10−10 5.0
801 1.8 · 10−11 5.0
1601 6.0 · 10−13 5.0

5.2.4 Some last remarks on WENO

To show more of the article on embedded WENO at this point would be overkill.
The rest of the article demonstrates the embedded WENO scheme applied to
the linear advection equation and the Euler equations. Both show significant
improvements over the standard versions. In another article, we’ve also shown
how to apply the same strategy to seven-point stencils [103]. There, it turns out
that for relatively easy test problems the performance is comparable, being to
within a percent or so of the WENO-Z scheme. However, for a harder problem,
the embedded WENO really shines and produces almost 25% reduction in the
global error.
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5.3 Application to Liouville’s equation

Methods with a regular grid and stencil approach to hyperbolic PDEs can be
applied to Liouville’s equation as well, as we’ll show in Chapter 8. The up-
wind method especially is a natural and obvious first try when encountering
a hyperbolic problem. This entails placing a regular grid on phase space and
using an upwind-biased difference to approximate the derivative on grid points.
Away from any interfaces, the scheme is then already correct as the luminance
distribution simply satisfies Liouville’s equation.

Near the interface, some local adjustments to the scheme have to be made.
This basic idea is reminiscent of front tracking methods [104–108]. However,
front tracking is usually employed when the interface changes dynamically de-
pending on the solution of the PDE on either side. In geometric optics problems,
movement of the interface is given, as it’s directly related to the shape of the
optic. The major challenge in Liouville’s equation is that the effects of the in-
terface are nonlocal. Indeed, through Snell’s law, completely different parts of
phase space are in communication with each other. As we’ll see, the consequence
of this is that stencils become quite tangled and complicated.

5.4 Conclusion

In the following two chapters, we’ll discuss two unstructured methods: the
active flux scheme and the discontinuous Galerkin method. Both work with
elements that have internal degrees of freedom. Elements are no longer defined
on a regular grid but on a unstructured mesh. In particular, this means neither
methods uses a stencil to define the approximation or to achieve higher orders.
This has great advantages for optics problems. Whereas a stencil has to be
locally adjusted when the interface cuts it, methods defined on elements don’t
have this problem provided the elements are suitably placed. Another possible
advantage is mesh refinement. In places where high gradients are expected,
the elements can be made smaller locally, resulting in higher accuracy around
smaller elements and a more uniform accuracy globally. It’s even possible to
adapt the mesh dynamically, with the mesh responding to the solution [109–111].
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Chapter 6

The active flux scheme

παντα ρει
(Everything is in flux)

Heraclitus

In the previous chapter, we’ve looked at two methods that work on a regular
grid. Obtaining higher-order for those methods is accomplished by expanding
the stencil. This may run into some complications when dealing with optical
interfaces, as we’ll argue at the end of Chapter 8. As a first alternative, we
will investigate a high-order method defined on an unstructured mesh: the
active flux scheme1. This necessarily makes it somewhat more complicated
than methods defined on a regular grid. We’ll illustrate the active flux scheme
in a two-dimensional setting for scalar hyperbolic conservation laws. The active
flux scheme has been successfully applied to systems like the Euler equations2

and the shallow water equations [112–114].

The active flux scheme can be interpreted as adding point values to a finite
volume scheme and solving for those separately. Interestingly, one can also
interpret the active flux scheme as adding average values to the original scheme

1I first learned about the active flux scheme from Phil Roe at the 2015 Woudschoten
conference. Phil was kind enough to help me along in trying to get the active flux scheme
working for Liouville’s equation.

2I find it truly astonishing how many things in science and mathematics are named after
Euler. This is illustrated well by what an instructor I had on a fluid dynamics course once
said: “This system of PDEs was discovered by Euler as well, but we can’t go about calling
everything Euler’s equations.”

135
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proposed by Courant, Isaacson and Rees discussed in the previous chapter [72].
That scheme used only point values that are updated by integrating backwards
along characteristics. However, being derived from the advective form, the CIR
scheme is not conservative. By explicitly adding average values and demanding
conservation, the active flux scheme results.

Consider a scalar hyperbolic conservation law with flux vector f , i.e.,

∂u

∂t
+∇ · f(u) = 0. (6.1)

One approach to the numerical solution of this problem is by a finite volume
approach. We average (6.1) over a domain Ω and apply the divergence theorem,
i.e.,

dū

dt
= − 1

|Ω|

∫

Ω

∇ · f(u) dA = − 1

|Ω|

∮

∂Ω

f(u) ·n ds, (6.2)

where we’ve divided by |Ω|, the area of Ω. Here, ū is the average of u over the
volume while n is the outward unit normal. The integral over the closed curve
is to be traversed counter-clockwise as per the right-hand rule. It’s important
to note that the flux across the boundary completely determines the rate of
change of the average value of u inside the volume. This is the essence of any
finite volume method.

Pressing (6.2) a bit more, the boundary fluxes are in turn determined by
point values on the boundary. Telescoping the argument, the rate of change
of the average value is determined by the point values on the boundary. This
key observation is the basis of the active flux scheme, where averages and point
values are kept track of separately. In fact, the name “active flux” originates
from this distinction. Other finite volume schemes that don’t actively keep track
of boundary values may be classified as “passive flux” schemes.

6.1 Finding average values

As a start, we’ll assume that point values are somehow known (by magic or sor-
cery, take your pick). We’ll first discuss the time stepping of the average values.
How to advance the point values is shown afterwards. For those who cannot
contain their curiosity: the point values are updated using a semi-Lagrangian
step.
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6.1.1 The standard domain

The computational mesh is assumed to be a triangulation, possibly of some
complex shape, for instance using Ruppert’s Algorithm [115]. The shape of Ω is
thereby a triangle, let’s fix the vertices as x1, x2 and x3 where x = (x, y). Any
triangle may be mapped to a reference triangle χ by an affine transformation,
whose vertices are (0, 0), (1, 0) and (0, 1), see Figure 6.1. The Cartesian coordi-
nates in the reference domain are denoted ξ = (ξ, η). The affine transformation
from the reference domain to Ω reads

(
x
y

)
= A

(
ξ
η

)
+

(
x1

y1

)
, (6.3a)

where A is given by

A =

(
x2 − x1 x3 − x1

y2 − y1 y3 − y1

)
. (6.3b)

Note both x and ξ are Cartesian coordinates. Let’s denote the determinant ofA
as J , then |J | = |Ω|/|χ| = 2|Ω|. We label the vertices in such a way that J > 0,
corresponding to a counter-clockwise orientation of the labels. Furthermore,
J = 0 occurs only when the vertices are collinear, clearly a situation we’d like
to avoid.

The derivatives in the reference coordinates are related to the derivatives on
Ω by

∂

∂x
=
∂ξ

∂x

∂

∂ξ
+
∂η

∂x

∂

∂η
, (6.4a)

∂

∂y
=
∂ξ

∂y

∂

∂ξ
+
∂η

∂y

∂

∂η
. (6.4b)

This component-wise expression can be converted to a matrix-vector form by
realising that ∂ξ

∂x = A−1, hence

∇ = ∇x = A−T∇ξ, (6.5)

where ∇ξ = ( ∂∂ξ ,
∂
∂η )T is the gradient operator in the standard coordinates.

The area integral in (6.2) is transformed to the reference domain, i.e.,

dū

dt
= −2

∫

χ

(
A−T∇ξ

)
· f(u) dAξ = −2

∫

χ

∇ξ ·
(
A−1f(u)

)
dAξ, (6.6)
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(x1, y1)

(x3, y3)

(x2, y2)

(0, 0) (1, 0)

(0, 1)

χ

Ω

Figure 6.1: Mapping from the standard to a general triangle.

the last equality follows from the fact that A is a constant matrix. This allows
us to define

f̃(u) = A−1f(u). (6.7)

Applying the divergence theorem on the reference domain, the finite volume
formulation yields

dū

dt
= −2

∮

∂χ

f̃(u) · n dσ, (6.8)

which is simply the volume-averaged total boundary flux in the standard domain
since |χ| = 1

2 . Again, n is the outward pointing normal and the orientation of
the closed curve ∂χ is counter-clockwise in accordance with the right-hand rule.

6.1.2 Approximation of the fluxes

To proceed, we need to approximate the right-hand side of (6.8). First, we
can split the boundary integral into the separate line integrals over each edge.
Define fk as the flux over edge `k, i.e.,

fk(u) = 2

∫

`k

f̃(u) · nk dσ, (6.9)

where `k, k = 1, 2, 3 are the edges of the reference triangle and nk are their
outward unit normals. The total boundary flux is then the sum of the edge-wise
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contributions. Each line integral can now be approximated by a one-dimensional
quadrature rule. Here, we choose Simpson’s rule to approximate the integrals,
resulting in the addition of the midpoints of each side to the collection of nodes,
see Figure 6.2.

(1, 0)(0, 0) (12, 0)

(0, 1)

b b

b

(12,
1
2)(0, 12)

u1 u2 u3

u4

u5

u6

ρ̄

ℓ2

ℓ1

ℓ3

Figure 6.2: Gauß-Lobatto nodes around the reference triangle χ with values
labelled that should be tracked. The edges are also indicated.

Simpson’s rule is the three-node case of the Gauß-Lobatto3 quadrature rules,
being exact for polynomials up to degree three [40]. Therefore, if a higher-order
quadrature is desirable, that’s the natural extension. The Gauß-Lobatto rules
have a slight advantage over the Gauß rules since each vertex, which is already
needed to determine the mesh, can be used twice. Otherwise, the order of
convergence is equal, which is the content of the following lemma4.

Lemma 6.1. Given a polygon, Gauß and Gauß-Lobatto rules need exactly the
same number of nodes to provide exact integration over the boundary for a poly-

3I always mention in my presentations that Rehuel Lobatto was a Dutch mathematician
born from Portuguese parents. Most people aren’t aware of it.

4I don’t know if this lemma is known in the literature. I’ve never seen it mentioned in
textbooks on spectral methods, which is where I’d expect to find it, if it were already known.
I think it’s rather nice though.
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nomial of degree p. Specifically, s(p+ 1)/2 points in total are needed to provide
exact integration on a polygon of s sides for all polynomials of degree p.

Proof. 1. The degree of exactness for Gauß quadrature is p = 2nG − 1, where
nG is the number of nodes per side. Note that for the Gauß nodes, there are
no nodes on the vertices of the polygon. The total number of nodes needed to
achieve degree of exactness p is therefore s(p+ 1)/2.

2. For Gauß-Lobatto nodes, the degree is p = 2nGL − 3, with nGL the
number of nodes per side including the boundary points. The number of nodes
per side needed to achieve degree of exactness p is therefore (p+3)/2. However,
the nodes on the vertices can be used twice, once for either edge connecting to
it. Hence, s nodes in total can be used twice, so that the total number of nodes
needed becomes s(p+ 3)/2− s = s(p+ 1)/2.

According to the lemma, in order to integrate cubic polynomials exactly,
we need six nodes in total distributed around the boundary of the reference
triangle. Another advantage of the Gauß-Lobatto nodes is that they allow a
slightly larger time step, but more on that later.

We label the nodes as in Figure 6.2 and define the unit direction vectors
e1 = (1, 0)T and e2 = (0, 1)T , so that we may approximate the flux over each
edge as follows,

f1(u) ≈ − 1
3

(
f̃(u1) + 4f̃(u2) + f̃(u3)

)
· e2, (6.10a)

f2(u) ≈ 1
3

(
f̃(u3) + 4f̃(u4) + f̃(u5)

)
· (e1 + e2) , (6.10b)

f3(u) ≈ − 1
3

(
f̃(u5) + 4f̃(u6) + f̃(u1)

)
· e1, (6.10c)

where u = (u1, u2, u3, u4, u5, u6)T is the vector of point values. Note that the
normalisation of n2 cancels against the length of the hypotenuse. The total
boundary flux is approximated by

F (u) =

3∑

k=1

fk(u). (6.11)

The spatial discretisation lead to the following semi-discrete scheme,

dū

dt
= −F (u). (6.12)

To emphasise: the vector u denotes the collection of six point values on the
boundary of the element, while ū represents the average value over the element.
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Recall that we’ve assumed, for the moment, that we’re given a method to find
the point values at any given time. We can therefore treat the right-hand side
of (6.12) as a function of time only. Thus, computing the averages reduces to
evaluating a definite integral.

To conclude, we introduce the time discretisation tn = n∆t with n =
0, 1, . . . ,M with M the number of steps and ∆t = T

M for a given integration
time T . In order to find the average value at the next time level, we again
employ Simpson’s rule, as time integration then proceeds with the same order
of accuracy as the spatial discretisation. This leads to

ūn+1 = ūn − ∆t

6

(
Fn + 4Fn+ 1

2 + Fn+1
)
, (6.13)

where Fn is the approximation of the flux integral, Fn ≈ F (u(tn)), etc. Note
that with this choice of time integration, we need to know the total flux over the
boundary at three time levels: tn, tn+ 1

2 and tn+1. Hence, we need to compute
point values at these time levels, which is the topic of the next section.

The above discussion is valid per element, so that for every element the
fluxes over the edges in the physical domain have to be transformed to fluxes in
the standard domain. The time step update for the averages is done by simply
looping over all elements, which has potential for parallelisation.

6.2 Finding point values

For each time step, we need to find the point values at the time levels tn, tn+ 1
2

and tn+1. The scheme is completed by using a semi-Lagrangian step [116]. The
idea stems from the method of characteristics (MOC) and is exactly the same as
the time stepping in the scheme of Courant, Isaacson and Rees, see Chapter 5.

The conservation law (6.1) is first rewritten to the advective form, yielding

∂u

∂t
+ f ′(u) ·∇u = 0. (6.14)

Suppose now that we follow the solution along curves x(t), so that we can define
u?(t) = u

(
t,x(t)

)
. Differentiating with respect to time yields

d

dt
u?(t) =

∂u

∂t
+ x′(t) ·∇u, (6.15)

where u is to be evaluated at
(
t,x(t)

)
. For the special choice of x(t) being

characteristics, i.e.,
x′(t) = f ′

(
u?(t)

)
, (6.16)
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u? becomes a constant, since (6.15) becomes equal to (6.14) and therefore van-
ishes. Consequently, the right-hand side of (6.16) becomes constant as well, so
that the characteristics are in fact straight lines.

We solve (6.16) backward in time using the terminal condition that x(tn+1) =
xn+1 is located at a node. This is the essence of a semi-Lagrangian method. If
u? were known, the solution for x would be

x(t) = xn+1 + (t− tn+1)f ′(u?). (6.17)

Employing this relation in a time-stepping fashion, this leads to an implicit
relation for u?, i.e.,

u(tn,x(tn)) = u
(
tn,xn+1 −∆tf ′(u?)

)
= u?. (6.18)

This equation for u? provides an exact solution for u. However, at the previous
time level, tn, we only know an approximation to u. Therefore, the exact
solution is simply replaced by the approximation at tn, which is denoted uint.
How the approximation uint is constructed in explained in the next section. Note
that the approximation holds at time level tn, so that it has no time argument.
We find that u? satisfies

u? = uint

(
xn+1 −∆tf ′(u?)

)
, (6.19)

which is solved using, e.g., Newton iteration. Note that x(tn+ 1
2 ), which is also

required by (6.13), can be found cheaply, since the characteristic on which it
lies is already found. In particular

x(tn+ 1
2 ) = xn+1 − 1

2∆tf ′(u?), (6.20)

where at this point u? is already determined. As a final note, we mention that
the positions x(tn) and x(tn+ 1

2 ) only have to be determined to second-order
accuracy in ∆t. This is due to the quadrature over the boundary, giving the
total flux a mixed third-order error, more details are given in Section 6.4.

6.2.1 Reconstruction

The approximation in each element consists of a polynomial reconstruction,
made up of a quadratic interpolation of the point values together with a bubble
function that compensates for the average value. The bubble function, as we’ll
see, has zero value on the boundary, so that interpolation of the point values
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isn’t disturbed. In the following discussion, we again omit any element markers
for brevity.

The quadratic interpolation on the reference domain is given by

ũ(ξ) = 1
2ξ
TRξ + rT ξ + u1, (6.21)

with ξ = (ξ, η)T . The symmetric matrix R ∈ R2×2 approximates the Hessian
while the vector r ∈ R2 approximates the gradient, both at ξ = 0. To determine
them, we simply substitute the node locations and demand that the value of ũ
equals the given point values. This leads to

R = 4

(
u1 − 2u2 + u3 u1 − u2 + u4 − u6

u1 − u2 + u4 − u6 u1 − 2u6 + u5

)
(6.22a)

and

r =

(
−3u1 + 4u2 − u3

−3u1 + 4u6 − u5

)
, (6.22b)

where one can recognise various undivided differences over the ξ- and η-directions,
with the off-diagonal elements of R representing the mixed spatial derivative.
For instance, the vector r is composed of one-sided second-order differences.

The eagle-eyed observer will notice that this interpolation does not neces-
sarily accommodate the average value ū. Indeed, the average value of ũ, given
by

2

∫∫

χ

ũ(ξ, η) dξ dη = 1
3 (u2 + u4 + u6) , (6.23)

may certainly be different from ū. To ensure that the average value of the
reconstruction is equal to ū, and to thus ensure that the scheme is conservative,
we must add a third-order function that compensates for the deficit. This
function must furthermore not interfere with the quadratic interpolation already
established, hence it must be zero on the triangle edges. Such a function is
called a bubble function, which can be interpreted as the product of all three
barycentric coordinates, i.e.,

ϕ(ξ, η) = 60ξη(1− ξ − η), (6.24)

where the normalisation constant is chosen such that the bubble function has
unit average value, i.e.,

∫∫
χ ϕdξ dη = |χ| = 1

2 . As a consequence, the total local
reconstruction of the solution on the reference domain is given by

uint(ξ, η) = ũ(ξ, η) +
(
ū− 1

3 (u2 + u4 + u6)
)
ϕ(ξ, η). (6.25)



144 CHAPTER 6. THE ACTIVE FLUX SCHEME

6.3 Summary of the algorithm

The algorithm resulting from the synthesis of the previous discussion. As an
input, it requires a triangular mesh and initial conditions supplied in terms
of point values on the nodes and average values over the triangular elements.
Note that there’s a one-way coupling between the point and average values. In
particular, the point values are influenced by the point and average values of the
previous time level, while the average values are influenced only by the point
values of the current time level. The output is the set of point and average values
at the final time T . The integration time is divided into an integer number, M ,
of time step, so that ∆t = T

M . The time step ∆t needs to be sufficiently small
to ensure stability, more on that in the next section. Let’s denote the current
time level as tn, then one time step of the algorithm is given by Algorithm 10.
The time stepping algorithm is itself of course performed M times.

Algorithm 10 One time step of Active Flux

for each node in the mesh do
1) Solve (6.19) for u? to find the point value at tn.

2) Compute xn+ 1
2 by plugging the result into (6.20).

Keep track of which neighbouring element
the characteristic originates from.
3) Transform xn+ 1

2 to the standard coordinates, i.e.,
apply the inverse transformation to (6.3a).

4) Find the point value at tn+ 1
2 using the reconstruction,

detailed in (6.21), (6.22), (6.24) and (6.25).
end for
for each element in the mesh do

1) Compute the flux function at tn and tn+ 1
2 using (6.10) and (6.11).

2) Update the average value using (6.13).
end for

Let’s now investigate the time scaling of the algorithm. The first for-loop
runs over all nodes in the mesh, where each substep requires a constant amount
of work. The second for-loop runs over all elements, where again each substep
requires a constant amount of work. Thus, the total amount of work in Algo-
rithm 10 scales with O(Nnodes + Nelements). Interpreting the mesh as a planar
graph, the Euler characteristic5 tells us that the number of nodes scales linearly

5Euler invented graph theory to solve the famous Seven Bridges of Königsberg problem.
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with the number of elements. The algorithm is repeated M times, whence we
can conclude that the work needed by the algorithm scales as O(MNelements).

6.4 CFL condition and error behaviour

Like many hyperbolic discretisation methods, the active flux scheme is also
subject to a CFL condition, i.e.,

∆t ≤ hmin

bmax
, (6.26)

where hmin is the smallest spatial size in the mesh and bmax is the maximum
value of the norm of the velocity field. For the active flux scheme, the CFL
condition arises by the assumption that the point values are retrieved from
neighbouring elements. Note that this assumption is not necessary. We may,
for instance, perform a search over all elements every time, which would result
in a very slow algorithm with unconditional stability. Hence, restricting the
search set is mainly done for speed.

Thus, for each node, we restrict the search set to all elements for which the
node in question lies on the boundary. For stability, the analytical domain of
dependence must lie entirely within the numerical domain of dependence. The
numerical domain of dependence for a node is the set of neighbouring elements.
The analytical domain of dependence can be bounded by a circle of radius
bmax∆t centred on the node, which we call the bounding circle. Note that this
is a rather pessimistic, though safe, estimate. A better estimate can be obtained
by using, for instance, an ellipse to bound the analytical domain of dependence.
The time step ∆t must be chosen such for all nodes, the bounding circle lies
entirely within the search set, see Figure 6.3.

The shortest distance from each node to the boundary of its numerical do-
main of dependence can be found by dropping an altitude line. Clearly, the
shortest altitude line in the mesh originates from a midpoint. Calling the edge
length a, basic trigonometry tells us that ∆y = 1

2a sinα, which must be bigger
than the radius of the bounding circle. Thus, the minimum angle in the mesh
αmin has some influence on the overall stability of the scheme. Moreover, the
minimum angle bounds the maximum number of neighbouring elements. Nodes
on the midpoints of triangle edges will always have two elements as their direct
neighbours. However, the maximum number of neighbouring elements of vertex

One remarkable result is now known as the Euler characteristic, see Richeson’s excellent book
for an in-depth discussion [117].
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b

Figure 6.3: Sketch of the numerical domain of dependence of a node, its neigh-
bouring elements, and a bound on the analytical domain of dependence, the
circle. The radius of the circle is bmax∆t.

nodes can be bounded by 2π
αmin

. For these two reasons, the minimum angle often
serves as a measure for mesh quality [115].

Most mesh generators have a minimum angle that can be set, we’ve used the
Triangle software package created by Shewchuck [118], where a minimum angle
of 32◦ usually works well. This allows us to estimate the minimal distance as

hmin = 1
2 min

i
(ai sinαi) ≥ 1

2 sinαmin min
i
ai, (6.27)

where αi and ai are the collection of angles and edges in the mesh for i = 1, 2, . . ..
To find the maximum velocity simply requires a loop over all nodes in the mesh,
evaluating the local velocity field.

With the CFL condition, the scaling behaviour between spatial and temporal
grid sizes is straightforward: ∆t = O(hmin). Earlier, we asserted that the scheme
only needs to resolve the point values to second order accuracy in ∆t. The flux
is integrated around the boundary so that the fluxes carry a mixed error of
O(hmin∆t2). Thus, the scaling of the CFL condition then implies that the total
error scales in the fluxes scales as O(h3

min).
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6.5 Moving mesh

In some cases, it’s convenient or necessary to align the mesh with moving phys-
ical boundaries. An example in aerospace engineering might be the deployment
of a flap, while an example in optics simply involves curved interfaces. In some
cases, the changes will be so sudden or great that a completely new mesh has to
be generated. This involves running the meshing software and interpolating all
values from the old to the new mesh. On the other hand, when the change of the
physical boundaries is sufficiently slow or smooth, such a complete remeshing
can be avoided by interpreting the changes as motion of several or all nodes.

On a moving mesh, the active flux formulation has to be slightly adjusted.
Ding et al. have developed an active flux scheme on a moving mesh by consid-
ering space-time elements as a whole [119]. We take a different, and as as we’re
aware novel, approach and leave time continuous, fitting in with the method of
lines paradigm. As usual, we can afterwards apply any numerical integrator.

Let’s assume that the motion of the mesh is given and we’re able to compute
time derivatives exactly. This happens in some cases, as we’ll see in Chapter 9.
Other times, the motion of the mesh is only specified in terms of a dynamical
system, e.g. a spring-dashpot system. For now, we’ll take mesh node positions
and velocities as given. Consider Reynolds’ Transport Theorem on the, now
moving, test domain Ω(t), i.e.,

d

dt

∫

Ω(t)

udA =

∫

Ω(t)

∂u

∂t
+∇ ·(uv) dA, (6.28)

where v is the velocity field of the moving element. The vector field v can be
found by differentiating (6.3a), i.e.,

v(t) = A′(t)

(
ξ
η

)
+ x′1(t), (6.29)

with the primes denoting differentiation with respect to t. The matrix A(t)
is still given by (6.3b), but now the vertex positions are allowed to depend on
time. Applying the hyperbolic conservation law (6.1), we find

d

dt

∫

Ω(t)

udV = −
∫

Ω(t)

∇ ·
(
f(u)− uv

)
dV. (6.30)

The area integral of u is by definition equal to the average value times the area
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size. Furthermore, transforming the integral to the standard domain yields

d

dt

(
ū|Ω(t)|

)
= −

∫

χ

J (t)
(
A−T (t)∇ξ

)
·
(
f(u)− uv

)
dVξ. (6.31)

Compare this ODE for ū to (6.6). Recall that we’ve labelled the vertices such
that J > 0 and J (t) = 2|Ω(t)|. This also shows that the determinant is constant
in the spatial coordinates, so that it may be taken outside the integral. Note
that some grid movements may cause the determinant to become negative or
the minimum angle to fall below a certain threshold. In these cases, to ensure
stability, a complete remeshing is unavoidable.

The matrix A, though now time dependent, is still constant with respect to
the spatial coordinates. Therefore, the flux on the reference domain χ can be
defined as

f̃(t, u) = A−1(t) (f(u)− uv) . (6.32)

Applying the divergence theorem on the reference domain, we obtain

d

dt

(
1
2 ūJ

)
= −J

∮

∂χ

f̃(t, u) ·n dσ, (6.33)

where we’ve replaced the volume on the left-hand-side by the determinant. Once
again, n is the outward pointing normal and the orientation of the closed curve
integral is counter-clockwise, conforming to the right-hand rule. This ODE for
ū should be compared to (6.8). Clearly, if the mesh is static, (6.33) reduces to
(6.8) since J is constant in that case.

In some situations, there may be some ambient free-stream flux, correspond-
ing to u = const. since then the flux is constant too. An example from aerospace
would be the ambient free stream far from an airfoil. Close to the surface of the
airfoil, all sorts of complicated boundary layers are forming while far away the
air is just whizzing by at a constant speed. Given a constant flux, we’d like the
numerical solution to be constant as well, a property we might call ‘free-stream
preserving’. This is possible by considering the evolution of the volume |Ω|,
obtained from Reynold’s transport theorem, leading to

dJ
dt

= 2J
∮

∂χ

ṽ · n dσ, (6.34)

where ṽ = A−1(t)v. Alternatively, one can set u = 1 in (6.33) to derive (6.34).
If the numerical solution is to be free-stream preserving, we need (6.34) and
(6.33) to be satisfied simultaneously in a discrete sense.
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Let’s approximate the flux integral of (6.33) as outlined in Section 6.2. The
semi-Lagrangian step allows us to find the flux integral as a function of time
only. This provides no serious complications, as the semi-Lagrangian approach
only requires the mesh position at time tn+1. In other words, the semi-Lagrange
step doesn’t even see the mesh motion. Furthermore, since the velocity field is
given, the flux integral in (6.34) can also be computed as a function of time, so
that after approximation the integrals, we have a coupled system of equations,
i.e.,

d

dt

(
ūJ
)

= −J (t)F (t), (6.35a)

dJ
dt

= J (t)G(t), (6.35b)

where F (t) approximates the total volume-averaged flux across the boundary
and G(t) approximates of the right-hand side of (6.34). Note that if u is a
constant, then also F (t) = −uG(t). This follows from the fact that the boundary
flux integration is exact if the flux is any cubic polynomial. In particular, it’s
exact for a constant, so that the divergence theorem implies that the integral of
the flux is zero. The only contribution is therefore from the movement of the
boundary.

Similar to the results of Acosta Minoli et al. for spectral element meth-
ods on moving meshes [120], we find that these equations must be integrated
simultaneously using the same time integrator. Perhaps counter-intuitively, a
free-stream preserving scheme needs to use the values obtained from numerical
integration of (6.35b) rather than the exact value of the Jacobian, even if it is
available. This is demonstrated in the following theorem.

Theorem 6.1. Consider the system (6.35), where we define ũ = ūJ , so that

dũ

dt
= −J (t)F (t), (6.36a)

dJ
dt

= J (t)G(t). (6.36b)

Then the time integration is free-stream preserving if this system is integrated
with any general linear method and the average value is defined as

ūn :=
ũn

J n . (6.36c)
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Proof. Let’s write one time step of the integrator as ψ, i.e., ũn+1 = ũn +
ψ(−J nFn) where J n is the approximation to J (tn) etc. Any general linear
method satisfies ψ(cx) = cψ(x) for any c ∈ R. Next, assume that u is constant,
so that F (t) = −uG(t) and ũn = uJ n, then we have

ũn+1 = ũn + ψ(−J nFn) = ũn + ψ(uJ nGn) = ũn + uψ(J nGn)

= u
(
J n + Ψ(J nGn)

)
= uJ n+1.

The average value is recovered as ūn+1 = uJn+1

Jn+1 = u, so that the constant state
is preserved.

Remark. General linear methods are a broad class of numerical integrators [35].
The class contains all Runge–Kutta methods, linear multistep methods and all
predictor-corrector methods composed thereof.

The theorem ensures that any Runge–Kutta method will provide a free-
stream preserving scheme in combination with the space discretisation as intro-
duced earlier. Moreover, for one-step methods, the exact value of the Jacobian
J can be inserted at the beginning of each time step. We’ll use the standard
fourth-order RK4 method, as this reduces to Simpson’s rule whenever J is
constant. Note that the system (6.35) is a one-way coupled system, where ū
depends on J , but J can be computed independently under the assumption
that the mesh motion is doesn’t depend on u. Let’s therefore denote the RK4
stages of (6.35b) as

J (1) = J (tn), (6.37a)

J (2) = J (tn) + 1
2∆tJ (1)Gn, (6.37b)

J (3) = J (tn) + 1
2∆tJ (2)Gn+1/2, (6.37c)

J (4) = J (tn) + ∆tJ (3)Gn+1/2, (6.37d)

where we’ve used the shorthand notation Gn = G(tn) etc. We denote the exact
value of the Jacobian at time level tn as J (tn). The updates for the average
value are found using Theorem 6.1, in particular (6.36c). The resulting time
integration scheme is therefore given by

J n+1 = J (tn) +
∆t

6

[
J (1)Gn + 2

(
J (2) + J (3)

)
Gn+1/2 + J (4)Gn+1

]
,

(6.38a)

ūn+1 =
J (tn)

J n+1
ūn − ∆t

6J n+1

[
J (1)Fn + 2

(
J (2) + J (3)

)
Fn+1/2 + J (4)Fn+1

]
,

(6.38b)
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which is simply the RK4 method applied to (6.35) together with (6.36c). By
definition of G, we see that if the grid is fixed, we have G = 0. From (6.37) -
(6.38), one can clearly see that the Jacobian is constant and the scheme (6.38b)
reduces to Simpson’s rule in t, i.e., all the way to (6.13). Moreover, whenever u
is constant, Theorem 6.1 ensures us that the constant state is preserved. This
is also easy to check as then Fn = −uGn, etc., so that ūn+1 = u.

6.6 Application to Liouville’s equation

The active flux scheme is an excellent method for Liouville’s equation for several
reasons. Firstly, it’s conservative. As we’ve explained in Chapter 4, symplectic
methods in the Lagrangian picture translate roughly to conservative methods in
the Eulerian picture. Secondly, it uses the method of characteristics to update
the point values on the mesh nodes. In the context of optics, this is better
known as ray tracing. This means the point values can be updated using sym-
plectic integrators if so desired. Thirdly, it’s locally defined on elements. In
the previous chapter, we’ve briefly mentioned the complications that arise when
stencils are crossed by the interface. These complications won’t occur as long as
we make sure the mesh is properly aligned with any interfaces. We’ll explore the
application of the active flux scheme to Liouville’s equation fully in Chapter 9.

6.7 Interpretation as a spectral method

During our investigation into the active flux scheme, we became more and more
aware of the similarities with spectral element methods. However, the active
flux scheme is a funny sort of spectral element method, as it uses a mix be-
tween modal and nodal representations. Nodal means that point values are
directly used, while modal means a representation in terms of basis functions,
for instance Fourier modes.

The active flux scheme uses a nodal approximation on the boundary while it
uses a modal approximation in the interior. The scheme we discussed here has
one interior mode, the bubble function, that corresponds to the average value.
This interpretation as a spectral element method also suggests a possible way
of extending the active flux scheme to higher-order accuracy. Instead of simply
adding nodes to the boundary, more interior modes should also be included.
This avenue of research was not explored. Instead, we chose to explore spectral
element methods themselves as solvers for Liouville’s equation. The next chapter
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therefore gives a short overview of the discontinuous Galerkin spectral element
method.



Chapter 7

The discontinuous Galerkin
spectral element method

Things just seem to work out
nicer on quads.

