
- 1  -

DIGITAL SIGNAL PROCESSING ALGORITHMS AND STRUCTURES 

FOR ADAPTIVE LINE ENHANCING

CHAMBERS Jonathon Arthur

A thesis submitted for the

Degree of Doctor of Philosophy of the University of London

and the

Diploma of Membership of Imperial College

May 1990

Electrical Engineering Department 

Imperial College of Science, Technology and Medicine 

University of London



- 2 -

To my wonderful mother
and the memory of my father



- 3 -

L’6ducation nous faisait ce que nous sommes 
C.A. Helv6tius



- 4 -

ABSTRACT

In this thesis digital signal processing algorithms and structures for adaptive 

line enhancing are examined and extended. The main contributions include the 

use of various forms of recursive filter structure for the realisation of an adaptive 

line enhancer, the derivation of the necessary algorithms for their adaptation and 

simulation studies to validate their performance.

The thesis begins with a study of the algorithms available for the adaptation of 

the conventional nonrecursive structure of the adaptive line enhancer. The 

adaptation of a nonrecursive filter structure is then shown to be sub-optimal for 

modelling a highly selective frequency transfer function, as necessary in adaptive 

line enhancing. This provides the motivation for the inclusion of specific 

additional fixed filter sub-blocks within the adaptive line enhancer. The 

adaptation algorithm for the new filter structures, formed with the extra filter 

sub-blocks, is equivalent to that for the basic nonrecursive filter structure. The 

application of the sub-blocks is shown theoretically, and by simulation, to improve 

the convergence properties and the noise reduction performance of the adaptive 

line enhancer.

The problems associated with the adaptation of a recursive forward prediction 

filter are then detailed, and structural constraints are given as a method by which 

such difficulties can be overcome. The adaptive notch filter is therefore 

introduced, and innovative structures proposed for its realisation. These 

structures have both a signal enhancement and a frequency tracking output. 

Multiple frequency tracking and line enhancement can be achieved with a cascade 

of such structures. In the derivation of the gradient terms necessary to adapt these 

new structures much simplification is possible due to the particular structure 

chosen for the adaptive notch filter. Simulation studies verify the performance of 

these adaptive notch filters.

Multirate adaptive line enhancing techniques are considered and applied to 

improve further the performance of such recursive adaptive line enhancers.
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STATEMENT OF ORIGINALITY

The following aspects of the thesis are believed to be original:

1. The integrator interpretation of the least mean square algorithm extended to 

other forms of the least mean square algorithm family disclosed in section 

2.2.3.

2. The concept of the replacement of the delay elements with the specific fixed 

filter forms as detailed in chapter III and the verification that the LMS 

family of algorithms can be used, without modification, to adapt a sub-set of 

the parameters of these new filter structures in section 3.1.1.

3. The inclusion of additional real and complex all-pass filter sub-blocks within 

the adaptive line enhancer as detailed in section 3.2.1; the analysis of their 

effect on the error performance surface in section 3.2.2; and their simulation 

in section 3.2.3.

4. The incorporation of real and complex orthogonal set filter sub-blocks into 

the adaptive line enhancer as described in section 3.3.1; their simulation with 

a normalised least mean square algorithm in section 3.3.3; and the 

examination by simulation of the effects of errors in the selection of the 

pre-set parameters in section 3.4.

5. The development of the band-pass transfer function structure implicit within 

the optimal forward prediction error filter as in equation (5.2), which 

provides the motivation for the various band-pass filters used to form an 

adaptive notch filter.

6. The adaptive NFA structure developed in section 5.3.2 with orthogonal 

bandwidth and notch tuning parameters; the simplification in its gradient 

term derived in equation (5.34); the establishment of a connection with a 

structure proposed by R.A. David; and the verification of its performance by 

simulation in section 5.4.
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7. The adaptive NFB structure proposed in section 5.3.2 with orthogonal 

bandwidth and notch tuning parameters; the considerable reduction of the 

necessary gradient term derived in equation (5.36); and the validation of its 

performance through simulation in section 5.4.

8. The provision of a line enhancement output in the NFB structure in section 

5.3.2; and the relationship shown with the structure of T. Kwan and K. 

Martin in equation (5.26).

9. The formulation of the gradient terms necessary for the cascade of the NFB 

structure in equation (5.41); and the simulations of the cascade structure in 

section 5.4.

10. The development of an auxiliary channel in the multirate adaptive line 

enhancer in section 6.2.2.

11. The proposal of a multirate HR adaptive line enhancer with the application 

of the NFB structure and its simulation in section 6.3.1.
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CHAPTER I Introduction

There are many applications in Electrical Engineering where a narrow-band, 

information bearing, signal is concealed in additive broad-band noise. This occurs 

in Communications [1] when channel and receiver noise are added to a narrow- 

band information signal, or similarly in Radar [2] when weather and bird clutter 

are added to a narrow-band target echo signal. Therefore, signal processing 

techniques can be usefully employed to separate the narrow- and broad-band 

components on the basis of bandwidth. Such signal processing techniques can be 

applied to either continuous-time or discrete-time signals. In this thesis, however, 

due to the important advantages of digital signal processing [3], for example 

accuracy and flexibility, all signals are assumed to be available in a discrete-time 

form.

A representative narrow-band signal is a sinusoid which may contain 

information in its amplitude, frequency, or phase; or some combination of these. 

A sinusoid is the limiting case of a narrow-band signal as it has a line spectrum. 

When such a signal is buried in broad-band additive noise, and a priori knowledge 

of the frequency of the sinusoid is available, fixed filtering techniques can be used 

to reduce the level of the noise. However, when the frequency is unknown, or 

time-varying, fixed filtering is unsuitable and hence, some other method must be 

found. One such technique is adaptive filtering where information contained in 

the input of the filter is used to adjust its response so as to attenuate the additive 

noise and to pass, unaltered, the sinusoidal information bearing signal. An 

adaptive filter structure designed to pass the signals in its input with line spectra, 

and attenuate the additive broad-band noise, is named an Adaptive Line Enhancer 

(ALE) [4].

The ALE conventionally has a Finite Impulse Response (FIR) transversal filter 

structure. Such a structure is not well-suited to the task of the removal of a low- 

level sinusoid from additive broad-band noise since a highly selective filter 

transfer function is required. However, highly selective transfer functions are 

well-modelled with an Infinite Impulse Response (HR) filter structure, but the
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adaptation of IIR filters is considerably more difficult. Therefore, it is the 

purpose of this thesis to propose new digital signal processing algorithms and 

structures for IIRALEs which overcome the difficulties inherent in IIR adaptive 

filters.

1.1 The Conventional Adaptive Line Enhancer

Si  gnaI Inpu t x ( k )

Figure 1.1. The conventional adaptive line enhancer

In Figure 1.1 the conventional ALE structure is shown and it is assumed that 

the filter has a transversal structure. The input signal, x(k), consists of the sum of 

a number of sinusoids in additive, zero-mean, broad-band noise. This signal also 

forms the input to the FIR filter structure after it has passed through a fixed 

decorrelation delay. Such a delay is included to decorrelate the broad-band noise 

component which appears at the input to the FIR filter from that present in the
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desired response. The range of values over which the correlation function of a 

signal is nonzero is denoted as the correlation radius [5] and it is inversely 

proportional to the bandwidth of the signal. Thus, it is the difference between the 

small correlation radius of the broad-band noise and the essentially infinite 

correlation radius of a sinusoidal signal which is used to separate the signals. The 

output of the FIR filter, d(k), is subtracted from the desired response, d(k), to 

form an error output, e(k). The FIR filter acts as a forward predictor since its 

output is a prediction of the signal which appears in the desired response. Since 

the noise component of the signal within the transversal FIR filter is decorrelated 

from that which is present in the desired response, the FIR filter can only predict 

the sinusoidal components that appear in the desired response. Hence the output 

of the FIR filter, when its parameters are appropriately chosen, is an enhanced 

version of the input sinusoids. When the appropriate parameters of the FIR filter 

are unknown a learning algorithm is used to estimate their values from the input 

signal. This is the purpose of the adaptive algorithm. It takes as input the error 

output and adjusts the parameters of the FIR filter to minimise some performance 

metric, for example the mean square error. This adjustment is performed after 

each new error is calculated so that, with time, the parameters approach their 

optimum value. There are several different forms of adaptive algorithm which 

can be used but those used in this thesis can be generalised into the form

/  \  
N e w

P a ra m e te r
Va lues

( \ 
Old

P a ra m e te r
Va lues

+ S tep
Size

D ata
Vec tor

Error
S ign a l

where the step size is a value which controls the speed and accuracy with which 

the adaptive filter parameters reach their optimal values; and the combination of 

the data vector and error signal provide the direction in which to change the 

parameters.

Figure 1.2 shows a simulation of the conventional ALE with an input which 

consists of a single sinusoid in additive white gaussian noise. The Signal-to-Noise 

Ratio (SNR) is OdB, the step size parameter p, is 0.0001 and the transversal filter
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Adopt ive  F i I  ter Input

S crrp le  NuTfier Sarrple Nirrber

Figure 1.2. Conventional adaptive line enhancer simulation

length is 64. The simulation shows the signal enhancement properties of the 

ALE. Although not shown, the error output of the ALE, after convergence, 

consists largely of the broad-band noise. Therefore, the transfer function of the 

ALE from input to error output is that of a notch filter, whereas from input to 

line enhancer output is that of a highly selective band-pass filter.

1.2 Signal Properties and Correlation Functions

The operation of the ALE is integrably tied to the properties of its input 

signals. Therefore, some of these properties are considered. The input of an 

ALE, when composed of a single sinusoid and additive noise is given by 

x ( k )  = V l s i n { 2 ' n v 0k)  + n ( k )  for fcsO where v 0 is the normalized frequency of the 

sinusoid in the range v0 €[0,0.5]. Such a causal sinusoid can be generated by a
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filter as shown in Figure 1.3 [6] with the appropriate initial conditions 

x ( - =  — 2 t t v 0 )  and x ( - 2 )  =  s i n ( -  4 t t v 0 ) .

Figure 1.3. Filter structure for the generation of a causal sinusoid

Notice that the sinusoid is generated with a zero input driving term, e(k), applied 

to an autoregressive modelling filter with transfer function given by

W(2) V2 ( 1 . 1)

and therefore such a sinusoid is perfectly predictable. The poles of this filter are 

situated exactly on the unit circle at angles which correspond to the angular 

frequency of the sinusoid. It is a necessary and sufficient condition that a filter, 

which cancels a sinusoid, has its zeros located in the z-plane at the same positions 

as the poles in (1.1); a filter of this form is known as an inverse filter and has the
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same transfer function as that of the conventional ALE structure given in 

Figure 1.1 with D= 1 and the FIR filter set appropriately with two fixed 

parameters. The z-transfer function of the conventional ALE, from input to error 

output is given by

where A2(z) is the transfer function of a transversal FIR filter with length two 

which acts a forward predictor, and a0 = 2cos(2ttv0) and = -1  fixed to give the

required inverse filter. In this case the adaptive filter output d { k ) is given as

d ( k )  =  2 c o s ( 2 t t v 0) \ /r2 s i n ( 2 T T V 0 ( k — 1))  — V2sin(27rv0(fc— 2)) =  V2sin(27Tv 0 k )  ( 1 . 3 )

with the assumption that the noise term is zero. Thus the FIR filter has exactly 

compensated for the phase difference between the desired response and the signal 

at its output so that the error output is zero. In operation it is for the adaptive 

algorithm to find the appropriate parameters from the input signal and so 

minimise the mean squared error. The autocorrelation function (ACF) of such a 

sinusoid is obtained from

and is calculated to be r ( d ) = cos(2>nv0d )  with an essentially infinite correlation 

radius.

For the noise signal statistical averages are necessary. The noise input to the 

ALE is assumed to have zero first moment, i.e. E{n(k)}=0, where E{.} is the 

mathematical expectation operator, and finite second moment, i.e. E{n2(it)} < “ . 

The autocorrelation function (ACF) of the noise is calculated from

H ( z ) = 1 — z *A2(z) = 1 — a0z 1 — a \ z  2 ( 1 . 2)

(1.4)

r { d )  = jE{jc(fc)jc(A: — d)} (1.5)

and, for the white noise input is r(d) = a 28(d), where <r2 is the noise power and 

8(.) is the discrete delta sequence, and so shows the zero correlation radius of the 

white noise. Therefore, when the noise is added to the uncorrelated sinusoid the
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input signal ACF can be represented as

r x ( d ) =  c o s i l i t V o d )  +  Gr^B(rf). ( 1 . 6 )

From (1.6) the power of the input signal is rx(0) = 1 + o-J which corresponds to 

the power of the desired response in the ALE. The autocorrelation values given 

by (1.6) represent the component terms, contained in the correlation matrices, 

used to obtain the solution for the optimal parameter set for the ALE, when the 

input consists of a single sinusoid in additive zero mean white noise.

1.3 A Historical Background

The historical development of linear least-squares estimation theory, a subject 

with close links to adaptive filter theory, and adaptive filtering has been 

documented by Kailath [7] and Haykin [8]. Their studies indicate that since 

earliest times man has been interested in the interpretation of observations to 

make estimations and predictions. The Babylonians for instance employed a 

rudimentary form of fourier series to this end. The onset of a theory of estimation 

however, is attributed to Galileo Galilei, who, in 1632, tried to minimise some 

functions of errors. Gauss was responsible for the next important milestone, seen 

as the inception point of linear least-squares estimation theory, when, in 1795, he 

first used the method of least-squares to study the motion of heavenly bodies. 

Later, argument arose as to whether Gauss or Legendre initiated the theory, but it 

is now accepted that Gauss was the pioneer.

The initial work to apply least-squares estimation to stochastic processes, was 

made by Kolmogorov, Krein and Weiner in the late 1930s and early 1940s. 

Despite the difference in their aims and the fact that they worked independently, 

there was some overlap in their results. Kolmogorov, inspired by Wold’s earlier 

work on the decomposition of stationary processes, developed comprehensively 

the prediction of discrete-time processes. The importance of Kolmogorov’s work 

in the prediction of a scalar variable, in a stationary environment, was emphasised 

by Masani. He wrote "So thorough had been Kolmogorov’s treatment of the 

univariable in the discrete case that there is little left to do" [7].
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Krein recognised the relationship between Kolmogorov’s work, and some 

earlier results on orthogonal polynomials by Szego. This observation led him to 

make application of bilinear transformations, and extend the results to 

continuous-time. However, Norbert Wiener, would seem the true father of 

linear-least squares estimation in engineering; Shannon acknowledged that "Credit 

should be given to Professor N. Wiener, whose elegant solution of the problems 

of filtering and prediction of stationary ensembles has considerably influenced the 

writer’s thinking in the field." Wiener’s work, solved certain anti-aircraft fire- 

control problems, and provided a solution to the continuous time linear prediction 

problem. He derived an explicit formula for the optimum predictor. 

Furthermore, he considered the filtering problem of the estimation of a process in 

an additive noise process. Wiener’s explicit formula was in terms of an integral 

equation, which is known as the Wiener-Hopf equation. This equation arose first 

in astrophysics, in 1894, and therefore had been widely studied. Norman 

Levinson, in 1947, formulated the classical Wiener filtering problem in discrete

time. When couched in terms of discrete-time signals, the Wiener-Hopf integral 

equation is in a matrix form, and is known as the normal equation, namely

^ xx  &opt ~  £xd > ( 1 • *7)

where R^ is the autocorrelation matrix of the FIR filter input vector z ( k - D ) ,  i.e. 

R ^  E { z ( k -  D ) x ( k -  D ) ' }  with z ( k - D ) ' = [ x ( k - D ) , x ( k - D - l ) , . . . , x ( k - D - N + \ ) ] ,  N is 

the tap length of the transversal FIR filter, and (.)r is a vector transpose; is the 

cross-correlation vector between the FIR filter input vector z ( k - D )  and the 

desired response d(k), i.e. E { z ( k - D ) d ( k ) } ;  and a^pt is the parameter vector of 

the optimum Wiener filter in transversal form.

The solution given by (1.7) is termed as a normal equation because of a 

fundamental characteristic of optimal filters in the least-squares sense [9]; namely, 

in a geometric sense the estimation error e(k), is normal to the vector which 

represents the filter output d { k )  as in Figure 1.4. Additionally, the filter input 

data z ( k - D ) ,  used to form the output d(Jfe), is orthogonal to the estimation error, 

and this result is known as the "principle of orthogonality". The vector d(k)
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Figure 1.4. Geometric representation of the normal equation

represents the desired response. Underlines represent vector quantities and capital 

letters denote matrices.

If the statistics of the input data are stationary, then the correlation matrix R** 

is Toeplitz, named after the mathematician O. Toeplitz. A square matrix is 

Toeplitz if all the elements on its main diagonal are equal, and if the elements on 

any other diagonal parallel to the main diagonal are equal, and Levinson, 

exploited this property to find a recursive procedure for the solution of the normal 

equation. His motivation to formulate the algorithm was to see the effect on the 

filter output error of increased filter order. He did not want to resolve the normal 

equation for each new order, but rather to use the results for filter order N-l, to 

calculate the results for filter order N, i.e. to form a recursive algorithm [10]. In 

1960, Durbin rediscovered Levinson’s recursive algorithm, when he fitted scalar
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time-series data to autoregressive models. After that, Whittle, in 1963, deduced 

that there is close affinity between the Levinson-Durbin recursion and that for 

Szego’s orthogonal polynomials. An unusual property of these polynomials is that 

unlike the classical orthogonal polynomials defined on a straight line, Szego’s 

polynomials are defined on a circle, and to obtain a recursion for their generation 

two auxiliary polynomials must be introduced.

Further major development in terms of least-squares estimation was delayed 

until the late 1960s. The work, which immediately followed Wiener’s and 

Kolmogorov’s, was inappropriate for application to overcome the shortfalls 

evident in the precedent theory, i.e. assumption of stationarity, requirement of an 

infinite amount of available data, and the restriction to scalar quantities. 

Therefore, in the late 1950s, with the advent of the space age; when it was 

necessary to determine satellite orbits, from vector observations composed of 

position and velocity measurements, which were accumulated with each pass of a 

satellite; the requirement for a new algorithm, and approach was evident. 

Although Swerling was first to propose a new algorithm, it was Kalman, who 

developed a more restrictive algorithm and therefore provided the solution to the 

particular space age problem. Kalman’s first solution was for the discrete-time 

problem, but later, in collaboration with Bucy, a continuous-time solution was 

formulated, which is known as the Kalman-Bucy filter. Later, Kailath derived the 

solution to the linear filtering problem, i.e. the Kalman filter, with the use of the 

innovation approach. Innovation, which denotes newness, represents the 

whiteness of a process. Thus a true innovations process contains only new 

information, and therefore the design of a Kalman filter can be targeted to force 

the error signal to be an innovations process. Furthermore, this whiteness can be 

tested, and used to tune the Kalman filter [11].

The first work on adaptive filters was in the late 1950s when many independent 

researchers worked on their various application. At Imperial College Gabor [12] 

worked on a universal non-linear filter which optimised itself by a learning 

process, and Widrow and Hoff [13] considered the application of an adaptive filter
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to a pattern recognition problem. Out of Widrow and Hoff’s scheme, named the 

adaptive linear threshold logic element, came the LMS algorithm. They used the 

LMS algorithm as a simple technique to adapt a conventional transversal filter. 

The LMS algorithm has its theoretical origin in stochastic approximation theory, 

developed by Robbins and Monroe [14], for the solution of certain statistical 

sequential parameter estimation problems. Therefore, the LMS algorithm is 

sometimes referred to as a stochastic gradient method; because, on the average, it 

moves down the error performance surface, i.e. the mean squared error as a 

function of the filter parameters, in the direction of the true negative gradient. 

The essential difference between the stochastic approximation method, and the 

LMS algorithm, is that the former uses a reducing step size parameter. The 

reason for this is that if the step size decays to the zero any adaptive capacity is 

lost, which would prohibit operation in a statistically nonstationary environment. 

Sakrison [15] notes that the use of a Newton search direction would improve the 

convergence properties of stochastic approximation methods.

In 1974, Godard applied Kalman filter theory to the development of an 

adaptive filter algorithm for a transversal FIR filter. Although he was not the 

first researcher to do this, his approach is regarded as the best. The RLS 

algorithm, obtained from the deterministic method of least-squares, has been 

derived by many researchers, but Plackett is recognised as the first [16]. These 

two methods suffer from a high level of computational complexity, although they 

frequently offer much faster convergence. Therefore, much effort has been 

expounded on the reduction of their complexity. The theoretical scene was set by 

Morf in 1974, who solved the deterministic dual, that parallels the stochastic 

problem which Levinson solved. Some forms of such fast algorithms are the Fast 

Kalman algorithm [17] and the FTF algorithm [18].

In signal processing the concept of the design of an adaptive HR filter which 

minimises a mean square error criterion first appeared in the mid 1970s [19,20], 

whereas the stability theory approach to the derivation of algorithms for the 

adaptation of HR filters was initially considered in the late 1970s and the early
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1980s [21].

1.4 Structure of the Thesis

This chapter has introduced the goal of the thesis which is to propose new 

digital signal processing algorithms and structures for adaptive line enhancing. 

The conventional form of the ALE structure is explained and some properties of 

the input signals are discussed. A short history of least-squares estimation and 

adaptive filtering is given as a background to the work.

Chapter II details the algorithms available for the adaptation of FIR structure 

ALEs. These consist of two main algorithm families, namely the Least Mean 

Square (LMS) and the Recursive Least Squares (RLS) types of algorithm. The 

necessary derivations are included along with connections to the principle of 

orthogonality. Some algorithm convergence results and their implications are 

analysed. The numerical and complexity issues of the algorithms are then 

considered, which leads to various algorithm modifications and parameter 

selection values. Additionally, a comparison of the two families of algorithms is 

made. Simulations are included to verify the comparison.

Chapter III is motivated by the fact that the transfer function of the FIR filter, 

within the conventional ALE, attempts to model a highly selective transfer 

function centred at the unknown sinusoidal input frequency. The chapter 

introduces new methods by which the operation of the conventional FIR can be 

improved, through the replacement of the delay elements within the tapped delay 

line structure of the ALE with specific fixed filter sub-blocks. These filter sub

blocks provide poles within the overall transfer function of the adaptive filter 

which, in combination with the adapted zeros, improve the modelling of the 

required transfer function. The filter sub-blocks are of two specific forms: firstly 

in the form of either real or complex all-pass filters which represent frequency 

transformations and, secondly in the form of real or complex filters which realise 

a set of functions which are orthogonal on the unit circle. The derivation of the 

filters which generate the orthogonal-set is included. The effect of the sub-blocks
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on various aspects of the adaptation algorithm is considered. Specifically, it is 

shown that the same algorithms as introduced in Chapter II can be used, without 

modification, to adapt these HR structure ALEs. The simulations which are 

presented show that the inclusion of such filter sub-blocks offer a reduction in 

both the convergence time and the mean square error. Finally, the important 

issue of the selection of the parameters within the additional filter sub-blocks is 

discussed and sensitivity studies are included to evidence the effect of errors in 

their a priori settings.

Chapter IV proceeds to examine algorithms for HR structure adaptive line 

enhancers. The special problems that pertain to HR adaptive filters are 

enumerated. The derivation of the Recursive Least Mean Square (RLMS) 

algorithm follows, and much attention is paid to the issue of gradient generation. 

Variants of the RLMS algorithm are introduced which compensate for the 

nonuniformity of the error performance surface. Next Newton and other types of 

algorithm are developed for IIR adaptive filters.

Chapter V shows that one method, by which some of the problems of IIR 

adaptive filters can be mitigated, is to constrain the filter structure. The optimal 

line enhancer, from input to error output, is recognised to have a notch transfer 

function. Therefore, it is shown that an IIR filter can be suitably constrained as a 

notch filter with adaptable parameters, which control the notch frequency and 

bandwidth, and hence is given the name, Adaptive Notch Filter (ANF). Several 

forms of ANF are detailed and then structurally lossless bounded real all-pass 

filter sections are employed to create two novel forms. These novel structures 

incorporate line enhancing and frequency tracking outputs. The frequency 

tracking output is obtained simply as a function of one of the ANF structure 

parameters. The structures are both shown to have parameters which allow 

orthogonal tuning of the notch frequency and bandwidth. Substantial 

simplification in the gradient terms are derived because of the mirror-image pair 

of polynomials present in an all-pass function. For one of the structures it is set 

out that by cascading the ANF sections multiple sinusoids can be tracked and
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because of the gradient simplification, the complexity of the overall gradient is 

low. Simulations are included to verify the performance of these new ANF 

structures for tracking both single and multiple sinusoids in broad-band noise. 

Additionally, for the line enhancement outputs, consideration is given to an 

important performance measure.

Chapter VI examines another method available for performance improvement 

of the ALE. This method, multirate adaptive line enhancing, is introduced as a 

technique which sub-divides the baseband spectrum before the conventional 

adaptive line enhancer, and is extended for use with an HR structure ALE.

Chapter VII concludes the thesis and includes suggestions for future work.
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CHAPTER II Algorithms for FIR Structure Adaptive Line Enhancers

This chapter aims to examine in depth the important adaptive algorithms for 

FIR structure ALEs. Firstly, as in Wiener filter theory, the mean squared output 

error of a forward linear prediction error filter, which has the same structure as 

the ALE, as a function of the filter parameters is considered. Then, the two main 

families of algorithms available for the adaptation of the ALE are separately 

derived and their properties discussed. The discussion includes convergence 

properties, numerical and complexity issues and the development of algorithm 

variants. The two families are compared and simulations included to confirm the 

theory.

2.1 The Mean Squared Error Criterion

The output MSE is the performance metric which is minimised in classic 

Wiener filter theory [8] and as a function of the sample index, k, is given by

J ( k )  = E { e \ k ) }  (2.1)

where J(k) is used to represent the MSE. For a D-step ahead forward prediction 

error filter, as shown in Figure 2.1, the error term is given by

N - \
e ( k )  = d ( k )  — d ( k )  = d ( k ) — 5) a mx ( k — D  — m )  (2.2)

m =0

which can be written more compactly in terms of vector notation. Define the 

adaptive filter data vector and parameter (weight) vector to be

x ! ( k - D ) = [ x ( f c - D ) , ; c ( f c - . D - l ) , . . . , ; t ( I - D - i V + l ) ]  an d

where N is the tap length of the transversal FIR filter, so that (2.2) becomes

e { k )  = d { k ) -  a ' z i k - D )  . (2.3)

For the forward prediction error filter the desired response d(k) is equal to x(k). 

Next, the assumption that x(k) is a wide-sense stationary random process is made
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Input x ( k )

Figure 2.1. Forward prediction error filter structure

and with the substitution of (2.3) into (2.1) yields

J(k) = a j -  2a'rxd + âRxxCL (2.4)

where is the variance of the desired response, i.e. E{x2{k)}, r.^ is the cross

correlation vector between the FIR filter input and the desired response, i.e. 

E{z(k- D)x(k)}, and R^ is the autocorrelation matrix for the FIR filter input data, 

i.e. E{z(k-D)x!(k-D)}. Equation (2.4) represents an error performance surface 

for the forward prediction error filter in that it describes how the MSE varies with 

the filter parameters. The equation is a quadratic form which is characterized by 

the properties of the R^ matrix which for the random processes considered in this 

thesis, i.e. x(k) composed of the sum of a number of sinusoids and some additive 

broad band noise, is positive definite. Therefore (2.4) has a unique minimum for
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some value of a . To find the minimum differentiate (2.4) with respect to a to 

obtain

= -2r*, + 2fi«a , (2.5)da

and then equate the result to zero, which yields the normal equation as introduced 

in Chapter I, i.e.

^xx &opt £*d (2.6)

where OoPt is the optimum weight vector in the mean square sense. This result can 

also be obtained by the completion of the square in (2.4) to yield

J(k) = ~ r!dxRxx~lZdx + (fl -  ~ &opt) (2.7)

which shows that the minimum MSE at the output of the forward prediction error 

filter is given by the first two terms on the right hand side of (2.7). When (2.5) is 

set to zero another fundamentally important property of the Wiener solution can 

be shown. Use the definition of and R„ to write

Rxx Ocpt -  Lxd = E { z ( k - D ) z ‘(k-D)}aopt -  E{&{k- D)d(k)}  (2.8)

= "  E { e ( k ) z ( k - D ) }  = 0 ,

which with simplification shows that the error, e(k), is orthogonal to the data 

contained within z ( k - D )  when the FIR filter parameter vector is fixed at a^pl. 

Therefore all the data used to form the prediction of d(k) is orthogonal to the 

error e(k), i.e. the principle of orthogonality.

This result can be used to show that the prediction error output e(k) from an 

optimal linear prediction error filter is uncorrelated provided that the length of the 

transversal filter is sufficient [22]. As the length N of a one-step ahead forward 

prediction error filter, i.e. D = l, with an assumed arbitrary wide-sense stationary 

input process, tends to infinity, e(k) is uncorrelated with all x(m) for m<k by the 

principle of orthogonality. Then, as all e(m), m<k are linear combinations of 

samples of x(k) it follows that E{e(k)e(m)} = 0 for m<k, and because the order
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of the argument in the expectation is not important the inequality m<k can be 

replaced by j±k.