David Kopriva on DG
ICOSAHOM 2016

The discontinuous Galerkin (DG) spectral element method (SEM) is a state-
of-the-art method that provides exponential convergence for piecewise smooth
solutions1. This incredible performance is obtained by allowing a variable order
of interpolation. We give here a short overview of the nodal DG-SEM, although
for a complete discussion we urge the reader to take a look at some of the
excellent textbooks on the subject. Most of this discussion is taken from Kopriva
[121]; Hesthaven and Warburton [122]; and Canuto et al. [123].

Let’s take as an example once again the scalar hyperbolic conservation law
in two dimensions,

∂u

∂t
+∇ · f = 0, (7.1)

where we don’t restrict f = (f, g) to depend only on u, it can depend on space
and time as well. Any Galerkin method is derived from the weak form, which

1When I first learnt about spectral methods I thought exponential convergence sounded
too good to be true.
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is obtained by integrating over an element Ω with a smooth test function ϕ, so
that

∫

Ω

∂u

∂t
ϕ−∇ϕ · f dA+

∮

∂Ω

ϕf ·n ds = 0, (7.2)

where n is the outward unit normal and as per usual the closed curve integral
is traversed counter-clockwise, observing the right-hand rule. The next step is
to choose a basis in which we expand the test function and the solution. An
adequate choice is a set of orthogonal polynomials, for instance the Legendre
polynomials. The approximation lies in the fact that a finite number of them
are used, yielding a finite-dimensional space of polynomials. This formulation
is more general than the finite volume formulation, which may be obtained by
the special choice of ϕ = 1. DG methods are conservative by virtue of the fact
that constants are zeroth-order polynomials.

Let’s assume that we’re interested in solving the PDE in two dimensions and
let’s restrict the shape of Ω to be a quadrilateral. There are several advantages to
using quadrilaterals instead of triangles, for some comparisons, see for instance
Pasquetti et al. [124], or Wirasaet et al. [125]. Much like triangular domains,
however, any quadrilateral can be converted to a reference square χ = [−1, 1]2.
Of course, any reference square will do, but this one is particularly convenient
since quadrature rules are by convention defined on the interval [−1, 1].

One major advantage of quadrilaterals is that higher-dimensional basis func-
tions can be constructed by direct products. If we denote the one-dimensional
basis functions by ϕi, i = 0, . . . , N , then u is approximated by

u(t, x, y) =

N∑

i,j=0

uij(t)ϕi(x)ϕj(y), (7.3)

where the uij are the expansion coefficients for the particular choice of basis.
In principle, any orthonormal basis can be used and it’s even possible to use
a different basis for each dimension. For instance, using the Fourier basis in
one direction and Legendre in another is useful for problems that have periodic
boundary conditions in one direction. Here, we’ll use Lagrange polynomials on
a suitable set of interpolation points as our basis, resulting in what’s known as
nodal DG.
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7.1 Bilinear mapping

As we’ve seen in the previous chapter, it’s possible to map any triangle to a
reference domain by an affine mapping. For quadrilaterals, however, an extra
degree of freedom is needed, resulting in a bilinear mapping. We assume a
straight-edged quadrilateral with vertices xi, i = 1, 2, 3, 4, where the vertices
are numbered counter-clockwise. The starting vertex is arbitrary. The mapping
is then given by

x(ξ, η) =
1

4

[
x1(1− ξ)(1− η) + x2(1 + ξ)(1− η)

+ x3(1 + ξ)(1 + η) + x4(1− ξ)(1 + η)
]
.

(7.4)

The coordinates (ξ, η) ∈ [−1, 1]2 are simply Cartesian coordinates on the ref-
erence domain, which is a square. Like with the active flux scheme, we map
one set of Cartesian coordinates to another. To be able to distinguish the sets,
we’ll call (x, y) the physical coordinates and (ξ, η) the standard coordinates. A
sketch of this mapping is shown in Figure 7.1.

ξ

η

b

b
b

b

x1

x2

x3

x4χ Ω

Figure 7.1: Sketch of the bilinear mapping.

The Jacobian of the transformation is easily found, let’s write ∂(x,y)
∂(ξ,η) =

(∂x∂ξ ,
∂x
∂η ), where the columns are given by

∂x

∂ξ
= 1

4 [(1− η) (x2 − x1) + (1 + η) (x3 − x4)] , (7.5)

∂x

∂η
= 1

4 [(1− ξ) (x4 − x1) + (1 + ξ) (x3 − x2)] . (7.6)

Like the linear transformation in the active flux scheme, we can find a transfor-
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mation rule for the gradient by

(
∂x
∂y

)
=

(
ξx ηx
ξy ηy

)(
∂ξ
∂η

)
, (7.7)

where subscripts denote partial differentiation. This is exactly the same trans-
formation rule as (6.5). However, since the Jacobi matrix of the transformation
is now not necessarily constant, the transformation of the divergence involves
a bit more work. Special cases of course exist where the Jacobi matrix and
its determinant are in fact constant. Using (7.7), the divergence term can be
rewritten as

∇ · f = ξxfξ + ηxfη + ξygξ + ηygη. (7.8)

Unfortunately, the derivatives of the standard coordinates to the physical coor-
dinates aren’t easy to find. Hence, we represent the Jacobi matrix, or rather its
transpose, in terms of its inverse, i.e.,

(
ξx ξy
ηx ηy

)
=

(
xξ xη
yξ yη

)−1

=
1

J

(
yη −xη
−yξ xξ

)
, (7.9)

where J = xξyη − yξxη is the Jacobian determinant. The determinant J will
also, in general, vary throughout the element. Using now (7.9), we find that

∇ · f =
1

J [yηfξ − yξfη − xηgξ + xξgη] . (7.10)

We can now rewrite this as follows,

∇ · f =
1

J

[
∂

∂ξ
(yηf − xηg) +

∂

∂η
(xξg − yξf)

]
, (7.11)

since the cross-terms involving the second derivatives of physical coordinates
cancel out. The flux function on the standard domain can be read off as

f̃ =

(
yη −xη
−yξ xξ

)
f , (7.12)

with f̃ = (f̃ , g̃)T . The matrix involved is known as the adjugate of the Jacobian.
The divergence therefore transforms as

∇ · f =
1

J

(
∂f̃

∂ξ
+
∂g̃

∂η

)
. (7.13)
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Let’s write the gradient on the reference coordinates as ∇ξ = (∂ξ, ∂η)T , then
the conservation law in the reference domain becomes

∂u

∂t
+

1

J ∇ξ · f̃ = 0. (7.14)

It should be noted that it’s also possible to map to curved quadrilateral domains,
where each edge of the element is allowed to be an arbitrary smooth curve. Such
mappings are called transfinite [126]. We’ll see an example of this in Chapter 13.

7.2 Quadrature rules

To progress, we need to convert (7.2) to something that we can actually com-
pute2. We therefore have to use a quadrature rule to approximate the integrals.
A quadrature rule on [−1, 1] for some sufficiently smooth function g is given by

1∫

−1

g(ξ) dξ ≈
N∑

i=0

g(ξi)wi, (7.15)

with −1 ≤ ξi ≤ 1 being the nodes and wi > 0 being the weights. Sometimes,
the nodes and weights are defined starting at index i = 1. However, by defining
the nodes starting at index i = 0, interpolation polynomials on the nodes have
degree N . Quadrature rules on the reference square have a dyadic structure,
i.e., the nodes are simply the points (ξi, ηj) for all i, j = 0, . . . , N , while the
weight of node (ξi, ηj) is the product wiwj . The two-dimensional analogue of
(7.15) therefore becomes

1∫

−1

1∫

−1

g(ξ, η) dξ dη =

N∑

j=0

N∑

i=0

g(ξi, ηj)wiwj . (7.16)

One way to interpret this rule is to first define an auxiliary function G(ξ) =∑N
j=0 g(ξ, ηj)wj , which is simply the quadrature rule applied in the η-direction

for any ξ. Consequently, the quadrature rule is then applied to G in the ξ-
direction, leading to the product structure.

There are two especially interesting quadrature rules that we may consider:
the Gauß and the Gauß-Lobatto rules. The computation of the nodes and

2To quote Alan Turing [127]: the “computable” numbers may be described briefly as the
real numbers whose expressions as a decimal are calculable by finite means.
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weights is a standard problem in numerical theory. They’re related to the roots
of orthogonal polynomials and as such there are efficient off-the-shelf algorithms
to compute them. Such algorithms can be found in any number of textbooks
on numerical analysis or spectral methods; see e.g. Gautschi [40] or any of the
aforementioned textbooks on spectral methods.

Here, we choose Gauß quadrature, since it doesn’t have nodes on the edges,
something that turns out to be an advantage in optics. The essential difference
is that with Gauß-Lobatto quadrature, the endpoints of the interval are also
included. In one dimension Gauß quadrature gives exact integration for all
polynomials of degree at least 2N + 1. This remains true in a square domain
for bivariate polynomials of degree 2N + 1. As a reminder: the degree of the
bivariate polynomial xnym is n+m and the degree of any bivariate polynomial
is the highest degree of its terms [128].

7.3 Interpolation

Polynomial interpolation has the reputation of being unstable when increasing
the number of nodes, though this is only justified on uniformly distributed
nodes. The quality of interpolation on a set of nodes is typically measured by
the Lebesgue constant ΛN , which is related to the best possible polynomial fit,
i.e.,

‖INg − g‖∞ ≤ (1 + ΛN ) inf
p∈poly(N)

‖p− g‖∞, (7.17)

where IN is the interpolation operator and poly(N) is the space of polynomials of
maximal degree N . For a uniform set of interpolation points, the Lebesgue con-
stant blows up exponentially in N , which is illustrated by Runge’s phenomenon.
For Gauß nodes, the Lebesgue constant scales as O

(√
N
)

[129]. Unlike a set of
uniform interpolation points, the Gauß nodes provide stable interpolation, see
Figure 7.2.

Polynomial interpolation is particularly easy in Lagrange form. The La-
grange polynomials for a point set {ξi}Ni=0 are defined by

`i(ξ) =

N∏

j=0

j 6=i

ξ − ξj
ξi − ξj

, (7.18)

which is indeed a degree N polynomial. Lagrange polynomials satisfy the Kro-
necker property, i.e.,

`i(ξj) = δij , (7.19)
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Figure 7.2: Runge’s phenomenon: the error blows up for polynomial interpola-
tion on a uniform grid of the function 1

1+25x2 . For Gauß nodes, the interpolation
converges for N →∞. Both interpolations were computed using 16 nodes.

where δij is the Kronecker delta, so that δij = 0 if i 6= j and δii = 1. Moreover,
the Lagrange polynomials defined on Gauß nodes are orthogonal with respect
to the standard L2-inner product. This follows directly from the fact that the
quadrature is exact for any polynomial up to degree 2N + 1. In particular, the
product of any two Lagrange polynomials is a polynomial of degree 2N , yielding
exact integration and therefore

1∫

−1

`i(ξ)`j(ξ) dξ =

N∑

n=0

`i(ξn)`j(ξn)wn = wiδij . (7.20)

Thanks to the Kronecker property (7.19), Lagrange polynomials make interpo-
lation rather easy, indeed any function p(ξ) can be interpolated as

pN (ξ) = (INp)(ξ) =

N∑

j=0

`j(ξ)p(ξj). (7.21)

The approximation of the derivative is simply defined as the derivative of the
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polynomial interpolant, i.e.,

p′N (ξ) =

N∑

j=0

`′j(ξ)p(ξj). (7.22)

Note that if p happens to be a polynomial of degree N or less, this differentiation
is exact. In general, of course, interpolation and differentiation do not commute,
resulting in an aliasing error. Aliasing, just as in Fourier theory, means the
correct basis function cannot be identified uniquely. Functions that vary too
rapidly may be misidentified as slowly varying instead. It will be useful to know
the approximated derivative on the nodes themselves, i.e.,

p′N (ξi) =

N∑

j=0

`′j(ξi)p(ξj) =

N∑

j=0

Dijp(ξj), (7.23)

with Dij = `′j(ξi). Differentiation of (7.18) gives

Dij = `′j(ξi) =

N∑

l=0
l 6=j

1

ξj − ξl

N∏

k=0
k 6=l,k 6=j

ξi − ξk
ξj − ξk

, (7.24)

for i 6= j. To find the diagonal elements of the differentiation matrix, we observe
that any constant function must have a vanishing derivative, which implies

Dii = −
N∑

j=0

j 6=i

Dij . (7.25)

This is sometimes referred to as the negative sum trick [121]. Efficient algorithms
to compute the Dij and analogous higher derivatives can be found in any of the
aforementioned textbooks.

7.4 Putting it all together

The approximation consists of expanding the solution in terms of basis functions
while switching to quadrature rules in (7.2). Using the Lagrange basis, this
type of DG is called nodal, referring to the coefficients uij directly representing
values of the numerical solution on the nodes. If we were to use, for instance, the
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Legendre polynomials as basis functions for the numerical solution, the resulting
scheme would be called modal DG. The coefficients uij wouldn’t represent any
point value of the approximate solution, but rather coordinates of the orthogonal
decomposition. By choosing the test function to be equal to each of the basis
functions, we can obtain an ODE for every expansion coefficient uij(t). We start
with the weak form of the PDE transformed to the reference domain, i.e.,

∫

χ

∂u

∂t
ϕJ dAξ =

∫

χ

∇ξϕ · f̃ dAξ −
∮

∂χ

ϕf̃ ·n dσ, (7.26)

where σ is the arc length in the reference domain. As is customary, n is the
outward pointing normal and the orientation of the closed curve is counter-
clockwise, fulfilling yet again the right-hand rule. Next, we set ϕij(ξ, η) =
`i(ξ)`j(η), so that the first term in (7.26) yields

∫

χ

∂u

∂t
ϕijJ dVξ ≈

N∑

n,m=0




N∑

k,l=0

u′kl(t)`k(ξn)`l(ηm)


 `i(ξn)`j(ηm)Jnmwnwm,

(7.27)
with Jnm = J (ξn, ηm). The term in parenthesis is the approximation of ∂u

∂t .
Using the Kronecker property (7.19) of the Lagrange polynomials four times,
the sums simplify all the way down to

∫

χ

∂u

∂t
ϕijJ dVξ ≈ u′ij(t)Jijwiwj . (7.28)

The next term to be approximated is the area term on the right-hand side of
(7.26). Let’s write f̃ = (f̃ , g̃)T , the area integral is then approximated by

∫

χ

∇ξϕij · f̃ dVξ ≈
N∑

n,m=0

wnwm

(
`′i(ξn)`j(ηm)f̃nm + `i(ξn)`′j(ηm)g̃nm

)
, (7.29)

where we’ve already used the fact that due to the choice of test function, we

find ∇ξϕij(ξ, η) =
(
`′i(ξ)`j(η), `i(ξ)`

′
j(η)

)T
. We can identify the differentiation

matrices inside the sums, i.e., D
(ξ)
ni = `′i(ξn) and D

(η)
mj = `′j(ηm). We can yet

again employ the Kronecker property (7.19) to simplify (7.29), yielding

∫

χ

∇ξϕ · f̃ dξ ≈ wj
N∑

n=0

wnD
(ξ)
ni f̃nj + wi

N∑

m=0

wmD
(η)
mj g̃im. (7.30)
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Finally, the boundary terms are approximated in a similar vein with one
difference. Whereas inside an element, the numerical solution is continuous, on
element boundaries it’s allowed to be discontinuous. Thus, the limit toward the
boundary of an element can have two values, one for each element the boundary
touches. As a consequence, the flux on the boundary must be replaced with
a numerical flux, e.g. the Godunov flux. It’s therefore through the numerical
flux that neighbouring elements communicate. We’ll denote F̃ = (F̃ , G̃)T the
numerical flux. The numerical flux is often written as depending on the left
and right limits towards element boundary, uL and uR respectively, so that
F̃ = F̃(uL, uR).
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Figure 7.3: Sketch of the reference domain with N = 6. Normals are indicated
with arrows.

A sketch of the reference domain is shown in Figure 7.3. Each boundary
integral can be approximated by a one-dimensional quadrature rule. The result
is added up to approximate the total boundary integral term. Using the picture
as a guideline, the bottom boundary integral becomes

1∫

−1

ϕij f̃ ·(−η̂) dξ ≈ −
N∑

n=0

wn`i(ξn)`j(−1)G̃(ξn,−1), (7.31)

where η̂ is the unit vector pointing in the η-direction. The Kronecker property
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(7.19) once again helps us out, so that we find

1∫

−1

ϕij f̃ ·(−η̂) dξ ≈ −wi`j(−1)G̃(ξi,−1). (7.32)

The other three line integrals of the boundary are treated similarly, so that the
entire boundary integral becomes

∮

∂χ

ϕij f̃ ·n dσ ≈ wj`i(1)F̃ (1, ηj)− wj`i(−1)F̃ (−1, ηj)

+wi`j(1)G̃(ξi, 1)− wi`j(−1)G̃(ξi,−1).

(7.33)

To finish up, the approximation to the weak form (7.26) with ϕ = ϕij is given
by the sum of its constituent terms, that is (7.28), (7.30) and (7.33). We divide
by wiwjJij to obtain an ODE for uij , which results in a large set of coupled
ODEs:

duij
dt

+
1

Jij

{
F̃ (1, ηj)

`i(1)

wi
− F̃ (−1, ηj)

`i(−1)

wi
+

N∑

n=0

D̂
(ξ)
in f̃nj

+ G̃(ξi, 1)
`j(1)

wj
− G̃(ξi,−1)

`j(−1)

wj
+

N∑

m=0

D̂
(η)
jmg̃im

}

= 0

(7.34a)

where we’ve defined the modified differentiation matrices

D̂
(ξ)
in = −D(ξ)

ni

wn
wi
, (7.34b)

D̂
(η)
jm = −D(η)

mj

wm
wj

. (7.34c)

7.5 Error behaviour and CFL condition

In the above derivation, we’ve showed the DG discretisation method for a single
element. Of course, the DG spectral element method (SEM) is defined on an
unstructured mesh. The individual elements communicate with each other by
means of the numerical flux. Let’s assume that we’re working on a mesh with
typical dimension h. With the DG-SEM, the exact solution is approximated by
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an Nth-order polynomial, so the spatial error is of order N + 1 with respect to
the typical mesh size h, i.e.,

e = O(hN+1). (7.35)

However, this error formula also implies exponential convergence with respect
to N . Discontinuous Galerkin methods are an example of hp-methods, where
h refers to mesh size and p to polynomial order. Contrast this to the previous
solvers we’ve discussed: the upwind and WENO methods work on a uniform
grid, precluding the possibility of using local refinement; the active flux scheme
allows local refinement of the mesh, but the order of approximation is fixed. The
DG-SEM allows both local refinement of the mesh, as well as local enrichment
of the polynomial degree. It’s also possible to do this on the fly. Adaptive
hp-methods look for the most efficient way to decrease error by either refining
the mesh or enriching the polynomial order [130–137].

The discontinuous Galerkin spectral element method as presented provides
a semi-discretisation that again fits perfectly into the method of lines paradigm.
However, to work as a numerical method, it’s necessary to use some numerical
integrator on (7.34a). Popular choices, as always, are Runge–Kutta methods
[138]. Other common choices are linear multistep methods such as Adams-
Bashforth methods [120, 139]. Unless stated otherwise, we’ll be using the RK4
method. For a system of ODEs represented by y′ = f(t,y), one step of the RK4
method is given by

k1 = f(tn,yn)

k2 = f

(
tn +

∆t

2
,yn +

∆t

2
k1

)

k3 = f

(
tn +

∆t

2
,yn +

∆t

2
k2

)

k2 = f(tn + ∆t,yn + ∆tk3)

yn+1 = yn +
∆t

6
(k1 + 2k2 + 2k3 + k4) .

(7.36)

The RK4 method is a good all-purpose time integrator that provides fourth-
order accuracy, i.e., the global error is O(∆t4).

As with all previous discretisation methods we’ve seen, the DG-SEM coupled
to a numerical time integrator also has to satisfy a CFL condition. As usual,
we define the CFL number as c = bmax∆t

∆x , where bmax is the maximum velocity
occurring in the problem while ∆x is the smallest distance in the mesh. Contrary



7.6. ARBITRARY LAGRANGIAN-EULERIAN DESCRIPTION 165

to the other solvers we’ve discussed, no tight CFL condition is known for this
class of methods. For instance, the upwind scheme has a tight CFL condition,
meaning it becomes unstable when c = 1 + ε for any ε > 0, while it is stable for
c = 1. In practice the recommended condition for DG is given by

|c| ≤ 1

2N + 1
. (7.37)

This condition is tight for N = 0 and N = 1, while for higher polynomial orders
it’s typically within 5% accurate [140,141].

7.6 Arbitrary Lagrangian-Eulerian description

Spectral element methods may be considered on a moving mesh as well, where
the vertices of each element move with respect to time. The same reasons as
mentioned in the previous chapter apply. For instance, a curved optic can be
represented by a moving physical boundary in phase space. When changes are
large and sudden, a complete remeshing may be unavoidable, where we need
to rerun the meshing software and interpolate from the old mesh to the new.
When the changes are relatively small and slow, such as with the smooth motion
of a physical boundary, we can interpret any changes to the mesh as motion of
the nodes. To find the correct numerical method, we first transform the strong
form of the PDE. We consider a transformation from the static reference domain
χ = [−1, 1]2 to a moving element given by (τ, ξ)→ (t,x) with t = τ . We’d like
to transform the PDE to back the reference domain, so that we may compute the
numerical solution there. We denote u∗(τ, ξ) = u(t,x), so that the τ -derivative
of u∗ is given by

∂u∗

∂τ
=
∂u

∂t
+ v ·∇u, (7.38)

where v = ∂x
∂τ = dx

dt and ∇ is the gradient with respect to x. The transformation
in time therefore reads

∂u∗

∂τ
+∇ · f − v ·∇u = 0. (7.39)

We can draw the advection term into the divergence operator provided we add
a compensating term, i.e.,

∂u∗

∂τ
+∇ · (f − uv) +

u

J
∂J
∂τ

= 0, (7.40)
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where we’ve used the identity ∂J
∂τ = J∇ ·v, which also appears as Lemma 1.1

in Chapter 1. Next, we transform in space, yielding

∇ · (f − uv) =
1

J ∇ξ · f̃ , (7.41)

where we’ve used ∇ξ = (∂ξ, ∂η)T just as before in (7.14). The transformed flux,
which can be compared to (7.12), is now defined as

f̃ =

(
yη −xη
−yξ xξ

)
(f − uv) , (7.42)

where once again the adjugate of the spatial Jacobian of the transformation
appears. The PDE in the reference coordinates therefore satisfies

∂u∗

∂τ
+

1

J

(
∇ξ · f̃ + u∗

∂J
∂τ

)
= 0. (7.43)

Furthermore, we define the transformed velocity field

ṽ =

(
yη −xη
−yξ xξ

)
v, (7.44)

so that multiplying (7.43) by the J allows us to find a one-way coupled system
of PDEs, i.e.,

∂

∂τ
(uJ ) +∇ξ · f̃ = 0. (7.45a)

∂J
∂τ
−∇ξ · ṽ = 0, (7.45b)

where we’ve dropped the asterisk for brevity. The second PDE is the identity
from Lemma 1.1 transformed to the reference domain. The spatial part of this
system is discretised with the DG method as outlined above. Acosta Minoli and
Kopriva proved that integrating the semi-discrete system with a general linear
method, e.g. an RK method or LMM, is free-stream preserving [120]. The
result can be interpreted similarly to Theorem 6.1 for the active flux scheme:
rather than the exact determinant, we need to use the numerical determinant
to recover the solution u.
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7.7 Liouville and DG-SEM

Like the active flux scheme, the DG-SEM is an excellent method for Liouville’s
equation. The reasons are more or less the same: it’s a conservative method
that’s locally defined on elements. As we’ve also argued in Chapter 4, a symplec-
tic method in the Lagrangian frame is more or less comparable to conservative
methods in the Eulerian frame. The conservative nature of the DG method is
therefore a requirement for its usefulness to Liouville’s equation. Furthermore,
higher orders are achieved by increasing the number of internal degrees of free-
dom in each element, i.e., by using more interpolation nodes. Thus, achieving
high-order accuracy in optics problems is again a matter of aligning the mesh
properly with optical interfaces.

The DG-SEM has some advantages over the active flux scheme as well,
mainly its extraordinary flexibility. As we’ve briefly touched upon in Section 7.5,
the DG-SEM is an hp-method, which means both mesh size and polynomial
degree can be adjusted to achieve some desired accuracy. Moreover, the discon-
tinuous Gelerkin method can in principle be defined on elements of any shape,
e.g. triangular elements [122]. Another advantage is that it is, at least in theory,
quite easy to extend to higher dimensions. Every extra dimension just requires
another multiplication with a basis function in that direction. We won’t be
stretching the flexibility of the DG-SEM too far, but with an eye on future
application and development, these advantages could turn out to be crucial.
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Part III

Numerical methods for
Liouville’s equation

169
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This part discusses the application of the schemes presented in Part 2 to
Liouville’s equation. We restrict our attention to two-dimensional optics, hence
Liouville’s equation in conservative form is given by

∂ρ

∂z
+∇ ·(ρu) = 0, (7.46)

with u =
(
∂h
∂p ,−∂h∂q

)T
. The schemes are presented in the chronological order

in which they were developed, which also happens to be in order of increasing
complexity of the original schemes.
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Chapter 8

An upwind Liouville solver

Ma démonstration, quoique très
simple, serait sans doute
appréciée par les géomètres qui ...
savent combien en général elles
offrent de difficultés.

Joseph Liouville

Recall that in Chapter 4, we concluded using scaling arguments that solv-
ing Liouville’s equation should lead to faster algorithms for illumination optics
problems. Moreover, we argued that the accuracy should be at least as good or
better. We didn’t discuss any of the difficulties that might arise in attempting
to solve Liouville’s equation when optical interfaces are present.

In terms of Liouville’s equation, an optical interface represents a sudden
transition to a different advection speed. Interfaces are therefore in some sense
comparable to shocks in, for instance, Euler’s equations. However, different
from a shock is that the position of the interface is given to us and doesn’t
depend dynamically on the solution. The hard part is that the effect of the
interface is nonlocal. For finite difference methods, only the closest neighbours
of a grid point contribute to its evolution, even when shocks are present. When
dealing with optical interfaces, completely different parts of phase space are in
contact with each other. This means we need to be very careful with how we
apply the finite difference across the interface. Our main theoretical result is to
derive a jump condition on the solution to Liouville’s equation in Theorem 8.1.

173
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This will be used to construct the upwind Liouville solver, which is detailed in
Theorem 8.2.

We’ll now apply the upwind scheme to Liouville’s equation in advection
form1. We restrict ourselves to the two-dimensional case, so that we aim to
numerically solve

∂ρ

∂z
+
∂h

∂p

∂ρ

∂q
− ∂h

∂q

∂ρ

∂p
= 0. (8.1)

Whenever h is sufficiently smooth, we can apply the off-the-shelf upwind scheme.
Therefore, only close to an interface do we need to alter the scheme. To find
the derivatives at a grid point, we need to relate the gradients on both sides
of the interface. The basic strategy is to perform a Taylor expansion from the
interface on both sides.

When traversing an interface where the refractive index changes discontinu-
ously from n1 to n2, rays obey Snell’s law, given in two dimensions by

S (p;n1, n2, ν) :=

{
p−

(
ψ + sgn (n2)

√
δ
)
ν if δ ≥ 0,

p− 2ψν if δ < 0,
(8.2a)

where

δ := n2
2 − n2

1 + ψ2 and ψ := pν ±
√
n2

1 − p2
√

1− ν2, (8.2b)

where the sign is to be taken such that ψ ≤ 0, which follows from the angle
convention of Snell’s law, see Section 1.3. This is the two-dimensional form, so
that one component of the normal provides sufficient information, hence ν ∈ R
such that |ν| ≤ 1.

8.1 Jump condition on the gradient

Near interfaces, h is discontinuous and therefore a classical solution to (8.1)
doesn’t exist. In Chapter 3 we argued that physical solutions are characterised
by being constant along rays, so that at an interface given by q = q?, we should
use

ρ(z+, q+, p+) = ρ(z−, q−, p−), (8.3)

where a plus or minus denotes a one-sided limit towards the interface, so that
z+ = z−, q+ = q− = q? and p+ = S(p−) with S being the explicit form of

1Ironically, I found out later that this way of getting the upwind scheme to work for optics
problems is much harder than for active flux schemes or spectral element methods.
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Snell’s law as defined by (8.2). If there are several characteristics with each a
different brightness, then any linear combination of those values of ρ will also
be a constant. Hence, we can advance as follows to derive the jump condition
we need.

First, consider several points in phase space close to each other on the z−-
side of the interface. In a two-dimensional setting, we can do with three suitably
chosen points to approximate the derivatives in the q- and p-direction by finite
differences, see the arrangement in Figure 8.1. Next, move along characteristics
that go through these points by a small amount ∆z such that all the points cross
the interface. By applying (8.3), the corresponding finite differences will also be
constant in z. Taking limits allows us to relate gradients on both sides of the
interface. This reasoning is simplified greatly by using a flat surface. Moreover,
since Snell’s law only depends on the local gradient, the treatment of a curved
surface can be derived from that of a flat surface through a suitable coordinate
transform.

p

u

br

q

ε

ε ∂h
∂p

∣∣∣
−

b

u

r

(q1(z
−), p1(z−))

(q2(z
−), p2(z−))

(q3(z
−), p3(z−))

(q1(z
− +∆z), p1(z

− +∆z))

(q2(z
− +∆z), p2(z

− +∆z))

(q3(z
− +∆z), p3(z

− +∆z))

q⋆

Figure 8.1: Basic idea for finding the jump condition on the gradient of ρ. The
interface is represented by the dashed line, the rays projected onto phase space
are represented by dotted lines.

Theorem 8.1. Let h : P → R be piecewise smooth, let the interface be flat and
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the initial condition differentiable, i.e., ρ0 ∈ C1(P). Then (8.3) implies
(
∂h

∂p

∂ρ

∂q
− ∂h

∂q

∂ρ

∂p

)∣∣∣∣
−

=

(
∂h

∂p

∂ρ

∂q
− ∂h

∂q

∂ρ

∂p

)∣∣∣∣
+

, (8.4)

where ·|± is shorthand for evaluation at (z±, q(z±), p(z±)). Furthermore, Snell’s
law implies

∂ρ

∂p

∣∣∣∣
−

=
∂S
∂p

∣∣∣∣
−

∂ρ

∂p

∣∣∣∣
+

. (8.5)

Proof. 1. Let z 7→ (q1(z), p1(z)) be the parametrisation of a base characteristic
that intersects the interface at z?, i.e. q(z?) = q?. Let’s denote one-sided limits
towards z? with a superscript plus or minus. Thus,

p− := lim
z↑z?

p1(z), p+ := lim
z↓z?

p1(z),

and similarly for q± and z±, see Figure 8.1. We use as an initial condition for
this characteristic

q1(z−) = q−,

p1(z−) = p−.

Let z 7→ (q2(z), p2(z)) be the parametrisation of the second base characteristic.
Both base characteristics should intersect the surface at the same point q?, but
with slightly different momenta and at slightly different z, i.e., it should satisfy
q2(z− + ε) = q− to second order. Therefore, let ε > 0 be some small number,
then the second characteristic has initial conditions

q2(z−) = q− − ε ∂h
∂p

∣∣∣∣
−

+ 1
2ε

2

(
1

h

∂h

∂q
+
p−

h

∂h

∂z

) ∣∣∣
−
,

p2(z−) = p−,

where we use ·|− as shorthand for evaluation at (z−, q−, p−). In Figure 8.1,
(q1, p1) is marked by a bullet, while (q2, p2) is marked by a square. Next, let’s
define the values of ρ for these two characteristics as

ρ?1(z) := ρ (z, q1(z), p1(z)) ,

ρ?2(z) := ρ (z, q2(z), p2(z)) ,

which are both in fact constants. Note that due to these definitions, after a
Taylor series expansion of ρ?1 and ρ?2 around z− in ε, we have

ρ?1(z−)− ρ?2(z−)

ε
=
∂h

∂p

∂ρ

∂q

∣∣∣∣
−

+O(ε), (∗)



8.1. JUMP CONDITION ON THE GRADIENT 177

which is also a constant.
2. The evolution of the second characteristic is sketched in Figure 8.2.

Roughly speaking, during the first ε of propagation, it reaches the interface
and changes discontinuously according to Snell’s law. During the second ε of
propagation, it travels through the second medium.

p

u

br

q

r

u

b

ε ∂h
∂p

∣∣∣
−

−ε ∂h
∂q

∣∣∣
−

−ε ∂h
∂q

∣∣∣
+

ε ∂h
∂p

∣∣∣
+

Figure 8.2: Evolution of the second characteristic with distances indicated. The
base characteristic (q1, p1) is indicated with a bullet, (q2, p2) is indicated with a
square and (q3, p3) is indicated with a triangle.

According to (8.3), ρ?1 and ρ?2 remain constant when encountering an inter-
face. The characteristics change discontinuously, but the value of ρ?1 and ρ?2 will
not change. Thus, we see that (∗) is also true across an interface. Therefore,
we can advance z by some small amount ∆z such that both characteristics have
crossed the interface. Choosing ∆z = 2ε, we end up with

q1(z+ + ∆z) = q+ + 2ε
∂h

∂p

∣∣∣∣
+

+O(ε2),

for the first base characteristic. For the second base characteristic, we first
propagate by an amount ε in z, so that q2(z−+ ε) = q−+O(ε2), then we apply
Snell’s law and propagate another ε, resulting in

q2(z+ + ∆z) = q+ + ε
∂h

∂p

∣∣∣∣
+

+O(ε2).