Application of Parseval’s theorem [23] and the z-transform transfer function 

for the FIR filter, within the forward prediction error filter, yields a second 

expression for the MSE which is equivalent to (2.4) namely

m  = ^ / i i  -  z -DAWoop-f>„(*)— . (2.9)2tt j  c  z

where ^ ( z )  is the power spectrum of the wide-sense stationary input, and AN(z) 

is the z-transform of the parameter vector of the FIR filter within the forward 

prediction error filter. With the replacement of z with e'2™, where v is the 

normalized frequency a similar expression can be written but in terms of the 

frequency transfer function of the forward prediction error filter, i.e.

1
2

/(*) = /  . (2.10)
2

For a particular example input that consists of a sinusoid and additive broad-band 

noise, i.e. x(k) = V2sin{2w0k) + n(k), (2.10) can be written as

2

/(*) = |l - « “;'27tVeD/lA,(«;‘2,TVo)|2 + cr2 /  \ \-  e ~ ^ vDAN{e^vv)\2dv , (2.11)
_ j_

2

which shows that the MSE has two components, one due to the sinusoid and a 

second due to the noise. If the noise component is zero then the MSE J(k) could 

be set to zero, provided N is at least 2 i.e. equal to the number of degrees of 

freedom in the sinusoid, with a choice of AN (z) such that 1 - e~j2vv°DA ^ e ^ 0) = 0. 

However when the noise term is nonzero the optimal setting for ^ 0Pf(c;l7IV<’), 

namely the Fourier summation transform of â p,, is a compromise between the 

removal of the sinusoid component and an increase in the noise component. The 

noise component can also be written as



- 36 -

»\[1  +  2X «] ( 2- 12)
m =0

and clearly evidences that nonzero values for the FIR filter coefficients increases 

the noise component in the output error. When the transfer function of the FIR 

filter An (z) = 0, i.e. all the parameters are set to zero, (2.11) gives J(k) = 14- 

<rn2 which is the power of the desired response. As an example when N=2 and 

the delay D= 1 equation (2.11) is written as

J ( k )  = | l - e' j2”vM2(£^ v-)P + a 5 (l+ ao2+ ai2) (2.13)

which has optimal Wiener solution [6] as a function of o-J given by

flo op t  =  2 c o s ( 2 t t v 0 )

s in 2( 2 i r v 0) - f

s in 2(2-rr v 0)  +  or„2(2 4 - ct„2)

t r „ 2 ( 1 4 -  t r n2 4- 2 c o j 2 ( 2 t t v 0 ) )  

( 1 4 *  ct n2) 2 -  c o s 2(2'irv0)

(2.14)

When the noise power is zero clearly a0opl = 2cos(2ttv0) and a lopt = -1 which 

means that the transfer function of the forward prediction error filter 

A2(z) = 1“ aooPtz ~1~ a \oPtz ~2 has zeros in the z-plane at e ±J'2nv°, and so cancels 

exactly the sinusoid. When the noise is nonzero the zeros are found always to be

complex when — v 0 — is satisfied [6] or, when v a is outside of that range theO O

zeros are either complex or real, dependent upon the level of the noise. However 

the further these zeros move away from the unit circle the less effectively the 

sinusoid is removed. Thus the length of the FIR filter must be increased or the 

structure of the prediction error filter changed altogether, and an HR filter used.

Automatic methods to find the optimum parameters for the FIR forward 

prediction filter from the information present within the input data, without an 

explicit solution to the normal equation (2.6), are necessary. Direct solution of

(2.6) is computationally demanding since the pertinent correlation values have to 

be estimated for R^ and r̂ d, and the solution of the normal equation must be
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found, which uses some matrix inversion technique. Adaptive algorithms, 

however, use iterative methods to solve (2.6), or its deterministic counterpart, 

automatically from only the available input data as it arrives sequentially in time. 

Therefore the Least Mean Square (LMS) and Recursive Least Squares (RLS) 

families of algorithm which have such characteristics are covered.

2.2 Least Mean Square (LMS) Algorithm Family

The purpose of an adaptive algorithm is to hunt out, and possibly track when 

the input signal is not statistically stationary, the optimum filter parameter vector 

Oopt given by (2.6). The method of steepest descent is the basis on which the LMS 

family of algorithms is developed [8,22,24].

2.2.1 LMS Algorithm Derivation from the Method of Steepest Descent

The method of steepest descent seeks out the minimum of the error 

performance surface by moving always in the direction of the maximum negative 

gradient. An initial value is used for the filter parameter vector a to start the 

algorithm, followed by the repeated application of the recursion

= (2.15)
2 a=a(k-1)

until convergence to within a certain tolerance is reached. -  W - is the gradient
da

of the performance surface as a function of the parameter vector which is 

evaluated at the position of the current parameter vector a(Jfc-l), and p, is the step 

size parameter. This algorithm is satisfactory in optimisation theory, where the 

exact gradient is assumed known. However, inspection of the gradient term given 

in (2.5) shows that exact knowledge of ẑ x and Rxx is required. Should this 

knowledge be available, an adaptive filter would be superfluous, since a fixed 

filter could be used. Therefore to derive the LMS algorithm assume that the exact 

statistics can be replaced by their instantaneous estimates, i.e.
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Lxd ~  E { x . ( k ~  D ) d ( k ) }  is e s t i m a t e d  b y  = z ( k - D ) d { k )  and (2.16)

R „  — E { & ( k — D ) x ! ( k — D)} i s e s t i m a t e d  b y  R xx =  z ( k  — D ) x ! ( k  — D )

where the caret (:) represents the estimate of a quantity. Although these estimates 

have the desirable property that they are unbiased they have large variances; 

however, in operation, the algorithm smooths the estimates given in (2.16). 

Therefore the gradient is estimated by

= -2&(k-D)d(k) + 2z(k- D)x!(k- D)a(k-l)  (2.17)da

= -2&(k -  D)e(k) ,

and thus the LMS algorithm is given by

a(k) = a ( k - 1) + \hz(k-D)e(k) (2.18)

with the error calculated from

e{k) = x(k) -  a'{k-l)z(k-D)  (2.19)

and the initial value for a(0) usually chosen to be the null vector Q. The 

significance of the operation of the LMS algorithm is clarified by careful 

examination of (2.18). From the principle of orthogonality the optimum 

parameter vector occurs when the error is orthogonal to the data vector &(k-D) 

which is related to the adjustment term in (2.18). The adjustment term, i.e. the 

last term in (2.18), is an instantaneous estimate of the correlation between the 

error and the input data vector. Therefore, when the average of this term 

becomes equal to zero, the LMS algorithm should have reached the optimal 

Wiener solution. The word average is important since in operation this 

adjustment term is almost always, for nonzero inputs, nonzero and therefore some 

variation from the optimal solution can be expected. Such variation is known as 

weight vector, or gradient, noise, the size of which, as shown in the next section, 

is proportional to the step size parameter fi and the length of the adaptive filter N. 

The major advantage of the LMS algorithm is shown in (2.18) and (2.19); namely, 

its simplicity, since it can be realised with the same order of multiplications as a
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fixed FIR filter. A fixed FIR filter with N parameters requires N multiplications; 

whereas calculation of a fully adaptive LMS FIR filter as defined by (2.17) and 

(2.18) requires essentially 2N+1 multiplications.

2.2.2 LMS Algorithm Convergence Properties

Analysis of the convergence properties of the LMS algorithm requires that the 

input process x(k) is assumed to be wide-sense stationary. The first property of 

the LMS algorithm to be addressed is the convergence of the mean parameter 

vector. In order to facilitate this the LMS algorithm can be put in a very useful 

form by the combination of (2.18) and (2.19) to obtain

a(Jc) = (I-px.(k-D)x!(k-D))a(fc- 1) + iLx(k)z(k-D) (2.20)

and then expectations of both sides are taken, which yields

E { a ( k )} = E { ( I -  i L x ( k -  D ) z ' ( k - D ) ) a ( k -  1)} + \ i E { x { k ) z { k -  D ) }  . (2.21)

As the parameter vector a(Jfc-l) is updated with (2.18) it is dependent upon all the 

past input vectors z ( k - D - 1), z(k-D-2) , . . .  and therefore is not independent of all 

the data within z(k-D).  Hence, the first term on the right hand side of (2.20) is 

not separable [25], and therefore exact analysis of (2.21) is very difficult. 

However, if it assumed that the step size parameter p, is very small in comparison 

to the variance of x(k) then a(k) will vary slowly with time. Thus in steady state, 

i.e. when a(k) has approximately converged, it is not unreasonable to assume that 

there is little statistical dependency between a ( k - 1) and z(k-D).  In a low SNR 

application this is particularly true since z(k-D)  contains mostly noise. Therefore 

to make the analysis of (2.21) tractable the independence assumption is 

invoked [22]; namely that z(k-D)  is assumed to be independent of a(*) and (2.21) 

becomes

£{a(*)l ~  (f-M xx)£{fl(*-l)} + ^Lxd • (2.22)

Next, because Rxx is a real symmetric positive definite matrix it can be written as
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R „  =  M A M 1 (2.23)

with the use of a similarity transformation [26], where A is a real diagonal matrix 

composed of the eigenvalues of R^,

A = (2.24)

and M is an orthogonal matrix with columns composed of the associated 

normalized eigenvectors of R^, i.e. the first column of M is the normalized 

eigenvector which correspond to the first eigenvalue Xj and likewise for X2 through 

to \ N. Since M is an orthogonal matrix, then by definition M ~ 1 =  M {. It is next 

useful to define some transformed filter parameter vectors. A filter parameter 

error vector is given by

q(k) -  fl(*)-flop, (2.25)

namely the difference between the parameter vector at sample number k and the 

optimal Wiener solution, and a rotated parameter error vector as

q(k) = M*q(k) . (2.26)

The transformed data vector for the filter input is written as

£(*-£>) = Mfi(*-Z>), (2.27)

and, significantly, the correlation matrix of this transformed input is diagonal

E { i ( k - D ) g ( k - D )} = A , (2.28)

that is, the components of the transformed data vector z ( k - D )  are uncorrelated. 

From (2.22) after the subtraction of OoP, from both sides and with application of 

the definition in (2.25)

E{q{k)} ~ (7-!!,*«)£{£(*-1)} > (2.29)

and then by the premultiplication of (2.29) by M f and the use of (2.23) yields
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E { q {*)} «  ( / -  fiA) E { q { k -  1)} (2.30)

which represents the approximate, decoupled [27], propagation of the mean 

transformed parameter error vector. From the decoupled nature of (2.30) and 

through an inductive argument the solution of the individual terms of (2.30) is 

given by

*{*(*)}« (l~»iA,m*,(0)} (2.31)

where <y, represents the ith component in q .  In order for (2.31) to converge, the 

modulus of the term (1-jiX,) must be less than one, which sets a bound on the 

step size parameter p,; namely

0 <  |1 <  -2-  (2 .3 2 )
A-i

for all i. The tightest upper bound corresponds to the largest value for X,-, that is 

the maximum eigenvalue. Therefore, in order for the mean parameter error 

vector, i.e. E{q(k)} = M£{£(*)}, to converge exponentially to zero, p must satisfy

0 <  n <  - 2 -  . (2 .3 3 )
m̂ax

A time constant [27] can be fitted to the decay of the ith mode of the parameter

error vector, i.e. the time required for E{q((k)} to decay to — £{?/(())}, as
e

Ti "  !.(1—\ x , )  “  i  (2-34)

and with the assumption that ^ is small. From (2.30) written in a form similar to 

(2.31)

£ { £ ( * ) } =  (/-M - A )*E {£(0)} (2 .3 5 )

it is possible to return to the natural parameter vector coordinates, i.e. a(k), by 

premultiplication of (2.35) with M and the use of (2.25-6) to yield
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£{fl(*)} = a,,, + M(/-|iA)*Af'(a(t)-a„p,) (2.36)

and provided p, is chosen within the bounds of (2.33) the second term on the right 

side of (2.36) converges to zero as k-°°. Therefore the final mean value of the 

weight vector, £{a(°°)}, to within the applicability of the independence 

assumption, converges to the optimal Wiener solution. Notice from (2.31) it is 

the smallest eigenvector which is the slowest term in the convergence of the 

parameter error vector and that has the largest time constant as given by (2.34). 

However, the choice of p,, the step size parameter, is limited by the maximum 

eigenvalue as in (2.33) and as such it is not always possible to choose a step size 

large enough to give adequate convergence of all the modes of the parameter error 

vector, and at the same time to keep within the stability boundary. The larger the 

spread of the eigenvalues of the input autocorrelation matrix R^, known as the 

condition number of the matrix, that is

x(*„) = T 555- , (2.37)

the more difficult the selection of the p, parameter becomes. The condition 

number of a matrix is a measure of its invertibility, or more mathematically 

termed regularity. The closer a matrix is to singularity the higher this number 

becomes; a singular matrix has an infinite condition number. Moreover, the 

condition number of a Toeplitz autocorrelation matrix is related to the colouration 

of the process, that is the condition number tends to the ratio of the maximum to 

minimum power spectrum of the input process as the dimension of the 

autocorrelation matrix increases [22]

X m a x Sx( e j2rrv)A-max y '

kmin min„ /gj2.w\ 
y  x\ )

(2.38)

where Sx(e-/2,IV) is the power spectrum of the process x(k). Therefore, the more 

uneven the spectrum of the input to the LMS algorithm is, the more slowly the 

mean weight vector is likely to converge.
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The convergence of the output MSE is an issue to probe next. From (2.7) the 

minimum MSE for the ALE with coefficients fixed at the Wiener values is given 

by

Anin =0-5“ rtdxRxx lUx (2.39)

and the MSE as a function of the filter parameter vector becomes

m  = J m m + i m - o c p t y R M k ) - ^ ) . (2.40)

Equation (2.40) averaged over the filter parameter vector to obtain an expression 

for the excess output MSE caused by adaptation, and with the use of (2.26), yields

Javex(k) = £{(/(*)-7 min)} = E{£f(*)A£(*)} (2.41)

= 2  KE{ql(k)} .
m  — \

The expectation operator is necessary for the LMS algorithm because of the 

random and statistically nonstationary nature of its parameter vector trajectory 

with time. The aim is to compute this average excess MSE as a function of the 

second order statistics of the input. Define the NxN error covariance matrix of 

the transformed filter parameter error to be

B{k) = £{£(*)$'(*)} (2.42)

such that (2.41) can be simplified to be

yflVM(l) = trace{h.B{k)} . (2.43)

From (2.18) and with application of (2.25) gives

q{k) = q{k- 1) + e(k)z(k-D) , (2.44)

then by the use of (2.19) and (2.25-7)

q{k) = [I-v(&(k-D)g(k-D))]q(k-  1) + \heopt{k)x{k-D) (2.45)

where eopt(k) is the sequence of output errors from the line enhancer when the FIR 

filter parameters are fixed at Oopt, i.e. eopt(k) = x(k)~ ̂ { k -  D ) ^ , .  An equation for
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the evolution of the rotated parameter error vector matrix q ( k ) q f( k )  can now be 

obtained as

To obtain the average excess output MSE it is necessary to average (2.46) so as to 

produce a difference equation which describes the evolution of the rotated 

parameter error covariance matrix B(k) described by (2.42). A number of 

assumptions are necessary to achieve useful results when these averages are 

evaluated. For the first term on the right hand side of (2.46) and the assumption 

of independence between the rotated parameter error vector g ( k - l )  and the 

rotated input process £(\k-D) the expectation yields

To simplify further the final term of (2.47) denote x{ as the ith component of 

i ( k - D )  and similarly q j  as the jth component of q ( k - 1) so that the i,jth element 

becomes

£(*)£'(*) = [/“ H-CiC* “ D ) £ r( k -  D ) ) ] q ( k - l ) £ ( k - ! ) [ / -  ft(x(*- D ) g ( k - D))]

+ 2ft[/— ft(£(* -  D ) £ ' ( k - D ) ) ] [ q ( k - l) i '(* -  D ) ] e opt( k )

(2.46)

E { [ I - f t ( i ( k - D ) £ ' ( k - D ) ) ] q ( k -  1 ) * ' ( * -  l ) [ / ~  f t ( i ( * -  D ) i ' ( k - D ) ) ] }  ~  

B ( k — ! ) [ /  — 2 f t A ]  +  f t2E { [ £ { k -  D ) z l { k -  D ) ] B { k -  l)[ i(* -  D ) x f{ k -  D ) ] }  . (2.47)

(e {[i (* -  D ) ] B { k  -  l)[ i(t  -  D ) i < ( k -  /))]}), .

N N

2  2  ~/ = lm = 1

m = 1
N
2  =
m = 1

b ij \ i t r a c e { A B ( k — 1)} (2.48)

where bi} is the kronecker delta [22]. Within (2.48) the fourth-order statistics are 

approximated by second-order statistics. The matrix, which results from (2.48) is
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diagonal, since the off diagonal terms are assumed to be zero. This is based on 

the assumption that the correlation between pairs of different rotated parameter 

errors is small, and similarly, the contributions from the off-diagonal fourth-order 

moments of the uncorrelated random variables xit i—1,...,N to be insignificant. If 

the input process x(k) is assumed to be Gaussian however, exact expressions can 

be given for the fourth-order moments and therefore a more accurate analysis is 

possible [28].

For the second term in the right hand side of (2.46) and with application of the 

independence theory, as Honig and Messerschmitt [22], gives

E { 2 ^ [ I - i i ( i ( k - D ) x ! ( k - D ) ) ] [ q ( k - l ) i , ( k - D ) ] e opt(k ) }  ~

2 i L E { q ( k - l ) } [ E { e opt(k )x! (k  -  D ) } -  \ i , E { [ x ! ( k - D ) Z ( k -  D ) ] e opt( k ) i f ( k - D )} }  , (2.49)

and since E{a .(k) }  -* OcPt for large k when \ i  is chosen within the bound of (2.33), it 

follows from (2.25-6), that the term E{£(fc-1)} tends to zero. Also from the 

principle of orthogonality (2.8), it is reasonable to assume that (2.49) is small in 

comparison to (2.48) and so can be approximated by zero.

The final term of (2.46) yields

E { ^ 2elpt{ k ) Z { k - D ) ^ { k - D ) }  ~  ft2/ minA . (2.50)

Since eopt(k)  is a linear function of the components of & ( k - D ) ,  (2.50) is also an 

approximation because the required fourth-order moments are again approximated 

by second-order values. A difference equation for the parameter error vector, in 

rotated coordinates, can now be written from (2.47-50) as

B ( k )  ~  B ( k — l ) ( /~ 2 jjlA) + \L2k t r a c e { K B { k  — 1)} + f i2JminA  . (2.51)

All the off diagonal terms of (2.51) are zero therefore it is convenient to define a 

vector k ( k )  whose ith component is E{$?(*)}. Thus, from (2.51) an update 

equation for h ( k )  can be written as

k(k) ~ A k ( k - 1) + P'VminA , (2.52)
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where k is a vector which contains the N eigenvalues of R and the elements of 

the NxN matrix A are given as

Au = (l-2fi\/)8 /y  + . (2.53)

The A matrix can also be written as

A = + ( /— 2|jlA). (2.54)

Through inspection of (2.41), which displays the relation between the elements of 

k(k) and the excess output MSE, it is evident that the way in which the output 

MSE varies with time is dependent upon the eigenvalues of A which are 

represented by a,-, 1 From (2.54) it is clear that A is symmetric and

provided that p, is chosen small enough so that all the terms in A are positive then 

a similarity transform can be applied to A

A = LPV , (2.55)

where P is a diagonal matrix with components equal to the eigenvalues of A, and 

L is the matrix which contains the normalized eigenvectors in the column order, 

which corresponds with the eigenvalues in P. The transformed k(k) vector is 

defined as &(*) = L'&(k) and can be applied to (2.52) to give

k(k) = Pk(k~ 1) + n2/ minL'k (2.56)

with no cross coupled terms. This decoupled equation suggests that at each 

iteration changes are made to the components of b. in the directions of the 

eigenvectors of A, given by £ i= l,...,N , and the size of the adjustment is 

dependent upon the corresponding size of the eigenvalue ph Hence the output 

MSE of the filter given by (2.41) and described by (2.52) decays as a weighted 

sum of the terms of &.

As A is a real symmetric matrix it has real eigenvalues. Therefore, the 

solution of (2.52) and (2.56) is bounded for all k if and only if all the eigenvalues 

of A have modulus less than unity. Since these eigenvalues are related to p, a 

stability requirement on p,, which ensures convergence of the parameter error



variances, and via (2.41) the output MSE, can be found. Therefore, sum the ith 

row of A to give

(2.57)

which has a value less than unity provided

(2.58)

Condition (2.58) makes certain that all the elements of the A matrix given by 

(2.54) are positive. If a symmetric matrix has all positive elements, and rows 

which strictly sum to less than unity then it must have eigenvalues with absolute 

values less than unity [22]. The range on the step size given by (2.58) is much 

tighter than that given in (2.33) to ensure convergence of the mean parameter 

vector. This is to be expected since the convergence for the mean in (2.32) does 

not account for variations in the parameters. When p, is chosen in a practical 

application it is reasonable to select a value less than the upper bound on (2.58) 

because of the approximations used in its derivation.

To complete the convergence analysis of the LMS algorithm the asymptotic 

parameter variance and output MSE must be calculated. Put (2.54) into (2.52) 

and use (2.41) to yield

If p, satisfies (2.58), then &(*) = k{k-\)  , and therefore the limit of both

sides of (2.59) is taken as which gives

b(k)  ~  ( /—2p,A)&(fc—1) + p-2[/flV«(*) + 7min]A . (2.59)

(2.60)



where the vector 1 has all components equal to unity. Next, the premultiplication 

of (2.61) by X! yields

(2.62)

N
Replace 2  \ m with NaJ and solve for JaVex{w) which gives the required result;

and the substitution of (2.63) in (2.61) gives the asymptotic transformed 

parameter variance as

It is evident from (2.34) that an increase in |x causes a reduction in the 

convergence time, but from (2.63) such an increase results in a larger final output 

MSE. Additionally an increase in the filter length N from (2.64) causes a larger 

noise variance in the filter parameter at the same time as a higher final output 

MSE. With a fixed N it may be thought that an improvement to the performance 

of the LMS algorithm can be obtained by so-called gear shifting [18]. The method 

chooses a large value of the step size parameter to obtain rapid initial convergence 

and then as the parameter vector of the adaptive filter nears the optimal solution, 

the step size is reduced in order to reduce the excess mean squared error caused 

by the gradient approximation. Various workers have developed techniques by 

which this can be automatically achieved [29,30,31,32]. These methods either 

base the size of the step size on an estimate of the correlation between the error 

e(k) and the input data vector x(Jfc-D), motivated from the principle of 

orthogonality, or on an estimate of how close each of the parameters of the filter

m = 1

namely the asymptotic excess MSE due to adaptation

(2.63)

(2.64)
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are to the minimum of the error performance surface obtained from a record of 

the number of changes in the gradient sign.

The analysis contained within this section is based on an assumed statistically 

stationary input. However, when this is not true another noise term is introduced 

into the mean squared error. This term is named a lag error, and is due to the 

difference between the average LMS parameter vector and the time-varying 

optimal parameter vector solution and has been analysed by Widrow in a system 

identification structure [33].

2.2.3 Integrator Interpretation

The basic LMS algorithm as described in (2.18) can be considered as an 

integrator. Take z-transforms of (2.18) to yield

A n ( z ) = i4^(z)z_1 + p,G(z) (2 .75)

where G(z) is the z-transform of the product i(Jb-D)e(k) and AN(z) is the z- 

transform of the filter parameter vector a(k). Therefore the input output transfer 

function H(z) is given by

H{z)
G(z)

|X _  Z \1

1 - z " 1 " z - l  •
(2.76)

Scrutiny of (2.76) reveals the nature of the LMS algorithm; namely, that of an 

integrator with a single marginally stable pole at z = 1 and a single zero at the 

origin. The frequency response can be obtained from (2.76) by the replacement 

of z with e*1™. The magnitude of which is given by

| / 7 ( e j 7 ',TV) |  =  ^ - c o s e c ( i t v )  , (2.77)

which has a very high value for small v, i.e. near to d.c., but falls off quickly 

towards the Nyquist frequency, i.e. v = It is the smoothing provided by the

integrator which improves the accuracy of the instantaneous gradient estimate 

given in (2.17). Attempts to improve upon this smoothing operation are made by
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the augmentation of the terms in (2.75). For example Roy and Shynk [34] 

analyse the Momentum LMS (MLMS) algorithm, and show that it has a close link 

to the conjugate gradient method well-known in optimisation theory [35]. The 

MLMS is described by

fl(fc) =  a ( k — l ) ( l + a )  — a a ( k — 2) +  \ i e (k )& (k  — D )  with 0 ^ a < l  ( 2 . 7 8 )

take z-transforms of which yields

i 4 ( z ) [ l - z _1( l + a )  +  a z “ 2] =  j i G ( z )  ( 2 . 7 9 )

and has transfer function

H ( z )  =
( z - l ) ( z - a )

(2.80)

Therefore it is evident from (2.80) that the MLMS has an extra preset pole 

available to increase the smoothing of the unbiased input gradient term. Such 

additional smoothing can improve upon the performance of the basic LMS 

algorithm in terms of convergence rate but it is expected to increase the level of 

excess mean squared error. Therefore, a gear shifting technique is appropriate to 

set a = 0, and so revert to the basic LMS algorithm when the parameter vector 

nears the optimal weight vector.

A further method to modify (2.75) would seem to be to add additional zeros 

for example

A ( z )  =  A ( z ) z  fju(1 + z l) G ( z )  , (2.81)

with an associated transfer function given by

H ( z )  =  |t.(z+11,) • (2.82)( z - 1 )

Such a transfer function corresponds to an adaptive algorithm which updates its 

coefficients at each iteration with a gradient averaged between the current and the 

most recent past instantaneous estimate. However, it is known that such 

algorithms do not perform as well as the basic LMS algorithm [28]. This brief
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survey of modifications to the basic integrator form of the LMS algorithm leads to 

the impression that the conventional form given in (2.75) is the most robust 

algorithm and is best for application in the ALE.

2.2.4 Numerical and Parameter Wordlength Selection Issues

When the LMS algorithm is implemented on a digital signal processor or in 

dedicated hardware the convergence analysis contained in 2.2.2 must be 

supplemented by consideration of the use of finite precision arithmetic. A sa first 

problem the transfer function for the LMS algorithm given in (2.76) shows that 

there exists a marginally stable pole at z= 1 in the z-plane. Therefore if numerical 

errors occur within the calculation of (2.18), they can accumulate with time and so 

may eventually lead to algorithm instability [36]. Thus a leakage factor can be 

introduced to the basic LMS algorithm which corresponds to the relocation of the 

real pole of the LMS algorithm to some new radius within the unit circle, i.e.

where y is a leakage factor with value in the range O ^yccl. The corresponding 

parameter vector update equation is given by

When the leakage factor is not equal to zero and the adjustment term, i.e. the 

final term on the right side of (2.84), is equal to zero the parameter vector a(k) 

will decay to zero, and therefore, must adapt to stay alive [27]. This algorithm, 

named the leaky LMS algorithm, can be shown [6] to make the parameter vector 

converge in the mean to

(2.83)

a(k) = (l-y)fl(*-l)+ne(*)£(fc-D) • (2.84)

lim E{a(*)} = [K**+X /]~ V (2.85)

that is, it introduces a bias in the final mean parameter vector, away from the 

optimal Wiener solution. In addition, this algorithm corresponds to the 

minimisation of a modified cost function of the form
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J ( k )  =  E{e 2( k ) +  -^-|a(t- l)p) , (2.86)

and so maintains a constraint in terms of a vector norm on the size of the 

parameter vector a ( k - l ) [37]. When the precision necessary to implement the 

LMS algorithm is selected consideration of the effect of rounding within the 

multiplications contained in (2.18) and (2.19) must be made. Such rounding 

effects have been analysed [38] and result in the addition of extra terms to (2.63), 

the asymptotic excess MSE due to adaptation, representative of the roundoff 

quantisation assumed within the multiplications of the algorithm. With the 

assumption that the roundoff errors are independent and identically distributed

and that the distribution law is uniform within the interval where qt

denotes the quantisation step size, the power is , and the spectrum is flat.

The N multiplications in (2.19) are shown to introduce a term proportional to 

q t f
and the N multiplications in (2.18) are shown to introduce a term 

proportional to — into (2.63). This shows that the effect of roundoff
p, 12

quantisation due to the error calculation is different from that due to the 

quantisation within the parameter update equation. Moreover the choice of the 

step size parameter p, must be a compromise between the reduction of the 

component of the output mean squared error due to gradient noise, as given by 

(2.63), and that caused by the quantization in the parameter update equation. The 

problem of the reduction of the step size parameter, in a finite wordlength 

implementation, is better understood when the adjustment term in (2.18), namely 

D)e{k), is considered. If the size of p. is selected so that |p,x(Jfc-D)<»(*)| is
qt„

less than —£■ then the adaptation would cease and so limit the minimum MSE,

which is known as blocking [6]. Therefore, in limited precision implementations 

of the LMS algorithm the preference is for a larger number of bits for the 

parameters in the update equation to that used to form the error output.
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2.2.5 Normalized and Complex LMS Algorithms

The basic LMS algorithm given in (2.18) and (2.19) is not entirely devoid of a 

priori knowledge of the input statistics. Since it is necessary to know, or have an 

approximation for, the input signal power to calculate the bounds on the step size 

parameter necessary for stability. In a statistically nonstationary application the 

use of an algorithm, which can approximate this power directly from the input 

signal, is preferred. Such an algorithm is the Normalized LMS (NLMS) algorithm 

defined by

a(k) = a(fc-l)+—̂ —&(k- D)e(k) (2.87)
<*;(*)

where o-J(Jfc) is an approximation to the signal power. There are various methods 

to make such an approximation [6]. The most simplistic can be formed from the 

sum of the squares of the signal components contained in &(k-D), i.e.