178 CHAPTER 8. AN UPWIND LIOUVILLE SOLVER

In a geometrical optics setting, q is continuous and therefore q− = q+. Denoting
p+ = S(p−;n(q−), n(q+), ν), we obtain for the momenta

p1(z+ + ∆z) = p+ − 2ε
∂h

∂q

∣∣∣∣
+

+O(ε2),

p2(z+ + ∆z) = S
(
p− − ε ∂h

∂q

∣∣∣∣
−

;n(q−), n(q+), ν

)
− ε ∂h

∂q

∣∣∣∣
+

+O(ε2).

A Taylor expansion of Snell’s function yields

p2(z+ + ∆z) = p+ − ε ∂S
∂p

∣∣∣∣
−

∂h

∂q

∣∣∣∣
−
− ε ∂h

∂q

∣∣∣∣
+

+O(ε2),

where S(p−) = p+ and ∂S
∂p

∣∣∣
−

is the derivative of Snell’s law. We take again the

finite difference similar to (∗), but now evaluated at z + ∆z, giving

ρ?1 (z+ + ∆z)− ρ?2 (z+ + ∆z)

ε
=

∂h

∂p

∣∣∣∣
+

· ∂ρ
∂q

∣∣∣∣
+

+

(
∂S
∂p

∣∣∣∣
−

∂h

∂q

∣∣∣∣
−
− ∂h

∂q

∣∣∣∣
+

)
· ∂ρ
∂p

∣∣∣∣
+

+O(ε).

However, since ρ?1 and ρ?2 are both constant, it follows that this must be equal
to (∗), yielding

∂h

∂p
· ∂ρ
∂q

∣∣∣∣
−

=
∂h

∂p
· ∂ρ
∂q

∣∣∣∣
+

+

(
∂S
∂p

∣∣∣∣
−

∂h

∂q

∣∣∣∣
−
− ∂h

∂q

∣∣∣∣
+

)
· ∂ρ
∂p

∣∣∣∣
+

+O(ε), (∗∗)

where taking the limit of ε→ 0 removes the O(ε) terms.
3. Next, we consider a third characteristic that passes through the same

intersection point q− and at the same z-coordinate z−, but with a slightly
different momentum. This third base characteristic is marked with a triangle in
Figure 8.2. Hence, the third characteristic should have as an initial condition,

q3(z−) = q−,

p3(z−) = p− − ε,

with |p− − ε| ≤ n(q−), which ensures that the momentum p3 is physical. We
also define the value of ρ along the third characteristic,

ρ?3(z) := ρ (z, q3(z), p3(z)) ,
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where we once again point out that ρ?3 is in fact a constant. Furthermore,
analogous to (∗), we have

ρ?1(z−)− ρ?3(z−)

ε
=
∂ρ

∂p

∣∣∣∣
−

+O(ε). (#)

On the other hand, we can advance z by an arbitrarily small amount ∆z > 0.
For simplicity, we’ll again choose ∆z = 2ε and, after similar operations as
earlier, we obtain

ρ?1(z + ∆z)− ρ?3(z + ∆z)

ε
=
∂S
∂p

∣∣∣∣
−

∂ρ

∂p

∣∣∣∣
+

+O(ε),

However, since ρ?1 and ρ?3 are constant, we find that this expression must be
equal to (#), yielding

(
∂ρ

∂p

∣∣∣∣
−
− ∂S

∂p

∣∣∣∣
−

∂ρ

∂p

∣∣∣∣
+

)
= O(ε).

Furthermore, this equality must hold for all admissible ε, and letting ε → 0
yields (8.5).

4. We can rewrite (∗∗) into the form

∂h

∂p

∂ρ

∂q

∣∣∣∣
−
− ∂h

∂q

∣∣∣∣
−

(
∂S
∂p

∣∣∣∣
−

∂ρ

∂p

∣∣∣∣
+

)
=
∂h

∂p

∂ρ

∂q

∣∣∣∣
+

− ∂h

∂q

∂ρ

∂p

∣∣∣∣
+

,

where applying (8.5) gives (8.4).

Remark. Using the definition of the Poisson bracket,

{f, g} :=
∂f

∂q

∂g

∂p
− ∂f

∂p

∂g

∂q
, (8.6)

we can rewrite the jump condition (8.4) into the concise form,

{ρ, h}− = {ρ, h}+ . (8.7)

Corollary 8.1. When the interface is curved, we must adjust the result of
Theorem 8.1 as follows,
[
∂ρ

∂q
·
(
∂h

∂p
−Q′(z?)

)
− ∂h

∂q
· ∂ρ
∂p

]∣∣∣∣
−

=

[
∂ρ

∂q
·
(
∂h

∂p
−Q′(z?)

)
− ∂h

∂q
· ∂ρ
∂p

]∣∣∣∣
+

,

(8.8)
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where Q : R+ → Q is differentiable and q = Q(z?) gives the location of the
intersection point of a characteristic with the surface. Furthermore, (8.5) is
also valid.

Proof. A curved interface is represented by a plane in phase space moving
with velocity Q′(z). Hence, we perform a coordinate transform affecting the
q-direction only, defined as

q̃ = q −Q(z),

which results in a coordinate system where the surface is standing still. This
transformation may be absorbed into the Hamiltonian by defining a new one,
given by

h̃(z, q, p) = h(z, q, p)−Q′(z)p. (8.9)

Applying Theorem 8.1 to this new system yields (8.8).

It’s important to note that Theorem 8.1 remains true in a very general set-
ting. It can easily be generalised to 3D optics, while its formulation is indepen-
dent of the particular form of the Hamiltonian, coordinate system or evolution
coordinate. We can, for example, find a Hamiltonian system describing geomet-
rical optics in terms of real time or arc length.

The jump condition (8.4) is a consequence of the fact that the underlying ray
transformation from z− to z+ is symplectic. Snell’s law, properly interpreted,
constitutes a symplectic transformation [16, 36]. The influence of an interface
is reflected in the gradient of ρ according to Theorem 8.1. When the action
of an interface is such that rays are moved closer together in the q-direction,
they must get further apart in the p-direction. If, for instance, the distance in
the q-coordinates between two reference points is squeezed by a factor of two
over the interface, the gradient in the q-direction will also become steeper by
the same factor. This follows directly from the the fact that ρ is constant along
rays. However, these rays will also have to be a moved apart in the p-direction
due to conservation of étendue, so that at the same time the gradient in the
p-direction is shallower by a factor of two. This is, in effect, exactly what the
theorem asserts.
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8.2 Derivation of the scheme

Let’s introduce some shorthand notation for the advection speeds on the screen,
given by

a(z, q, p) :=
∂h

∂p
=

p√
n(z, q)2 − p2

, (8.10a)

b(z, q, p) := −∂h
∂q

=
n(z, q)√

n(z, q)2 − p2

∂n

∂q
. (8.10b)

We look for approximate solutions to

∂ρ

∂z
+ a

∂ρ

∂q
+ b

∂ρ

∂p
= 0, (8.11)

under the additional condition that whenever n changes discontinuously, we use
(8.3) with p− and p+ related through Snell’s law (8.2) and q− = q+, z− = z+.

We apply a grid on phase space such that we have {qi}Ni=1 for the positions

and {pj}Mj=1 for the momenta. We rescale the position space such that q ∈ [0, 1],
giving

qi := (i− 1)∆q, ∆q :=
1

N − 1
, (8.12)

where i ∈ {1, . . . , N}. Note that the advection speeds, a and b, go to infinity for
p close to n(q, z). Therefore, in many cases it’s practical to choose a maximum
allowed momentum in the system, pmax. This corresponds roughly to setting a
maximum angular aperture. The discretisation of p is thus defined as

pj := 1
2 (2j −M − 1)∆p, ∆p := 2

pmax

M − 1
, (8.13)

for j = {1, . . . ,M}. Finally, we discretise z as

zt := (t− 1)∆z, ∆z =
zmax

T − 1
, (8.14)

for t = {1, . . . , T} and zmax is the total length of the optical axis along which
we integrate Liouville’s equation. The numerical approximation of the solution
is then denoted by ρtij ≈ ρ(zt, qi, pj).
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Whenever the refractive index is differentiable, (8.11) has a classical solution
and the upwind scheme is straightforwardly found as

ρt+1
ij − ρtij

∆z
+ max(atij , 0)

ρtij − ρti−1,j

∆q
+ min(atij , 0)

ρti+1,j − ρtij
∆q

+ max(btij , 0)
ρtij − ρti,j−1

∆p
+ min(btij , 0)

ρti,j+1 − ρtij
∆p

= 0,

(8.15a)

where
atij := a(zt, qi, pj), btij := b(zt, qi, pj). (8.15b)

As one can see, the expression in a two-dimensional optical system is already
quite cumbersome, though not complicated. A three-dimensional optical system
will just add four more upwind difference terms, two for each added dimension.

We now wish to find a scheme that gives us the correct physical solution
whenever we allow n to have discontinuities. The correction to the upwind
scheme applies only locally around the interface, away from the interface the
scheme will be given by (8.15). Thus, to illustrate our method, we use the
simplest case of a piecewise constant refractive index. We choose a system that
has 0 ≤ q ≤ 1. Fix 1 < k < N , and let’s place the interface at qk+ 1

2
= qk+ 1

2∆q,
i.e.,

n(q) =

{
n1 if q < qk+ 1

2
,

n2 if q ≥ qk+ 1
2
.

(8.16)

It’s clear that ∂n
∂q = 0 almost everywhere, thus b(z, q, p) = 0 at all the grid

points. Away from the interface, i ≥ k + 2 or i ≤ k − 1, the refractive index is
smooth, resulting in the following scheme,

ρt+1
ij − ρtij

∆z
+ max(aij , 0)

ρtij − ρti−1,j

∆q
+ min(aij , 0)

ρti+1,j − ρtij
∆q

= 0, (8.17)

where now a does not depend on z so that aij = a(qi, pj). Even close to the
interface, this scheme works as long as the upwind grid point isn’t on the other
side of the interface. Hence,

ρt+1
kj − ρtkj

∆z
+ akj

ρtkj − ρtk−1,j

∆q
= 0, pj ≥ 0, (8.18a)

ρt+1
k+1,j − ρtk+1,j

∆z
+ ak+1,j

ρtk+2,j − ρtk+1,j

∆q
= 0, pj < 0, (8.18b)
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since the sign of aij is equal to the sign of pj . Let’s now consider the collection
of grid points (qk, pj) with pj < 0 and (qk+1, pj) with pj > 0. These are grid
points that have their upwind grid point on the other side of the interface.
Our scheme has to be different here since the characteristics have a jump in
momentum when crossing the interface. We wish to approximate ∂ρ

∂q at the grid

point (qk, pj), which we can do by utilizing Theorem 8.1.

The idea is once again straightforward, we perform Taylor expansions to-
wards the interface from all grid points involved. In general, there will be one
grid point on the downwind side, (qk, pj), and two on the upwind side. At
the interface, we apply Snell’s law, see Figure 8.3. Furthermore, we use The-
orem 8.1 to relate the gradients on both sides of the interface. This allows us
to approximate the gradient at (qk, pj) using information from the other side of
the interface. The resulting scheme is summarised in the following theorem.

qk+ 1
2

b

b

b

b

b

(qk, pj)

(qk+1, pr)

b b (qk+1, pr−1)

(qk+1, p
′)

q

p

Figure 8.3: Sketch of the scheme close to the interface, the upwind grid point
is on the other side of the interface. The ray propagation direction is indicated
with arrows.

Theorem 8.2. Consider the collection of grid points such that {qk, pj < 0}.
Let’s denote p′ = −S(−pj ;n2, n1,−ν), and δ ≥ 0 in (8.2), where δ is given by



184 CHAPTER 8. AN UPWIND LIOUVILLE SOLVER

(8.2b). The scheme is then given by

ρt+1
kj − ρtkj

∆z
+ ã

ρ′ − ρtkj
∆q

= 0, (8.19a)

where

ã := 2

(
1

akj
+

1

a′

)−1

and a′ =
p′√

n2
2 − p′2

, (8.19b)

ρ′ = θρtk+1,r + (1− θ)ρtk+1,r−1, (8.19c)

where θ = (p′ − pr−1)/∆p, with r such that pr−1 < p′ ≤ pr.
In the case that δ < 0, reflection occurs and we have to use (8.19a), now

with

ã := 2

(
1

akj
− 1

a′

)−1

and a′ =
p′√

n2
1 − p′2

, (8.20a)

ρ′ = θρtk,r + (1− θ)ρtk,r−1. (8.20b)

Remark. The case for {qk+1, pj > 0} is similar.

Proof. 1. We start by using the method of lines (MOL) approach, which is to
say, we discretise space, but leave z continuous. Let’s assume that j is such that
δ ≥ 0, thus we have refraction. Let’s further assume that the initial conditions
are smooth. Furthermore, define p′ = −S(−pj ;n2, n1,−ν), in shorthand p′ =
−S(−pj), such that p′ is the momentum that becomes pj if the characteristic
traverses the interface. We define r as the unique index such that pr−1 < p′ ≤ pr.

2. Performing a Taylor expansion to first order about the relevant grid points
close to the interface on the left side reveals,

ρ(z−, qk, pj) ≈ ρ(z−, qk+ 1
2
, pj)−

∆q

2

∂ρ

∂q

∣∣∣∣
(z−,qk,pj)

, (∗)
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and similarly on the right side,

ρ(z+, qk+1, pr) ≈ ρ(z+, qk+ 1
2
, p′) +

∆q

2

∂ρ

∂q

∣∣∣∣
(z+,q

k+1
2
,p′)

+ (pr − p′)
∂ρ

∂p

∣∣∣∣
(z+,q

k+1
2
,p′)

ρ(z+, qk+1, pr−1) ≈ ρ(z+, qk+ 1
2
, p′) +

∆q

2

∂ρ

∂q

∣∣∣∣
(z+,q

k+1
2
,p′)

+ (pr−1 − p′)
∂ρ

∂p

∣∣∣∣
(z+,q

k+1
2
,p′)

,

where the error in both approximations is second-order. Next, we again Taylor
expand to first order, this time for the q-derivative, i.e.,

∂ρ

∂q

∣∣∣∣
(z−,q

k+1
2
,pj)

≈ ∂ρ

∂q

∣∣∣∣
(z−,qk,pj)

+
∆q

2

∂2ρ

∂q2

∣∣∣∣
(z−,qk,pj)

. (#)

Now we apply (8.4) to find

a′
∂ρ

∂q

∣∣∣∣
(z+,q

k+1
2
,p′)

= ak+ 1
2 ,j

∂ρ

∂q

∣∣∣∣
(z−,q

k+1
2
,pj)

,

where a′ is given by (8.19b). However, since n is assumed piecewise constant,
we have ak+ 1

2 ,j
= akj . Hence, combining this with (#) gives us a first-order

approximation, i.e.,

∂ρ

∂q

∣∣∣∣
(z+,q

k+1
2
,p′)

≈ akj
a′

∂ρ

∂q

∣∣∣∣
(z−,qk,pj)

+O(∆q),
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and consequently

ρ(z+, qk+1, pr) ≈ ρ(z+, qk+ 1
2
, p′) +

∆q

2

akj
a′

∂ρ

∂q

∣∣∣∣
(z−,qk,pj)

+ (pr − p′)
∂ρ

∂p

∣∣∣∣
(z+,q

k+1
2
,p′)

ρ(z+, qk+1, pr−1) ≈ ρ(z+, qk+ 1
2
, p′) +

∆q

2

akj
a′

∂ρ

∂q

∣∣∣∣
(z−,qk,pj)

+ (pr−1 − p′)
∂ρ

∂p

∣∣∣∣
(z+,q

k+1
2
,p′)

.

(∗∗)

3. We’ll now take a linear combination of the values of ρ at the three grid
points (qk, pj), (qk+1, pr) and (qk+1, pr+1). We wish to find a linear combination
which approximates the q-derivative of ρ at the grid point (qk, pj) using (∗) and
(∗∗). Assume that λl ∈ R, for l = 1, 2, 3, then the upwind finite difference
should satisfy

∂ρ

∂q

∣∣∣∣
(z−,qk,pj)

≈ λ1ρ(z−, qk, pj) + λ2ρ(z+, qk+1, pr) + λ3ρ(z+, qk+1, pr−1),

where the approximation should be correct up to first-order. Using continuity
of ρ along rays (8.3), we find the following system of equations,

λ1 + λ2 + λ3 = 0,

∆q

2

(akj
a′
λ2 +

akj
a′
λ3 − λ1

)
= 1,

λ2(pr − p′) + λ3(pr−1 − p′) = 0.

Defining θ = (p′ − pr−1)/∆p, with θ ∈ [0, 1] by definition of r, the determinant
of this system is given by −∆q∆p

2

(
1 + θ

akj
a′

)
. Since akj has the same sign as

a′, the determinant of the linear system is nonzero. Defining ã as the harmonic
mean of akj and a′, i.e., (8.19b), we find the solution of this system as

λ1 = − ã

akj

1

∆q
, λ2 =

ã

akj

θ

∆q
, λ3 =

ã

akj

1− θ
∆q

.
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The resulting approximation for the q-derivative at (qk, pj) is given by

∂ρ

∂q

∣∣∣∣
(z−,qk,pj)

≈ 1

∆q

ã

akj

(
θρ(z+, qk+1, pr) + (1− θ)ρ(z+, qk+1, pr−1)

− ρ(z−, qk, pj)
)
.

We now approximate the z-derivative by the Forward Euler method, whence we
find the scheme

ρt+1
kj − ρtkj

∆z
+ ã

θρtk+1,r + (1− θ)ρtk+1,r−1 − ρtkj
∆q

= 0.

Recognizing that ρ′ := θρtk+1,r + (1 − θ)ρtk+1,r−1 is nothing but a linear inter-

polation approximating ρ(zt, qk+1, p
′), we find (8.19a).

4. When j is such that δ < 0, we have reflection and the derivation is largely
the same. The only difference being that the upwind grid points are now given
by (qk, pr) and (qk, pr−1) instead of (qk+1, pr) and (qk+1, pr−1). After doing
completely similar operations, we find (8.19a) but now with ρ′ given by (8.20b)
and a′ given by (8.20a).

Remark. When the surface is curved we find that we must furthermore replace
akj with akj −Q′(z?) and a′ with a′ −Q′(z?).

From Theorem 8.2, we see that the scheme close to an interface is still an
upwind scheme since (8.19a) has completely the same form as (8.17). However,
we must replace both the advection speed and the value of ρ at the upwind
grid point. Fortunately, the replacement values can be explicitly computed by
invoking Snell’s law. The scheme is in essence a first order accurate upwind
scheme, with the correction only occurring near the interface. We thus expect
the scheme to be globally first order accurate.

As for the CFL condition, we should note that the harmonic mean of two
numbers always lies in between them. Thus, the adjusted advection speed near
the interface can never be higher than the advection speed occurring away from
the interface. Furthermore, the adjusted value ρ′ is a linear interpolation in
p, which is a stable operation. Linear interpolation also exhibits the property
that the computed value will lie in between the two interpolated values. As a
result, the interface doesn’t generate any instabilities. The CFL condition will
therefore also be unaltered compared to the standard upwind scheme, i.e.,

|c| ≤ 1, (8.21)
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with c = amax∆z
∆q with amax the maximum velocity in absolute value in the

system.

8.3 Results

For the sake of simplicity, we present two cases which will exhibit all the features
of the scheme that are different from a standard first-order upwind scheme. The
first is the bucket of water problem, introduced in Chapter 4, which can be solved
analytically fairly easily. The second test case is the two-dimensional compound
parabolic concentrator (CPC). In the second test case, the CPC, we’ll compare
our method with Monte Carlo ray tracing, see Section 4.3.1 and for instance [23].

8.3.1 Bucket of water

We take a simple jump in refractive index as in (8.16) and we pick n1 = 1.4 and
n2 = 1. The refractive index field is given by

n(q) :=

{
n1 if q ≤ qk+ 1

2
,

n2 if q > qk+ 1
2
,

(8.22)

where we pick k such that qk+ 1
2

= 1
2 . This case corresponds roughly to a water-

air transition, and we’ll at times refer to this problem as the bucket of water
problem. One important thing to note is that the optical axis is parallel to
the interface2, resulting in a refractive index field which does not depend on z.
This is, as we’ve also mentioned in Section 4.2.2, because otherwise there’d be
nothing special to see on, the resulting distribution would simply look like it
was subject to straightforward propagation in a constant medium.

As discussed in Chapter 4, the reason we choose this particular problem is be-
cause it exhibits both refraction and total internal reflection. At the same time,
the problem is exactly solvable by the method of characteristics, see Chapter 4
for a complete description. Using an initial condition ρ0 with support restricted

2Beware optical engineers and scientists: due to the definition of the optical axis, the
momentum will decrease when rays transmit into the second medium!
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to the upper left quadrant {q < 1
2 , p > 0}, the exact solution is given by

ρ(z, q, p) =





ρ0

(
q − z p√

n2
1−p2

, p

)
, if q < 1

2 , p ≥ 0,

ρ0

(
1− q + z p√

n2
1−p2

,−p
)
, if q < 1

2 ,−pc < p < 0,

ρ0

(
1
2 − (z −∆z(q, p)) p′√

n2
2−(p′)2

, p′
)
, if q ≥ 1

2 , p ≥ 0,

0 otherwise,

(8.23)
where p′ = −S(−p;n2, n1,−ν) with S defined in (8.2) and

∆z(q, p) :=
1
2 − q
p

√
n2

2 − p2. (8.24)

The interval ∆z is such that a ray which passes through the point (q, p), where
q > 1

2 , at z will hit the interface at z −∆z(q, p). In (8.23), the first statement
is free propagation, the second is refraction, the third comes from total internal
reflection and the fourth statement comes from the compact support of ρ0. We
introduce the critical momentum pc =

√
n2

1 − n2
2 = 0.9798, so that when p < pc,

total internal reflection occurs. This condition is perhaps counter-intuitive for
some audiences, however this is due to the choice of optical axis3. We see that,
although in principle not too difficult to solve, the expressions become large
and unwieldy. Going to a slightly more complicated geometry already precludes
analytical solutions.

We take as initial condition the distribution

ρ0(q, p) =

{
1 if 0.3 ≤ q ≤ 0.35 and 0 ≤ p ≤ 1.1,

0 otherwise,
(8.25)

see Figure 8.4. These initial conditions contain the critical momentum pc, such
that both refraction and total internal reflection will occur.

We use an integration length of Z = 0.4 with 1000 steps on an 800×800 grid.
For the discretisation of phase space we use 800 grid points for both position and
momentum, see Figure 8.5. We see from the figure that the numerical solution
is very close to the exact solution. The only difference that is noticeable by
eye is the numerical diffusion at the edges. However, note that the edge at the
interface is sharp. The numerical diffusion is of course an effect of the first order

3See footnote 2.
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Figure 8.4: Initial condition of the bucket of water problem, black has value 1
and white has value 0. The transition is at q = 1

2 and the zero momentum line
p = 0 are indicated with a dashed line.

accurate upwind scheme. The sharp edges are an effect of the instantaneous
transformation that occurs at the interface.

Figure 8.5: Exact (left) and numerical (right) solutions to the bucket of water
problem at z = 0.4.

In this case, the bucket of water problem, we can implement the scheme in
a matrix-vector formulation, where the evolution matrix is fixed. Hence, we
only have to compute this evolution matrix once, and we can then use it for
any initial condition. Every step in z then becomes a matrix-vector product,
where the matrix is sparse. This won’t be the case in our next example, where
the evolution matrix has to be adjusted every time step. However, we’ll first
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investigate numerically the convergence properties of the scheme.

Convergence results

The convergence of our scheme is tested numerically by performing several runs
of the bucket of water problem with different grid sizes. The refractive index is
once again given by (8.22). However, as our analysis of the error is only valid
for functions that are smooth away from the interface, we’ll use a smooth initial
condition, ρ0 ∈ C∞0 (P). This initial condition is constructed by using the bump
function [71], given by

ψ(x) :=

{
e
− 1

1−x2 , for |x| < 1,

0, otherwise.
(8.26)

One can check that the bump function is infinitely smooth and has compact
support. The initial condition is constructed as follows,

ρ0(q, p) := ψ

(
q − q0

λq

)
ψ

(
p− p0

λp

)
, (8.27)

where
q0 = 1

4 , λq = 3
20 , p0 = 3

5 , λp = 1
2 , (8.28)

which results in the support of ρ0 being
{

1
10 ≤ q ≤ 2

5 ,
1
10 ≤ p ≤ 11

10

}
. The in-

tegration time is chosen as Z = 2
5 , which results in a large part of the initial

condition to be refracted and reflected by the interface.
We compute the error by using the exact solution and taking the L1-norm

of the difference, i.e.,

eL = ∆q∆p

N∑

i=1

M∑

j=1

∣∣ρ (Z, qi, pj)− ρTij
∣∣ , (8.29)

where Z = zT = 2
5 and ρ (Z, qi, pj) is the exact solution given by (8.23). For

simplicity, we’ll choose ∆q = ∆p, the results are displayed in Table 8.1. The
order of convergence, denoted γ, is computed using

eL ≈
C1

Eγ/2
=

C2

Nγ
q
, (8.30)

for some constants C1, C2 > 0 and E the total number of grid points. Doubling
the grid size allows for easy estimation of the order of convergence. We’ll use
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Table 8.1: Error and convergence rates using the bucket of water problem as a
benchmark.

Nq eL[10−4] order
200 11.1
400 6.19 0.84
800 3.34 0.89
1600 1.75 0.94
3200 0.85 0.98

a large number of z-steps, 15000, to make sure that the z-integration error is
much smaller than the spatial errors.

As the analytical solution for this problem is known, we can use it as a
benchmark test and determine the error of our solver exactly. The results clearly
show that our scheme is first order accurate in the number of grid points in the
q-direction. This is as expected since an ordinary upwind solver has an error
of O(∆q) + O(∆p). The adjustments to the upwind scheme have virtually no
impact on the error behaviour.

8.3.2 Compound parabolic concentrator

The compound parabolic concentrator is a set of parabolic mirrors that perfectly
concentrate light, see Chapter 4. It accepts light incoming within an acceptance
angle θ from the optical axis. The width of the bottom aperture is 2a, while
the length of the optic, Z, is given by (4.23), i.e.,

Z = a
(1 + sin θ) cos θ

sin2 θ
.

The initial condition is chosen as Lambertian light at z = 0, i.e.,

ρ0(q, p) =

{
1, for − a ≤ q ≤ a,−1 ≤ p ≤ 1,

0, otherwise.
(8.31)

Since the CPC is a perfect concentrator, the solution at z = Z is given by

ρ(Z, q, p) =

{
1, for − a ≤ q sin θ ≤ a,− sin θ ≤ p ≤ sin θ,

0, otherwise.
(8.32)
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The results are plotted in Figure 8.6. We compute the numerical solution using
a 100 × 100 grid and 800 time steps. We have used θ = π

6 and a = 1
2 and

integrated Liouville’s equation on the CPC to z = Z.

Figure 8.6: Exact solution for the CPC. Numerical solution for the CPC.

The figure shows a great resemblance between the numerical and exact so-
lutions. Apart from some numerical diffusion at the top and bottom edges,
the numerical solution is equal to the exact solution. An intermediate result at
z = Z/3 is shown in Figure 8.7. It shows that the numerical diffusion comes
from the upwind scheme, whereas the sharp edges come from the symplectic
transformation that is the reflection.

The Liouville solver is again implemented using a matrix-vector formulation.
We first construct a basic evolution matrix, so that every time step only 2Np
entries need to be adjusted. These entries correspond to the grid points that are
downwind from the reflecting walls. The exact solution is only known at z = Z,
hence that is where we compare both methods against the exact solution. We
choose Np = Nq and we fix the CFL number for the q-direction to be 0.96.

We compare the upwind method to first-order ray tracing as explained in Sec-
tion 4.3.1. This test problem is extremely favourable for ray tracing. First off,
intersection points with the CPC wall can be determined analytically. Ordinar-
ily this would require a root-finder to find the intersection points between rays
and the curved surface, hence some computation time is saved. Furthermore,
due to the uniformity of the grid, the correct bin can be computed explicitly in
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Figure 8.7: Intermediate result at z = Z/3.

constant time for any ray, i.e., no search over the bins is needed. Finally, there’s
some ambiguity in the correspondence between elements and bins, as the numer-
ical solution is only defined on grid points for the upwind method. Here, we as-
sociate with each grid point a control volume [qi−∆q

2 , qi+
∆q
2 ]×[pj−∆p

2 , pj+
∆p
2 ]

and use these as bins.

The definition of the bins means that (qi, pj) is the midpoint for its bin.
Using the error (8.29) for the solution obtained by ray tracing should therefore
be second-order convergent according to Section 4.3.1. As we’re aiming to use a
first-order convergent ray tracer, we therefore only need to use NRT = O(E) =
O(N2

q ). Hence, we can therefore use much fewer rays than we’d otherwise need.
Constant-time search for the correct bin then means that tRT = O(NRT) =
O(N2

q ). Compare this to the ordinary case, where we’d need NRT = O(E2) =
O(N4

q ).

The test consists of varying the number of grid points, and therefore the bins,
while choosing the number rays to scale linearly with the number of elements.
In particular, we use NRT = 600N2

q . The constant 600 was chosen such that
on the coarsest grid both errors are roughly equal. We point out that typical
choices for the grid size in applications are 300 × 300, hence we’ve chosen our
comparison to include this particular value. The results are displayed in Table
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Table 8.2: Computation times and error of the CPC test case. The subscript L
stand for Liouville while RT stands for Ray Tracing.

Nq eL[10−2] tL NRT[106] eRT[10−2] tRT

100 8.31 2.37 s 6 8.44 47.7 s
200 6.48 25.77 s 24 6.47 3 min 7 s
300 5.72 2 min 12 s 54 5.86 7 min 24 s
400 5.16 6 min 52 s 96 4.71 12 min 50 s

8.2.

For all grid sizes, our method is faster, in terms of computation time, than
Monte Carlo ray tracing. The scaling behaviour for the upwind solver is as
predicted, scaling quadratically with the number of bins, thus tL = O(N4

q ). In
practice, however the upwind solver is faster for all grid sizes that we’ve looked
at. Hence, even with a comparison that’s extremely biased towards ray tracing,
the Liouville solver is still faster in practice.

8.4 WENO?

In theory, it’s fairly straightforward to extend the upwind Liouville solver to
larger stencils and therefore higher orders. For instance, it’s reasonably clear
how we should apply a WENO scheme to Liouville’s equation. In practice,
however, the details around an optical interface become extremely convoluted
frighteningly quickly. The simple upwind scheme is already somewhat compli-
cated when having to deal with interfaces.

For any stencil-based method, far from the interface we should simply apply
the original scheme directly to Liouville’s equation. Only close to the interface
do we actually need to alter the scheme. As an example, whereas we have two
cases of where the interface can be on the stencil for a three-point scheme, a five-
point scheme would provide us with four different cases. Crossing the interface,
we need to compute the backward ray momentum by Snell’s law, which will in
general not be exactly on a grid point. Therefore, interpolation is needed in the
p-direction as well. Of course, the interpolation in the p-direction needs to be
of the same accuracy as the q-direction.

The complications arise here. First, we need to decide how to put a stencil
around the backward ray momentum. For instance, do we somehow apply an
upwind bias or not? And if so what does this upwind bias mean? Next, we
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need to determine the interpolation. In the case of a WENO scheme, this
will in general involve recomputing new interpolation weights every single time,
as the backward momentum can be anywhere between two grid points. This
also implies that we need to determine the WENO weights every single time.
Ordinarily, WENO schemes explicitly use the fact that the cell edges are exactly
in between two grid points. It may be the case, for instance, that a convex
combination resulting in higher-order accuracy is not even possible.

For these reasons, we’ve decided not to pursue higher-order upwind or WENO
schemes. Instead, we’ve searched for other higher-order methods. One desired
property is that the methods are locally defined, e.g., on elements, instead of
using information from an extended stencil. Examples of such methods are, of
course, the active flux scheme and spectral element methods, which we’ll visit
in the next two chapters.



Chapter 9

An active flux Liouville
solver

Fast is fine, but accuracy is final.

Wyatt Earp

As our previous discussion on WENO schemes shows, any higher-order
scheme for Liouville’s equation cannot rely on large stencils. The complica-
tions in possible cases with the stencil across an interface compound quickly as
the stencil size increases. We therefore need to use a method that works on
elements instead of a stencil. In such methods, higher orders are achieved on
the elements by internal degrees of freedom. One such method is the active flux
scheme, where the elements are triangular. We’ll see an example of the active
flux scheme on both a fixed mesh and on a moving mesh by the novel method
we introduced in Section 6.5. Third-order accuracy is achieved by using point
values around the boundary of each element together with the average value on
the element. Communication between elements occurs through the flux, which
allows us to incorporate Snell’s law.

9.1 Details of the scheme

We’ll now construct a Liouville solver based on the active flux scheme presented
in Chapter 6. To this end, we consider the conservative form of Liouville’s

197
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equation in two-dimensions, i.e.

∂ρ

∂z
+∇ ·(ρu) = 0, (9.1)

where ∇ =
(
∂
∂q ,

∂
∂p

)T
and u = S∇h, with

S =

(
0 1
−1 0

)
. (9.2)

Compared to the standard active flux scheme, the flux is now linear in ρ but
depends on the phase space coordinates, q and p, and possibly on z. As such,
the characteristics can no longer be found by solving an algebraic equation. The
basic working, however, remains unaltered: employ a semi-Lagrangian step to
find the point values as a function of z.

As we’ve seen, solutions to Liouville’s equation are constant along rays, hence
the semi-Lagrangian step is equivalent to local ray tracing. This entails inte-
grating Hamilton’s equations using a node in the mesh as a terminal condition
and applying

ρ(z + ∆z, q(z + ∆z), p(z + ∆z)) = ρ(z, q(z), p(z)). (9.3)

Using the shorthand notation for the velocity field, Hamilton’s equations can
be written as

dy

dz
= u(z,y). (9.4)

It’s prudent to solve this ODE using a symplectic, or geometric, integrator
[31,35]. The time discretisation is denoted zt = t∆z, with t = 0, 1, . . . ,M . The
ODE (9.4) is integrated backwards in z to find yt with the condition that yt+1

is on a node.

Also in this case, the position yt only has to be determined to second-order
accuracy in z, i.e. yt = y(zt) + O(∆z2). This is due to the integration over
the boundary, making the error in the total flux O(∆y∆z2), with ∆y some
representative distance in the mesh. Active flux operates under the assumption
that yt lies in a direct neighbour of the origin element, implying the CFL-type
condition ∆z ≤ ∆y

bmax
with bmax the maximum magnitude of the velocity field.

Thus, when using a second-order accurate integrator to find yt, the mixed error
in the flux becomes O(∆y3).
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Following through on this reasoning, the implicit midpoint rule provides an
excellent integrator for our purposes, which is a second-order accurate symplec-
tic integrator that is time reversible, given by

yt = yt+1 −∆zu

(
zt + 1

2∆z,
yt + yt+1

2

)
. (9.5)

This is an implicit equation for yt which can be solved using, for instance,
Newton’s method.

As an added benefit, the midpoint method comes with a built-in second-order
accurate approximation to y(zt+

1
2 ), which we should recall, is also required by

the scheme. Indeed, we have the Taylor expansions

y(zt+1) = y
(
zt+

1
2

)
+ 1

2∆zu
(
zt+

1
2 ,y

(
zt+

1
2

))
+O(∆z2), (9.6a)

y(zt) = y
(
zt+

1
2

)
− 1

2∆zu
(
zt+

1
2 ,y

(
zt+

1
2

))
+O(∆z2). (9.6b)

Taking the average of the two expansions leads to

y(zt) + y(zt+1)

2
= y

(
zt+

1
2

)
+O(∆z2). (9.7)

Once the point yt has been computed, we perform a local search over the neigh-
bouring elements. Moreover, since yt+

1
2 is simply the midpoint of the line

segment connecting yt and yt+1, all three points will always lie in the same ele-
ment. By the CFL condition, the origin node yt+1 will be in the same element
as yt, while (9.7) is simply the midpoint of the line segment connecting the
endpoints. By convexity, the midpoint is in the same element as the endpoints,
see Figure 9.1

After identifying the correct element, both points are transformed to the
reference coordinates in χ and the point value is reconstructed as detailed in
Section 6.2.1.

9.2 Mesh alignment

In optical systems, ray momentum changes discontinuously when encountering
an optical interface. A ray that encounters an interface will be refracted ac-
cording to Snell’s law or reflected according to the law of specular reflection.
Rays that are so affected will therefore carry their energy from one part of phase
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yt+1
yt+ 1

2

ytbc

bc
bc

Figure 9.1: The CFL condition ensures that yt is within an element, while yt+1

is by construction on the edge of the same element. Triangles are convex, hence
the midpoint yt+

1
2 is also in the same element.

space to a different part. Clearly, this behaviour must be incorporated into the
solver to find physically relevant solutions, much as was done in the previous
chapter with the upwind method. Since ρ is transported along rays and rays are
discontinuous across interfaces, the solution itself will be discontinuous across
interfaces, even for smooth initial conditions.

As a consequence, it’s necessary to align elements with the interface, see
Figure 9.2. For refractive surfaces, it’s also necessary to have two values for
all the nodes that are on the interface, one for each one-sided limit. The point
values for elements on the interface have to be treated slightly differently. If a
backward ray from a node crosses the interface, Snell’s law or the law of specular
reflection has to be applied. As the point values on element boundaries uniquely
specify the flux, this is sufficient to capture the physical solution1.

The mesh must be aligned with the interface in phase space,
i.e., the mesh must be such that the interface is equal to the
union of a set of edges. Elements that have these edges as part
of their boundary are called interface elements.

Note that this central idea of mesh alignment implies a moving mesh in some
cases. As example, consider the compound parabolic concentrator where one

1As I alluded to earlier, it’s surprisingly easy to accommodate optics problems with the
active flux scheme. When I started this work, I thought the upwind method would be easiest
to adapt.
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wall is described by q = Q(z); the curved mirror manifests itself as a moving
boundary in phase space. For the mesh to be aligned for all z, it has to move
along with the mirror. To be able to do so, we’ll use the theory described in
Section 6.5. The CPC will be treated as a numerical example in Section 9.3.2.

Snell’s law

b

bc

yt+1

ỹt+1 yt+ 1
2 yt

bc bc

Figure 9.2: Two interface elements and a backward ray (dashed line) originating
from a node on the interface.

Due to the CFL condition as discussed in Section 6.4, the only nodes where
Snell’s law actually has to be applied are located on the interface itself. In
particular, consider a node that is part of an interface element, but doesn’t lie
on the interface itself. The CFL condition ensures that the time step is chosen
such that even for the closest such nodes, the backward ray will never cross the
interface, see Figure 9.3. Therefore, Snell’s law will only have to be applied to
nodes that lie on the interface themselves.

Another consequence of the mesh alignment is that we can consider all three
points of the backward ray as lying in the same interface element. The solution
should be continuous along characteristics, hence the left- and right-sided limits
along the ray towards the interface should have the same value. In Figure 9.2,
this is indicated by the points ỹt+1 and yt+1, where the solution has the same
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b

umax∆z

b

b

b

b

b

Figure 9.3: When the mesh is aligned with the interface, the CFL condition
guarantees that nodes that don’t lie on the interface can’t have rays that cross
the interface.

value. Therefore, it doesn’t matter whether we use the originating node, yt+1,
or its image under Snell’s law, ỹt+1. Thus, computationally we can work with
three points that are all in the same interface element.

Finally, optical interfaces may have critical momenta at which the behaviour
of Snell’s law changes from refractive to reflective. The velocity field at these
points changes sign discontinuously. For stability, therefore, nodes must be
placed at these critical momenta as well. The meshing software we’ve employed,
Shewchuck’s Triangle package, allows forced nodes in the triangular mesh to be
set [118].

9.3 Results

As our test cases, we use again the bucket of water problem and the CPC. For
both problems, exact solutions are given for special cases in Chapter 4. The
bucket of water problem is used for a convergence test, demonstrating that the
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method is third-order accurate. The CPC is used to demonstrate the active flux
method on a moving grid.

9.3.1 Bucket of water

The simplest nontrivial optics problem is a single flat interface between two
media of constant refractive index. This problem was previously dubbed the
bucket of water problem, as the problem roughly represents a beam of light
shone at a water surface. The refractive index is given by

n(q) =

{
n1 if q < 0,

n2 if q ≥ 0,
(9.8)

where we choose n1 = 1.4 and n2 = 1. Using an initial condition that has
support with q < 0 and p > 0, the solution features both refraction and total
internal reflection. A typical result is shown in Figure 9.4, which was generated
with an initial condition

ρ0(q, p) =

{
1 if − 1

5 < q < − 1
2 and 0 < p < 13

10 ,

0 otherwise.
(9.9)

The result clearly shows the four regions as discussed in Section 4.2.2, where
we derived the analytical solution. The four regions are named after their be-
haviour: the source, refraction, reflection and dark regions. There is a minor
amount of numerical diffusion, much less compared to the upwind method from
the previous chapter, see Figure 9.4. Note also that the solution is perfectly
discontinuous along the interface at q = 0, as expected.

To verify the assertions made in Chapter 4 about the computation times
and convergence rates of both active flux and ray tracing, we perform some
numerical experiments. For the convergence test, we need to use an initial
condition that results in a solution that’s piecewise smooth to the right and left
of the interface. To do so, recall the bump function

ψ(x) :=

{
e
− 1

1−x2 , for |x| < 1,

0, otherwise,
(9.10)

which is a C∞0 function, meaning it’s infinitely differentiable and has compact
support. We use it to construct a smooth initial condition defined as

ρ0(q, p) = ψ

(
q − q0

λq

)[
ψ

(
p− p0

λp

)
+ ψ

(
p− p1

σp

)]
, (9.11)
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Figure 9.4: Numerical solution to the bucket of water problem using 31,293
elements and 1,216 time steps.
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with the constants defined as q0 = − 1
2 , λq = 1

4 , p0 = 9
20 , λp = 9

20 , p1 = 23
20

and σp = 3
20 . This initial condition is chosen such that the light that’s reflected

is separate from the light that’s transmitted, i.e., the critical momentum is
avoided. As such, this ensures that the solution stays piecewise smooth, where
the only discontinuity in the solution occurs at the interface.

For the number of rays, we used NRT = 1
25E

2 with E the number of ele-
ments. As outlined in Chapter 4, this is the optimal scaling for the number of
rays compared to the number of elements. The constant 1

25 is chosen to give
reasonable results. Too few rays means not every bin receives at least one ray,
resulting in an error of O(1) and thus a nonsensical numerical solution. We’ve
empirically determined the constant 1

25 such that on the coarsest grid, the ray
tracing solution at least makes sense. The error is computed using the L2-norm
on phase space, hence

e =



∫

P

(
ρAF(Z, q, p)− ρ(Z, q, p)

)2
dy




1
2

, (9.12)

with ρAF the numerical solution and ρ the exact solution. This integral is
numerically evaluated by first interpolating both ρAF and ρ to a fine Cartesian
grid and then using a quadrature rule. The fine grid is chosen such that the
error in the quadrature rule is much smaller than the error of the numerical
solution. In case of the bucket of water problem, the exact solution and both
reconstructions are known on each element, hence the error can be computed to
sufficient accuracy. Furthermore, the error scaling as a function of the number
of elements is assumed to satisfy

e = CeE
− γ2 , (9.13)

with γ the order of convergence and Ce > 0 some constant. This error scaling
is valid in the limit of large numbers of elements. It can be estimated using
two numerical solutions of the same problem for a different number of elements.
Both algorithms were implemented in Fortran and run on a single core of a Dell
Optiplex 7010. In practice, we must remark, commercial ray tracing software
would use a multithread implementation, leading to much shorter computation
times. However, the active flux scheme also allows for copious amounts of
parallel processing. It’s for this reason that we implemented both in a single-
thread fashion.

Table 9.1 shows convergence data for the two methods. The meshing soft-
ware allows for setting a maximum element size, which scales inversely with the
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Table 9.1: Errors and estimated orders versus the maximal element size for the
convergence test. Active flux is indicated with subscript AF while ray tracing
is indicated with subscript RT.

maxi |Ωi| eAF γAF NRT eRT γRT

5.1 · 10−2 2.1 · 10−2 795 3.5 · 10−2

1.3 · 10−2 9.1 · 10−3 1.2 14,933 1.6 · 10−2 1.2
3.2 · 10−3 2.9 · 10−3 1.7 235,225 8.0 · 10−3 1.0
8.0 · 10−4 5.5 · 10−4 2.4 3,785,359 3.9 · 10−3 1.0
2.0 · 10−4 8.4 · 10−5 2.7 31,330,826 1.9 · 10−3 1.0
5.0 · 10−5 1.2 · 10−5 2.8 980,917,344

number of elements. Because the problem is two-dimensional, we’ve chosen to
multiply the element size by 1

4 each time, so that the error of the active flux
scheme should reduce by a factor of eight. Note that the table doesn’t show
ray tracing data for the smallest element size, as the computation time grew
prohibitively large. Both schemes hold up to the theoretical arguments, the
predicted error scaling is verified by the data. The active flux scheme is indeed
third-order accurate while the ray tracing method provides first-order accuracy.
It’s interesting to note that the lowest error achieved by ray tracing is roughly
comparable to the error from the active flux scheme with maxi |Ωi| = 3.2 ·10−3.

The computation times of the previous test are shown in Table 9.2. Like
the error scaling, the time scaling is determined empirically using a power law
assumption, i.e.,

t = CtE
s, (9.14)

with some constant Ct > 0, which is valid as the number of elements grows large.
The time scaling for ray tracing indeed comes out as predicted in Chapter 4,
i.e., cubic in the number of elements. The time scaling of the active flux scheme
is close to the predicted quadratic, although it takes even more elements to find
the limit numerically. For ray tracing on the other hand, the limit is indeed
reached. Now that the theoretical time scaling is confirmed for both methods,
we can estimate the computation time for the last entry of the table for ray
tracing: it would take over 21 days using roughly 980 million rays. We can now
compare also the error-versus-time behaviour. For an error around 3 · 10−3, ray
tracing takes almost eight hours, while the active flux scheme is done in 4.6
seconds. It seems an understatement to say that the speed-up is significant.
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Table 9.2: Number of elements E, computation times t and their scaling s of
the previous test. Active flux is indicated with subscript AF while ray tracing
is indicated with subscript RT.

E tAF sAF tRT sRT

141 0.6 s 0.051 s
611 1.4 s 0.58 0.12 s 0.54

2,425 4.6 s 0.86 6.8 s 2.91
9,728 24.3 s 1.20 7 min 0 s 2.97

39,157 4 min 19 s 1.70 7 h 37 min 45 s 3.00
156,598 55 min 54 s 1.85

9.3.2 Compound parabolic concentrator

The compound parabolic concentrator (CPC), see Section 4.2.3, provides a
rather difficult test case for the active flux scheme. The CPC features rays
that are reflected any number of times on one side. That is, for any integer
r, there are rays that are reflected r times on one wall. The limiting case
are the so-called whispering modes that move continuously along one parabola,
reflecting an infinite number of times. Furthermore, rays that travel close to
perpendicular to the optical axis carry some energy.

The advection speed for perpendicular rays, i.e., rays with momentum p =
±1, is infinite. To cope with this, we have to set some maximum momentum
pmax = 1− ε for some ε > 0. We choose ε = 1

2 lmin, where lmin is the minimum
edge length in the initial grid. Furthermore, it’s somewhat easier to implement
the CPC in the reverse direction, as an ideal diluter. This is due to the fact that
momenta tend to decrease in this direction, while they would otherwise increase
when the CPC is employed as an ideal concentrator. The initial conditions
therefore consist of

ρ0(q, p) =

{
1 if − a ≤ q ≤ a and − pmax ≤ p ≤ pmax,

0 otherwise.
(9.15)

We use the parameters a = 1
2 and θ = π

6 for the CPC, where a is the exit
aperture width and θ the acceptance angle. The optic length is given by (4.23),
which gives Z ≈ 2.6. We fix the left and right sides of the grid to the position of
the mirrors, while the rest of the grid is uniformly stretched. We set a maximum
element size of 10−2, resulting in 3,345 triangles and 10,201 total degrees of
freedom. The CFL condition results in 2765 time steps. The outcomes are
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Figure 9.5: Numerical solution of the CPC problem at various z levels.

shown at several z-levels. In Figure 9.5, the solution is shown at z = 1
3Z and at

z = 2
3Z. In Figure 9.6 the final solution at z = Z is shown.

The analytical solution at z = Z is simply a rectangular area, −1 ≤ q ≤ 1
and − 1

2 ≤ p ≤ 1
2 , where ρ = 1 and elsewhere ρ = 0. The numerical solution has

a slightly different shape, gaps are visible near the top-right and bottom-left.
This is due to the restriction that we must have a finite maximum velocity in
our scheme. Other than that, the solution is rather good. The error in the inner
region is within machine precision of the exact solution, which is caused by the
constant-state preserving property of the scheme, see Section 6.5

9.4 Concluding remarks

The active flux scheme is the first numerical method we’ve examined that truly
outperforms Monte Carlo ray tracing for our two test problems. It’s both faster
and more accurate, which results in similar performance in seconds compared to
what ray tracing does in hours. There can be no doubt about the superiority of
solving Liouville’s equation over ray tracing when global information is required.
Naturally, the type of information is different, as no optical path is generated
or stored.

Next, we’ll examine a spectral element method applied to Liouville’s equa-
tion. The main difference with the active flux scheme is that spectral element
methods are hp-methods, where h stands for element size and p stands for the
order of approximation [130,131]. Clearly, the active flux scheme is designed to
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Figure 9.6: Numerical solution of the CPC problem at z = Z.

accommodate h-refinement. However, changing the order of approximation cur-
rently requires designing a completely new scheme, although this may of course
change in the future. Spectral element methods have the ability to refine the
mesh or enrich the order of approximation on the fly.
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Chapter 10

A spectral element Liouville
solver

SPECTRE always delivers what
it promises.

Ernst Stavro Blofeld
From Russia with love

In the previous chapter, we’ve discussed the active flux scheme, a numerical
discretisation technique that computes a numerical solution on triangular ele-
ments. Before that, we’ve seen how to construct a upwind Liouville solver in
Chapter 8. Remarkably, it turned out to be relatively easy to convert the active
flux scheme to a solver for geometric optics problems. In particular, for the
upwind method we needed to derive an extra jump condition on the solution
and apply it across the interface in the numerical solution. For the active flux
scheme, it was really just a matter of properly aligning the mesh with any in-
terfaces present. We demonstrated this important concept with the compound
parabolic concentrator, a pair of curved mirrors. For our next solver, which is
based on the discontinuous Galerkin method, we again find that a proper align-
ment of the mesh is all it takes. We’ll extend this idea to encompass lenses and
other freeform refractive surfaces.

As our last Liouville solver, we’ll discuss how to implement the discontinuous

211
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Galerkin spectral element method. Recall that Liouville’s equation is given by

∂ρ

∂z
+∇ ·(ρu) = 0, (10.1)

where ∇ =
(
∂
∂q ,

∂
∂p

)T
and u = S∇h, with

S =

(
0 1
−1 0

)
. (10.2)

As with the previous two methods, upwind and active flux, whenever the re-
fractive index is smooth, the scheme can be applied off-the-shelf without modi-
fications. However, when optical interfaces are present, the scheme needs to be
altered locally.

10.1 Incorporating Snell’s law

The DG spectral element method works purely in the Eulerian picture, no ref-
erences to rays or characteristics are made in the derivation presented in Chap-
ter 7. This as opposed to the active flux scheme, which uses local ray tracing to
advance the point values in time. At first glance, therefore, one might wonder
how to incorporate Snell’s law into the solver. A closer look reveals that nu-
merical solutions produced by DG are smooth in the element interiors and the
only communication between elements is facilitated through a numerical flux.
This suggests that the effects of optical interfaces have to be incorporated into
the numerical flux.

To see how this is done, we think of the two regions of phase space separated
by the interface as two separate problems. In both regions, the brightness ρ
satisfies a linear hyperbolic equation. Moreover, we know that the brightness
distribution should be continuous along rays. Therefore, on the parts of the
interface where the velocity field points out of the interface, we have a Dirich-
let boundary condition. The boundary value of one region prescribed by the
brightness in the other region. Furthermore, Snell’s law tells us from where to
obtain the boundary value. Whenever the velocity field points into the interface,
the brightness is left free. We can conclude that whenever the upwind direction
leads across an interface, we need to apply Snell’s law first, otherwise, we apply
free outflow.

As alluded to earlier, like with the active flux scheme, we need to align the
mesh with any optical interfaces, see Figure 10.1. For completeness, we repeat
the idea of mesh alignment from the previous chapter.
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Figure 10.1: Sketch of aligning elements with the optic in the case of a lens (left)
and a mirror (right). The optics are indicated with black lines, the screens with
dashed lines and the elements with red.

The mesh must be aligned with the interface in phase space,
i.e., the mesh must be such that the interface is equal to the
union of a set of edges. Elements that have these edges as part
of their boundary are called interface elements.

As observed in Section 9.2, when dealing with mirrors, or any surface where the
q-coordinate is described as a function of z, this amounts to a moving mesh.
We add here that for lenses, which is to say any surface where the z-coordinate
is a function of q, this amounts to integrating on curved screens, which we’ll
discuss in Section 10.3. Naturally, in either case we’ll keep track of the interface
elements, so we know exactly which elements are affected by Snell’s law.

10.2 Dealing with discontinuous sources

If DG has one flaw, it’s that it really only works well for piecewise smooth
solutions. Discontinuities can occur at element boundaries, but inside each
element the solution should be smooth. If the solution contains shocks or sharp
gradients that don’t coincide with element boundaries, a lot of things can go
wrong. For linear equations, however, exponential convergence can be recovered
with perfect shock capturing in post-processing [122]. Fortunately, Liouville’s
equation is linear, so this line of attack is always open for future research.

Perfect Lambertian sources are discontinuous in phase space. In particular,
such sources have a region in phase space where the brightness is constant and



214 CHAPTER 10. A SPECTRAL ELEMENT LIOUVILLE SOLVER

zero everywhere else. There are three approaches one might consider when
it comes to such sources. First, use the perfect source, i.e., a discontinuous
initial condition, and apply postprocessing to recover the discontinuous solution.
Second, move the mesh along with the edge of the distribution, e.g. front
tracking. Lastly, approximate a perfect source with a smooth distribution.

In dealing with discontinuous solutions, DG methods produce oscillatory
solutions, with the oscillations focussed around where the discontinuity should
be. The first option involves expanding the numerical solution in terms of a
different basis and finding the location of the discontinuity to sufficient accuracy
[142]. The second option involves front tracking, see e.g. [104–108], where the
front is defined by the edge of the distribution. Parts of the mesh are then
simply attached to rays, in a manner of speaking. It is, however, unclear how
to proceed with this technique in the presence of interfaces. The third option is
by far the simplest, as we’ll demonstrate below.

Any discontinuous function can be approximated arbitrarily close with smooth
functions by using mollifiers [71]. A mollifier is a positive infinitely smooth func-
tion with compact support and unit integral. Given a mollifier ϕε, where the
parameter ε measures the amount of smoothing, the mollified function gε is
defined by

gε = ϕε ∗ g, (10.3)

with ∗ denoting convolution. As a consequence, the function gε is therefore also
infinitely smooth for any ε > 0. If we let ε ↓ 0, gε converges to g in a suitable
function space such as L2. One possible mollifier can be constructed with the
help of a suitably normalised bump function, i.e.,

ψ(x) =

{
C exp

(
− 1

1−x2

)
if |x| < 1,

0 otherwise,
(10.4)

where C > 0 is such that
∫ 1

−1
ψ(x) dx = 1. Note that the bump function

is indeed infinitely smooth with compact support. In one dimension, we can
define the mollifier as ϕε(x) = 1

εψ(xε ). Higher-dimensional analogues are easily
constructed, for instance by using the radial coordinate r = |x|, i.e., ϕε(x) =
1
εd
ψ( rε ), with d the dimension. The support of this mollifier is a ball centred on

the origin with radius ε.
Thus, mollifying the discontinuous initial condition gives a smooth solution

that remains smooth in the interior of all elements, provided the elements are
well aligned with any optical interfaces. In practice, a near-perfect source is
also simply an arbitrarily close smooth distribution. Therefore, whenever a
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Lambertian light source is specified as an initial condition, we’ll mollify it first,
resulting into a smooth approximation to the light source.

10.3 Integrating to lenses

Suppose we’re tasked to solve the light distribution on a given freeform surface.
We only require that the freeform lens can be described with some sufficiently
smooth function of position q. Since z acts as a time coordinate, this is equiva-
lent to finding the solution to Liouville’s equation on a curved space-time slice.

We manage this by making a linear blending transformation in z. For gen-
erality, consider two freeform surfaces, z = ζ1(q) and z = ζ2(q), which may also
be constant. Suppose we know the light distribution on z = ζ1(q) and we’d like
to know the distribution on z = ζ2(q). The linear blending is given by

z(λ, q) = λζ2(q) + (1− λ)ζ1(q), (10.5)

where λ = 0 gives surface z = ζ1(q) while λ = 1 gives surface z = ζ2(q), see
Figure 10.2.

z = ζ1(q) z = ζ2(q)

λ
λ = 1λ = 0

Figure 10.2: Sketch of the linear blending approach, time steps in z are on
surfaces that blend from ζ1 to ζ2.

Our intent is to find a PDE for ρ in the coordinates (λ, q, p) which we’ll then
integrate from λ = 0 to λ = 1, thereby passing from the one surface to the
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other. Let’s define ρ̃ as

ρ̃(λ, q, p) = ρ
(
z(λ, q), q, p

)
. (10.6)

The transformation rules can be found as

∂ρ̃

∂λ
=
∂ρ

∂z

∂z

∂λ
, (10.7a)

∂ρ̃

∂q
=
∂ρ

∂z

∂z

∂q
+
∂ρ

∂q
, (10.7b)

∂ρ̃

∂p
=
∂ρ

∂p
. (10.7c)

Using these transformation rules, we find that Liouville’s equation transforms
as

1

zλ

∂ρ̃

∂λ
+
∂h

∂p

(
∂ρ̃

∂q
− 1

zλ

∂ρ̃

∂λ

∂z

∂q

)
− ∂h

∂q

∂ρ̃

∂p
= 0, (10.8)

where zλ = ∂z
∂λ = ζ2(q) − ζ1(q). Dropping the tildes in notation, we conclude

that ρ satisfies the following PDE in the new coordinates,

α(λ, q, p)
∂ρ

∂λ
+∇ ·(ρu) = 0, (10.9a)

where

α(λ, q, p) =
1− ∂h

∂p

(
λζ ′2(q)− (1− λ)ζ ′1(q)

)

ζ2(q)− ζ1(q)
. (10.9b)

We can now semi-discretise with DG as outlined in Chapter 7 and integrate
with the usual suspects, such as RK methods. This leads to the observation
that each point in phase space should be integrated with a different step size.
The step size can be read off as

∆z(λ, q, p) =
∆λ

α(λ, q, p)
, (10.10)

where ∆λ is the step size in λ. The CFL condition can now be stated in terms
of ∆λ, so that for a DG method using polynomial degree N , we have

∆λ ≤ αmin∆ymin

bmax(2N + 1)
, (10.11)

where ∆ymin is the minimum size in the mesh, bmax is the maximum velocity in
the problem and αmin is the minimum value of the correction factor.



10.4. RESULTS 217

The resulting method for refractive optics is as follows: between any pair of
surfaces, we solve (10.8) numerically and if the surface is refractive, we apply
Snell’s law globally to the solution. This way, we can integrate from surface to
surface until the target is reached.

10.4 Results

To test the DG method for Liouville’s equation, we once again use a test problem
that should by now be quite familiar: the bucket of water problem. We use the
bucket of water problem to verify that the convergence properties of the DG
spectral element method still apply for Liouville’s equation. Apart from this,
a spherical lens is also used to test the integration method discussed in the
previous section. As no exact solution is known for that problem, a reference
solution is found by Monte Carlo ray tracing.

10.4.1 Bucket of water

We again use the bucket of water problem as a test case, the results on both
structured and unstructured grids are shown in Figure 10.3. The unstructured
grid is rather unrealistic, but it demonstrates the point that DG works well on
both types of grids.

Let’s first turn to the question whether or not discontinuous Galerkin meth-
ods works as spectacularly as it does on more common problems. Typically, the
error behaviour of DG scales as

e = O(∆yN+1), (10.12)

where ∆y a representative mesh size while N is the polynomial degree. In

particular, the error should scale as O
(
E−

N+1
2

)
with E the number of elements

while we should observe exponential convergence as N is increased.
First, we verify that a DG method of polynomial degree N converges with

order N + 1 in space. To do so, we solve the bucket of water problem using an
initial condition that remains smooth throughout the computation. In particu-
lar, we use the same smooth initial condition (9.11) introduced in the previous
chapter, i.e.,

ρ0(q, p) = ψ

(
q − q0

λq

)[
ψ

(
p− p0

λp

)
+ ψ

(
p− p1

σp

)]
. (10.13)
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(a) Structured grid of 240 elements
with N = 10.

(b) Unstructured grid of 372 elements
with N = 5.

Figure 10.3: Numerical solution to the bucket of water problem on a structured
and unstructured grid.
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Figure 10.4: Error curves for several discontinuous Galerkin schemes with poly-
nomial order N . Several triangles are drawn to indicate the slopes.

Here ψ is the unnormalised bump function, which is (10.4) with C = 1. We
use a regular mesh as shown in Figure 10.3a. Integration in z is performed
using the standard RK4 integrator, while the z-step is chosen to satisfy the
CFL condition. This means the error in z-discretisation will be dominated by
the spatial error. As we use nodal DG, the coefficients directly represent the
function values on the nodes. Therefore, we simply use the absolute difference
averaged over all the nodes as our error, i.e.,

e =
1

E(N + 1)2

E∑

k=1

N∑

i,j=0

|ρkij(Z)− ρ(Z, qi, pj)|, (10.14)

where ρkij is the value of the numerical solution on node (i, j) of element k.
Some convergence data is shown in Figure 10.4. The results show that DG
indeed converges with order N .

Next, we verify exponential convergence as a function of N , keeping the
number of elements fixed at 240. We use a constant number of 15000 z-steps so
that the z-integration error will be much smaller than the spatial error. Once
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Figure 10.5: Error curve for the discontinuous Galerkin schemes as a function
of polynomial order N for the bucket of water problem. The black line is an
exponential function to guide the eye.

again, z-integration will not interfere with the convergence test. The results are
displayed in Figure 10.5. Clearly, exponential convergence is preserved, even in
the presence of an interface.

Finally, we can compare the DG method to Monte Carlo ray tracing for the
bucket of water problem. The number of rays is once again chosen to scale
quadratically with the number of elements, NRT = 1

10E
2. This is the optimal

scaling as outlined in Chapter 4. The constant 1
10 is once again chosen to give

reasonable results. If too few rays are used, the situation may occur where not
every bin has at least one ray, resulting in a O(1) error. The constant 1

10 results
in a couple of rays per bin, 6 on average to be precise, for the coarsest mesh.
We choose a polynomial order of N = 4 and the RK4 integrator, resulting in
a fifth-order method in space and a fourth-order method in z. Hence, fourth-
order accuracy should be achieved globally. We choose a fifth-order spatial
discretisation, since we can see from Figure 10.4 that increasing the polynomial
order always decreases the error. The order estimate is computed from the
empirical relation

e = CeE
− γ2 , (10.15)

which is valid in the limit of large numbers of elements.
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Table 10.1: Convergence results for the bucket of water convergence test using
discontinuous Galerkin (DG) with N = 4 and ray tracing (RT) versus the
number of elements E.

E eDG γDG tDG eRT γRT tRT

60 8.6 · 10−4 0.1 s 7.0 · 10−3 0.012 s
240 1.9 · 10−4 2.1 1.1 s 3.6 · 10−3 1.0 0.035 s
960 3.5 · 10−5 2.5 12.4 s 1.9 · 10−3 0.9 1.4 s

3,840 5.5 · 10−6 2.7 2 min 33s 1.0 · 10−3 0.9 1 min 25 s
15,360 4.3 · 10−7 3.7 28 min 55 s 6.0 · 10−4 0.8 1 h 30 min 15 s

Both methods, the DG-SEM and first-order ray tracing, were implemented
in Fortran and run on a single core of a Dell Optiplex 7010 desktop computer.
We choose not to use parallel implementations, since both methods can be
heavily parallelised. However, the effects of parallelisation are dependent on the
implementation and hardware. Using single-thread implementations therefore
gives a more fair comparison. The error of the ray tracer is defined by first
interpolating the solution obtained by ray tracing to the nodes of the DG method
and then applying (10.14). The results are displayed in Table 10.1.

As expected, DG completely blows ray tracing out of the water. In accor-
dance with theory, this variant of DG exhibits fourth-order convergence, which
means the error is dominated by the RK4 method. At the same time, the com-
putation time has a much better scaling. Ray tracing is faster for a small number
of rays, but for the largest number of elements, DG is also faster. Comparing
errors, however, we see that DG with the smallest number of elements obtains a
similar result to ray tracing on the largest number of elements. Hence, DG can
do in about a tenth of a second what ray tracing does in an hour-and-a-half, a
factor well over 50, 000 faster.

10.4.2 Spherical lens

To demonstrate that the strategy outlined in Section 10.3 works properly, we
compute the solution to Liouville’s equation for a spherical lens, see Figure 10.6.
An ideal lens is defined as a rotation by π

2 going from one focal plane to the
other, so that q → p and p→ −q. Consider the example of a perfectly collimated
beam of light, which is focussed into a single point for an ideal lens. Conversely,
a point source placed in the focal point of a perfect lens will produce a perfectly
collimated beam. Spherical lenses are far from ideal and will therefore exhibit
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aberrations and defects.

Figure 10.6: Sketch of the situation for the spherical lens case. The initial
condition is specified on the z = −f focal plane. Several rays (blue) are sketched
as well.