*x(*) = P+|i(*-Z>)|2 (2.88)

where p is a small constant to ensure an infinite step size parameter does not arise 

in (2.87) for zero input. This method can be realised very simply with two 

additional multiplications, as all the components in i(ifc-D) are stored within the 

transversal structure. A second form of power estimation is

*,2(*) = (l-7 )* ?(* -l)+ r* 2(*-Z>) (2.89)

where y is a forgetting factor which defines the exponential window which is 

applied to the power estimate. When the NLMS algorithm is implemented the 

requirement for a division at each iteration is computationally demanding. 

Therefore, methods by which this division can be approximated are 

advantageous [39]. These methods assume that the input power does not change 

rapidly with time so that the division can be calculated from either a Newton- 

Rapson based technique or a digital approximation to an analogue divider.

Another modification to the basic LMS algorithm is necessary when the error 

signal e(k) is complex. This could arise if the input to the ALE is complex or if
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the structure for the FIR filter within the ALE is composed of some form of 

complex filtering. The cost function such an adaptive algorithm would minimise 

is

J ( k )  =  E { \ e ( k ) \ 2} (2.90)

and yields an update equation [40] as given by

a(k) = a ( k - l ) + \ L e ( k ) x * ( k - D) (2.91)

where e(k) is the complex error signal and & ( k - D )  is the complex conjugate of 

the data stored within the transversal filter structure. This algorithm can also be 

normalized with the inclusion of an estimate of the signal power [41].

2.3 Recursive Least Squares Algorithm Family

The Recursive Least Squares (RLS) algorithm is the second main family of 

methods for the adaptation of the ALE. The basic difference between the RLS 

and the LMS algorithm is that of the cost function, which is minimised. The RLS 

family is based on the minimisation of a cost function in the form of a sum of 

weighted error squares; whereas the LMS algorithm is approximately a 

minimisation of the mean squared error.

2.3.1 RLS Algorithm Derivation

The RLS algorithm is the recursive solution to the minimisation of the sum of 

exponentially weighted error squares, i.e.

m  = , (2 .92)
/=o

where the error is defined as

e(i) = d{i)-a!{k)z{i-D) . (2.93)

The important point in (2.93) is the fact that the parameter vector (2.93) a(k) is 

assumed fixed at sample time k. The weight factor, y or forgetting factor, in 

(2.92) is a positive constant close to unity, where (1 -y )”1 is a measure of the
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algorithm memory; the case y = 1 corresponds to infinite memory useful when 

the input process is statistically stationary. Equation (2.92) corresponds to a 

prewindowed least squares method [8] in that the input data is assumed to be zero 

for k<0. The minimisation of (2.92) with respect to a(k), to find the optimal in 

the least squares sense parameter vector â pt(k), yields the deterministic normal 

equation, i.e.

*«(*) flopr(*) = r*d(k) , (2.94)

where R ^k)  is an NxN deterministic autocorrelation matrix, i.e.

*«(*) = ' Z S - ' z O - D W - D )  . (2.95)
i =o

This matrix is not Toeplitz; however it is symmetric, positive semidefinite, and 

possesses real nonnegative eigenvalues. It is evident that for y= l and

—Rxx(k) is a consistent estimate of the input signal autocorrelation matrix. The

vector Lxd{k) is a Nxl deterministic cross-correlation vector i.e.

i*dW = £ ? * - '* ( /-D)rf(0 • (2.96)
/=o

Notice -fr^(fc) as is a consistent estimate of the cross-correlation between the k

input signal vector and the desired response. The substitution of (2.95-6) in

(2.94) yields the deterministic dual of the orthogonality principle

£  ■¥*-'*(/-D)«(0 = a ,  (2.97)
i=0

namely that when the filter parameter vector is set at its optimal value, in the least 

squares sense aopt(k), the error e(i) is orthogonal to the data i( /-D ). To solve

(2.94) directly at each new sample time k would be computationally intense. 

However, since (2.95) and (2.96) can be written recursively, i.e.

*«(*) = y***(*-l) + i ( * - o ) i f(*-D) (2.98)

and
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r*d(k) = ‘iLMj(k-l)  + z(k-D)d(k) , (2.99)

a recursive form for the solution of (2.94) can be obtained. The substitution of 

(2.99) in (2.94) and then application of (2.98) yields

&opt(k) = (bpt(k-l) + R~\k)i{k-D)(d(k)-^(k-D)a^pt{k-l)) (2.100)

where d(k) - ^{k-D)a^pt{ k - 1) is recognised as an a priori error term denoted by 

e(k). This form of update for the parameter vector is very similar to that of the 

LMS algorithm except the fixed step size is replaced by a time varying matrix 

R&l(k). This matrix acts to self orthogonalise the input data and so eliminate the 

interaction between the adaptation of the filter parameters [42]. The final 

simplification necessary to derive the conventional RLS algorithm is to eliminate 

the need to solve for the inverse of the deterministic autocorrelation matrix at 

each iteration. With application of a matrix inversion lemma [6] to (2.98) the 

inverse of the R^ik) matrix can be written as

*«'(*)
_1
7

R ~ l ( k - 1 )
R ^ ( k ~  l M k - D ) Xt ( k - D ) R ~ \ k - l )  

1  +  x ! ( k - D ) R ~ l ( k - l ) z ( k - D )
( 2. 101)

To simplify notation it is convenient to define an adaptation gain 

g ( k ) = R - l ( k ) & ( k -  D )  and therefore (2.100) can be written as

<V(*) = O o p t ( k - l )  +  8 ( k ) e ( k )  . 

From (2.101) it is straightforward to obtain the result

£(*) = * « '(* -!)* (* -P)
1  +  x ! ( k - D ) R ~ ' ( k - !)*(*- D)

( 2. 102)

(2.103)

and so

*«'(*) = • (2.104)
7

Together (2.102), (2.103) and (2.104) define the RLS algorithm and show its 

main limitation; that is, it is computationally complex in comparison to the LMS
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algorithm. The RLS algorithm requires on the order of N2 multiplications, 

divisions and additions/subtractions. The initial parameter vector a(0) for the RLS 

algorithm is usually set to be the null vector and /^(O) is chosen to be 8/ in order 

that it has full rank from time k=0. The initialisation of the deterministic 

autocorrelation matrix in this manner causes a bias in the optimal parameter 

vector. However this bias generally decreases with time. The inclusion of the self 

orthogonalising matrix improves significantly the convergence time of the

RLS algorithm in comparison with the LMS algorithm provided the input SNR is 

sufficiently high. In the case of a low input SNR it is intuitively reasonable that a 

large amount of averaging is necessary to estimate the terms in and

improvement in convergence rate when compared to the LMS algorithm is 

expected to be reduced.

2.3.2 RLS Algorithm Convergence Properties

The convergence properties of a least squares based algorithm are greatly 

dependent upon the input sequence considered. Therefore, when the convergence 

of the RLS algorithm is analysed a model is often assumed for the generation of 

the adaptive filter desired response. For example Goodwin and Payne [43], 

Haykin [8], and Bellanger [6] assume a multiple linear regression model, which is 

composed of a fixed optimal parameter vector that the RLS algorithm is 

attempting to find. Moreover, to facilitate their analysis the input to the model is 

assumed known and merely the additive noise within the model is assumed to be 

random. Therefore the only other random quantity is the parameter vector of the 

RLS algorithm, which is crucially a linear function of the current and past values 

of the desired response. Other analysis of the asymptotic convergence and 

tracking properties of the RLS algorithm is to be found in the work by Eleftheriou 

and Falconer [44].

These results provide a background for the type of performance to be expected 

from the RLS algorithm applied to the ALE. Significantly, the RLS algorithm 

produces an asymptotically unbiased estimate of the optimal parameter vector, 

which means that the RLS algorithm is convergent in the mean. If the
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initialisation value 8 for the approximate inverse autocorrelation matrix ^"'(ifc) is 

zero however, and the forgetting factor is set to unity, the RLS solution for the 

optimal parameter vector would be unbiased for k^N,  very much earlier than for 

the LMS algorithm [18]. For the convergence of the parameter vector in the mean 

square it is established that the inverse of the smallest eigenvalue of the input 

autocorrelation matrix magnifies the norm [8] of the parameter error correlation 

matrix. Therefore, the sensitivity of the RLS algorithm to a spread in the 

eigenvalues of the input autocorrelation matrix is approximately determined 

initially in proportion to the inverse of the smallest eigenvalue. The rate at which 

the mean square output error converges for the RLS algorithm, when the SNR 

ratio within the assumed model is high, is found to be an order of magnitude 

faster than the LMS algorithm and essentially insensitive to the eigenvalue spread 

of the input autocorrelation matrix. Additionally, the asymptotic excess mean 

squared error is given approximately by [44]

J o v e s t  ~ (2.105)

where it is assumed in the derivation of (2.105) that the forgetting factor y is close 

to unity and the est subscript denotes the fact that this error is due to the 

inconsistency of the correlation function estimates implicitly used by the RLS 

algorithm, i.e. (2.98) and (2.99). From (2.105) it is apparent that when the 

forgetting factor is unity, which corresponds to infinite RLS algorithm memory, 

the excess MSE is theoretically zero. When the RLS algorithm follows a time- 

varying optimal parameter vector lag effects are present and contribute to the level 

of the MSE. Such effects are analysed by Eleftheriou and Falconer [44].

2.3.3 Numerical and Complexity Issues

Notwithstanding that the theoretically improved convergence properties of the 

RLS algorithm are essentially independent of the eigenvalues of the input 

autocorrelation matrix, its application is limited by its numerical properties and 

complexity. It is found that the basic RLS algorithm in operation, particularly 

when the forgetting factor is chosen to be less than unity, can become numerically



- 5 9 -

unstable [44]. The reason for this is the requirement to calculate an updated value 

for the inverse deterministic auto-correlation matrix with each new

iteration number k. In the conventional RLS algorithm this is done in (2.104) and 

it is the negative sign within this which can cause the matrix to become indefinite 

and so lead to algorithm instability. The problem can be partially alleviated by 

the modification of the RLS update equations so that R^l(k) is guaranteed to 

remain symmetric [45], or the update of a factored form of the inverse matrix at 

each iteration; namely the square-root Kalman filter [46]. However, neither 

method completely overcomes the problem, particularly when the algorithm is 

implemented with the use of limited precision arithmetic. To circumvent these 

problems restart procedures must be applied to reset certain internal quantities of 

the RLS algorithm which leads to a further increase in complexity for application 

of the RLS algorithm.

2.3.4 Fast RLS Algorithms

The high computational complexity of the RLS algorithm, namely that it 

requires on the order of N2 computations per iteration can be overcome with a 

transversal filter structure filter realisation because of the shifting property of the 

filter input data. The input data vector at time k, &(k-D), is a shifted version of 

i (k— D — 1) with a new component, x(k-D), in its first position. The recognition of 

this property, which in turn means that there is a straightforward relationship 

between the adaptation gain g ( k - l ) and g(k) used in (2.102), and the propagation 

of two auxiliary vectors, which correspond to forward and backward prediction 

error filters, and their prediction error powers which together describe completely 

the information contained in the deterministic autocorrelation matrix given by

(2.95), admits the derivation of the so-called Fast versions of the RLS 

algorithm [18,47]. These algorithms have essentially the same order of 

computational complexity as the LMS algorithm, that is on the order of aN where 

a is in the range seven to twelve for the various forms of the Fast RLS algorithm; 

note for the LMS algorithm a = 2. Unfortunately, however these algorithms are 

particularly sensitive to the accumulation of numerical errors particularly when the
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forgetting factor 7 is chosen to be less than one [48]. Much work has recently 

focussed on methods by which to overcome this accumulation problem. Firstly, in 

a similar manner to the basic RLS algorithm restart methods have been 

proposed [44] at the expense of additional complexity. More recently, Botto [49] 

has proposed a method, which uses some redundancy inherent in the Fast RLS 

algorithm, that monitors the growth of numerical errors in the backward 

prediction errors and adjusts parameters in the algorithm so as to mitigate this 

accumulation. Regrettably, it is found in simulation that with certain inputs [36] 

this method does not entirely resolve the problem.

It is generally considered [50] that whenever the Fast RLS algorithm is applied 

in a limited precision application that some sort of roundoff accumulation 

monitoring is necessary, combined with frequent resetting of certain variables 

within the algorithm, for successful application. This requires considerable 

additional computational complexity in comparison to the conventional LMS 

algorithm.

2.4 Algorithm Comparison

In order to decide which family of algorithms to use for the ALE a comparison 

is made on the basis of the issues introduced in sections 2.2 and 2.3.

2.4.1 Descent Direction on the Error Performance Surface

Inspection of the update equation for the LMS algorithm and that for the RLS 

algorithm, i.e. (2.18) and (2 . 102), shows that the essential difference between the 

two algorithms is the approximate inverse autocorrelation matrix. The effect of 

this matrix is to alter, and scale, the descent direction of the algorithm. The exact 

steepest descent algorithm is considered, rather than the LMS algorithm, which 

has a descent direction which always moves in the direction of the negative 

gradient as shown in Figure 2.2. The inverse autocorrelation matrix rotates the 

negative gradient to point always in the direction of the minimum and it scales the 

length so that, in one step, the algorithm reaches the nadir of the error 

performance surface. In the RLS algorithm when R^ is estimated from the input
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j(k)

Figure 2.2. The error performance surface

data this improvement is critically dependent upon the quality of the estimate. 

Therefore, in a low SNR application, when a large amount of averaging is 

necessary to estimate Rxx, this improvement is much reduced.

2.4.2 Complexity and Numerical Issues

The basic LMS algorithm described in (2.18) and (2.19) is extremely simple to 

implement and code. Its complexity is always less than that of any version of the 

RLS algorithm, even the Fast RLS algorithms as discussed in 2.34. Moreover, 

numerical problems plague the Fast versions of the RLS algorithm and severely 

restrict their application [36]. Whereas numerical problems are simply overcome 

with the LMS algorithm by application of the leakage LMS algorithm. Therefore 

for an ALE application on a Digital Signal Processor or in dedicated hardware,
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which may require a filter length of at least 200 to permit sufficient noise 

averaging, the simplicity and numerical properties of the LMS algorithm family 

suggest it is the optimum algorithm to use.

2.4.3 Adaptive Line Enhancer Simulation to compare the RLS and LMS 

Algorithms

To show the convergence advantages of the RLS algorithm over the LMS 

algorithm in a high SNR environment the results from a simulation of a two 

parameter ALE are included. The input signal consists of a single sinusoid with 

unity power and a normalized frequency of 0.1 and additive white gaussian noise.