We assume distances in the problem are normalised with some suitable length
scale. The lens is a plano-convex with the curved side having a radius of 1.8
units and a refractive index of 1.6, resulting in a focal length of 3 units. The
lens has a height of 2 units and no light can get around it. Think of the lens
as filling an aperture in a wall of some dark material. The initial condition is
chosen to be a normalised Gaußian centred on (q, p) = (0, 0), i.e.,

ρ0(q, p) =
1

2πσqσp
exp

(
− q2

2σ2
q

)
exp

(
− p2

2σ2
p

)
, (10.16)

where we use the standard deviations σq = 1
10 and σp = 1

5 . The initial condition
is plotted in Figure 10.7.

The flat side of the lens is directed towards the light source. This is the
“bad” way of using a plano-convex, as fewer aberrations are incurred when the
curved side is directed towards the source. However, the point is not to analyse
the optical system; rather, we wish to demonstrate the method. Using the lens
in this fashion brings out more spectacular results.

We compute the distribution on the focal plane, marked as z = f , with both
methods. The results are shown in Figure 10.8. As DG is much more accurate,
only very few elements are needed, whereas many more elements are needed for
ray tracing. As such, we use 10 × 10 elements with a polynomial degree of 10
for DG, whereas we use 100× 100 bins with 107 rays for RT. The step size ∆λ
is determined by (10.11).
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Figure 10.7: Initial condition for the spherical lens problem.

As becomes clear from the figure, the two solutions are virtually the same.
However, whereas the ray tracing solutions takes 2 minutes and 50 seconds
to compute, the DG solution takes 23 seconds. Hence, also in this case, DG
is faster. Note that the distribution at z = f is not a rotation of the initial
condition, which is due to the fact that spherical lenses are not ideal. Hence,
all sorts of aberrations can be identified, such as the loss of symmetry and
the stretching in the q-direction combined with compression in the p-direction.
Furthermore, the finite size of the lens is apparent from the sharp cut-off.

Another interesting observation to mention is due to the stretching and com-
pressing effect. As we’ve already seen in Chapter 8, the gradient of a distribution
undergoing an optical transformation is also affected. In this example, the gra-
dient in the p-direction becomes steeper whereas the gradient in the q-direction
becomes shallower. The maximum gradient that can be represented by DG
is limited by both the polynomial degree and the typical mesh size. As such,
the stability of the DG method when applied to lenses depends on both. The
polynomial degree needs to be sufficiently rich or the mesh size needs to be
sufficiently small.

Illuminance comparison

As DG is based on quadrature rules, it’s quite easy to compute integrals of the
numerical solution and thereby obtain the luminous intensity and illuminance
distributions. As a reminder, luminous intensity is the luminous power per
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(a) DG with E = 100 and N = 10. (b) RT with E = 104 and 107 rays.

Figure 10.8: Numerical solution of a spherical lens with a Gaußian as input on
the focal plane.

solid angle and illuminance is the luminous power per unit area. In Chapter 4,
we’ve also discussed that either can be found by integrating out the unwanted
dimension in phase space, with intensity being the q-integral of the brightness
ρ and illuminance being the p-integral. For the other Liouiville solvers we’ve
discussed, upwind and active flux, these lower-dimensional distributions can of
course be computed as well from the numerical solution. However, DG lends
itself exceptionally well to this purpose.

Adopting the notation from Section 4.3.1, we let F be the number of bins in
one dimension and use F×F elements on phase space. Besides from a DG-SEM,
we’ll use a second-order low-dimensional ray tracer discussed in Section 4.3.1
to compute the illuminance distribution. As argued, the correct bin can be
computed in constant time provided the bin size is constant. To this effect, we
define the set of points Qj , which will serve as the bin edges, as

Qj = (j − 1)∆q − 1, j = 1, . . . , F + 1, (10.17)

with ∆q = 2
F . The bins themselves are then defined by Bj = [Qj , Qj+1] and

the midpoints are called qj =
Qj+Qj+1

2 for j = 1, . . . , F . As explained in Sec-
tion 4.3.1, the solution found by ray tracing converges with second-order accu-
racy on the midpoint provided we use NRT ∼ F 5. We therefore define the error
on the midpoints, i.e.,

e =
1

F

F∑

j=1

|Ej − E(qj)| , (10.18)
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where E(·) is the reference solution and Ej is the numerical solution at midpoint
qj

1.

The solution to Liouville’s equation is computed on a mesh of F×F elements
and we choose a polynomial order of N = 2 and the RK4 method, resulting in
a third-order method. The reference solution is computed on a grid of 300 ×
300 elements using a DG method with N = 4, also integrated with the RK4
method. We’ll compute the illuminance distributions using both methods for 25,
50, 100 and 200 elements. Therefore, the reference solution provides a higher-
order solution on a finer grid than either method. To compute the error, the
reference solution and the numerical solution itself are first interpolated to the
cell midpoints qj . As an initial condition, we now take a Gaußian centred on
(0, 0) with standard deviations σq = 1

5 and σp = 1
10 .

Both methods are, as per usual, run on a single core of a Dell Optiplex

7010 desktop computer. The number of rays was fixed as NRT = F 5

8.7 , which
was chosen so that both methods start out with roughly the same error on the
coarsest mesh. Coincidentally, both methods also start out with roughly the
same computation time. The results are displayed in Table 10.2. The first two
computations are more or less comparable in terms of computation time, but
we must point out that the DG-SEM already achieves an error that’s smaller.
As we increase the number of bins, ray tracing takes more time and gives a
worse numerical solution. For the final computation, DG-SEM takes roughly
11.5 times less time than ray tracing while achieving an accuracy that’s about
17 times better.

Table 10.2: Results for DG-SEM versus low-dimensional ray tracing.

F eDG γDG tDG eRT γRT tRT

25 8.2 · 10−3 0.564 s 8.1 · 10−3 0.534 s
50 9.9 · 10−4 3.05 14.4 s 2.7 · 10−3 1.60 13.9 s

100 1.3 · 10−4 2.97 2 min 11 s 6.8 · 10−4 1.98 6 min 23 s
200 1.0 · 10−5 3.64 19 min 12 s 1.7 · 10−4 1.99 3 h 40 min 33 s

The results clearly demonstrate that solving Liouville’s equation using DG-
SEM can also compete with low-dimensional ray tracing. We must point out,
as we did in Chapter 4, that the brightness ρ provides a complete description of
light distribution, as it covers both positions and angles. Low-dimensional ray
tracing, on the other hand, provides an incomplete picture, even if we compute

1In this small section, the symbol E is reserved for the illuminance.



226 CHAPTER 10. A SPECTRAL ELEMENT LIOUVILLE SOLVER

both illuminance and luminous intensity. Hence, solving Liouville’s equation
through the DG-SEM provides complete information in roughly the same time or
faster and at higher accuracies than low-dimensional ray tracing, which provides
deficient information.

10.5 Onward to applications

The DG method is the most efficient method we’ve considered so far for solving
Liouville’s equation. As such, this opens up new prospects for applications. For
instance optimal design, which is the topic of the next part of this thesis. This
approach uses iterative improvements to optical systems where each iteration
requires the solution of Liouville’s equation. Therefore, a fast and high-order
Liouville solver is needed as the basic workhorse. Fortunately, we’re now in
possession of such a method.



Chapter 11

Summary of Liouville
solvers

Here, we briefly summarise the performance of the Liouville solvers compared
to the current industry standard, which is Monte Carlo ray tracing. The bench-
mark test throughout this work has been our favourite toy problem, the bucket
of water. For a detailed discussed of the theoretical scaling arguments, see
Chapter 4.3.

In short, a first-order ray tracer requires a number of rays that scales quadrat-
ically with the number of bins, i.e., NRT ∼ E2. Ordinarily, a linear search is
also needed to find the correct bin, leading to a time scaling of t ∼ E3. A
first-order error on two-dimensional phase space means eRT ∼ E−1/2, so that
the time-to-error scaling results in

eRT = O
(
t−

1/6
)
. (11.1)

For a Liouville solver of order γ, meaning eL ∼ E−γ/2, we derived the time
scaling t ∼ E2. Hence, the time-to-error scaling results in

eL = O
(
t−

γ/4
)
. (11.2)

The order γ depends on the details of the scheme, which in general will affect the
constants of the scaling as well. In this work, we’ve seen a first-order method,
γ = 1, in the upwind solver of Chapter 8. A third-order method, γ = 3,
was explored with the active flux scheme in Chapter 9. Finally, we’ve seen a
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variable-order scheme with the discontinuous Galerkin method of Chapter 10,
of which we’ve investigated the fourth-order option, γ = 4. We’ve compiled all
the convergence tests of the previous three chapters in Figure 11.1.

Figure 11.1: Compilation of all the convergence tests between ray tracing (red)
and the Liouville methods (blue) on phase space.

The figure also shows three sets of ray tracing data, as the details of the im-
plementation of each comparison are slightly different. For instance, the upwind
(UW) solver was implemented in Matlab, while the others are implemented in
Fortran. Moreover, the upwind method works on a regular grid, which means
the correct element can be found in constant time, resulting in a slightly more
favourable e ∼ t

1/4. Additionally, the ray tracer that we’ve used to compare
the active flux (AF) scheme to is implemented on triangular bins, while discon-
tinuous Galerkin (DG) and its ray tracer work on quadrilateral elements/bins.
Evidently, more effort is required when using triangular elements to identify the
correct bin.

Figure 11.1 shows several interesting things, first among which is that the
theoretical scaling arguments were essentially correct. The scaling arguments
are based on asymptotic behaviour, so especially for larger computations they
hold up. For smaller computations, we see a bit of a departure from the the-



229

oretical line. The second important thing to note about the figure is that the
Liouville solvers are always better. In particular, DG proves to be superior giv-
ing the lowest error for a fixed computation time. Ray tracing can compete with
the active flux scheme for small to medium computations. However, both the
upwind method and the DG method are better over the whole range compared
to their ray-tracing counterparts.

In Chapter 10, we’ve also compared the DG Liouville solver with low-
dimensional ray tracing. The set-up was a single lens, computing the illuminance
on the focal plane. The source was positioned on the other focal plane. We de-
noted the number of bins in the low-dimensional space as F . Second-order ray
tracing, then, the error should scale as eLRT ∼ F−2, while we’ve derived a com-
putation time of tLRT ∼ F 5. Hence, low-dimensional ray tracing should give a

scaling of eLRT ∼ t−
2/5

LRT. For comparison we’ve solved Liouville’s equation on an

F × F mesh with a third-order DG method, which results in eDG ∼ t−
3/4

DG . The
results of the convergence test is displayed in Figure 11.2.

Figure 11.2: Compilation of the convergence tests between low-dimensional ray
tracing (red) and DG (blue).

Interesting here is that both error curves more or less start in the same point.
Much shorter computation times would probably give meaningless results. We
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can therefore conclude that the DG Liouville solver is also better or equally good
in the low-dimensional case. Another point is that the theoretical arguments
also hold up for low-dimensional ray tracing. The DG Liouville solver, however,
seems to beat the theoretical scaling arguments by a slight margin, as the curve
is a little steeper. It may be that the line becomes more shallow for even longer
computation times.

11.1 Final thoughts on Liouville solvers

The evidence we’ve compiled in this section suggests that Liouville solvers are
indeed remarkably good computational tools for illumination optics. For rel-
atively simple optical problems, they outperform Monte Carlo ray tracing in
the computation of phase space distributions as well as the lower-dimensional
distributions. The difference becomes especially pronounced for larger numbers
of elements/bins. This is because Liouville solvers have a more favourable scal-
ing compared to ray tracing. We expect this behaviour to persist when more
complex or practical problems are tackled.



Part IV

Optimal design
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In the previous part, we’ve presented several solvers for Liouville’s equation
that can be applied to illumination optics problems. All of these solvers exhibit
staggering improvements over the current industry standard, Monte Carlo ray
tracing. The upwind scheme only provides an improvement in time, while the
active flux scheme and the discontinuous Galerkin method are, on top of that,
also much more accurate.

DG is the most efficient method we’ve examined so far, which leads to an
interesting possibility that’s precluded by ray tracing: applying ideas from op-
timal control theory. In this context we reinterpret the problem of designing an
optic as the problem of designing an open loop controller.



234



Chapter 12

Basics of optimal control
theory

It’s impossible to use the word
dynamic in a pejorative sense.

Richard Bellman

We recall here briefly the theory of optimal control, which treats the control
of a dynamical system in such a way as to optimise a given objective function.
The first optimal control problem was posed by Goddard in 1919, asking the
question of how to throttle a rocket such that it reaches maximum altitude
[143]. The general theory of optimal control was developed throughout the 1950s
by Pontryagin and his group in the Soviet Union concurrently with Richard
Bellman in the United States [144, 145]. The time frame being the cold war,
both were predominantly working towards military applications1.

Bellman and Pontryagin were concerned with dynamical systems, i.e.,

ẋ = f(t,x,u), (12.1)

where x is the state variable and u is the control [146]. The governing equation
(12.1) is furnished with a suitable initial condition. Bellman’s work includes
the celebrated Hamilton-Jacobi-Bellman equation, which is solved on the entire

1I’ve always had a soft spot for rocket science, so I was very happy many examples in
Pontryagin’s book involve missiles and orbital mechanics.
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state space. As a consequence, it allows for the design of a controller that can
respond to any input. Pontryagin’s work allows for single-trajectory optimisa-
tion, allowing to optimise for a single specific input. This is more suitable to
our application, as we’re concerned with Liouville’s equation with a fixed initial
state. Put differently, we design an optic around a given light source, we don’t
care for finding all possible optics for all possible light sources, just the one will
do. Finally, Liouville’s equation is a PDE, so we’ll be therefore using the theory
of PDE constrained optimisation, also known as optimal control on PDEs [147].

12.1 Constrained optimisation

In constrained optimisation, we’re asked to find an optimal value of an objective
function while simultaneously satisfying a set of constraints. For example, any
business or firm is trying to maximise profit while at times obeying the law.
Profit here plays the part of the objective function while legislature provides a
set of constraints.

In mathematics, such systems are solved using Lagrange multipliers when
dealing with equality constraints [148], while Karush-Kuhn-Tucker multipliers
are used when dealing with inequality constraints [149, 150]. In either case, an
auxiliary function is formed, called the Lagrangian, which has an extra variable
for every constraint. The unconstrained minimum of the Lagrangian is then
equal to the constrained minimum of the original objective function. These
ideas can be found in any modern textbook on optimisation [151].

The concept of Lagrange multipliers translates rather straightforwardly to
dynamical systems, where the constraint is the governing equation (12.1). How-
ever, as the constraint depends on time now, the Lagrange multiplier should
also depend on time. Suppose the objective function is given by

Ψ(x(T )) +

∫ T

0

L(t,x, u) dt,

where T is the fixed final time, L is some function that provides a performance
measure and Ψ measures the optimality of the final state. The Lagrangian is
defined as

L[x, u,λ] = Ψ(x(T )) +

T∫

0

L(t,x, u) dt−
T∫

0

λ · (ẋ− f(t,x, u)) dt, (12.2)
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where λ is the Lagrange multiplier, which is now also a function of time. In the
context of optimal control theory, λ is called the adjoint or the costate. The
Lagrangian L is a functional, taking several functions as input and attaching a
real number to the triple. Abstractly, there’s no difference between functionals
and functions, both attaching a value to each point in its domain. The differ-
ence, roughly speaking, is that a functional takes input values from a function
space, while a function takes input values from some spatio-temporal domain.
Colloquially, therefore, one could say a functional is a function of functions. To
distinguish them, we’ll write functionals with script characters and the input in
square brackets, while functions will be written using lower case characters with
input in round brackets.

Functionals are in a way a generalisation of your run-of-the-mill function,
which means we also have to use a suitable generalisation of the derivative. In
practice this entails the calculus of variations, while more rigorously we should
use the Fréchet and Gâteaux derivatives. Let X be a Banach space with norm
| · |, then a functional F : X → R, is said to be Fréchet differentiable at f ∈ X
if there exists some ` ∈ X∗, with X∗ the space of bounded linear functionals
operating on X, so that

F [f + ζ] = F [f ] + `[ζ] + o(|ζ|) as |ζ| → 0, (12.3)

for arbitrary ζ ∈ X [13, 14]. The bounded linear functional ` is the Fréchet
derivative of F at f . Compare this with the linearisation of a function f around
x, i.e., f(x + y) = f(x) +∇f(x) ·y + o(‖y‖) as ‖y‖ → 0. Clearly, the Fréchet
derivative is defined by a linearisation for small ζ. The Gâteaux derivative is
slightly more general and is defined as follows. A functional F is said to be
Gâteaux differentiable if there exists some ` ∈ X∗ so that

F [f + εζ] = F [f ] + ε`[ζ] + o(ε) as ε→ 0. (12.4)

The bounded linear functional ` is now called the Gâteaux derivative of F at
f . From (12.4), we find the Gâteaux derivative as

F ′[f, ζ] = lim
ε→0

F [f + εζ]−F [f ]

ε
=

d

dε
F [f + εζ]

∣∣∣
ε=0

. (12.5)

If the Fréchet derivative exists, it’s equal to the Gâteaux derivative. However,
it is possible that the Gâteaux derivative exists without the Fréchet derivative
being defined. The derivative of a functional is also called the first variation,
with higher derivatives of course identified with higher variations. A useful
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special case to remember is if F is linear, so that the Gâteaux and Fréchet
derivatives agree upon

F ′[f, ζ] = lim
ε→0

F [f + εζ]−F [f ]

ε
= lim
ε→0

F [εζ]

ε
= lim
ε→0
F [ζ] = F [ζ]. (12.6)

Let’s now also assume that X is rigged with an inner product 〈·, ·〉, so that
it’s in fact a Hilbert space. In this case, we can associate a unique element
from X with the Fréchet or Gâteaux derivatives by the Riesz Representation
Theorem [152]. Indeed, we have that F ′[f, ζ] is a bounded linear functional in
ζ, so that there exists a unique element g ∈ X so that

F ′[f, ζ] = 〈ζ, g〉 . (12.7)

The element g is called the gradient of F at f with respect to the Hilbert space.
We can again compare this with a Taylor series of an ordinary function, so
that this is indeed a natural generalisation of the familiar gradient operator.
Here, we’ll be using L2 as our Hilbert space of functions [71]. The gradient
in this case, which we’ll denote δF

δf , is therefore called the L2-gradient2. As a
final note, a functional may naturally depend on several input functions. The
straightforward generalisation is to simply calculate the derivative with respect
to each input function independently, much like computing a gradient. In such
cases, it’s of course also possible to calculate the Gâteaux derivative only with
respect to one input function, much like partial differentiation. Our notation
will be to attach a subscript to the derivative to signify which input function is
varied. The subscript notation will be used, for instance, in Section 12.3.1.

After this short intermezzo concerning derivatives of functionals, we’ll get
back to finding an optimiser to the control problem. To find a constrained
minimum of the objective, all of the derivatives of the Lagrangian L with respect
to the input functions should vanish. For (12.2), this will lead to two ODEs, the
original one for x (12.1), one for the costate λ and an algebraic equation for u.
Thus, the necessary optimality system takes the form of a differential-algebraic
system of equations [153].

The system can be neatly collected by introducing the control Hamiltonian3,
i.e.,

H
(
t,x(t), u(t),λ(t)

)
= L(t,x, u) + λ · f(t,x, u). (12.8)

2There are various notations used in the literature, for instance gradL2F , which I find
positively abhorrent. The notation I use here is borrowed from physics and I think it’s much
more suggestive.

3Unfortunately, this auxiliary function is also called a Hamiltonian, I won’t use it very
much, but to distinguish the two I’ll call this one the control Hamiltonian.
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We’ll suppress the time dependence in the input functions of the control Hamil-
tonian for brevity. In the context of optimal control, the quantity λ is called
the adjoint variable or costate. The Lagrangian can now be rewritten using the
control Hamiltonian, yielding

L[x, u,λ] = Ψ(x(T )) +

T∫

0

H(t,x, u,λ)− λ · ẋ dt. (12.9)

The Gâteaux derivative of the Lagrangian (12.9) in the direction (δx, δu, δλ) is
given by

L′[x, u,λ, δx, δu, δλ] =

T∫

0

(
∂H

∂λ
− ẋ

)
· δλ+

∂H

∂x
· δx− λ · δẋ +

∂H

∂u
δudt.

(12.10)
Since we assume x(0) is prescribed by an initial condition, the variation of x
must vanish at t = 0, hence δx(0) = 0. Integration by parts in time for the
term λ · δẋ therefore only results in a boundary term at T = 0, i.e.,

L′[x, u,λ, δx, δu, δλ] =

T∫

0

(
∂H

∂λ
− ẋ

)
· δλ+

(
∂H

∂x
+ λ̇

)
· δx +

∂H

∂u
δudt

+

(
∂Ψ

∂x

(
x(T )

)
− λ(T )

)
· δx(T ).

(12.11)
In this form, the L2-gradient of the Lagrangian can be read off easily. Requiring
that the first variation vanishes is a necessary condition for an extremum, just as
with ordinary functions. Sufficient conditions can be obtained by investigating
the second variation.

The name control Hamiltonian is actually quite apt, as the system can be
compiled into a Hamiltonian system with one extra algebraic constraint, i.e.,

ẋ =
∂H

∂λ
= f(t, u,x), (12.12a)

λ̇ = −∂H
∂x

= −∂L
∂x
− λ · ∂f

∂x
(12.12b)

0 =
∂H

∂u
=
∂L

∂u
+ λ · ∂f

∂u
. (12.12c)
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The costate satisfies a terminal condition given by

λ(T ) =
∂Ψ

∂x

(
x(T )

)
. (12.13)

In most practical cases, the control input is itself constrained to some range
umin ≤ u ≤ umax. Think, for instance, about driving a car, you can only press
down the accelerator so much. In optics, there’s a limited range of refractive
indices, as one cannot go lower than 1 and not much higher than 3. In such a
case, the conditions for an optimum have to be slightly adjusted.

When dealing with constrained controls, it turns out that the control Hamil-
tonian is the key to finding an optimal trajectory, i.e., the algebraic constraint
in (12.12) is replaced by

H(t,x∗, u∗,λ∗) ≤ H(t,x∗, u,λ∗), (12.14)

for all admissible u and all t ∈ [0, T ]. Here, quantities with an asterisk optimise
the objective function. This statement is known as Pontryagin’s minimum prin-
ciple and it can be rigorously proved, see any of the aforementioned textbooks.
Roughly speaking, the control Hamiltonian contains all terms that depend on
u in (12.9), so that the minimum in u is obtained if H is minimal.

For PDEs, there are two approaches possible: remain in the more diffi-
cult setting of PDEs and work out the theory there, or discretise the La-
grangian and then use the more familiar optimisation theory on functions.
Rather unimaginatively, these two approaches are known as optimise-then-
discretise and discretise-then-optimise, respectively. Here, we’ll use the first
option and derive the optimality system in the PDE setting, as this allows more
freedom in the discretisation. Looking back to Section 10.3 and considering that
we’d like to optimise lens-like surfaces, more flexibility in the discretisation will
be advantageous indeed. Moreover, the resulting formulation is independent of
which solver is used for the PDEs.

12.2 Optimal control on hyperbolic PDEs

We’ll now review the theory of optimal control on hyperbolic PDEs [154]. As it
turns out, the theory of dynamical systems can be almost used verbatim, if we
allow the inner product to work on a function space, which will be L2([0, T ]×Ω).
Let’s start, however, with a disclaimer: in the following, we provide a formal
derivation of the optimality system by means of the formal Lagrange multiplier
method. Tröltzsch points out that this approach should only be used as a
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mnemonic, as it’s not rigorous even though it does give the right answer [147].
Heeding the cautionary advice, we’ll use the Lagrange multiplier method to
derive the optimality system, keeping in the back of our minds that only the
result is correct4.

Consider the first-order linear hyperbolic PDE given by

∂ρ

∂t
+∇ · (ρv(t,x, u)) = 0, (12.15)

which is satisfied in the domain (0, T ]×Ω, where v is the velocity field subject
to the control input u. The application we aim for is Liouville’s equation and
geometric optics, where we can control the refractive index. The evolution
equation is furnished with initial and boundary conditions, and for simplicity
of presentation we assume that the boundary flux ρv does not depend on u.
Suppose next that we have an objective functional that we wish to optimise,
given by

Ψ
[
ρ(T )

]
+

T∫

0

∫

Ω

L(t,x, ρ, u) dV dt, (12.16)

where ρ is the solution to (12.15), ρ(T ) is shorthand for ρ(T, ·) and Ψ is assumed
to be a Gâteaux differentiable functional. Note that ρ(T ) is free and hence Ψ
measures the optimality of the output state, e.g., the L2-distance with respect
to some desired output state. We’ll later present two possible choices for this
functional.

In many cases, it’s necessary to add a regulator term α
2 ‖u‖2, with α > 0,

for some suitable norm such as the L2-norm on (0, T ] × Ω. Constructing the
Lagrangian, we obtain

L[ρ, u, ϕ] =Ψ
[
ρ(T )

]
+

T∫

0

∫

Ω

L(t,x, ρ, u) + α
2 u

2 dV dt

−
T∫

0

∫

Ω

ϕ
(
ρt +∇ · (ρv)

)
dV dt,

(12.17)

where ϕ is the Lagrange multiplier, which we’ll also refer to as the costate
or adjoint. Compare this functional with (12.2). For instance, Ψ is now a

4The argument is rather subtle, but it involves selecting the proper function spaces. In the
formal derivation, everything is assumed sufficiently smooth.
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functional instead of a function, the dynamical system has been replaced with
a PDE and the Euclidean inner product has been interchanged with the L2(Ω)
inner product. Entirely similar to optimal control on dynamical systems, we
now look for an unconstrained minimum of L. Calculating the variations with
respect to u and ϕ is fairly straightforward, while the variation with respect to
ρ requires a bit more effort. Let’s therefore investigate the third term in L, i.e.,

−
T∫

0

∫

Ω

ϕ
(
ρt +∇ · (ρv)

)
dV dt =

T∫

0

∫

Ω

ρ (ϕt + v ·∇ϕ) dV dt

−
∫

Ω

ρϕ dV
∣∣∣
T

0
−

T∫

0

∫

∂Ω

ρϕv ·n dS dt,

(12.18)

where we’ve used integration by parts in time and the divergence theorem in
space. Setting the left-hand side equal to zero leads to the variational or weak
form of the hyperbolic conservation law (12.15). Note that the right-hand side
functional is linear in ρ, so that the Gâteaux derivative with respect to ρ can be
found using (12.6). We must again note that ρ has a prescribed initial condition,
so that its variation must vanish at t = 0, i.e., δρ(0, ·) = 0. Finding the variation
of L is now clear-cut, i.e.,

L′[ρ, u, ϕ, δρ, δu, δϕ] =

T∫

0

∫

Ω

δu

(
∂L

∂u
+ ρ

∂v

∂u
·∇ϕ+ αu

)
dV dt

−
T∫

0

∫

Ω

δϕ (ρt +∇ · (vρ)) dV dt

+

T∫

0

∫

Ω

δρ

(
ϕt + v ·∇ϕ+

∂L

∂ρ

)
dV dt

+

∫

Ω

δρ(T )

(
δΨ

δρ

(
ρ(T )

)
− ϕ(T )

)
dV

−
T∫

0

∫

∂Ω

δρϕv ·n dS dt,

(12.19)
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where δΨ
δρ is the L2-gradient of Ψ. Again, a necessary condition for a minimum

is that the Gâteaux derivative vanishes for all small variations in the input.
Naturally, the variation with respect to the Lagrange multiplier leads to the
constraint equation (12.15). If the second integral in (12.19) is to vanish for
all small variations δϕ, we must insist that (12.15) must be satisfied weakly.
Likewise, the third integral should vanish, so that ϕ satisfies

∂ϕ

∂t
+ v ·∇ϕ = −∂L

∂ρ
, (12.20)

also weakly. Furthermore, the first integral in (12.19) leads to an algebraic
equation for the control u, i.e.,

u = − 1

α

(
ρ
∂v

∂u
·∇ϕ+

∂L

∂u

)
. (12.21)

In the case of constrained control input, we again have to formulate the control
Hamiltonian and apply Pontryagin’s minimum principle (12.14). If we write the
inner product on L2(Ω) as 〈·, ·〉, the control Hamiltonian can be expressed in
the suggestive form of

H[t, ρ(t, ·), u(t, ·), ϕ(t, ·)] =

∫

Ω

α
2 u

2 + L(t,x, ρ, u) dV − 〈ϕ,∇ ·(ρv)〉 , (12.22)

note that the control Hamiltonian is now a function of its first argument but a
functional of the others. From now on, we’ll suppress the t argument in the input
functions of the control Hamiltonian. We can again express the Lagrangian in
a form very close to (12.9), i.e.,

L[ρ, u, ϕ] = Ψ[ρ(T )] +

T∫

0

H[t, ρ, u, ϕ]−
〈
ϕ,
∂ρ

∂t

〉
dt. (12.23)

This also suggests that the optimality system can be written in a form much
like (12.12), provided we replace partial differentiation with a partial Gâteaux
derivative. As before, this compiles the optimality system neatly, i.e.

∂ρ

∂t
=
δH
δϕ

= −∇ ·(ρv), (12.24a)

∂ϕ

∂t
= −δH

δρ
= −v ·∇ϕ− ∂L

∂ρ
, (12.24b)

0 =
δH
δu

= αu+ ρ
∂v

∂u
·∇ϕ+

∂L

∂u
. (12.24c)
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Whenever control constraints are present, e.g. umin ≤ u ≤ umax, the control
Hamiltonian should be minimal, so that

H[t, ρ∗, u∗, ϕ∗] ≤ H(t, ρ∗, u, ϕ∗), (12.25)

which should hold for all admissible u and all t ∈ [0, T ]. Quantities marked with
an asterisk optimise the objective function.

The costate has to satisfy a terminal condition, the same as in the ODE case.
Note that the initial condition for ρ is fixed, so that δρ(0) should be identically
zero. However, δρ(T ) is free, whence we find that ϕ must fulfil

ϕ(T ) =
δΨ

δρ

(
ρ(T )

)
. (12.26)

The boundary conditions for ρ and ϕ are coupled, for instance if ρ is subject
to Dirichlet boundary conditions, it follows that δρ = 0 on the boundary and
consequently ϕ is free on the boundary. Contrariwise, if ρ is free on the boundary
then δρ is left free and we should have ϕ = 0 on the boundary. An interesting
case is when ρ is subject to inflow conditions, meaning it’s free where the velocity
field is outward and specified where the velocity is inward. Therefore, on inflow
pieces of the boundary, ρ is specified and ϕ is free, while on outflow pieces of
the boundary, ρ is free and thus ϕ must vanish.

The optimality system is composed of (12.24) supplied with initial and
boundary conditions for ρ, the terminal condition (12.26) and a correspond-
ing set of boundary conditions for ϕ. Satisfying this system is a first-order
necessary condition for an optimum. Sufficient conditions require knowledge of
the second variation of the objective functional. The boundary conditions are
slightly unusual, especially in time. The state ρ has an initial condition while
the costate ϕ has a terminal condition, which in turn depends on the terminal
condition of the state ρ. The costate can therefore be interpreted as travelling
backwards in time. Moreover, the terminal condition (12.26) reinforces this
interpretation, as the costate then seems to communicate an error backwards.

The PDE for ρ is usually referred to as the forward problem; given an ini-
tial condition and a velocity field, find the final state. As such, we’ll call the
PDE for ϕ the backward problem, as it propagates backwards in time carrying
information on how to improve the objective. This observation also ties in with
the boundary conditions. As we’ve discussed, from the fifth integral in (12.19),
it follows that wherever ρ has inflow conditions, ϕ is free and vice versa. If we
interpret ϕ to travel backward in time, the velocity field appears to reverse. As
a consequence, wherever the velocity field is inward, ϕ experiences a velocity
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field that points outward. This naturally leads to the corresponding boundary
conditions discussed earlier.

12.3 Solution strategy

Now that an optimality system has been identified, we’ll go about solving it
numerically. For simplicity, we assume the sufficient conditions for a minimum
are satisfied. The optimality system is a two-point boundary value problem
with an algebraic constraint and it is, to adopt an understatement, quite hard
to solve directly. Our approach is therefore iterative, where we make an initial
guess of the control input and update it slightly, preferably in such a way that
the new control is closer to optimal.

Essentially, we’ll use a descent method on the functional L, for instance a
simple gradient descent step, but Newton’s method can be used as well. At the
very least, then, we need the L2-gradient of L with respect to u, given by

δL
δu

= αu+
∂L

∂u
+ ρ

∂v

∂u
·∇ϕ. (12.27)

Note that this gradient depends on all three inputs of L. As such, given a
control input u, we need to compute both ρ and ϕ to determine the gradi-
ent. The solution strategy can therefore be summarised by the following set of
instructions:

1. Make an initial guess for the control u.

2. Solve the forward problem (12.15).

3. Solve the backward problem (12.20) with terminal condition (12.26).

4. Compute the gradient (12.27).

5. If the norm of the gradient is sufficiently small, exit. Otherwise, update
the control u and go to step 1.

If there are control constraints present such as outlined above, the updated
control input should be projected back onto the admissible range. In practice,
this just means if the control is greater or smaller than a bound, it’s set equal
to the bound. Control constraints also entail using a different exit condition, as
the norm of the gradient may never go to zero. An alternative is to stop when
the relative update to the objective is sufficiently small.
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The control u can be updated in various ways, for instance using a sim-
ple gradient descent with fixed step size. Another possibility is a Newton-like
update, using information from the second variation of the Lagrangian.