The SNR as calculated from 10l o g w ( Si^n°lPower) is equal to 20dB. For this
N o i s e P o w e r

input the condition number of the 2x2 input autocorrelation matrix is found to be 

approximately 9. The optimal parameters for the ALE are found from (2.14) to 

be a0 = 1.5512 and ax = -0.9366. The parameter vector is initialised to the null 

vector and then adjusted with the use of two adaptive algorithms. The minimum 

mean squared error obtained from (2.7) is -13.52dB. The simulation results are 

obtained from an average of 50 independent trials so as to approximate an 

ensemble average. Figure 2.3 shows the approximate ensemble average error 

squared learning curve for the LMS algorithm when ^ = 0.05. Figure 2.4 

displays the corresponding parameter convergence curves, again obtained by the 

average of 50 independent trials. Figure 2.5 is the ensemble average error 

squared learning curve for the RLS algorithm and Figure 2.6 the parameter 

learning curves. These simulations clearly evidence the much improved 

convergence properties of the RLS algorithm when it operates in a low noise 

statistically stationary environment. The improved performance of the RLS 

algorithm is obtained at the expense of an order of magnitude increase in 

algorithm computational complexity.
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Figure 2.3. Error squared learning curve for the LMS algorithm applied to a two

p aram eter  forw ard  predictor
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Figure 2.4. Parameter learning curve for the LMS algorithm applied to a two 

parameter forward predictor



E
n

se
n

-b
le

 
a

ve
ra

g
e

d
 

e
rr

o
r 

sq
u

a
re

d
 

dB

5

-1 0

15

-2 0
100 200 300

T ime
400 500

Figure 2.5. Error squared learning curve for the RLS algorithm applied to a two

p aram eter  forw ard  predictor



- 6 6 -

Figure 2.6. Parameter learning curve for the RLS algorithm applied to a two 

parameter forward predictor

2.4.4 Performance in low SNR and Nonstationary Environments

The convergence properties of the RLS algorithm described in 2.32 compared 

with those of the LMS algorithm derived in 2.22 evidence the theoretical 

improved performance the RLS algorithm offers in a high SNR statistically 

stationary application. Moreover, in a statistically nonstationary application, for 

example when the frequency of an input sinusoid applied to the ALE is time- 

varying, and when the SNR is high and the time-variations not too severe the 

tracking performance of the RLS algorithm can be better than that of the LMS 

algorithm. However, if the SNR drops and the level of nonstationarity increases, 

for example the rate of change of the frequency of the input sinusoid increases, 

then it has been shown analytically [51] that the LMS algorithm outperforms the
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RLS algorithm. The performance is measured in terms of misadjustment error, 

that is the dimensionless ratio of the average excess mean square error due to 

approximations and lag effects divided by the minimum mean square error.

In conclusion it is apparent that for the ALE a move to the additionally 

complex RLS algorithm family is not justified. Therefore other methods to 

modify the ALE when adapted with the LMS algorithm can be considered; 

namely, to alter the structure of the ALE. These structural modifications can 

overcome some of the basic limitations of the LMS algorithm, such as slow 

convergence and large gradient noise which appears in the output because of the 

necessary high length of filter required.
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CHAPTER III Inclusion of Additional Filter Sub-Blocks within the ALE

The FIR filter within the ALE attempts to model a highly selective frequency 

transfer function which only passes the desired sinusoid and maximally attenuates 

the wide band additive noise. To achieve a reasonably selective frequency 

response the length of the FIR filter must be large, as there is a reciprocity 

between the frequency and time domains. Therefore an ALE typically requires 

many adaptive parameters. The gradient noise which appears at the output of an 

adaptive LMS filter has already been established to be proportional to the length 

of the filter and can limit its performance. Moreover, the computational 

complexity necessary to implement an adaptive LMS filter increases linearly with 

the length of the filter. Thus, for an application where speed is important it may 

not be feasible to implement such a large length filter with the available 

processing resources.

Therefore, new methods are described, which modify the basic structure of the 

FIR filter within the ALE so that it can more efficiently model the desired 

frequency response, and corresponding impulse response, without recourse to an 

excessively large number of adaptive parameters. These modifications are based 

on the replacement of the delay elements within the transversal filter structure 

with specific, fixed, filter sub-blocks. The sub-blocks chosen are recursive, 

motivated by the knowledge that a fixed HR filter block has, as its name implies, 

a boundless impulse response sequence length obtained from only a small number 

of feedback parameters. The effective length of the impulse response sequence of 

the forward prediction filter within the ALE can, therefore be increased, in a 

prescribed manner, without an increase in the number of parameters which are 

adapted. Thus if the delay elements within the transversal filter structure are 

replaced with recursive filter blocks, the overall transfer function of the new filter 

can better model a transfer function with a peak at some frequency. The peak is 

controlled by the pre-set parameters of the sub-blocks and the feedforward 

parameters of the transversal filter structure. Crucially, the output of the overall 

filter remains linear with respect to the feedforward parameters. This linearity
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means that the output MSE remains a quadratic function of these parameters. 

Therefore an adaptive algorithm, such as the LMS algorithm, can be successfully 

used to control the values of the feedforward parameters so as to minimise the 

output MSE. Nonetheless, the adaptive filter has the advantage of an HR filter 

form, but without the associated problems of the adaptation of an HR filter [52].

The particular choice of the type of filter sub-block is based on two concepts, 

the first on spectral transformations as developed by Constantinides [53]. These 

transformations are based on the replacement of the delay elements within a filter 

with pre-set first or second-order all-pass filter blocks. Such transformations can 

change the essentially low-pass nature of a transversal FIR filter into a band-pass 

filter as necessary for the ALE. The second is again based on the replacement of 

the delay elements with fixed filter blocks. However, this second direction 

corresponds to modelling the ideal frequency response of the FIR filter within the 

ALE as a weighted sum of orthogonal functions. The necessary weights 

correspond to the adapted feedforward parameters of the new filter structure; and, 

when a finite number of such orthogonal functions are used to model the optimal 

frequency response, the orthogonality of these functions means that the error 

between the optimal frequency transfer function, and that obtained from the 

weighted sum can be neatly shown to be minimal in the least-squares sense.

The crucial issue of the choice of the parameters for the fixed filter sub-blocks 

is dependent upon some a priori knowledge of the approximate area in which the 

peak of the transfer function of the ALE is required. Various simulations are 

included, and comparisons made, to confirm the suitability of these structures for 

the improvement of the performance of the ALE. The adaptation of the 

feedforward parameters, is shown to some extent to mitigate errors in the 

selection of these values.
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3.1 Motivation for Additional Filter Sub-Blocks

The rationale for the additional filter sub-blocks is argued. A simulation of 

the ALE with a length 64 adaptive FIR filter, identical to that shown in Figure

1.2, but with an input sinusoid of normalized frequency of 0.1 is considered. At 

sample time 2000, when the adaptive filter has approximately reached steady 

state, a discrete fourier transform of the parameter vector of the FIR filter is 

taken. The modulus of which is plotted in Figure 3.1.

Figure 3.1. Modulus of the DFT of the parameter vector of the ALE

Inspection of Figure 3.1 shows that the FIR filter within the ALE has a transfer 

function which peaks at the input sinusoid frequency, and is relatively small for 

the remainder of the baseband frequency range. This is intuitively reasonable 

because the filter passes only the sinusoid, i.e. the predictable component, and
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attenuates the noise. The filter parameter vector as a function of the parameter 

number is shown in Figure 3.2.

Figure 3.2. FIR filter impulse response sequence

The importance of this impulse response sequence is that it has a shape which 

matches the input sinusoid, in a similar manner to the so-called matched filter [9], 

The amplitude of this sinusoidal impulse response is dependent upon the input 

signal to noise ratio and the length of the FIR filter within the ALE. Widrow [4] 

derives the mean value of the peak of the parameter vector to be

S N R
N  ’ 

1 + % - S N R  2

(3.1)

where SNR is the signal to noise ratio at the input to the FIR filter. For a SNR = 

1 and filter length of 64 (3.1) yields a value of 0.0303 which corresponds to the
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amplitude of the sinusoid shown in Figure 3.2. Additionally, the phase difference 

between the sinusoidal impulse response of the FIR filter parameter vector and the 

input sinusoid is the value necessary to correct the difference in phase between the 

output of the FIR filter and the signal in the desired response.

The conventional structure of the ALE has a transfer function of the form

H ( z )  = 1-2  ^ ( 2) 

which can be written equivalently as

h (z ) = n a - c t ^ - 1) =  2 - (* +,> n ( 2 - a , )
0 /=0

(3.2)

(3.3)

where the a ,s are the values at which H(z) is zero. This shows that the filter 

within the ALE has only N + l adjustable zeroes and N + l fixed poles, at the 

origin in the z-plane, to model a highly selective transfer function. Zeros 

however, are not well-suited to model such a transfer function and therefore a 

large value of N has to be chosen to achieve acceptable results. In a realisation of 

the ALE the adaptation of the at coefficients, which control the a f values, leads to 

an excess mean square error as given in (2.63), repeated here for convenience

lim :(*) = 2— Na\
(2.63)

Equation (2.63) shows that an increase in N leads to a concomitant rise in the final 

excess mean square error. Therefore, it would be advantageous to increase the 

effective impulse response sequence length of the filter within the ALE, without 

an increase of the number of adaptive feedforward coefficients.

3.1.1 Replacement of Delay Elements with fixed specific HR Filter Sub-Blocks

The idea is to replace the delay elements within the basic FIR filter structure as 

described as
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^(* )
N - 1

2  °pz~p
p = 0

(3.4)

with fixed filter elements, that is

= 2  a p G P ( z ~ 1 )  (3.5)
pm o

where Gp(z_1) represents some form of fixed recursive filtering. The choice of 

recursive filter elements means that the new transfer function A ' N ( z )  has poles at 

positions explicitly determined by the G p ( z ~ l) s  and so are no longer fixed at the 

origin within the z-plane. Additionally, A ' N ( z )  has an infinite impulse response 

and so can better model, provided the parameters of the filter sub-blocks are 

appropriately chosen, the required highly selective transfer function of the 

forward prediction filter within the ALE.

The fact that the input sinusoidal frequency is unknown a priori necessitates 

that if (3.5) is applied within the ALE some adaptive capacity must be 

maintained. There is clearly an intimate relationship between the choice of the 

parameters within the additional filter sub-blocks described by Gp(z-1) and the 

performance of the modified ALE, but this is discussed more fully later. The 

transfer function A'w(z) described by (3.5) remains linearly related to the 

feedforward parameters ap for p=0,...,N -l and therefore can be simply adapted 

by an LMS family algorithm. Consider an ALE as shown in Figure 3.3 for which 

the error output can be written as

e(k) = d(k) -  d(k)  = d{k) -  N'£ a mgm(k) (3.6)
m=0

where the gm(k)s are the time sequences at the output of the fixed filter sub

blocks. To develop an adaptive algorithm for the LMS algorithm with an update 

equation of the form

a(k) = a ( k - 1) - (3.7)

it is necessary to calculate the derivates of the instantaneous e2(k) with respect to
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Input x (k)

o (k) 
N-1

Figure 3.3. ALE structure with additional filter sub-blocks

the feedforward coefficients, that is from (3.6) and (3.7)

i j ^ 1  = - 2 e ( k ) ^ -  = -2«(H)«()fc) , (3.8)da aa ~

where g(k) = [go(^)*8i(,k),...,gN-i(k)Y. Therefore the update equation used for the 

new structure ALE is given by

a ( k )  = a (* - l)  + jitf(*)£(*) (3.9)

which has an equal amount of complexity as the basic transversal filter LMS 

algorithm. All other forms of the LMS family can additionally be simply applied 

to this new structure. An attractive property of an adaptive filter structure which 

is linear in only a subset of its coefficients [41] is, therefore evident, namely that 

the adaptation of such coefficients introduces no additional computational
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complexity. Moreover since the parameters are fixed within the additional filter 

sub-blocks many of the problems inherent in the adaptation of HR filters are 

overcome [52]. For example no problems of filter instability arise since the poles 

of the HR structure are fixed, and the shape of the error performance surface, as 

a function of the feedforward parameters, is unchanged since the error squared is 

a quadratic function of the feedforward parameters. The adaptation of these 

feedforward coefficients is expected to compensate for errors in the selection of 

the parameters of the filter sub-blocks. The choice of the additional filter sub

blocks, the G^z-1)*, suitable to aid the specific modelling of the required highly 

selective frequency response, is another important issue.

3.2 Inclusion of All-Pass Sub-Blocks

The replacement of delay elements with all-pass filter blocks, representative of 

spectral transformations as developed by Constantinides [53], is proposed. Such 

blocks overcome the problem of the essentially low-pass nature of the filter, 

within the ALE, which is due to its weighted sum of delayed inputs structure and 

because of the integration inherent in the coefficient updates, as discussed in

2.2.3.

3.2.1 Spectral Transformations

A well-known [53] digital filter transformation technique relies on the use of a 

prototype low-pass digital filter and the application of an all-pass transformation 

to achieve some other desired frequency response; be it low-pass, high-pass, 

band-pass or band-stop. These transformations require that the appropriate choice 

of order for the all-pass transformation is made and that the parameters contained 

within the all-pass filter are suitably chosen. Such spectral transformations, so- 

named because they alter both the amplitude and phase of the prototype filter, are 

limited in that they can not be applied directly to an HR filter since they introduce 

delay free loops as shown in Figure 3.4. Hence it is impossible to realise such a 

filter. Therefore the new transfer function must be simplified and then 

implemented. The low-pass prototype transfer function, for example, for the
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C P

Figure 3.4. Introduction of a delay free loop in a first-order prototype filter

filter shown in Figure 3.4 is given by

= - / M r  (3-9)
1— cz '

_ ~ 1_ Q
and the replacement of z_1 with -------^  to obtain some transformed low-pass

1 - p z ~

filter, where p is selected to achieve the required low-pass design specification. 

The new low-pass transfer function becomes

#!/>(*) (1 - c )  1 -p z" 1
(1+cp) (P +  c )  - i

(1+cP)

(3.10)

which can be implemented without delay free loops. However, this problem does 

not arrive for conventional transversal FIR structure filters. Therefore, the delay
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elements within the FIR filter contained in the ALE can be replaced by fixed 

second-order all-pass transfer functions representative of a low-pass to band-pass 

spectral transformation. The parameters of the all-pass transformation are chosen 

to pre-set the poles of the overall filter transfer function around the area at which 

the peak of the transfer function of the FIR filter, within the ALE, is required.