12.3.1 Newton minimisation

To achieve fast convergence of the minimisation problem, we prefer to use New-
ton minimisation instead of a simple gradient descent step. For ordinary op-
timisation problems, where the inputs are real numbers instead of functions,
Newton’s method is known to converge quadratically whereas gradient descent
converges linearly. Newton’s method will take more work per step, but the
faster convergence will most likely pay off in fewer steps. In the above section,
we’ve tacitly introduced the reduced objective functional j(u), which is defined
by

j[u] = L
[
Rρ(u), u,Rϕ(u)

]
, (12.28)

where Rρ and Rϕ are the solution operators defined by (12.15) and (12.20),
respectively. Abstractly, we may consider a function space for the pair (ρ, ϕ),
where we’re looking for a minimum of the objective on a manifold defined by
solutions to the continuity equation (12.15) and the adjoint equation (12.20).
The reduced functional provides the objective value on this solution manifold.
At the same time, if we’re looking for a minimum, we should compute the
gradient direction along the manifold. The Gâteaux derivative of j is given by

j′[u, δu] =

∫ T

0

∫

Ω

(
αu+

∂L

∂u
+Rρ(u)

∂v

∂u
·∇Rϕ(u)

)
δudV dt, (12.29)

which is equal to L′ with ρ = Rρ(u) and ϕ = Rϕ(u). In a Newton step, we incor-
porate information from the second variation of j. The second variation should
also be computed along the solution manifold. Straightforwardly computing the
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variation j′ yields

j′′[u, δu, τu] =

T∫

0

∫

Ω

τu δu

(
α+

∂2L

∂u2
+ ρ

∂2v

∂u2
·∇ϕ

)

+τu δρ

(
∂2L

∂u∂ρ
+
∂v

∂u
·∇ϕ

)

−τu δϕ∇ ·
(
ρ
∂v

∂u

)
dV dt

+

T∫

0

∫

∂Ω

τu δϕ ρ
∂v

∂u
·n dAdt.

(12.30)

Abstractly, the variations δρ and δϕ should also lie in the tangent space to the
solution manifold. Concretely this means the variations δρ and δϕ should satisfy
linearised versions of the solution operators. The solution operators are defined
by demanding that the partial Gâteaux derivative of L with respect to ρ and
ϕ vanish for all variations. Linearisation of the solution operators is therefore
done by calculating the variations of L′ρ and L′ϕ and demanding that the result
vanishes. Thus, the variation δρ should satisfy

0 = −
T∫

0

∫

Ω

δϕ

(
δρt +∇ · (vδρ) +∇ ·

(
ρ
∂v

∂u
δu

))
dV dt, (12.31)

for all variations δϕ. Therefore, δρ satisfies

δρt +∇ · (vδρ) = −∇ ·
(
ρ
∂v

∂u
δu

)
, (12.32)

which is a linear hyperbolic conservation law where δu serves as a source term.
The initial condition should be identically zero, as ρ has specified initial condi-
tions. The variation δϕ follows from the variation of L′ρ, i.e.,

0 =

T∫

0

∫

Ω

τρ (δϕt + v ·∇δϕ) + τρ δu

(
∂v

∂u
·∇ϕ+

∂2L

∂ρ∂u

)
+ τρ δρ

∂2L

∂ρ2
dV dt

+

∫

Ω

τρ(T ) (ψ′′δρ(T )− δϕ(T )) dV,

(12.33)



248 CHAPTER 12. BASICS OF OPTIMAL CONTROL THEORY

for all variations τρ. Hence, we find that δϕ should satisfy

δϕt + v ·∇δϕ = −δu
(
∂v

∂u
·∇ϕ+

∂2L

∂ρ∂u

)
− δρ ∂

2L

∂ρ2
. (12.34)

The terminal condition of δϕ is given by

∫

Ω

δϕ(T ) τρ(T ) dV = Ψ′′[ρ(T ), δρ(T ), τρ(T )], (12.35)

which should hold for all variations τρ(T ). We can apply the Riesz Represen-
tation Theorem associate a unique function with Ψ′′[ρ(T ), δρ(T ), ·], which will
depend on both ρ(T ) and δρ(T ). Thus, to compute the second variation for a
given δu we thus need to solve δρ forward in time, after which we can compute
δϕ backward in time.

The Newton update δu is defined as the solution of the equation

j′′[u, δu, τu] = −j′[u, τu], (12.36)

which should hold for all variations τu. It’s important to note that δρ satisfies a
linear hyperbolic PDE that depends linearly on δu, while ϕ also depends linearly
on δu and δρ. Thus, we conclude that j′′[u, δu, τu] is linear in δu. Applying the
Riesz Represetation Theorem once more, we can associate a unique function on
both sides in (12.36) to identify a linear operator on δu. For j′, we find the L2

gradient given by (12.27), while for j′′ the result can be read off from (12.30),
call it A(u, δu). However, A(u, ·) is partially defined in terms of solutions to
PDEs, namely (12.32) and (12.34). Therefore, the linear operator A(u, ·) cannot
be formulated in terms of a matrix, even after discretisation of all the PDEs
involved. Hence, if we are to solve (12.36), we’ll need to employ matrix-free
linear solvers. Many Krylov-subspace methods have a matrix-free version, like
conjugate gradients and generalised minimal residual (GMRES) [155].

12.4 Choice of Ψ

There are many possible choices for Ψ, the functional that measures the optimal-
ity of the final state of ρ. Commonly, we’d like to achieve some desired output
state ρ? ∈ L2(Ω), in which case we want to somehow measure the distance be-
tween the two. An obvious choice is to use the L2-distance, which immediately
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fits the bill, i.e., it vanishes if the distributions are equal and gives a positive
real number otherwise. Thus, one possible choice for Ψ : L2(Ω)→ R is simply

Ψ[f ] = 1
2

∫

Ω

(f − ρ?)2 dV, (12.37)

where of course f should be an element of L2(Ω). The factor 1
2 doesn’t really do

much besides from slightly simplifying the Gâteaux derivative, which is given
by

Ψ′[f, δf ] =

∫

Ω

(f − ρ?)δρdV. (12.38)

As a result, according to (12.26) the costate has a terminal condition

ϕ(T ) = ρ(T )− ρ?. (12.39)

The second derivative, or second variation if you prefer, is given by

Ψ′′[f, δf, τf ] =

∫

Ω

δf τf dV. (12.40)

By (12.35) and the Fundamental Lemma of Calculus of Variations, the terminal
condition for the variation of the costate becomes

δϕ(T ) = δρ(T ). (12.41)

The L2-distance metric has several advantages, predominantly its simplicity.
However, it also has some drawbacks which are inherited from the L2-norm. For
instance, very spiky functions with small supports have a small L2-norm, while
smoothness is usually a desirable property in most PDE solutions. Furthermore,
consider the situation where the supports of ρ and ρ? are completely disjoint.
Any such configuration will have the same norm. As such, the L2-distance as
our measure of optimality will “focus its efforts” on local optimisation, where
the supports are already overlapping.

When the properties of the L2-distance fall short of producing the desired
outcome, alternative metrics must be considered. Another suggestion is to in-
terpret ρ and ρ? as distributions and to minimise the difference in moments5.

5This metric was suggested to me by Oliver Tse after he saw my presentation on CASA
day.
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Let mk be a set of monomials for k = 1, . . . ,K, e.g. x, y, x2, y2, etc. and
let Mk : L1(Ω) → R be the corresponding set of functionals that return the
moments, so that

Mk[f ] =

∫

Ω

mkf dV, (12.42)

where we assume that Ω is bounded, so that all monomials are bounded. Clearly,
Mk is a linear functional for all k = 1, . . . ,K. The difference of the moments is
minimised by setting

Ψ[f ] = 1
2

K∑

k=1

(Mk[f ]−Mk[ρ?])
2

= 1
2

K∑

k=1

(Mk[f − ρ?])2
. (12.43)

When two distributions have equal moments, they are equal provided Ω is
bounded [156], which it indeed is by assumption. If Ω happens to be an un-
bounded space, this is no longer true [157]. Furthermore, when the two dis-
tributions are not equal, the measure will return a positive real number, thus
resulting in a positive definite objective function. Note, however, that it’s not
a norm or length since the triangle inequality isn’t satisfied. The first variation
of Ψ is given by

Ψ′[f, δf ] =

K∑

k=1

∫

Ω

(Mk[f − ρ?])mk δf dV. (12.44)

We can see that the terminal condition for the costate becomes

ϕ(T ) =

K∑

k=1

Mk[ρ(T )− ρ?]mk, (12.45)

which follows from (12.26). Since the Mk are linear, the second variation of Ψ
is in this case given by

Ψ′′[f, δf, τf ] =

K∑

k=1

∫

Ω

Mk[δf ]mk τf dV, (12.46)

where we’ve used (12.6). The variation of the costate δϕ will therefore have the
terminal condition

δϕ(T ) =

K∑

k=1

Mk[δρ(T )]mk, (12.47)
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where we’ve applied (12.35) and the Fundamental Lemma of Calculus of
Variations. With this metric, we sacrifice some of the uniqueness by using
a finite number of moments, but any K > 0 will in fact provide a suitable
positive definite objective function. Moreover, this measure doesn’t suffer from
the shortcomings of the L2-distance. A slight drawback is that this measure
is focussed on the global shape of the distribution for small K, ignoring tiny
details that might be important in some cases. Another advantage is that (12.45)
simply defines a polynomial. If K isn’t too large, the costate will therefore be
much smoother compared to using the L2-distance metric.

The connection between the two suggestions is provided by Parseval’s iden-
tity [152], which states that on a separable Hilbert space, the following holds

∞∑

k=1

| 〈x, ek〉 |2 = ‖x‖2, (12.48)

if ek is an orthonormal basis. In our case, we see that if we choose mk to be an
orthonormal basis of L2(Ω) and let K →∞, (12.43) becomes equal to (12.37).
The monomials form a basis of L2(Ω), however, they aren’t orthonormal at all.
In fact, monomials make up a rather poor basis since they’ll increasingly start
to look for each other for large k. The difference between x100 and x101 is hard
to see by eye. However, if K is small, they’re distinguishable enough to provide
a good objective. A possible hybrid between the two suggestions would be to
take mk an orthonormal basis, but use a finite K.

In general, which measure is most appropriate will depend on the problem
and the desired outcome. For instance, lighting a wall uniformly will probably
benefit more from a global measure, so that (12.43) would be preferred. If some
detailed projection is to be created, small details of the light distribution could
be important, so that (12.37) is more fitting. Designing the objective function
is an art in itself, a human might simply say that they want a distribution to
closely resemble another, while judging somehow by eye what’s close. However,
to mathematise6 the eyeball norm is often a challenge.

12.5 A note on optical interfaces

Our exegesis of the theory so far assumed that everything is reasonably smooth.
Clearly, when optical interfaces are present this will not be true. In that case,

6I first saw this word in Mattheij, Rienstra and Ten Thije Boonkkamp in [70]. The definition
they use is “the process of translating a real-world problem into mathematical terms.” I’ve
used a slightly expanded meaning: to express in mathematical terms.
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we’ll have to treat the two domains defined by the interface separately, while the
shape of the interface poses another control input. Optical interfaces therefore
necessarily complicate matters slightly, which is why we’ll first treat smoothly
varying refractive index fields, GRIN optics for short. This will be our project
in the next chapter.



Chapter 13

Optimising GRIN optics

‘All right,’ said the Cat; and this
time it vanished quite slowly,
beginning with the end of the
tail, and ending with the grin,
which remained some time after
the rest of it had gone.

Lewis Caroll
Alice in Wonderland

In this chapter, we’ll make a start with applying the theory of optimal control
to Liouville’s equation in a geometric optics setting. The crucial insight here
is to interpret an optical system as an open loop controller [158]. Indeed, the
an optical system can be rightly viewed as a feed-forward controller acting on
either many rays simultaneously or the phase space distribution as a whole.
Therefore, the dynamical system we keep in mind is the Hamiltonian system
of a large collection of rays, or alternatively, Liouville’s equation. As a first
exploration, we discuss the design of smoothly varying refractive index fields,
also called GRIN optics [5].

GRIN is an acronym for gradient index, accentuating the fact that the refrac-
tive index field changes smoothly. This as opposed to the more common shaped
surfaces delineating regions of constant refractive index. Shaped surfaces are, of
course, easier to manufacture than shaped three-dimensional smoothly varying
fields. However, 3d-printing may have the potential to produce arbitrary GRIN
optics in the future [26–30]. In principle, of course, there’s nothing stopping

253
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us from imagining and designing GRIN optics. We formulate the problem as
follows: minimise

Ψ
[
ρ(Z)

]
+

Z∫

0

∫

P

L(ρ, u) + α
2 u

2 dy dz, (13.1)

where α > 0 is a constant and ρ(Z) is shorthand for ρ(Z, ·) and Ψ is a Gâteaux
differentiable functional. Furthermore dy is the volume element on phase space
P, so that dy = dq dp. This functional is exactly the same as we’ve introduced
in the previous chapter, see e.g. (12.16). The minimisation is subject to the
constraint that ρ satisfies Liouville’s equation, i.e.,

∂ρ

∂z
+∇ ·

(
ρS∇h

)
= 0, (13.2)

with initial condition ρ(0, q, p) = ρ0(q, p). For two-dimensional optical systems,
the gradient operator reads ∇ = (∂q, ∂p)

T and the matrix S is given by

S =

(
0 1
−1 0

)
. (13.3)

Finally, the Hamiltonian h is given by

h(u, p) = −
√
u2 − p2, (13.4)

where u is the refractive index field, which is our control input.

13.1 Application of optimal control theory

The theory exhibited in the previous chapter may be applied almost verbatim,
the only difference is that the velocity field does not just depend on u, see
(12.15), but also on it’s gradient. Therefore, only a minor adjustment in the
gradient of the augmented function with respect to u is needed. In particular,
since the control input u is embedded in h and only the gradient of h appears
in Liouville’s equation, we’ll need to perform an additional integration by parts.
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The augmented functional is given by

L[ρ, u, ϕ] =Ψ
[
ρ(Z)

]
+

Z∫

0

∫

P

L(t,y, ρ, u) + α
2 u

2 dy dz

−
Z∫

0

∫

P

ϕ
(
ρz +∇ ·(ρS∇h)

)
dy dz.

(13.5)

We’ll now calculate the Gâteaux derivative of L. Just as in the previous chapter,
the variation with respect to ϕ will yield the constraint, i.e., Liouville’s equation.
Variation with respect to ρ will yield the adjoint equation, which is unaltered
compared to the previous chapter. As such, the costate satisfies the advective
form of Liouville’s equation with a source term coming form L, see (12.20) in
Section 12.2. Variation with respect to u will give an algebraic equation for
the control. The only difference with the theory of the previous chapter is that
now the gradient of h appears, while h depends on u. We’ll therefore treat the
variation with respect to u in more detail.

Recall that the Poisson bracket {·, ·} is defined as

{ρ, ϕ} = ∇ρ · (S∇ϕ) . (13.6)

Whenever ϕ is sufficiently smooth, e.g. twice differentiable on phase space, we
also have

∇ · (ρS∇ϕ) = {ρ, ϕ}, (13.7)

since

ρ∇ ·(S∇ϕ) = ρ

(
∂2ϕ

∂q∂p
− ∂2ϕ

∂p∂q

)
= 0. (13.8)

Note that {ρ, ϕ} = −{ϕ, ρ}. The Poisson bracket will serve to compactify many
expressions in this chapter, though we’ll use the other forms when they’re more
suggestive.

Now we’re in a position to calculate the variation of L with respect to u.
Consider the divergence term in L, which we’ll call D for brevity. Integration
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by parts yields

D[ρ, u, ϕ] = −
Z∫

0

∫

P

ϕ∇ · (ρS∇h) dy

=

Z∫

0

∫

P

ρ∇ϕ · (S∇h) dy −
Z∫

0

∫

P

ϕρ(S∇h) ·n dS.

(13.9)

Next, we transfer the matrix S to ∇ϕ, which incurs a transposition, but ST =
−S, so that

D[ρ, u, ϕ] = −
Z∫

0

∫

P

∇h ·(ρS∇ϕ) dy dz −
Z∫

0

∫

∂P

ϕρ(S∇h) ·n dS dz. (13.10)

We must note here that there’s no flux across the p-boundary of phase space,
i.e. p = ±u. To prove this, we’ll show that the limit of (S∇h) ·n vanishes as
p→ u. First we calculate the normal on the p-boundary of phase space, which
is given by

n =
1√

1 + u′2

(
−u′(q)

1

)
. (13.11)

Therefore, we find that

(S∇h) ·n =
1√

1 + u′2

(
−∂h
∂p
u′ − ∂h

∂p

)

=
1√

1 + u′2

(
− p√

u2 − p2
u′(q) +

uu′(q)√
u2 − p2

)

=
u′√

1 + u′2
u− p√
u2 − p2

.

(13.12)

Passing to the limit of p→ u, we see that the normal advection velocity vanishes.
This allows us to simplify the boundary term, so that we obtain

D[ρ, u, ϕ] = −
Z∫

0

∫

P

∇h ·(ρS∇ϕ) dy +

Z∫

0

∫

P

ρϕnq
p

h
dS dz

∣∣∣
q=1

q=−1
, (13.13)
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where nq = ±1 is the q-component of the unit normal and P is the momentum
space. Now, another integration by parts is needed to isolate h, yielding

D[ρ, u, ϕ] =

Z∫

0

∫

P

h∇ ·(ρS∇ϕ) dy dz +

Z∫

0

∫

P

ρϕnq
p

h
dS dz

∣∣∣
q=1

q=−1

−
Z∫

0

∫

∂P

hρ(S∇ϕ) ·n dS dz,

(13.14)

where we recognise the Poisson bracket of ρ and ϕ. To ease the presentation,
we assume that u is fixed on the boundary, which fixes the value of h on the
boundary as well. Moreover, h = 0 on the p-boundaries of phase space, i.e.,
when |p| = u, which follows from (13.4). Hence, the variation of h will be zero
on the entire boundary of phase space. Finally, we can calculate the variation
with respect to u, yielding

D′u[ρ, u, ϕ, δu] =

Z∫

0

∫

P

δu
∂h

∂u
{ρ, ϕ} dy dz, (13.15)

where both boundary terms vanish in the variation. Our last remark is that
∂h
∂u = u

h .

We’ve dealt with the difficult part of the Gâteaux derivative of L, the other
variations are exactly the same as in the previous chapter. For a detailed deriva-
tion we refer the reader to Section 12.2. Therefore, we present the variation of
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the Lagrangian without further ado:

L′[ρ, u, ϕ, δρ, δu, δϕ] =

Z∫

0

∫

P

δu

(
αu+

∂L

∂u
+
u

h
{ρ, ϕ}

)
dy dz

+

∫

P

δρ(Z)

(
δΨ

δρ

(
ρ(Z)

)
− ϕ(Z)

)
dy

+

Z∫

0

∫

P

δρ

(
ϕz + (S∇h) ·∇ϕ+

∂L

∂ρ

)
dy dz

−
Z∫

0

∫

P

δϕ
(
ρz +∇ ·(ρS∇h)

)
dy dz.

−
Z∫

0

∫

∂P

δρϕ(S∇h) ·n dS dz.

(13.16)

Of course, demanding that the variation with respect to the costate ϕ vanishes
yields Liouville’s equation (13.2). Demanding that the second and third integrals
in (13.16) vanish, we find the following problem for the costate,

{
∂ϕ
∂z + (S∇h) ·∇ϕ = −∂L∂ρ , Z ≥ z > 0,

ϕ(Z) = δΨ
δρ

(
ρ(Z)

)
.

(13.17)

Lastly, as in the previous chapter, the control u satisfies an algebraic equation,
which follows from the first integral in (13.16), i.e.,

L′u[ρ, u, ϕ, δu] =

Z∫

0

∫

P

δu

(
αu+

∂L

∂u
+
u

h
{ρ, ϕ}

)
dy dz. (13.18)

which should vanish when u is optimal.
The solution strategy can also be copied from the previous chapter. Before

any computation is performed, we make an initial guess for the GRIN field u.
The first step is to solve the forward problem presented by Liouville’s equation
(13.2) together with suitable initial and boundary conditions. Next, the costate
is solved backward in z from (13.17). The state ρ and costate ϕ together allow
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us to compute the L2-gradient and consequently perform a descent step on L.
This can again be done by, for instance, a simple gradient descent with a fixed
time step or the slightly more complicated Newton descent.

To obtain the gradient, we must be careful to take into account the variables
on which u is allowed to depend. In any case, if u is to represent a physical
GRIN field, it may not depend on p, so that δu can be taken outside of the
integral over the momentum, i.e.,

L′u[ρ, u, ϕ, δu] =

Z∫

0

∫

Q

δu



∫

P

(
αu+

∂L

∂u
+
u

h
{ρ, ϕ}

)
dp


 dq dz. (13.19)

As a consequence, the L2-gradient δL
δu contains an integral over the momentum

coordinate for all terms that depend on p. If u, on top of that, also doesn’t
depend on z, for instance, we can also pull δu outside the z-integral and con-
sequently the gradient will contain an integral over z. We’ll see an instance of
this in the numerical examples.

The control input u is supposed to be a GRIN field and is therefore con-
strained to a certain range by nature itself and the available materials. Vacuum,
by definition, has a refractive index of 1, while there’s no material with a lower
refractive index. Moreover, air has an index very close to 1, while diamond has a
refractive index of roughly 2.4 [159]. Depending on the resources and materials
available, it therefore makes sense to restrict the control input u such that

1 ≤ u ≤ nmax, (13.20)

where nmax is the maximal refractive index. A reasonable value, and the one
we’ll use here, is nmax = 1.6. Whenever the control input u fortuitously goes
out of bounds due to a diligent update, we simply cap u on both sides. That is,
all u > nmax are set to nmax and all u < 1 are set to 1. The stopping criterion
has to be adjusted in this case, as the gradient will in general not vanish. A
suitable alternative is to stop when the updates to the objective functional are
sufficiently small.

13.2 Designing a GRIN lens

Recall that an ideal lens performs a perfect rotation by π
2 on phase space, so that

q → p and p→ −q. It’s a natural and central question to optical engineering to
find the best possible lens shape that approximates this behaviour as closely as
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possible. Likewise, we can ask what a smooth refractive index field should look
like so that it emulates as perfectly as possible an ideal lens.

This problem, or at least some approximation of it, can be formulated by
making suitable choices for Z, L and Ψ in (13.5). We simply choose Ψ to be
related to the rotated initial condition, for instance by choosing ρ? the rotated
initial distribution when using either possibility suggested in Section 12.4. Ad-
ditionally, Z should be chosen as the focal length and L can be set to 0, as
we only care to approximate target output. The regularisation term results in
an optimum with minimal control effort ‖u‖2 weighted by α. This problem, in
principle, needs to be solved for all possible initial conditions, as the action of
a lens is defined as a phase space operation. However, we simply choose one
suitable initial condition and optimise for that particular distribution, thereby
obtaining a GRIN profile that emulates an ideal lens for that particular input.

The specific problem that we solve is a two-dimensional GRIN lens, which
means phase space is two-dimensional as well, the phase space coordinates being
(q, p). We restrict u to depend only on q, as this makes it easier to visualise.
Thus, we seek a refractive index profile u = n(q) that rotates the input distri-
bution over a length Z by π

2 , or a close approximation to it.

To summarise the above discussion, we assemble the Lagrangian. As u now
depends only on q, we leave out integration over momentum and z, as those will
only supply a constant factor, which we can absorb into α, i.e.,

L[ρ, u, ϕ] = Ψ [ρ(Z)] + α
2

∫

Q

u2 dq −
Z∫

0

∫

P

ϕ
(
ρz +∇ ·(ρS∇h)

)
dy dz, (13.21)

where Q = [−1, 1] is the position space. For Ψ, we’ll use both the L2-distance
and the squared difference of several moments as suggested in the previous
chapter, see Section 12.4. Note that u now doesn’t depend on p or z, so that
δu can be pulled outside the p- and z-integrals in (13.18). As a result, the
L2-gradient of L with respect to u is given by

δL
δu

= u


α+

Z∫

0

∫

P

1

h
{ρ, ϕ} dp dz


 , (13.22)

where P is momentum space.



13.2. DESIGNING A GRIN LENS 261

13.2.1 Initial guess of the profile

As an initial guess to the profile u, we use the elliptic guide, see Section 2.1.1.
The guide is given by

u0(q) =
√
n2

0 − κ2q2. (13.23)

The focal length of the GRIN lens depends on the length Z and the constant κ.
The general solution for rays in the elliptic guide were derived in the relevant
section. Rays follow elliptical paths, given by

κ2q2 + p2 = const., (13.24)

which follows from the fact that the Hamiltonian h =
√
n2

0 − κ2q2 − p2 is a
constant. We’d like to design an optic that rotates without stretching, hence we
should choose κ = 1. Furthermore, we want our position space to be Q = [−1, 1]
with u0(±1) = 1, from which it follows that n0 =

√
2. In Section 2.1.1, we

showed that rays follow their circular paths with an angular frequency given
by κ/h. The length of one period in a ray’s oscillation1 is therefore given by
l = 2πh/κ = 2πh. This can be used to provide an approximate relation between
focal length, optic length Z and constant κ.

The goal is to rotate the initial distribution by π
2 along the optic, which in

terms of rays means angles are mapped to positions and positions are mapped
to angles. This is achieved if each ray traverses a length down the optical
axis of l

4 . As then each ray is rotated by π
2 around a perfect circle due to

our choice of κ. Observe that l depends on the initial position of the ray via
h, which means that the elliptical guide is not an ideal lens. However, for
paraxial rays, meaning rays with |q| � 1 and |p| � 1, the Hamiltonian satisfies
h = −n0 + O(q2) + O(p2), hence rays close to the origin have approximately
equal Hamiltonians and therefore equal angular frequencies. Therefore, choosing
a length Z = πn0

2κ = π√
2

results in an ideal lens in the paraxial approximation,

see Figure 13.1. As becomes clear in the figure, the larger the initial momentum,
the larger the error in this approximation.

13.2.2 Implementation

We aim to solve the first-order optimality system using a discontinuous Galerkin
spectral element method, see Chapters 7 and 10. As such, we’ll need to solve
u on a mesh that fits to the mesh used for ρ and ϕ. Therefore, we’ll cover the

1I’m trying to avoid the word “wavelength” on purpose here.
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Figure 13.1: Initial guess for the GRIN profile (left) using parameters n0 =
√

2
and κ = 1 chosen such that u0(1) = 1. The blue lines are the exact solutions to
Hamilton’s equations (2.6) (left and right), while the green lines are rays where
h is approximated with −n0.

unit square [−1, 1]2 with a regular Cartesian mesh. The Cartesian mesh can be
viewed as a product mesh of two one-dimensional meshes. Since u depends only
on q, we can solve u on only the horizontal axis. This choice of mesh also allows
easy evaluation of the p-integral appearing in (13.22).

We want u to be smooth and continuous for a very simple reason, if u
wouldn’t be continuous, it wouldn’t represent a GRIN profile. To enforce con-
tinuity, it’s easier to define u on the Gauß-Lobatto nodes. Recall that in one
dimension these nodes include the endpoints of an interval, which means there’s
a node on the edges of each element in the one-dimensional mesh. This makes it
possible to easily enforce equality of cell edge values of neighbouring elements.
The fact that the GRIN profile is defined on the Gauß-Lobatto nodes while the
solution is defined on the Gauß nodes requires some translation between the two
different set of nodes, as the PDEs will be solved using discontinuous Galerkin
on the Gauß nodes. However, polynomial interpolation is a linear operation,
so that we can construct a matrix that translates from one set of nodes to the
other. This matrix can obviously be precomputed.

For two-dimensional optics, phase space is two-dimensional, where the mo-
mentum p lies on Descartes’ disc, so that |p| ≤ u(q). Hence, the limits of the
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momentum depend on the position. As such, we’ll have to stretch the two-
dimensional mesh in the p-direction so that the p-edges corresponds to ±u.
This will result in curved elements in phase space. Using curved elements en-
tails a slight change to the bilinear transformation as outlined in Chapter 7. As
the mapping now has to transform from a square reference domain to a square
domain with curved edges, we’ll use a transfinite mapping , i.e.,

y(ξ, η) =
1 + η

2
Γt(ξ) +

1− η
2

Γb(ξ), (13.25)

where (ξ, η) ∈ [−1, 1]2 are the coordinates in the reference domain. The curves
Γt and Γb are the top and bottom curves, respectively. Note that η = 1, the top
of the reference square, corresponds to the top of the element in phase space.
Likewise, η = −1 corresponds to the bottom edge. The left and right sides are
straight vertical edges, so that

q(ξ) = ql
1− ξ

2
+ qr

1 + ξ

2
, (13.26)

where ql and qr are the left and right sides of the element. Also here, ξ = 1,
the right edge of the reference square, corresponds to the right edge of the
element. Similarly, ξ = −1 yields the left edge. For both curves, Γt and Γb,
the first component is simply the q-coordinate, hence it’s given by (13.26). The
p-coordinates of the top and bottom curves depend on u, where we use linear
blending, so that each element has a curved top and bottom edge.

Next, we first introduce a Cartesian mesh that has Eq elements in the q-
direction and Ep elements in the p-direction. The mesh furthermore spans
[−1, 1] in the q-direction and [−p̃max, p̃max] in the p-direction. This results,
after stretching, in a maximum momentum given by u(q)p̃max. Setting some
maximum momentum pmax limits the maximum advection speed, allowing for
larger z-steps and thus faster computations. This is merely convenience, as we
could indeed choose to work with p̃max = 1. The p-coordinate of every top and
bottom edge of the Cartesian mesh is now multiplied by u(q), so that we obtain
a curved mesh.

For a DG spectral element method to work on a curved mesh, the curved
element boundaries can be polynomials of at most degreeN [121]. This results in
exact differentiation of the edge curves, such that no aliasing error is introduced.
For our case, the edge curves are automatically polynomial, since u is given on
the Gauß-Lobatto nodes on each one-dimensional element. If the solution to
Liouville’s equation is approximated with polynomial degree N , this simply
means we should choose N + 1 or less nodes per element to represent u. For
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maximal accuracy, we use the maximal N + 1 nodes per element in the one-
dimensional mesh.

Newton minimisation

We’ll use a Newton minimisation procedure to find the minimum of L, see Sec-
tion 12.3.1. Newton minimisation converges faster than, for instance, gradient
descent with fixed step size. However, it does require more computational effort
to find the updates. Optimistically, we expect that the benefits will outweigh the
costs. In the previous chapter, we’ve defined the reduced objective functional j
(12.28), which depends only on u, i.e.,

j[u] = L[Rρ(u), u,Rϕ(u)], (13.27)

where Rρ is the solution operator to Liouville’s equation (13.2) and Rϕ is the
solution operator to the adjoint equation (13.17). The value of j is equal to the
objective functional where ρ is the to Liouville’s equation under control input
u. A Newton step is defined by equating the second variation of the reduced
functional j to the gradient. With the gradient j′ given by

j′[u, δu] =

∫

Q


αu+

Z∫

0

∫

P

∂h

∂u
{Rρ(u), Rϕ(u)} dp dz


 δudq, (13.28)

with ∂h
∂u = u

h . Consequently, the second variation of j is given by

j′′[u, δu, τu] =

∫

Q

τuδu


α+

Z∫

0

∫

P

∂2h

∂u2
{ρ, ϕ} dp dz


 dq

+

∫

Q

τu

Z∫

0

∫

P

∂h

∂u

(
{δρ, ϕ}+ {ρ, δϕ}

)
dp dz dq,

(13.29)

where ρ = Rρ(u) and ϕ = Rϕ(u) and ∂2h
∂u2 = − p2

h3 . In the previous chapter, it
was explained that δϕ and δρ satisfy linearised versions of the solution operators
and we showed how to find their PDEs. Since Rρ is defined by demanding that
L′ϕ vanishes, the linearisation of the solution operator can be calculated by
finding the Gâteaux derivative of L′ϕ. The same goes, of course, for Rϕ, which
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is defined in terms of L′ρ vanishing. More details can be found in Section 12.3.1.
Here, we simply quote the result of this procedure, i.e.,

δρz +∇ ·(δρS∇h) =
{u
h
δu, ρ

}
, 0 < z ≤ Z, (13.30)

with δρ(0) = 0, while δϕ is defined as the solution to

δϕz + (S∇h) ·∇δϕ =
{
ϕ,
u

h
δu
}
, Z > z ≥ 0. (13.31)

We’ve used here the property {g, f} = −{f, g} to remove any minus-signs on
the right-hand side. The terminal condition of ϕ is given by (12.35), which reads

∫

P

δϕ(Z) τρ(Z) dy = Ψ′′[ρ(Z), δρ(Z), τρ(Z)]. (13.32)

Hence, δϕ(Z) is the unique function we can associate with Ψ′′[ρ(Z), δρ(Z), ·] by
the Riesz Representation Theorem [152]. See Section 12.4 for a discussion on
two possible choices for Ψ and their implies terminal conditions for ϕ and δϕ.