Consider a fixed first-order low-pass filter with transfer function given by

H u , ( z )  = l+z-> (3.11)

which, with the replacement of z with yields a frequency response of the

form

Hij,{e^v) = 1+e-*™ . (3.12)

Equation (3.12) can be considered as a vector addition of two unity magnitude 

vectors, one which is fixed and the second which rotates as v, the normalized 

frequency, is adjusted from d.c. to Nyquist. At d.c., v = 0, from (3.12)

Hlp( 1) = 2, whereas at Nyquist, v =  y ,  HLP(eJlt) = 0. In between, the magnitude of

H L p ( e j 2 l ' v )  varies in the form \HLP(eflllv)\= V 2 ( 1 + C o s 2 t t v ) 2 and establishes the low- 

pass nature of (3.12). If the normalized frequency in (3.12) is replaced by y+2v

then the frequency response of (3.12) becomes equal to that of a band-pass filter, 

that is

HBp ^ v) = l-e-i*™ (3.13)

which has a corresponding magnitude response of the form

|ffap(«;7,tv)l = 2S in2' irv  . (3.14)

The value of (3.14) at d.c. and Nyquist is zero and the peak value, within the 

baseband region, is at v=-^-. Hence by the alteration of the phase response of the

single delay element in (3.12), i.e. - 2 t t v , the frequency response of the basic FIR 

filter can be modified. The spectral transformations developed by
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Constantinides [53] achieve, exactly, this objective. More generally the delay 

elements, which are trivial all-pass functions (namely they have a flat magnitude 

response and some phase response), within a filter are replaced by first or 

second-order all-pass functions with parameters which can be chosen to achieve 

the desired frequency specification. The work of Constantinides for example 

gives the required low-pass to band-pass transformation, which replaces the delay 

elements in the low-pass prototype filter, as

_2 2aifc - t ,  k —1 
-------------z H-------k+ 1 Jfc+1

k—1 _2_ 2ak _i
k + 1 1 + 1

(3.15)

where a
cos  (tt(v 2+ v i ))
---- -—;------- -- and k = co t ( / t t ( y 2~  v1))tan(Trvc). The normalized^ (^ (V j -V j))

frequencies v2 and vi are the desired upper and lower passband cutoff frequencies 

of the band-pass filter, and v c is the passband corner frequency of the prototype 

low-pass filter. The all-pass nature of (3.15) is evident due to the mirror-image 

symmetry between the numerator and the denominator. If the values of v2, vj and 

vc are such that a = 0 and Jt = 1, then (3.15) simplifies to - z -2 which corresponds to 

the band-pass transformation used to form (3.14). More usually, however, this 

special case does not apply. Equation (3.15) can be rewritten equivalently in the 

form

(1 - p g ^ vz ) ( l -  p e - ^ z )  = (z~2— 2 p C o s 2 t t v z ~ 1+  p2)
(z -  p e J'l l ,v) ( z — pc“-,2lrv) (1— 2pCoj2uvz-1+ p2z-2)

where the values of p and 2ttv show explicitly the pole radius and angle 

parameters, which determine the nature of the spectral transformation, in the 

same manner as a and k do in (3.15). These parameters are related by

k = and a = 2p- ^ ~ v-. The pole radius p is expected intuitively to have
(1-p ) (1+p)

most influence on the overall filter bandwidth, and the pole angle 2ttv has the 

largest effect on the overall filter passband center frequency. The all-pass 

frequency transformation as given in (3.16) is therefore used to form the modified
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filter within the ALE as given by (3.5), where Gp(2_1) is given by

= n
m°l

n # f e ( ' ' i  (3.i7)m -1

for p >  0 and G0(z ^ l .  The use of (3.17) corresponds to an ALE with a 

structure as shown in Figure 3.5.

Inpul x(k)

Figure 3.5. ALE structure with real all-pass filter sub-blocks

The negative sign which is shown in (3.16) is omitted, since any scaling can be 

assumed to be implicitly contained within the feedforward coefficients, that is the 

ap(k) values. Through adaptation the LMS algorithm should find the appropriate 

settings for the ap(k)  values. The additional filter sub-sections within Figure 3.5 

are real filters. However it is possible to extend the idea to make the filter sub

sections first-order complex all-pass filters, so that Gp(z-1) becomes
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= n
(z '-Pm« (3.18)

and therefore means that the intermediate signals g p( k ) s  are generally complex. 

However if the values of pmj and v ms  are chosen so that the poles of (3.18) lie in 

conjugate pairs then only alternate values of the g p { k ) s  are complex. The 

adaptation of such a structure of ALE as shown in Figure 3.6 requires the 

application of the complex LMS algorithm as given in (2.91). If the input signal 

to the ALE is not complex as assumed in this thesis the complex input to the first 

first-order filter H^i(z-1) is set to zero.

Inpul x(k)

Figure 3.6. ALE structure with complex all-pass filter sub-blocks

Additionally, the error and line enhancement outputs both have complex values. 

The expectation for a real input simulation is that the complex outputs will be
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negligible.

Since the additional filter sub-sections, as defined in (3.17) and (3.18), are all

pass filters, the signal powers for all the g p ( k ) s  remain the same as those within 

the basic transversal filter structure. This is shown easily by consideration of g0(k) 

= x(k-D) with an assumed power spectrum of <Pxx(eJ27TV) and the output of the first 

all-pass filter ĵ(Jk) with a power spectrum <&gg(«,/2itv)* Then the output power is 

given by

and since by definition the magnitude response of an all-pass function is constant 

and has unity gain for the filters as described by (3.16), the input power is equal 

to the output power. Therefore, no normalization is necessary before the signals 

which are used within the adaptive algorithm. When the ap(k) values are adapted 

consideration of the effect on the error performance surface is necessary and an 

analysis is, therefore, made.

3.2.2 Effect on the Error Performance Surface

To facilitate plotting of the error performance surface an ALE with two 

feedforward taps is considered. This corresponds to a three-dimensional error 

performance surface. Such an ALE structure is shown in Figure 3.7 with a 

decorrelation delay D= 1. The transfer function of the all-pass filter sub-section is 

represented as

2 2

£{*?(*)}= /  ®cc(*/2l"Vv = flffAJ’i(‘ J2,n’)l2̂ xx(‘ J2m')di’ (3.19)
2 2

(3.20)

because of the mirror symmetry within the all-pass filter, where 

D(z)= ( z  — pe^2‘ttV) ( z  — p e ~ j 2'nv) .  The overall transfer function of the ALE is 

therefore given by
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Figure 3.7. ALE structure with a single all-pass filter sub-block

h a l e ( z )
(z — a0)D(z) — « iz2JD(z l) 

zD(z)

which can be applied to

JW  = —
Z n  J  q z

(3.21)

(3.22)

to calculate the mean squared error. Evaluation of (3.22) on the unit circle, i.e. 

the substitution of z with e-̂ 1TV and the assumption of an input which consists of a 

single unity power sinusoid and additive independent white noise with variance 

equal to crj, as in (2.10) and (2.11), yields
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(3.23)

which after some algebra yields

J ( k )  = [(1+X2+X2+X2) — [2Coj2Trv0(X.1(l+X2) + (aoP2+ fli)^2)

+ 2Cos 4'irv0(X2+ X1(a0P2+ fli)~ 2Cos6TTvo(a0p2+ atj)]

/ [(1+ 4 p 2 C o s 2 2 t t v  +  p4) — 4 p C o s 2 t t p C o s 2 t t v 0 ( 1 +  p 2) + 2 p 2C o s 4 ' n v 0] 

+ tr^[(2Coj2'irvfl1[p2—1] + a0fliP(l+ P4) + P3( a i + a § )  + p3)/p3 

+  p 2 ) ( 2 C o s 2 t t v -  a0p(l+ p2))/p3] 

w h e r e  Xj = 2 p C o s 2 ' t r v +  a0+ flip2,

X2 — p2+ 2pCos2'nv(a0+ ax), and 

X3 m  a0p2+al .

(3.24)

Equation (3.24) is evidently quadratic in the a 0 and a x coefficients; but very 

nonlinear in terms of v and p. To obtain an understanding of the effect of the 

all-pass element, a comparison is made between the error performance surface of 

the basic transversal FIR structure and that of the modified structure. It is 

assumed that the normalized frequency of the input sinusoid is 0.1 and the 

additive noise has power equal to 0.01. The pole radius and angle (frequency) of 

the all-pass section are fixed respectively at 0.5 and 0.1. The error performance 

surface for the conventional structure ALE is given by (2.13) and a slice through 

this surface is plotted in Figure 3.8, through the optimal solution and as a function 

of the parameter a lt a0 is fixed at its optimal value. The optimal parameters, 

from (2.14), are found to be a 0 = 1.5512 and a x = -0.9366 with a minimum MSE 

of -13.52dB. Whereas for the ALE which includes the all-pass section the 

minimum is found to be located at a0 — 0.31 and ax = -0.76 and a similar slice 

through the mean squared error surface with a 0 fixed and as a function of a x is 

shown in Figure 3.9. Significantly the magnitude of these optimal parameters are 

smaller than for the conventional ALE. Therefore the gain of the filter to the 

white input noise as shown in (2.12) is smaller for the addition of the all-pass 

elements and accounts for the smaller MSE of -18.24dB. The shape of the error 

performance surface as shown in Figure 3.8 and Figure 3.9 is the same as
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Figure 3.8. Slice through the error performance surface for the conventional ALE

expected by the quadratic nature of (3.24). Thus the improved performance of 

the ALE with additional sub-blocks is evident. The LMS algorithm is next 

applied to the adaptation of the ALE with additional filter sub-blocks.

3.2.3 Simulations of the ALE with Additional All-Pass Filter Blocks

The simulations provide a comparison of the conventional FIR structure ALE 

with that of the ALE with additional filter sub-blocks in the form of real and 

complex all-pass filters. The first simulations are for an input to the ALE of a 

single sinusoid in additive noise as used in 2.4.3. The normalized sinusoidal 

frequency is fixed at 0.1 and the SNR = 20dB. The decorrelation delay 

parameter D is fixed at unity. A comparison is made on the basis that the filter 

within the ALE has an equal number of adaptive coefficients and therefore should
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Figure 3.9. Slice through the error performance surface for the ALE with an 

additional all-pass sub-section

have an equivalent amount of adaptation noise. Figure 3.10 shows the 

approximate ensemble averaged error squared learning curve for the conventional 

FIR structure ALE. The curve is obtained by an average of 50 independent trials. 

The adaptation algorithm is the conventional LMS algorithm with a step size 

parameter = 0.01. The simulation shows that the algorithm requires 

approximately 400 time samples to reach steady-state. The final mean squared 

error is found additionally to be -16.35dB. This value is obtained from an 

average of the last 100 simulation points and across the 50 ensemble members.

The same simulation is then repeated with an ALE, which includes second- 

order all-pass filter sub-blocks, termed APLMS. The parameters of both the filter 

sub-blocks are set to p = 0.68 and v = 0.1 which represent the optimal settings
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found empirically. The LMS algorithm is used to adapt the feedforward 

parameters and the step size parameter is also set to 0.01. The resulting 

convergence curve is shown in Figure 3.11. This curve shows a marked 

improvement in the convergence rate since the algorithm reaches steady-state in 

less than 200 sample points. Moreover, the average final mean squared error is 

reduced to -19.06dB which provides almost a 3dB increase on the basic FIR 

structure.

The complex LMS algorithm is next used on the ALE with complex first-order 

all-pass filters, referred to as CAPLMS. The parameters of the fixed all-pass

filters are set to be p = 0.94 and v = *0.1. The learning curve is given in Figure

3.11. Again the algorithm converges to steady-state in approximately 200 time 

samples. The final average mean squared error of the real output is significant in 

that it equals -19.52dB which is almost at the level of the additive noise -20dB, 

while the imaginary output is found to be insignificantly small. This 

improvement, it must be stressed, is made at the cost of complex arithmetic within 

the entire ALE, the complex input is set to zero. However, the additional degrees 

of freedom in the complex feedforward parameters, mean the optimal pre-set pole 

radius can generally be set much closer to unity than for the ALE with real all

pass sub-blocks.
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Figure 3.10. Error squared learning curve for the FIR structure ALE with 3 

adaptive parameters
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Figure 3.11. Error squared learning curve for the APLMS structure ALE with 3

adaptive parameters
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Figure 3.12. Error squared learning curve for the CAPLMS structure ALE with 

3 complex adaptive parameters

In Figure 3.13 a further conventional structure ALE simulation is considered. ‘ This 

simulation is based on a length 20 FIR filter within the ALE. The step size 

parameter is fixed at p, = 0.01. The result shows an improved convergence time 

to steady-state. However, the steady-state average mean squared error equals 

-19dB and is still no lower than for the modified structures with only three 

adaptive parameters. Moreover, a length 20 adaptive LMS filter requires 

essentially 41 multiplications per time sample, whereas a length 3 ALE which 

includes second-order all-pass sections needs only 11 multiplications at each time 

sample. Thus the advantage of the inclusion of all-pass sections is clearly evident. 

Many other simulations have been performed with various input sinusoidal 

frequencies, multiple input sinusoids and at different signal-to-noise ratios.
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Figure 3.13. Error squared learning curve for the conventional ALE with 20 

adaptive parameters

These results show that the inclusion of all-pass elements improves the 

performance of the ALE provided the fixed parameters within the all-pass 

elements are appropriately chosen. The effects of errors in these choices is dealt 

with later but different sub-blocks to improve the performance of the ALE are 

immediately considered.

3.3 Inclusion of Orthogonal Set Sub-Blocks

If the ideal filter transfer function of the causal infinite length forward 

prediction filter within the ALE is represented by F(z), which is assumed to be 

analytic on and outside the unit circle in the z-plane, then the transfer functions 

obtained from the actual realisations of the filter structure can be considered as
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approximations to it. The basic transversal FIR filter, for example, models the 

ideal transfer function in the form

H*) = s V " '  . (3.25)
p = > 0

which represents a finite weighted sum of a set of functions described as 

{1, z~\  z~2, . . . .  z-(//-1)}. This set of functions is orthogonal, in fact orthonormal, 

on the unit circle in the z-plane. A set of functions is orthogonal on the unit circle 

if and only if

a ^ = T  = (326)

where pt(z) and Pj(z) represent the ith and jth member function of the set, q is a 

constant which is unity for an orthonormal set of functions and 8 is the kronecker 

delta. For the delay elements used in (3.25) P,(z) corresponds to z~' and Pj(z) to 

z~j. Therefore the substitution of these into (3.26) yields

(3.27)

which, with the application of Cauchy’s integral theorem [54], that is,

---- 1—  f  z-Jdz = 1 for j= 1 (3.28)
2 tt V - 1 |z|“ l

0 for j¥= 1

and so (3.27) equals unity for i= j and otherwise zero. Therefore the q in (3.26) 

is unity and the set of functions, namely the delay elements, is orthonormal on the 

unit circle. With the assumption that the ideal transfer function F(z) can be 

modelled as an infinite summation of the form

f (*) = ’ (3 .29)
p=0

then, if the coefficients of a p in (3.25) are chosen such that they equal a Popt, the 

error between the optimal F(z) and F(z), as defined by
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1 f |F{z)-F{z)\
’T=l

( 3 . 3 0 )e
|i’ z

is minimum in the least-squares sense. This is a consequence of the orthogonality 

of the functions z~p. The substitution of (3.25) and (3.29) into (3.30) and the use 

of the orthogonality between the z~p functions yields

which is clearly minimised when ap = aPgpi for p=0,...,N -l and therefore the 

minimum, in the least-squares sense, error is given by

When the delay elements are replaced with some fixed recursive filter, as in 

(3.5), the ideal transfer function is modelled as a weighted sum of the Gp(z~1)s. 