The linear system we wish to solve is represented by j′′[u, δu, τu] = j′[u, τu]
for all variations τu. The Riesz Representation Theorem ensures us that there
exists a unique function we can associate j′′ with, which we denote by A(u, δu)
and can be read off from (13.29). Hence, we wish to solve for δu the linear
equation

A(u, δu) = −δL
δu
. (13.33)

Clearly, A(u, ·) is a bounded linear operator, taking one function and turning it
into another. Unfortunately, it’s impossible to extract a matrix from A, as it’s
defined in terms of solutions to PDEs (13.30) and (13.31). Hence, calculating
the effect of the linear operator requires two PDEs to be solved, which remains
true in a discrete setting. Therefore, we require a matrix-free linear solver.
Furthermore, we cannot conclude that A(u, ·) is self-adjoint, or equivalently
that the matrix is Hermitian. To solve the linear equation (13.33), we’ll use a
matrix-free version of the generalised minimal residual method (GMRES) that’s
formulated on the continuum PDE level. The L2-inner products are discretised
by the DG method, while matrix-vector products should be replaced with the
application of A(u, ·).

We stipulate that computing the effect of the linear operator A(u, ·) requires
two solutions of Liouville’s equation with a source term, namely δρ from (12.32)
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and δϕ from (12.34). Since GMRES is a Krylov subspace method, every itera-
tion requires another application of A. Furthermore, computing the L2-gradient
of j also requires two solutions to Liouville’s equation, ρ and ϕ. Therefore, ev-
ery iteration of the linear solver will be equally expensive as a simple gradient
descent step with a fixed step size. Suffice it to say that a balance has to be
struck between the descent steps and the effort put into solving for the Newton
update.

GMRES, as is well known, minimises the residual over some search space.
If only a single search direction is chosen, the gradient, this would simply result
in a gradient descent with a second-order estimate of the optimal step size.
Therefore, a single iteration of GMRES is already better than a simple gradient
descent step. This means we can afford to use a relatively high tolerance and a
low number of iterations.

Another matter of note is that the output distribution is very sensitive to
changes in the GRIN profile. For small changes, the response is linear, which is
more or less what the calculus of variations reveals. However, ray momentum
also depends on the gradient of the refractive index field, which is the second of
Hamilton’s equations (1.33), i.e. dp

dz = −uhu′. Thus, even though changes may
be small, they can have large gradients, resulting in large responses. Variations
should therefore have small gradients, as well as small values. To counter this
sensitivity, we smoothen the profile after each iteration by applying a small
amount of diffusion. In particular, we solve the heat equation using a fictitious
coordinate t, i.e.,

∂u

∂t
=
∂2u

∂q2
. (13.34)

This PDE, the heat equation, is integrated for a short interval [0, T ] using
the updated profile as an initial condition and keeping the boundary values
fixed. Famously, the heat equation tends to reduce gradients [71]. Therefore,
it will stabilise the optimisation process, ensuring that responses remain linear.
Naturally, any other method of reducing gradients can be used, e.g. a filter. Of
course, a small amount of diffusion equation can itself be interpreted as a filter,
since the heat equation (13.34) can be solved in terms of Fourier modes. Modes
with shorter wavelengths decay exponentially faster than longer wavelengths.

13.2.3 Results

As mentioned earlier, we’ve used both the L2-distance and the difference-of-
moments squared to measure the optimality of the output distribution. Both
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forms of Ψ were discussed in the previous chapter. As for numerical details, the
PDEs were solved on a 20× 20 mesh of curved elements as outlined above with
p̃max = 0.8. We used the DG-SEM with a polynomial order of 5 in conjunction
with the standard RK4 integrator. As a convergence criterion, the optimisation
process is stopped when the relative decrease in the objective is smaller than
5 · 10−4. This because we have control constraints and the gradient of the
Lagrangian may not vanish in the optimum. The coefficient α was set to 10−4.
The number of z-steps was fixed by computing the maximum velocity in the
problem and choosing a step size so that the CFL condition for DG (7.37)
is satisfied, see Section 7.5. The initial profile and outcome are displayed in
Figure 13.2.

As the GRIN profile changes each iteration of the optimisation process, the
number of z-steps changes as well. The matrix-free GMRES solver was set
to a tolerance of 0.1 and a maximum number of 10 iterations. Finally, the
heat equation (13.34) was applied for an integration time of ∆t = 5 ·10−3 and a
diffusion number of 1

40 using the forward Euler method and continuous Galerkin
spatial discretisation. As an initial condition, we use a Gaußian distribution,
i.e.,

ρ0(q, p) =
1

2πλqλp
exp

(
− q2

2λ2
q

)
exp

(
− p2

2λ2
p

)
. (13.35)

The target distribution is given by ρ?(q, p) = ρ0(p,−q).
As a stopping criterion, we look at the relative update of the Lagrangian,

as there are control constraints present. If the relative update is smaller than
5 · 10−3, we stop the optimal control iteration. Therefore, the norm of the
reduced gradient ‖j′‖ may not go to zero in the optimum.

L2-distance minimisation

In this instance, we look for a minimum of the reduced functional j, which has
the same value as the Lagrangian L (13.21) with ρ and ϕ both solutions to
Liouville’s equation.

The optimised profile is shown in Figure 13.3 and, as expected, it resembles
the elliptic guide quite closely near the centre. It flares upward a bit more than
the elliptic guide when going out from the centre, after which it comes down
hard. Interestingly, the control constraints are only activated near the boundary,
where the refractive index would otherwise becomes less than 1. Near the centre,
the optimal profile is slightly less than the original 1.4.

In Figure 13.4, we’ve shown the target and final distributions. Compared
to Figure 13.2, the output distribution seems to be much closer to the target,
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Figure 13.2: The initial brightness distribution (left) and the output distribution
of the elliptic guide (right).

with thinner tails. However, observe that the tails are also longer. Even so, the
L2-distance has been reduced by over 75% compared to the elliptic guide.

Finally, the convergence history is presented in Figure 13.5. The normalised
values of the reduced function j and the norm of its gradient ‖j′‖ are plotted.
The convergence criterion, a change of 5 · 10−4 relative to the initial objective,
is attained at iteration 51. Convergence is smooth and monotonous for j, while
there is a slight increase in ‖j′‖ around 35 iterations.

Difference-of-moments minimisation

To show the effect of a different objective function, we’ll also use the difference-
of-moments squared discussed in Section 12.4. In particular, we’ll use the first
set of moments up to and including the third-order moments, thus the moments
generated by integrating over phase space ρq, ρp, ρq2, ρqp, ρp2, ρq3, ρq2p,
ρqp2 and ρp3. There’s some connection between monomials and aberration
coefficients, see for instance Wolf [16], but we’re not sure if the moments of ρ
somehow represent aberrations.

The minimisation of the difference-of-moments is another kettle of fish en-
tirely. Minimising the moments focusses much more on the global nature of the
distribution. In particular, the tails inherent in the elliptic wave guide carry a
much greater weight than in the previous example of the L2-distance. At the
same time, the accuracy in the centre carries much less weight compared to the
L2-distance. Hence, the centre is sacrificed to ensure that the behaviour near
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Figure 13.3: The L2-distance optimised GRIN profile (blue) together with the
initial guess of the elliptical guide (black).

the tails is correct.
The resulting GRIN profile after the optimisation process is shown in Fig-

ure 13.6. Note that the maximum refractive index is less than
√

2 while the
minimum is greater than 1. Therefore, the control constraints aren’t active
anywhere, contrary to the L2-distance minimisation. Furthermore, the profile
features a central bump, deviating further from the elliptical guide.

Figure 13.7 displays the output distribution after the optimisation process2.
One thing that particularly springs to the eye is that the central mass seems
to be rotated by π

4 with respect to the target distribution. At the same time,
the tails are straightened out somewhat, so that the distribution is more closely
centred around the p = 0 axis compared to the previous example.

Finally, we present the convergence history in Figure 13.8. Also here we
find major differences with the previous example where the L2-distance was
minimised. In particular, the convergence criterion is attained much quicker, re-
quiring only 10 iterations. The objective j does seem to converge monotonously,
but the convergence of the norm of the reduced gradient is very rough. In the
L2-distance example, we also saw an increase of ‖j′‖, but it was much more
gradual and less severe. Nonetheless, the reduction in the value j is over 70%.

13.3 Final remarks on GRIN optimisation

We’ve presented some details on how to employ optimal control on GRIN op-
tics by interpreting an optic as an open loop controller on Liouville’s equation.

2The shape looks a bit like an Indonesian kris dagger to me.
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Figure 13.4: The target distribution (left) and the output distribution after
minimising the L2-distance objective (right).

Our numerical example consisted of finding a GRIN profile that emulates an
ideal lens for a particular input distribution. We’ve shown some results for the
two metrics presented in the previous chapter, namely the L2-distance and the
difference-of-moments-squared. The results are encouraging, confirming that
the optimal control framework can indeed be successfully applied to Liouville’s
equation and GRIN optics. We hasten to add that this positive result has been
made possible by the fast and accurate solvers we’ve developed in the previous
part.

The numerical examples show that choosing a different objective functional
can have a great impact on the result. If we were to judge the final output
distributions by eye, then we’d conclude that the L2-distance minimisation gives
a more desirable result. The tails of the distribution resulting from our starting
guess of an elliptic guide, compare Figures 13.2 and 13.4, have been diminished,
though they are somewhat longer. By minimising the difference-of-moments,
the tails are straightened out compared to Figure 13.3, but the centre of the
distribution looks a bit off-kilter. Yet, both processes result in a reduction of the
objective of more than 70%. Perhaps the eyeball-norm of the second example
can be improved by including more moments. Another possibility would be to
use the result of the difference-of-moments minimisation as an initial guess for
the L2-distance minimisation.

In the next chapter, we’ll turn to the optimisation of refractive surfaces.
Although the basic ideas remain the same, the control is now impulsive, rather
than gradual. Whereas the GRIN profile exerts a continuous and steady pressure
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Figure 13.5: The convergence history of the reduced functional j using the
L2-distance and the norm of its gradient j′, both normalised.

on the distribution, a refractive surface does mostly nothing. The distribution
is undergoing free propagation for the major part of the optic. In fact, the
brightness distribution undergoes free propagation almost everywhere, since the
interface is a null set. Only in transitioning from one refractive index to another
will the distribution be influenced. Mathematically, this isn’t more or less hard
to handle, but conceptionally it’s rather contrasting.
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Figure 13.6: The difference-of-moments optimised GRIN profile (green) together
with the initial guess of the elliptical guide (black).

Figure 13.7: The output distribution after minimising the difference-of-
moments.
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Figure 13.8: The convergence history of the reduced functional j using the
difference-of-moments and the norm of its gradient j′, both normalised.
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Chapter 14

Optimising freeform optical
surfaces

Sculpting is easy, just remove
anything that’s not a sculpture.

Michelangelo Buonarotti

In this chapter we apply optimal control theory to freeform surfaces, resulting
in the optimisation of optically active surfaces. This process is also known as
tailoring or customising optics. Hence, in this case we assume that the refractive
index field is piecewise constant, with the interfaces given by smooth surfaces.
This is of course also a practical choice compared to the previous chapter on
GRIN optics, as shaped surfaces are currently much easier to manufacture than
arbitrary smooth index fields.

Optimising freeform surfaces is an integral part of optical engineering. One
could argue that Archimedes is, according to legend, one of the first to use
freeform optimisation. Allegedly, he used a bunch of soldiers holding mirrors
to form a death ray with which to burn ships [160, 161]. If this tale is true, he
would arguably be the first to have used adaptive optics as well. According to
Lucian, Archimedes used his awesome burning glass to protect his beloved city
of Syracuse from the invading Romans [162].

In more recent times, there has been success with a formulation of the
freeform surface problem in terms of a second-order nonlinear PDE known as
the Monge-Ampère equation [163]. It can be derived by using conservation of
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energy and applying the basic laws of optics. The Monge-Ampère equation ap-
pears commonly in optimal transport problems [164]. It’s particularly difficult
to solve and requires specialised numerical methods, see for instance Kochen-
gin and Oliker, who provided the first provably stable solver [165–167]. Other
solvers for the reflector problem followed in quick succession [168, 169], as well
as those specifically aimed at the two-reflector problem [170]. Naturally, these
solvers can be applied to refractive freeform optics problems as well [171, 172].
However, all of the solvers mentioned above assume zero étendue. This means
either point sources or perfectly collimated beams are assumed as input light
sources. We’ve found only one publication that tackles the nonzero-étendue
problem, which is the method of Hirst et al. [173]. However, their solver is
based on solving an implicit integral equation, rather than the Monge-Ampère
equation. Moreover, all the works summarised here solve problems involving
either illuminance or intensity, none of them are able to solve the problem on
the full phase space.

Our approach is radically different from the aforementioned literature. In-
stead of deriving a PDE for the surface and trying to solve it, our line of attack
is much more circumlocutory. The relation between the work presented in this
chapter and those concerning the Monge-Ampère equation is somewhat rem-
iniscent of the Benamou-Brenier formula [174]. It establishes the equivalence
between the Wasserstein distance and a continuity equation with a velocity field
that morphs one distribution into another. The Wasserstein distance is defined
as the cost of optimal transport. The Benamou-Brenier formula says the velocity
field is such that optimal transport incurs minimal total kinetic energy. Thus,
the Benamou-Brenier formula provides a relation between physical transport
and the Monge-Ampère equation. Likewise, the works mentioned above have
focussed mostly on the Monge-Ampère equation, while we focus on the physi-
cal transport of light. To make the connection even more explicit, Liouville’s
equation is a type of continuity equation.

In theory, our approach can handle both zero- and nonzero-étendue prob-
lems. Here, we present some results for nonzero-étendue problems. Moreover,
our method is essentially defined on phase space, hence we present our method
in its native environment of full phase space optimisation.

Recall that the PDE we wish to solve, Liouville’s equation, is given by

∂ρ

∂z
+∇ ·

(
ρS∇h

)
= 0, (14.1)

with initial condition ρ(0, q, p) = ρ0(q, p). In two-dimensional optics, the gradi-
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ent operator is given by ∇ = (∂q, ∂p)
T and the matrix S is given by

S =

(
0 1
−1 0

)
. (14.2)

Finally, the Hamiltonian h is given by

h(z, q, p) = −
√
n(z, q)2 − p2, (14.3)

where n is now assumed to be piecewise constant. When traversing an interface
where the refractive index changes discontinuously from n1 to n2, rays obey
Snell’s law, given by

S (p;n1, n2, ν) :=

{
p−

(
ψ + sgn (n2)

√
δ
)
ν if δ ≥ 0,

p− 2ψν if δ < 0,
(14.4a)

where

δ := n2
2 − n2

1 + ψ2 and ψ := pν ±
√
n2

1 − p2
√

1− ν2, (14.4b)

where the sign is to be taken such that ψ ≤ 0, which follows from the angle
convention of Snell’s law, see Section 1.3. This is the two-dimensional form, so
that one component of the normal provides sufficient information, hence ν ∈ R
such that |ν| ≤ 1. The solution to Liouville’s equation is continuous along rays
for continuous initial conditions, implying

ρ
(
z+, q(z+), p(z+)

)
= ρ
(
z−, q(z−),S(p(z−);n1, n2, ν))

)
, (14.5)

where pluses and minuses denote one-sided limits toward the interface.
At the same time, we wish to minimise some objective function, e.g., closely

approaching some desired output state. Snell’s law gives us a way to couple the
various regions where n is constant. Note that both mirrors and lenses can be
captured in this formulation with the trick that n2 = −n1 represents a mirror,
see Section 1.3.

For optically active surfaces, we have to treat the regions delineated by the
interface separately. For instance, for a lens surface given by z = ζ(q), there’s
a region with z > ζ(q), which has a different refractive index compared to the
region where z < ζ(q). Therefore, both regions have to be treated separately,
with Snell’s law giving us the connection between the two regions.
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14.1 Choice of control

Regardless of whether we have a lens or mirror, we have to somehow parametrise
the surface and choose a control input, denoted u. Clearly, u must represent
the surface in some way, but it’s worth giving it some careful thought1. A first
naive attempt could be to describe the surface directly, i.e., setting u equal to
ζ in the case of a lens. However, Snell’s law doesn’t care about the position of
the intersection with a ray, it depends on the local surface normal. The normal
is in turn related to the gradient of the surface. If we were to pursue the naive
choice, we’d have to perform an extra integration by parts in the augmented
functional, much like in the previous chapter, since the surface normal would
then be related to the gradient of u. The issue is that Snell’s law is quite
nonlinear in its dependence on the normal, resulting in a highly complicated
expression.

In general, it ’s easier if the system depends directly, albeit nonlinearly, on
u instead of its derivatives. As such, we should use the gradient of the surface
as control input. This way we avoid both the pesky inversion of Snell’s law and
the partial integration. The price we have to pay is that we then need to solve
for the surface as well. Suppose we’re optimising a freeform lens where ζ is fixed
on the boundary. Our choice of u allows us to differentiate the control relation
with respect to q, from which we find that ζ satisfies Poisson’s equation in one
dimension, i.e.,

ζ ′′ = u′ (14.6)

Thus, our slightly more informed choice of control leads to a more simple calcu-
lation for the gradient of the augmented functional. This simplification comes
at the price of solving Poisson’s equation to find the surface itself. Naturally, we
need to know the surface to sufficient accuracy, which is to say with the same
order as the numerical solution to Liouville’s equation. Hence, if we solve Liou-
ville’s equation with a spectral element method, we also need to solve Poisson’s
equation with a spectral element method.

Finally, there’s a modest advantage of choosing u to be the gradient of the
surface, rather than the normal. Snell’s law depends directly on the normal
and not on the gradient, so why not go all the way? The reasons has to do

1There’s a, probably apocryphal, story about Michelangelo where he stared at a block
of marble for ages without lifting his hammer and chisel once. Then, suddenly, the David
appeared as if through magic. When asked about it Michelangelo said he’d been studying
the marble so excruciatingly that he knew exactly where to strike. If nothing else, this story
taught me to think carefully beforehand in the hope of making the right choices resulting in
less work later on.



14.2. ASSEMBLING THE AUGMENTED FUNCTIONAL 279

with control constraints. Suppose we use as our control the q-component of the
normal, ν in (14.4). Then our control is immediately constrained by the fact
that |ν| ≤ 1. Using the gradient results in an unconstrained control, which is
slightly easier to deal with, see Chapter 12. Choosing the gradient of the surface
as the control input results in the normal being given by

ν(u) =
u√

1 + u2
, (14.7)

which will always lie within the constraints |ν| ≤ 1.

14.2 Assembling the augmented functional

To find the proper first-order necessary conditions for optimality, i.e., a set
of PDEs that characterise an optimal surface, we first have to construct the
augmented functional. As per usual the augmented functional, or Lagrangian,
contains the objective function as well Liouville’s equation carried by a Lagrange
multiplier. Snell’s law provides the transition across interfaces, so that it must
be enforced using another Lagrange multiplier. As an example, we consider a
freeform lens described by z = ζ(q) with a transition from n1 to n2, with n1 >
n2. We assume the optimality of the output ρ(Z), which is shorthand for ρ(Z, ·),
is measured by a Gâteaux differentiable functional Ψ, see 12.4. Furthermore,
we assume the objective is given by

Ψ[ρ(Z)] +

∫

P

Z∫

0

L(z,y, ρ, u) dz dy,

where P is phase space. In each separate region where the refractive index is
constant, phase space is a product space given by Q × P . Note the order of
integration in the fourth term, which actually represented two integrals, one of
each region where the refractive index is constant. The z-limits for each region
depends on q, which is why this is the correct order. The Lagrangian is therefore
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given by

L[ρ, u, ϕ, µ] =Ψ[ρ(Z)] +

∫

P

Z∫

0

L(z,y, ρ, u) dz dy + α
2

∫

Q

u2 dq

−
∫

P

Z∫

0

ϕ
(
ρz +∇ ·(ρS∇h)

)
dz dy

−
∫

P

µ

(
ρ
(
ζ(q)+, q, p

)
− ρ
(
ζ(q)−, q, S

(
p;n1, n2, ν(u)

)))
dy,

(14.8)
where, the first three terms represent the objective and regularisation, the
fourth term is the PDE constraint and the last term represents the enforce-
ment of Snell’s law. We’ll also abbreviate ρ+ = ρ

(
ζ(q)+, q, p

)
and ρ− =

ρ
(
ζ(q)−, q, S

(
p;n1, n2, ν(u)

))
.

In the following, we’ll apply the machinery of calculus of variations to derive
a system of first-order necessary conditions. In particular, this means calculating
the Gâteaux derivative of the Lagrangian and demanding that it vanishes for
all variations. We refer the reader to Section 12.2 for more details. Here, we’ll
mostly quote the results from that section and only deal with the novelty of the
interface and Snell’s law. As per usual in constrained optimisation problems,
variation with respect to the Lagrange multipliers ϕ and µ leads to the constraint
equations. Variation with respect to ρ leads to the adjoint or costate equation
for ϕ, together with a terminal condition. Variation of ρ on both sides of the
interface leads to a jump condition for the costate ϕ, which rather unsurprisingly
will also be Snell’s law.

First, we quote the results from Chapter 12 that remain unaltered. Natu-
rally, variation with respect to ϕ and µ, i.e., setting L′ϕ = 0 and L′µ = 0 leads
to Liouville’s equation (14.1) and Snell’s law (14.4), respectively. The adjoint
equation is given, on both sides of the interface, by

∂ϕ

∂z
+ (S∇h) ·∇ϕ = −∂L

∂ρ
, (14.9a)

with the terminal condition

ϕ(T ) =
δΨ

δρ

(
ρ(Z)

)
. (14.9b)
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Here δΨ
δρ is the L2-gradient of Ψ, which is extensively discussed in Section 12.4.

The jump condition for ϕ is derived by varying ρ on the interface. To facilitate
this, we first split the fourth integral in (14.8) into the two regions separated by
the interface. Integrating by parts each region, we obtain that

−
∫

P

Z∫

0

ϕρz dz dy =

∫

P

Z∫

0

ρϕz dz dy −
∫

P

ρϕ
∣∣ζ(q)
0

dy −
∫

P

ρϕ
∣∣Z
ζ(q)

dy. (14.10)

Variations with respect to ρ will therefore pick out the boundary terms over the
optical surface, combining with the terms involving µ. As such, the Gâteaux
derivative of L with respect to ρ is given by

L′ρ[ρ, u, ϕ, µ, δρ] =

∫

P

Z∫

0

(
∂L

∂ρ
+ ϕz + (S∇h) ·∇ϕ

)
δρdz dy

+

∫

P

(
δΨ

δρ
− ϕ(Z)

)
δρ(Z) dy +

∫

P

(µ− ϕ−)δρ− − (µ− ϕ+)δρ+ dy.

(14.11)

Thus, aside from the ordinary result (14.9), we also have that µ = ϕ+ and while
µ = ϕ−. In particular, this tells us that ϕ+ = ϕ−, so that ϕ also satisfies Snell’s
law.

Finally, we’ll calculate the variation of L with respect to u. Applying the
definition of the Gâteaux derivative, see Section 12.1, we find that

L′u[ρ, u, ϕ, µ, δu] =

∫

Q

αu δu dq +

∫

P

Z∫

0

∂L

∂u
δudz dy +

∫

P

µ
∂ρ−

∂u
δudy. (14.12)

We’ve already found that µ = ϕ+, so the only thing left to do is to calculate
the derivative of ρ− with respect to u. Careful usage of the chain rule yields

∂ρ−

∂u
= ν′(u)

∂S

∂ν

∂ρ−

∂p
. (14.13)

Note that it’s also possible to state continuity of the brightness along rays in
terms of the backward rays, leading to an alternative expression for the gradient
in terms of ρ+. Of course, these two options should provide the same answer.
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14.2.1 Newton minimisation

As has become a habit in this part, we’d like to minimise L using Newton’s
method. Therefore, we’ll also need to calculate the second Gâteaux derivative.
We first write the reduced functional j[u] = L[Rρ(u), u,Rϕ(u), Rµ(u)], where
Rρ is the solution operator for (14.1), likewise Rϕ provides the solution ϕ of
(14.9a) and Rµ(u) = ϕ+. Like before, we have

j′[u, δu] = L′u[Rρ(u), u,Rϕ(u), Rµ(u), δu] =

∫

Q

δu

(
αu+

∫

P

µ
∂ρ−

∂u
dp

)
dq,

(14.14)
where the solutions ρ = Rρ(u) and µ = Rµ(u) should be used. The second
variation of j is therefore given by

j′′[u, δu, τu] =

∫

Q

τu

(
αδu+

∫

P

δµ
∂ρ−

∂u
+ µ

∂δρ−

∂u
+ µ

∂2ρ−

∂u2
δudp

)
dq. (14.15)

Again, some careful application of the chain and product rules for differentiation
gives that

∂2ρ−

∂u2
= ν′′(u)

∂S

∂ν

∂ρ−

∂p
+
(
ν′(u)

)2 ∂2S

∂ν2

∂ρ−

∂p
+

(
ν′(u)

∂S

∂ν

)2
∂2ρ−

∂p2
. (14.16)

In Section 12.3.1, we’ve explained that δρ and δµ are now defined by linearisation
of the solution operators. The solution operators are defined by demanding that
certain variations of L vanish, for instance, Rρ is defined by the relation L′ϕ = 0.
The PDE for δρ can therefore be found by calculating the variation of L′ϕ and
demanding that the result vanishes as well. The governing equations for δϕ and
δµ can be found in the same way. Here, we quote the result from Section 12.3.1,
which states that δρ satisfies Liouville’s equation, i.e.,

δρz +∇ ·(δρS∇h) = 0. (14.17)

The initial condition for δρ follows from the fact that ρ itself has specified initial
conditions. Therefore, the variation must satisfy δρ(0) = 0. This implies that
δρ is identically zero, at least up to the surface, so that also

δρ− = 0. (14.18)

To know how δρ behaves after encountering the interface, we must look for a
jump condition for δρ. Similarly to the earlier argument, the jump condition
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for ρ is defined as demanding that L′µ = 0. To find the jump condition on δρ,
we therefore have to look at the variation of L′µ and demand that the result
vanishes. This procedure yields

∫

P

δµ

(
δρ− +

∂ρ−

∂u
δu− δρ+

)
dy = 0. (14.19)

This relation must hold for all variations δµ, so that

δρ+ = δρ− +
∂ρ−

∂u
δu =

∂ρ−

∂u
δu, (14.20)

where we’ve applied (14.18). The equation for ϕ is given by variation of (14.11),
yielding

δϕz + (S∇h) ·∇δϕ = −∂
2L

∂ρ2
δρ, (14.21)

with terminal condition given by

∫

P

δϕ(Z) τρ(Z) dy = Ψ′′[ρ(Z), δρ(Z), τρ(Z)], (14.22)

see Section 12.4 for explicit expressions and a discussion on how to choose Ψ.
Finally, the jump condition δϕ+ = δϕ− must be observed, i.e., δϕ satisfies
Snell’s law over the optical surface.

14.2.2 Solution strategy

Compared to the basic recipe outlined in Chapter 12, we only need to add
a single step, which is to actually solve for the surface. We must still make
an initial guess for the surface, compute the solution to Liouville’s equation
forward in z and the costate equation backwards in z. The control input is
also determined either by a gradient descent or a Newton step. The difference
with earlier strategies is that after the update to the control input is made, we
now also have to compute the surface shape itself by solving Poisson’s equation
(14.6). This is done using a continuous Galerkin spectral element method, see
e.g., Kopriva [121].
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14.3 Example: ideal lens

As an example of optimal control for optical surfaces, we again use the example
of mimicking ideal lens behaviour, this time by finding the optimal shape of a
refractive surface. Thus, for a specific input distribution, we use as a target
distribution the input distribution rotated by π

2 , i.e., ρ?(q, p) = ρ0(p,−q). In
terms of (14.8), we use L = 0, as we’re only interested in achieving the target
distribution. We’ll use both choices suggested in Section 12.4, namely the L2-
distance and the difference-of-moments-squared. The Lagrangian that we’ll use
is therefore given by

L[ρ, u, ϕ, µ] =Ψ[ρ(Z)] + α
2

∫

Q

u2 dq −
Z∫

0

∫

P

ϕ
(
ρz +∇ ·(ρS∇h)

)
dy dz

−
∫

P

µ
(
ρ+ − ρ−

)
dy,

(14.23)

where the last term implements Snell’s law. The parameter α is set to 10−3.

We compute the numerical solution to Liouville’s equation using the discon-
tinuous Galerkin method detailed in Chapter 10. The solution is computed on
a regular mesh of 20 × 20 elements with a polynomial degree of N = 4 and
a maximum momentum set to 3

4 . This is not an essential constraint of the
system, it simply limits the advection velocity. In particular, on the edge of
Descartes’ disc, the advection velocity diverges, resulting in extremely small z-
steps. Choosing some maximum momentum limits the velocity and results in
fewer z-steps. The z-integration is performed using the procedure specified in
Section 10.3.

As an initial guess for the surface we use the spherical lens also discussed in
Section 10.4.2, as spherical lenses provide a crude approximation to the ideal.
The lens is a plano-convex with the curved side having a radius of 1.8 units and
a refractive index of 1.6, resulting in a focal length of 3 units, see Figure 14.1.
The lens has a height of 2 units and no light can get around it. The source
distribution is simply chosen to be a Gaußian, given by

ρ0(q, p) =
1

2πσqσp
exp

(
− q2

2σ2
q

)
exp

(
− p2

2σ2
p

)
, (14.24)

where σq = 2
10 and σp = 1

10 . In Figure 14.2
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Figure 14.1: Sketch of the situation for the spherical lens case. The initial
condition is specified on the z = 0 focal plane. Several rays (blue) are sketched
as well.

See Figure 14.2 for a plot of the initial condition and the output distribution
for the spherical lens. We stress that the optimised surface will only mimic ideal
lens behaviour for this specific input. To obtain a true ideal lens, we’d need to
optimise the surface using all possible initial conditions as well.

Figure 14.2: Source (left) and output (right) distribution for the spherical lens
initial guess to u.

One thing that catches the eye in the output distribution of the spherical
lens is the amount of stretching in the q-direction. An ideal lens would rotate
the left distribution in Figure 14.2 by π

2 , however, it looks more like it stretched
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the distribution slightly. This is due to all sorts of aberrations that spherical
lenses are prone to.

14.3.1 L2-distance minimisation

When Ψ is chosen as the L2-distance, the optimality system and its computation
are slightly simplified. However, this also provides some room for instabilities
to occur in the optimisation process. To stabilise the process, we add a term
γ
2

∫
Q

(u′)2 dq to the objective, resulting in a term added to the derivative, i.e.,

δL
δu

= αu− γu′′ +
∫

P

µ
∂ρ−

∂u
dp. (14.25)

The second derivative will also receive an additional term. The reasoning behind
the addition term will become clear soon. For now, it’s enough to note that,
since u is the gradient of the surface, regions with high curvature are penalised.

In Section 12.4, we’ve seen that the both δρ and δϕ satisfy Liouville’s equa-
tion. These are necessary to compute the second Gâteaux derivative of L. At
the same time the terminal condition is simply given by (14.22):

δϕ(Z) = δρ(Z), (14.26)

see also (12.41). This, together with the fact that δϕ and δρ both satisfy Li-
ouville’s equation, implies δϕ = δρ everywhere. Hence, the second Gâteaux
derivative of the reduced functional j is simplified greatly, i.e.,

j′′[u, δu, τu] =

∫

Q

τu δu


α+

∫

P

(
∂ρ−

∂u

)2

+ ϕ+ ∂
2ρ−

∂u2
dp


− γ τu δu′′ dq,

(14.27)

which is (14.15) with δρ− = 0 and µ = δu∂ρ
−

∂u . Note that this reduced gradient
doesn’t contain any dependence on other variations. Thus, the Newton step
can be solved explicitly in this case, which greatly speeds up the optimisation
procedure. Contrast this with the previous chapter, where a matrix-free GM-
RES linear solver had to be used and each matrix product required another
two more instances of Liouville’s equation to be solved. The simple form of the
second derivative of L is a double-edged sword, however, as it also means the
gradient of u isn’t regulated in any kind of way when γ = 0. This can cause
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instabilities in the optimisation process. The additional regulator term will tend
to smoothen out δu. In particular, the update δu will satisfy an elliptical PDE
with homogeneous Neumann boundary conditions. The elliptical equation for
δu will also be solved using a continuous Galerkin spectral element method.
The parameter γ is chosen to be 10−2.

Additionally to the simple form of the second derivative of j, the costate on
the surface is easier to evaluate. This has again to do with the fact that both
ρ and ϕ satisfy Liouville’s equation. The terminal condition for the costate is
given by

ϕ(Z) = ρ(Z)− ρ?. (14.28)

Since Liouville’s equation is a linear advection equation, we can therefore inte-
grate ρ only up to the surface and ρ? backwards from the target screen to the
surface and take the difference there. This will save roughly half the computa-
tional effort.

The optimised surface itself is plotted in Figure 14.3, together with the initial
guess of a spherical surface. The thing that catches the eye here is that the
optimised surface is completely above the initial spherical surface. Furthermore,
the optimised surface has a higher curvature near the centre, while it’s a bit less
curved near the edges, though the difference is small.

Figure 14.3: Initial lens surface (black) and final lens surface(blue).

The final distribution, after the optimisation process, is shown in Figure 14.4.
There are several interesting things to point out about the final state. First, by
eye it’s hard to judge which distribution is closer compared to the right plot in
Figure 14.2. The optimised distribution looks more like a spherical Gaußian,
although there are some small tails sticking out at around and angle of π

4 .
However, compared to the final state of the initial spherical surface, it’s much
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closer in the norm we’re using. To provide some numbers, the reduction in the
objective value j is almost 80%. Most of this reduction is in the L2-distance,
with the regularisation term contributing roughly 5 · 10−3 relative to the whole.

Figure 14.4: Target (left) and final (right) distributions for the ideal lens exam-
ple using the L2-distance as objective.

Finally, for completeness we show the convergence history of the optimisation
process in Figure 14.5. The convergence is fairly quick in the first 15 or so
iterations and slows down afterwards. The convergence criterion of a relative
change of 5 · 10−3 to the objective is attained there and the final norm of the
gradient is about 2 · 10−2 compared to the initial norm of the gradient.

14.3.2 Difference-of-moments minimisation

As suggested in Section 12.4, an alternative objective function for the final state
is to look at the difference-of-moments squared. The logic being that two distri-
butions with equal moments are themselves equal, provided they have compact
support or bounded domain. We look at the first couple of moments up to the
third-order ones, i.e., q, p, q2, qp, p2, q3, q2p, qp2 and p3, all multiplied with
the distribution and integrated over the domain. As discussed in the aforemen-
tioned section, choosing a small number of moments results in a very smooth
costate ϕ, which is often a benefit. The downside is that the full apparatus
of matrix-free GMRES, also discussed in Section 13.2.2, is needed to perform a
Newton step. Each optimisation step will therefore be more expensive compared
to the L2-distance minimisation. Some additional numerical details: we don’t
need a stabilising term here, hence γ = 0, while we use a tolerance of 1

10 on the
GMRES solver with a maximum number of iterations of 10.
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Figure 14.5: Convergence history for the Lagrangian (blue) and the norm of the
reduced gradient (red).

The optimised surface is presented in Figure 14.6 and the first thing to
notice is that it looks a lot like the previous optimised surface in Figure 14.3.
The differences are minute and mostly noticeable near the edges. Again, the
surface is entirely above the initial spherical surface and has a higher radius of
curvature near the centre.

If we look at the final output distribution, presented in Figure 14.7, we’re
again struck by a feeling of familiarity. Here also, the final distribution looks a
lot like the one shown on the right of Figure 14.4. Although, careful examination
would seem that the distribution is comparatively slightly more stretched in the
diagonal direction and the tails are somewhat more pronounced.

Finally, the convergence history of this optimisation process is shown in
Figure 14.8. The immediate stunner here is that it only took four iterations
to reach this state, about three times fewer than the L2-distance minimisation.
However, each iteration is more expensive as it involves running GMRES. All in
all, the moments optimisation is decidedly faster. In terms of computation time,
the difference-of-moments minimisation took about half of the time required by
the previous example. At the same time, also here, a reduction of roughly 80%
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Figure 14.6: Initial lens surface (black) and optimised lens surface(green) using
difference-of-moments objective.

of the initial objective function is attained.

14.4 Final remarks on freeform optimisation

In this chapter, we’ve looked at the optimisation of freeform surfaces by reinter-
preting the gradient of the surface as an impulsive control to Liouville’s equation.
In this reinterpretation, the shape of an optical surface acts like an open loop
controller on the light distribution, or alternatively, a large set of rays. Our
example consisted of emulating an ideal lens for a particular input distribution,
which was chosen a Gaußian for convenience. The most remarkable result of
this chapter is that the minimisation of the difference-of-moments seems to be
the quicker choice by far. The results compared with L2-distance minimisation
are strikingly similar, yet those results are obtained with fewer iterations. More
research is needed to see if this is not just a fluke.

We’ve focussed on freeform refractive surfaces, although the theory is of
course equally applicable to reflector design. For instance, if the reflector design
problem were to be solved with the discontinuous Galerkin method, a moving
mesh would need to be used, see Section 7.6. The objective function would need
to be slightly altered as well, in particular the term that enforces Snell’s law in
(14.8) would need to be replaced with a term that enforces the law of specular
reflection along the mirror.

Another point of note is that the theory we’ve shown here and in Chapter 12
is formulated on the exact level, i.e., in terms of PDEs. Potentially, therefore,
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Figure 14.7: Final distribution for the ideal lens example using the difference-
of-moments objective.

any solver could be used to solve Liouville’s equation, even ray tracing2. As
mentioned in Chapter 10, the discontinuous Galerkin method works well for
smooth solutions, which implies nonzero étendue distributions. Although in
practice all light sources have nonzero étendue, some approximate point sources
very well indeed. Thus, our theory could be adapted to solve zero étendue
problems by using ray tracing instead of the Liouville solver. Another possibility
is that the theory can also deal with irradiance or intensity optimisation. This
is, in principle, easily achieved by using a properly defined objective.

Philosophically, the method exhibited here is quite appealing, as it’s closer
to what an optical engineer tends to do in comparison with, for instance, Monge-
Ampère based methods. Indeed, to put it bluntly, an optical engineer uses a
trial-and-error approach, where the corrections are (highly) educated guesses.
Of course, some intuition and deeper understanding comes into play, but at a
coarse grain at least, our method does the same, only with mathematically pre-
cise corrections. However, optical engineers will always be necessary to guide
the process. Just consider that our method looks, rather blindly, for local min-
ima of the objective. An engineer could use it as an enlightening tool to find

2Imagine a slight jeering chuckle.
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Figure 14.8: Convergence history for the Lagrangian (blue) and the norm of the
reduced gradient (red) using difference-of-moments objective.

global minima.



Part V

Final remarks

293





Chapter 15

Suggestions for future
research

Segui il tuo corso, e lascia dir le
genti.

Dante Alighieri

Throughout this work, we’ve dropped various hints and made numerous
suggestions for future research. However, not all ideas fit naturally into the flow
of the story told so far. In this chapter, therefore, we discuss some ideas for
future investigations. As always with research, there was too little time to try
it all.

15.1 General discontinuous power redistribution

Throughout this work, we’ve used Snell’s law as the rule to redistributing power
across an interface. Of course, this device may be applied with any redistribution
rule as long as it uniquely defines the energy flow.

Fresnel’s equations give a physically accurate expression for the power trans-
mission and reflection according to angle and polarisation of the light. For all
but some special angles, such as the Brewster angle, a ray splits up into a re-
flected and transmitted ray. Both carry off some of the incident energy. This
could easily be implemented in our Liouville solvers. Instead of drawing en-
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ergy flux from one momentum in phase space, the flux would be drawn from
two different momenta, each energy contribution weighted by Fresnel’s expres-
sions. Each polarisation direction would require its own brightness distribution
independently satisfying Liouville’s equation.

Another example of discontinuous power redistribution is scattering phe-
nomena, such as Mie scattering or scattering due to surface roughness. These
examples are more complicated than the Fresnel equations, but the same prin-
ciple holds: energy flux is drawn from a range of momenta, each weighted
accordingly. Provided the redistribution rule is known, this can be incorporated
into a Liouville solver.

15.2 Dealing with the Fresnel tree

As mentioned in the previous section, a physical ray splits into two each time an
interface is encountered. The transmitted and reflected rays each carry off some
of the energy of the incident ray. For accurate ray tracing, of course, this implies
that both rays have to be followed through the optic. However, this splitting
happens at each interface, resulting in an exponential growth of the number of
rays that need to be traced. This has the structure of a binary tree, dubbed the
Fresnel tree. There are two ways to deal with this structure, either set a depth
limit or an energy limit. The first is straightforward, the second needs to keep
track of the energy carried by a ray, disregarding it when the energy falls below
a certain threshold.

In the context of Liouville’s equation, such complications appear as well,
though in a slightly more manageable form. Think, for instance, of a series of
lens-like surfaces. At each interface, part of the brightness is reflected and part of
it is transmitted. However, unlike in ray tracing, the exponential growth of the
number of cases can be avoided by exploiting the linearity of Liouville’s equation.
At each interface, we simply have to store the reflected brightness distribution.
We can then sweep the optical system several times, at each interface adding
the brightness that came from a reflection. By linearity of Liouville’s equation,
this leads to the correct solution. Like this, the Fresnel tree can be explored
much faster by sweeping forward and backward along the optical axis several
times. Similar to the ray tracing approach, a stopping criterion is needed to
decide on the depth of the exploration. By analogy, this can be done either by
setting a fixed number of sweeps or an energy threshold.
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15.3 Tensor meshes

Throughout this work, we’ve looked at two-dimensional optics, which provides
a simplified setting. The full problem is of course three-dimensional optics,
which exhibits a four-dimensional phase space. In theory, the discontinuous
Galerkin method is easily adapted since extra dimensions are added by dyadic
products on the elements. This same strategy can be applied to construct four-
dimensional meshes. This makes sense, since whenever the refractive index
field is constant, phase space has a product structure as well. In particular,
the spatial part is somewhat free while the momentum part is then always
Descartes’ disc. Naturally, when the refractive index field is piecewise constant,
this construction can be applied to each piece. In the GRIN case, the curved
mesh technique presented in Chapter 13 can be used.

15.4 Light meshes

As mentioned in Chapter 10, the one flaw of spectral methods is that they only
work really well for smooth solutions. Once discontinuities are present in the
solution, their uses are limited. Since Liouville’s equation is linear, the only way
that a discontinuity can appear that isn’t aligned with the mesh is when the
initial conditions aren’t smooth. A possible way to deal with this is to let parts
of the mesh move exactly along with the solution itself, much like front tracking,
tying some nodes to rays, as it were. This, of course, leads to complications near
optical interfaces, but the possibility is not to be dismissed.

15.5 Modelling choices

For simplicity, we’ve used some tacit assumptions that don’t necessarily hold
in practice. For instance, we’ve assumed monochromatic light and completely
transmissive media. These assumptions are easily fixed, but for our purposes
they would have only complicated matters.

15.5.1 Colour

Colour can be added in several ways, depending on the colour spectrum of
the light source. Some sources have a rather discrete spectrum of several sharp
peaks. For such sources, one might reasonably solve Liouville’s equation for each
of these colour peaks separately. If the spectrum is continuous, the alternative
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is to introduce another dimension over which is no energy transmission occurs,
barring the presence of nonlinear optical effects. When only reflective optics are
used, which is quite common in lighting applications, each light source can be
modelled by a separate brightness. This is due to the fact that reflections are
independent of the frequency of light.

15.5.2 Diffusive and dark materials

Diffusive optical media are fairly common in lighting, just look at your ceiling
fixture, there’s a good chance it has a dome with a frosted glass surface. In
diffusive materials, rays are scattered many times, so that their paths are ef-
fectively described by random walks [175]. Combined with the Feynman-Kac
formula, which states that random walks are the characteristics of a diffusion
equation, this leads to a diffusion term in Liouville’s equation [176]. Materials
can also be partly absorptive, like sunglasses or stained glass windows. In linear
media, attenuation is linear to the incident power [6]. Of course, both phenom-
ena depend on the travelled path length instead of the length down the optical
axis. Therefore, if we wish to include these effects into Liouville’s equation, we
end up with something like

∂ρ

∂z
+∇ · (ρS∇h) =

ds

dz

(
∇ · (D∇ρ)− µρ

)
, (15.1)

where µ is the attenuation rate, D the diffusion tensor and s is the arc length.
The relation between s and z is discussed in Section 1.2.4, and it was found that
ds
dz = n√

n2−‖p‖2
for forward propagating rays.

15.6 Extending active flux to higher order

The active flux scheme as presented in Chapter 6 supplies third-order accu-
racy. It is, at the moment, unclear how to extend the method to higher-order
consistently. Attempts have been made by adding more boundary points, but
the order of approximation doesn’t line up with the order of the flux [112].
Our suggestion would be to add internal nodes to each element. The natural
extension, we believe, to the active flux scheme uses the Fekete points on the
triangle [177–179].

The Fekete points are closely related to polynomial interpolation. Indeed,
one way to define them is to maximise the Vandermonde determinant induced
by the set of points. Fekete points are commonly labelled by the degree of
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polynomial that they support. Fekete points on the triangle can be efficiently
computed. Furthermore, the Fekete points of degree d have d + 1 points on
each boundary segment which are the Gauß-Lobatto points. The points used in
Chapter 6 would be labelled d = 2.

For any polynomial degree higher than 2, the Fekete points also include
points interior of the triangle. For instance, the d = 3 Fekete points on an
equilateral triangle have four Gauß-Lobatto points on each side with the centre
point of the triangle included, see Figure 15.1.

d = 2 d = 3

b b b b

b b

b

b

b

b
b

b b

b bb

Figure 15.1: Fekete points of order 2 and 3.

For any degree d, the number of Fekete points corresponds to the number of
coefficients of a two-dimensional polynomial, which is 1

2 (d+1)(d+2). Note that
in the third-order active flux scheme, we have 6 coefficients, fixing a quadratic,
while the average value has to be accommodated some way. In general, given
the Fekete points of degree d, a polynomial of the same degree is fixed, which
does not necessarily have an average value equal to some given average value.
Therefore, a higher-order bubble function is needed, for instance

ϕ = Cd(b1b2b3)k, (15.2)

with 3k > d, where bi, i = 1, 2, 3 are the barycentric coordinates, which can all
three be represented by degree one polynomials, making the proposed bubble
function (15.2) of degree 3k.

15.7 Zero-étendue freeform optimisation

As already mentioned in Chapter 14, it may well be possible that our method
for optimising freeform surfaces can be adapted to zero-étendue problems. This
has, in part, to do with the fact that we’ve used the optimise-then-discretise
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approach to finding the optimality system. Thus, the optimality system can be
solved using any numerical method of our choice. The methods we’ve presented
in Part III all work assuming nonzero étendue. However, ray tracing engages
with individual rays and as such works rather well for zero-étendue problems.
This reasoning suggests we use ray tracing to solve Liouville’s equation when
dealing with zero-étendue freeform optimisation problems. In all likeliness, it
will be necessary to reinterpret ρ as the density of a measure and apply some
measure theory in concordance with functional minimisation.

15.7.1 The French connection

In Chapter 14, we’ve also briefly alluded to the correspondence between optimal
transport and our work through the Benamou-Brenier formula [174]. Although
we’ve only used it loosely to draw an analogy, we believe it can be made more
rigorous. However, our suspicion is that this rigorous correspondence between
optimal transport and our work only holds for zero-étendue problems. And even
then quite possibly only in even more restrictive special cases. Our belief is based
on the observation that when dealing with extended sources, at any one point
on the surface there’s a whole range of angles coming in. As a consequence, it’s
in general not possible to attain the target distribution, which is a requirement
in optimal transport theory. For zero-étendue problems there is in fact a one-to-
one mapping between rays coming from the source and positions on the freeform
surface. This one-to-one mapping means the freeform design problem reduces
to an assignment problem, which is probably equivalent to an optimal transport
problem.

15.8 Solving the eikonal equation

One of the most pernicious objections raised against phase space methods is that
they are useless by default. Engineers and physicists use the lower-dimensional
distributions intensity and illuminance anyway, so why bother? Hopefully, we’ve
managed to argue throughout this work that phase space methods are quite
useful and interesting indeed. But, if the objections persist, other methods can
be explored. Our suggestion would be to look at numerical methods for the
eikonal equation, given by (1.9), i.e.,

‖∇S‖ = n. (15.3)
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Rays, the pathways of luminous power, can simply defined as the integral curves
of ∇S and the spatial part of the Poynting vector ~P can be written as ‖~P‖∇S.
A bit of mathematics using Maxwell’s equations reveals that

∇ ·
(
‖~P‖∇S

)
= 0, (15.4)

see e.g. Rubinstein and Wolansky [180]. Thus, the eikonal equation together
with (15.4) provide a system of equations to determine the energy distribution
of a light source in real space. The benefit compared with Liouville’s equation
is that it doesn’t operate on phase space at all. The disadvantage is that the
eikonal equation is a nonlinear PDE, which is as a rule of thumb harder to solve.

15.9 Cautionary advise

Most of the ideas presented here are rather straightforward extensions of the
work in this thesis, although surprises always lurk around the corner. Some
things can be foreseen as easy modifications, such as implementing the Fresnel
equations1 or dealing with different modelling choices. Other suggestions may
be harder to implement or require additional work, the tensor mesh seems to
be of such a kind. The cautionary advise therefore is not to think too lightly of
undertaking any of the suggested projects, but approach it as a fresh problem.

1I’ve actually implemented Fresnel’s equations already in the upwind solver, but the results
didn’t add anything to those already presented in Chapter 8.
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Chapter 16

Conclusion

You see, a guy called William
Shakesman once said: “Brevity is
the soul of wit.” This just means
don’t waste my time.

Mr. Plinkett

In this thesis, we tried to gain some basic understanding of a new field we
dubbed computational illumination optics. We delved into the very foundations
of optics in electromagnetism, looked at ray tracing techniques and introduced a
new paradigm by shifting to Liouville’s equation. A rather wide range of topics
has come by, which we’ll now review.

In the first part of this work, we discussed the classical approach to illu-
mination optics. We’ve focussed on the Hamiltonian formulation throughout
this work. Hamilton’s equations provide the governing equations of a light ray
in terms of a first-order system of ODEs. This is achieved by introducing a
higher-dimensional space called phase space, consisting of all positions and all
momenta. Phase space provides a full description of geometric optics, a single
point is enough to determine an entire ray. Conversely, the brightness distribu-
tion, the luminous power per unit area per solid angle, is the power distribution
on phase space and therefore contains everything there is to know about a lu-
minaire geometrically. This as opposed to the illuminance, power per unit area,
or the luminous intensity distribution, power per solid angle. Even if both illu-
minance and intensity are known, this does not provide complete information
on a luminaire. Phase space therefore furnishes us with a tidy and compact
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description of geometric optics.
After this brief introduction to Hamiltonian optics, we explored ray tracing

techniques. Ray tracers, commercial or home-brewed, often have problems with
finding the correct intersection point when the rays skim very closely to the
surface. We advanced two main ideas for ray tracers: a new way of constructing
bounding boxes that divides the surface into convex and concave pieces, and
the philosophy of first finding a bracket on which there’s certainly an intersec-
tion point before finding the root. Our contribution in this part was to identify
several types of rays and propose algorithms designed to deal with them in the
context of rotationally symmetric optics. The amalgamation of the proposed
algorithms forms what we named the Magic Bullet algorithm. We furthermore
proved that the Magic Bullet is guaranteed to find the correct intersection point
in two-dimensional optics. For three-dimensional optics, the result is slightly
weaker, but we identified rather precisely the rays for which the Magic Bul-
let fails. Our numerical results were very encouraging and show a significant
increase in reliability compared to a more naive ray tracer.

Next, we investigated another essential component of any ray tracer, namely
the root-finder. Finding roots of nonlinear functions is a problem that crops up
everywhere in science and engineering. Grau-Sanchez et al. have introduced a
clever reformulation of the root-finding problem as an ODE, after which any
ODE solver can be converted to a root-finder [41–43]. Our main theoretical re-
sult here is a theorem that provides some fundamental barriers for root-finders
based on linear multistep methods. Our practical contribution was to intro-
duce full LMMs as root-finders. We discovered that methods that ordinarily
don’t work as ODE solvers do in fact work as root-finders. In particular, we
showed that full LMMs, which are not zero-stable in general, produce excellent
root-finders. Compared to Newton iteration, our method is significantly faster
and more efficient. We also showed some pathological examples where Newton
iteration doesn’t converge for a certain range of starting guesses. In one case,
Newton iteration diverges for all initial guesses except the exact root itself. In
these pathological examples, our LMM-based methods extended the range of
starting guesses and does indeed provide a finite range for the second problem.
We also proposed a bracketed version based on the LMM root-finders that’s
guaranteed to converge given a suitable starting interval. This method can be
seen as extending Brent’s method using derivatives.

After this brief foray into the world of ray tracers, we decided to break away
from the paradigm entirely. Instead, we proposed using an Eulerian description
of illumination optics, realising that ray tracing can be interpreted as the La-
grangian picture. This, we believe, is the most important new concept in our
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work. Hence, from ray tracing we came to Liouville’s equation, a hyperbolic
PDE, as the central object of our fascination. Thereafter, we devoted a part
of this work to the dissemination of basic discretisation schemes for hyperbolic
equations in their native environment. In particular, we discussed the upwind
and WENO methods, the active flux scheme and the discontinuous Galerkin
spectral element method. Along the way, we managed to introduce a new type
of WENO method that we called embedded WENO. The novel idea here is
to improve control over the numerical approximation when discontinuities are
present in the solution. The result is a new variant of WENO that produces
equally good or better results while using the same amount of computational
effort. Our contribution to active flux schemes was to formulate them on a
moving mesh in a different way than was previously known. The existing tech-
nique is to use the active flux scheme as a space-time discretisation technique,
where our novel method is a semi-discretisation, leaving time continuous. This
can have some advantages as any numerical integrator can be applied. Our in-
tention was to adapt the aforementioned numerical discretisation techniques to
solve Liouville’s equation. However, WENO didn’t make the cut, as it turned
out to be too complicated to adapt.

Consequently, we discussed at length on how to convert these basic schemes
to Liouville solvers. We stress that the entire concept of solving Liouville’s
equation in geometrical optics is novel. Each solver comes with advantages
and disadvantages. For instance, the upwind method is highly robust, but
turned out to be rather hard to adapt. To do so required us to find an extra
jump condition on the gradient of the brightness distribution. The upwind
solver we proposed uses this jump condition to find a correct finite difference
across an optical interface. The active flux scheme is a third-order method that
uses local ray tracing. We showed that it makes an excellent Liouville solver
and demonstrated the correctness of our proposed method for moving meshes.
DG spectral element methods are quick and efficient and they provide superior
performance for smooth solutions. Both the active flux scheme and the DG
spectral element method were relatively easy to adapt, as we discovered that all
that’s really needed is a proper alignment of the mesh with any interfaces. We
also introduced a technique to solve Liouville’s equation in the presence of lenses
and other freeform refractive surfaces. All the Liouville solvers were compared
to Monte Carlo ray tracing and we saw a general trend that Liouville solvers
can attain much higher accuracies in similar or shorter times. For the simple
test cases we looked at, they’re without a doubt much more efficient solvers
for geometric optics problems. Their only downside is perhaps that they’re
harder to implement. However, this is rather subjective, we didn’t encounter
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any difficulties in implementation.
Finally, we come to the justification and vengeance of the Eulerian meth-

ods with the introduction of optimal control theory to geometric optics. The
speed and precision of the DG method were put to good use. The novelty we
introduced is to reinterpret the optical design problem as a feed-forward control
problem acting on Liouville’s equation, or alternatively, on an ensemble of rays.
Then we applied the theory of optimal control on PDEs to produce a method
that computes locally optimal optics. We demonstrated that both GRIN and
freeform surface optimisation can be handled. Moreover, our method optimises
on phase space and works for nonzero étendue problems. This as opposed to,
e.g., Monge-Ampère based methods that only work with the lower-dimensional
distributions and for zero étendue. Our numerical experiments involved optimis-
ing the optics in such a way as to produce an output close to a desired output.
The closeness was measured using both the L2-distance and the square of the
difference of moments. All examples showed a decrease in the objective value
of over 75%. However, they also show that the optimised optic is somewhat
sensitive to which objective is used. We believe the framework we proposed has
an awesome potential, as in principle any design constraint can be handled and
any number of control inputs can be used. It will be up to the mathematicians
and engineers down the road to explore the full range of possibilities.



Appendix A

Critique of symplectic
integrators in geometric
optics

Symplectic integrators are methods that are especially designed to numerically
solve Hamilton’s equations in a way that preserves structure on phase space [31].
One property of such integrators is that an approximate Hamiltonian is exactly
preserved, provided the original Hamiltonian is preserved. It’s a natural and
sound idea to preserve as many properties of the physical system as possible.

In high-dimensional physical systems, such as many-particle systems, a con-
stant Hamiltonian defines a hyperplane in phase space [12]. Often though, such
systems are also chaotic, for instance in astronomy and molecular dynamics. The
hyperplane defined by the constant Hamiltonian therefore defines the physical
states that the system can reach from the initial condition.

Especially when integration happens over relatively long periods, it’s useful
to be able to constrain the system to physically relevant solutions. A simple
example would be a satellite in orbit: the orbital energy is conserved when using
a symplectic integrator, so at least the integrator keeps the satellite in roughly
the correct orbit. Using other integrators would result in nonphysical energy
loss or gain.

Thus, symplectic integrators are typically useful under two conditions:

1. The Hamiltonian is preserved in the original system.

307



308 APPENDIX A. CRITIQUE OF...

2. Time integration is required over extensive periods.

However, in numerical analysis, like many other fields, there’s no free lunch [181].
If your fancy integrator exactly preserves something, it will be worse in other
ways. In terms of Fourier analysis, symplectic integrators exhibit no dissipation,
but provide a large phase error [35]. Even in astronomy or molecular dynamics,
whenever one of the above conditions isn’t met, other integrators are used that
are more well-rounded in terms of performance, such as the standard-issue RK4
method [182].

Typical problems in illumination optics satisfy neither condition. The Hamil-
tonian is usually not preserved in the illumination setting, see Section 1.2.4. This
is only true when the refractive index doesn’t depend on z, a rather rare situ-
ation. Typical illumination systems have curved mirrors or freeform surfaces,
hence there’s no axis along which the refractive index is constant. Finally,
integration lengths are typically short. The aspect ratio of optics used in illu-
mination systems is usually smaller than ten or so. Nowhere near the giga-year
evolution problems astronomers would use a symplectic integrator for [183].

Using a symplectic integrator for illumination optics therefore only makes
sense in one specific case: guides. Guides are defined as optics with an axis along
which the refractive index profile is constant, e.g., fibre optics. Even then, some
guides are quite short, such as the elliptical guide we’ve used as a lens in Chap-
ter 13. Guides are sometimes employed in fibre optics communication, in which
case we’d want to know how the light behaves over long distances. Hence, for
fibre optics it would indeed make sense to use symplectic integrators. For other
types of optics, however, using a symplectic integrator is simply unnecessary.
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Matrix-free GMRES

We discuss here briefly the generalised minimal residual method (GMRES) and
its matrix-free version for those who aren’t intimately familiar with numerical
linear algebra. For a detailed discussion of that topic, we refer the reader to the
excellent textbook of Saad [155] and his original paper on GMRES [184].

GMRES is an iterative method for solving linear systems, i.e.,

Ax = b, (B.1)

where A ∈ Rm×m is a large sparse matrix, the right-hand side b ∈ Rm is a given
vector and m is the dimension. Our aim is to iteratively find a vector x ∈ Rm
that satisfies the system (B.1). GMRES is a Krylov subspace method, which
means a basis of a subspace is built by consecutive multiplications with A, so
that at the nth iteration we have

Kn = {b, Ab, A2b, . . . , An−1b}. (B.2)

If we’d naively choose b, Ab, A2b, . . . as our basis, it would quickly become close
to linearly dependent, as the vectors converge to the eigenvector belonging to
the largest eigenvalue in magnitude. To counter this, we orthogonalise each new
vector that’s added to the basis with respect to the ones we already have. This
results in what’s known as Arnoldi iteration, described in Algorithm 11.

Arnoldi iteration can be interpreted as the numerically stable Gram-Schmidt
procedure where each new direction is obtained by a matrix multiplication with
A. The projection coefficients hj,k are stored in an upper Hessenberg matrix

H̃n−1 ∈ Rn×(n−1). The basis vectors are arranged in a matrix Qn = [q1, . . . ,qn],
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Algorithm 11 Arnoldi iteration

q1 ← b
‖b‖

for k = 2, 3, . . . , n do
qk ← Aqk−1

for j = 1 to k − 1 do
hj,k−1 ← qTj qk
qk ← qk − hj,k−1qj

end for
hk,k−1 ← ‖qk‖
qk ← qk

hk,k−1

end for

so that Qn ∈ Rm×n. By construction, the matrix Qn is orthogonal, so that
QTnQn = Im, where Im is the m × m identity matrix. Moreover, from the
Arnoldi iteration, we see that matrix Qn satisfies the relation

AQn = Qn+1H̃n. (B.3)

This observation together with the fact that Qn is orthogonal form the founda-
tion of GMRES.

As the name suggests, GMRES minimises the residual ‖Ax−b‖, where the
minimisation is performed over the Krylov subspace Kn. Thus, as an approxi-
mation to x, we set

xn = Qnyn, (B.4)

where yn ∈ Rn. Clearly, as n approaches m, the Krylov subspace will grow
until eventually we have Km = Rm and the minimisation results in the exact
solution. However, for n < m, we aim to find a yn that minimises

‖Axn − b‖ = ‖AQnyn − b‖ = ‖Qn+1H̃nyn − b‖ = ‖H̃nyn − βe1‖, (B.5)

where we’ve applied (B.3) and the fact that Qn+1 is orthogonal. We’ve also
defined the constant β = ‖b‖ and e1 ∈ Rn+1 is the vector where the first
component is 1 and all others are 0. Thus, minimising the residual in the
Krylov subspace reduces to the following minimisation problem,

min
yn∈Rn

‖H̃nyn − βe1‖. (B.6)

This problem can be efficiently solved by keeping track of a QR-decomposition
on H̃n during the Arnoldi iteration by means of Givens rotations. We’ll not go
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into those details here, but we urge the reader to pick up the aforementioned
textbook if their interest is peaked.

B.1 A matrix-free version

Suppose now that, for whatever reason, we don’t have access to the matrix A,
but we know its effect on a vector input. In Chapters 13 and 14, we saw an
example of this, where a linear operator was defined by the solution to a PDE.
After some discretisation technique, the numerical solution can be represented
as a vector, while the discretised linear operator remains linear. Hence, we’re
given a function F : Rm → Rm, where F is linear so that F (cv) = cF (v) and
F (u + v) = F (u) + F (v), for c ∈ R and u,v ∈ Rm.

Now, we consider the linear system represented by

F (x) = b, (B.7)

and we ask the question of how to solve it. Any method that calls the transpose
matrix AT won’t work, since we don’t have access to it. Therefore, methods like
BiCGSTAB cannot solve (B.7). However, we note that GMRES only references
A itself and at that only requires products of A with some vector. Hence, we
can simply replace the matrix-vector product that’s used in Arnoldi iteration
to obtain a matrix-free version, resulting in Algorithm 12.

Algorithm 12 Matrix-free Arnoldi iteration

q1 ← b
‖b‖

for k = 2, 3, . . . , n do
qk ← F (qk−1)
for j = 1 to k − 1 do

hj,k−1 ← qTj qk
qk ← qk − hj,k−1qj

end for
hk,k−1 ← ‖qk‖
qk ← qk

hk,k−1

end for

The rest of matrix-free GMRES is exactly the same as the above version. In
particular, Algorithm 12 still produces an orthogonal matrix Qn and an upper
Hessenberg matrix H̃n−1. The relation between iterations (B.3) now translates



312 APPENDIX B. MATRIX-FREE GMRES

to
F (Qn) = Qn+1H̃n, (B.8)

provided we interpret F (Qn) as applying F column-wise to Qn. Minimising
the residual in the Krylov subspace Kn still entails (B.4), while (B.5) is slightly
altered to read

‖F (xn)− b‖ = ‖F (Qnyn)− b‖ = ‖F (Qn)yn − b‖ = ‖Qn+1H̃nyn − b‖,

from which we again find that yn should satisfy (B.6).
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Summary

The research explores the applications of Hamiltonian optics on phase space.
The focus is on nonimaging and illumination optics, i.e., the design and analysis
of optical systems for illumination. The outset was to find a viable alternative to
ray tracing methods, which are the current industry standard. The alternative
examined in the work is aimed on Liouville’s equation, a hyperbolic PDE. Ray
tracing and Liouville’s equation can be viewed as two sides of the same coin. Ray
tracing represents the Lagrangian side of light while Liouville’s equation is the
corresponding Eulerian description. This may be interpreted providing local,
Lagrangian, information versus global, Eulerian, information. In illumination
optics, global information is usually desired, for instance the light distribution
in a room.

The Eulerian approach is argued to be faster, though it sacrifices precise path
information of individual rays. The catch with Liouville’s equation, however,
is that typical optical systems have discontinuous refractive index fields, e.g.
lenses and mirrors. Hence, standard numerical solvers for hyperbolic PDEs
will typically fail. In this work, several solvers are constructed to deal with
these difficulties. The results show that if local information is not required,
high-order solvers for Liouville’s equation dramatically outperform ray tracing
methods. They are both faster and more accurate by orders of magnitude. The
Liouville solvers are able to provide a level of accuracy in seconds where ray
tracing methods would take hours.

The upshot of the increase in speed and accuracy are new possibilities for
applications. For example, return times for optical designers are shorter, allow-
ing more iterations in the design process. The last part of the research looks
into the design of optical systems by applying optimal control theory to Liou-
ville’s equation. The refractive index field or the shape of an optical interface is
interpreted as an open-loop control input. This provides a broad paradigm for
customisation of the full phase space distribution of a lighting system.
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rate of convergence, 59
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