For the all-pass filter sub-blocks as defined in (3.17) the set of functions G p ( z -1 ) j  

is not orthogonal. Therefore, the error in the representation of some desired 

function F(z), with a finite weighted sum of such all-pass functions, can not be put 

in the same compact form as (3.32) and hence shown to be the optimum in the 

least squares sense. However, the Gp(z~l)s can be easily modified to obtain an 

orthogonal set. These sets are developed for both real and complex filtering sub

blocks.

3.3.1 Real Second-Order Orthogonal Set Functions

In order to develop an orthogonal set of functions the definition of 

orthogonality as stated in (3.26) is used. The development proceeds in a similar 

manner to the work of Kautz [55] when he obtained continuous orthogonal time 

functions suitable for the synthesis of some transient time waveform. First the 

all-pass sub-blocks used to replace the simple delay elements are shown not to be 

orthogonal. Two of the all-pass functions are given by G 0( z -1 ) = 1 and

(3.31)

(3.32)

. Application of these in (3.26) yields
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1 r (1 — P ie jl7TVl̂  1) ( l - P i g j2,T1,tg *) dz_ 

(z-x- p le-fl*v' ) (z - ' -p lei2vv') *
( 3 .3 3 )

where |p i |<1, which is not zero because of the pole at z = 0, this is physically 

expected because of the direct link between input and output of G^z-1) weighted 

by pf, and the value of (3.33) is given by p\ from Cauchy’s Integral theorem.

However if G x( z ~ l) is redefined to be G.(z-1) = --------- ,  (z+1)------ -----  then
( z - Pl^ ) ( z - PlC- ^ )

application in (3.26) gives

_ i_  f _________ (1+z)_________
2 ^ J > f = i ( l - p , ^ WVlz ) ( l - PlC- ^ Vlz)

(3.34)

which usefully has an integrand, which is analytic within and on the unit circle, 

and therefore from Cauchy’s Integral theorem is zero. To obtain the next 

function in the set G p ( z ~ l) ,  G2(z-1) must be chosen such that it is orthogonal to 

both G0(z-1) and G^z-1) as described by Broome [56]. It is straightforward to see 

that g 2( z_1) given by

g2(z-')
________ (2 + 1)________ ( l - p i eJll,*'1z)(l —P|g J2’"'1z)
( 2 - P lg-i2’" ' ' ) ( z - P l , T J2’,Vl) ( Z - P2g ^ ) ( 2 - P 2 e - ^ " ' )

(3.35)

satisfies this requirement. In a similar manner G3(z_1) must be chosen so that it is 

orthogonal to G0(z-1), G^z-1) and G2(z_1). More generally the pth term can be 

written, for p> 1, as

GP(z~') = (* + D P - 1 ( l - p m̂ 27iv" z)(l-p wc ~ ^ v"z)
II A— Pw (3.36)

(z -p pe;-27TV0(z-p „c J'2*Vp) m  = l (z -p me;llTV")(z-pmc f2vVm)

and it is interesting to note that this is very similar to the pth term in the purely 

all-pass set except that the cascade of second-order all-pass filters is preceded by a 

second-order band-pass section. The choice for G x( z ~ l) is not unique, however,

(z-1)________and another value could be given as G'i(z_1) = -------
(2 -p ie^ - ) ( 2 - p , g - ^ )

Gj(z_1) and G'i(z-1) are found notably to be mutually orthogonal by application of 

their values in (3.26) to obtain
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1 r __________________ (1-z2)__________________
\ , U  ^ - p , e 127" ’' ) U - Plr J2^ ' ) ( l - Pte ^ ' z ) ( l - f i e - i 2̂ ' z )

dz ( 3 . 3 7 )

r
which from Cauchy’s integral theorem equals the sum of the residues at z = p xe~i ^  

These residues are found to be equal but with opposite signs, i.e. 

* (2yp15in2TTv1( l-p i) ) -1 and therefore (3.37) is zero which implies G 1( z ~ 1) and

G ' ^ z -1 ) are mutually orthogonal. Thus an accompanying orthogonal set can be 

written in a similar manner to (3.36) as

(g-1) n {i~ pmez y (i~ p^ y  .0.38)
( z -p PeJ2TVp)(z-Ppe /2lIV0 » = 1 ( ^ - P m « ;llTVw ) ( 2 - P m C  y2lTV" )

The orthogonal sets defined by (3.36) and (3.38) can be combined to form a new 

structure for the filter within the ALE as shown in Figure 3.14, where Bp 

corresponds to ppej2*Vp, which includes fixed filter sections to model more 

efficiently the desired ideal frequency response of the ALE. The filter shown 

within the ALE in Figure 3.14, where Bp corresponds to p peJ2l1Vp , is modelling the 

ideal transfer function of the filter F(z) as a weighted sum of orthogonal 

functions. A similar technique to this has been used by Perez and Tsujii [57] with 

discrete Legendre functions to model a low-pass type transfer function in an echo 

cancelling application. The filters which form these orthogonal functions are real 

first-order sections of the form

Gp{z- ' ) 'n  <
,~1. Pm)

( 1 - P  pZ 1) m = o ( l - p m̂  *)
(3.39)

where the pmj are constrained to be real. This technique however is not suited to 

the ALE since the required transfer function is band-pass in nature, typically 

centered at some other frequency than d.c., which necessitates the pOTj to be 

complex.

3.3.2 Complex First-Order Orthogonal Set Functions

An orthogonal set of functions, but based on complex first-order filters, can be 

developed in a similar manner to the set in the last section. G0(^-1) and G^z-1)
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Input x ( k )

Figure 3.14. ALE structure with real orthogonal set sub-blocks

are defined respectively to be 1 and —
(*

orthogonal to both G0(z-1) and G i ( z ~ l) .

------ - . Then G2(z !) is chosen to be
- P l e J 7TVl)

A suitable form for G2(z-1) is

Giiz !)
1 (1— *™'z)

(z-p2e ^ )  ( z - p ,e ^ )  ’
(3.40)

that is, the cascade of a first-order band-pass filter and a first-order complex all

pass filter. The general term for G p ( z ~ l), chosen so that it is orthogonal to all 

G r ( z ~ l) s  for r<p, is given by

GP(Z !) 1 ^ " i )
( z - p ^ V )  j i  1 (2- p me*™») (3.41)

When all the pps  are equal, and all the v ms  are set to zero, the G p ( z ~ x) s  simplify in
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an interesting manner to the discrete Laguerre functions [56]. A finite length 

weighted sum of the Laguerre functions in (3.41) can be formed and used to 

model optimally some time sequence in the least-squares sense. Moreover, for the 

Laguerre functions when the pmj are set to zero, Gp(z~l), as defined in (3.41), 

simplifies to the basic delay elements used in the conventional FIR filter structure.

An ALE based on the orthogonal functions described by (3.41) can be 

constructed as shown in Figure (3.15), where Bp corresponds to ppeJ2vVp.

Input x ( k )

Figure 3.15. ALE structure with complex orthogonal set sub-blocks

The two orthogonal-sets described by (3.38) and (3.41) correspond to modelling 

the optimal transfer function as a weighted sum of functions which are orthogonal 

on the unit circle. Therefore, if it is assumed that the optimal transfer function 

can be represented as an infinite sum of such functions, and if the coefficients of
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the truncated representation are suitably chosen, i.e. equal to those of the actual 

representation as in (3.31), then the error in the representation of the optimal 

function is minimum in the least-squares sense. Since these optimum coefficients, 

i.e. the ats, are unknown a priori in an ALE application an adaptive algorithm can 

be used to find their optimal values by the minimisation of the output mean 

squared error with the parameters of the orthogonal set functions fixed. The 

inclusion of the orthogonal set filters alter the variances of the signals which 

appear at the inputs to the a( coefficients and therefore affect the performance of 

the adaptive algorithm.

3.3.3 Simulations of the ALE with Additional Orthogonal Set First and Second- 

Order Filter Sub-Blocks

The simulations compare the performance of the filter within the ALE, 

realised as a conventional transversal filter, and that of the filter realised with 

additional filter sub-blocks, which form orthogonal sets. These simulations are 

for the same input signal as in section 3.2.3. In order to make a reasonable 

comparison, the Normalized LMS algorithm is used to adapt the ALE so as to 

overcome the problem of a change in signal variance due to the orthogonal set 

structures. A filter with 3 feedforward parameters is used for all the structures. 

Figure 3.16 shows the approximate ensemble average learning curve for the 

conventional FIR structure. The curve is obtained by an average of 50 

independent trials. The adaptation algorithm has a step size parameter of p, = 

0.01. The simulation shows that the algorithm requires approximately 400 time 

samples to converge to steady state, and the final mean squared error is -16.36dB.

The same simulation is then repeated with the ALE which includes the 

second-order orthogonal set sub-blocks, termed as OSNLMS. The parameters of 

the fixed filter section are set to p = 0.9 and v = 0.1 which represents the optimal 

settings found empirically. The NLMS algorithm is used to adapt the feedforward 

parameters and the step size parameter p, is chosen to be 0.01. The resulting 

convergence curve is shown in Figure 3.17. Inspection of which shows a dramatic 

improvement in the convergence rate since the algorithm reaches approximate
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steady state in less than 50 time samples. Moreover, the average final mean 

squared error is reduced to -19.5dB.

The complex Normalized LMS algorithm is then used on the ALE with 

complex first-order orthogonal set filters, denoted as COSNLMS. The parameters 

of the fixed filters are set to be p = 0.9 and v = *0.1. The learning curve is

shown in Figure 3.18. The algorithm again converges in essentially 50 time 

samples. The final average MSE of the real output also equals -19.5dB. 

Therefore there appears to be no incentive to move to complex arithmetic. The 

results for all the simulations in this section and for 3.2.3 are collected in Table 

3.1.

TABLE 3.1. Various ALE structure simulation results

Structure Fig. No. Time to steady-state Average MSE dB

LMS 3.10 400 -16.35

APLMS 3.11 200 -19.06

CAPLMS 3.12 200 -19.52

NLMS 3.16 400 -16.36

OSNLMS 3.17 <50 -19.5

COSNLMS 3.18 <50 -19.5
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Figure 3.16. Error squared learning curve for the FIR structure ALE with 3 

adaptive parameters
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Figure 3 .17 . Error squared learning curve for the OSNLM S structure ALE with 3

adaptive parameters
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Figure 3.18. Error squared learning curve for the COSNLMS structure ALE with 

3 complex adaptive parameters

Improvements in performance can be obtained from the ALE with orthogonal set 

filters for various situations, for example simulations with a number of sinusoid 

inputs and in a range of SNR environments. However, the performance 

improvement is dependent upon the selection, a priori, of the parameters of the 

orthogonal set as it was for the selection of the parameters within the fixed all

pass filters.

3.4 Filter Sub-Block Parameter Selection Issues

Sections 3.2 and 3.3 show that, when the parameters of the fixed additional 

filter sub-blocks are appropriately chosen, the performance of the ALE with 

additional sub-blocks is much improved on that of the conventional structure
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ALE. However, in a real application of the ALE the expectation is that the a 

priori selection of the parameters within the fixed filter blocks will be suboptimal, 

since the frequencies of the input sinusoids is assumed unknown. This issue is 

considered through the simulation of the ALE with real second order orthogonal 

set additional filter blocks, as in 3.3.3, and the variation of their pre-set 

parameters. In order to show the effects of errors in these parameters, plots are 

given for the final average excess mean squared error, as obtained in the 

simulations, as a function of each of the filter parameters, namely the pole radius 

and angle parameters. Figure 3.19 shows the sensitivity of the final MSE to the 

pole radius with the pole angle fixed at 2^0.1. Essentially this shows that if the 

pole angle parameter is appropriately chosen the selection of the pole radius is not 

critical. However, to obtain the best performance the pole radius must lie close to 

0.9. The more important issue of errors in the pole angle parameter is considered 

in Figure 3.20. The figure gives the sensitivity of the final MSE to the pre-set 

pole angle, represented by the normalized frequency, with the pole radius fixed at 

0.9, i.e. the optimal radius parameter. This result shows that some error in the 

pole angle parameter can be tolerated. However to produce a performance 

improvement over the basic FIR structure the normalized frequency must not be 

chosen to be greater than 0.155. If the pole radius is reduced the range of 

improvement is larger because of the reduced selectivity of the filter. Such an 

increase in range is shown in Figure 3.21, with an upper limit on the selection of 

normalized frequency of 0.17.
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Figure 3.19. Sensitivity of the OSNLMS structure ALE to the radius of the poles

within the fixed filter blocks
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Figure 3.20. Sensitivity of the OSNLMS structure ALE to the radius of the angle 

within the fixed filter blocks
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Figure 3.21. Sensitivity of the OSNLMS structure ALE to the radius of the angle 

within the fixed filter blocks

The conclusion can be drawn, from the work and simulations described in this 

chapter, that there is a definite advantage to be obtained from the inclusion of 

fixed HR filter sub-blocks within the structure of the ALE. The inclusion of such 

sub-blocks does not interfere with the simplicity of the adaptation of an FIR 

transversal filter structure. Significant improvement over the conventional FIR 

filter structure used within the ALE is shown, provided that the parameters of the 

additional recursive filter sub-blocks are chosen to within some tolerance of their 

optimum values. In some applications it may be possible to have sufficient a 

priori knowledge to pre-select these parameters within this tolerance. However, 

more generally it may be necessary to adapt all the parameters of the HR filter. 

The problems of the adaptation of an HR filter are therefore usefully to be



considered.
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CHAPTER IV Algorithms for IIR Structure Adaptive Line Enhancers

A forward prediction filter structure, such as contained in the ALE, should 

have an IIR filter form when the input signal is assumed to be a narrow-band 

process in white additive noise. Therefore the necessary algorithms for the 

adaptation of such an IIR filter structure are introduced. The error output of an 

IIR forward prediction error filter is found to be nonlinear with respect to the 

feedback parameters of the IIR filter, and this nonlinearity has important 

implications in terms of an algorithm which attempts to minimise the mean 

squared output error. Problems of gradient generation and multi-modality of the 

error performance surface are shown to arise. Moreover, when such an IIR filter 

is adapted, stability issues are important since instantaneously the poles of the 

filter may be forced outside the unit circle. Thus as part of an adaptive IIR filter 

a stability monitoring algorithm is often necessary. The Recursive Least Mean 

Square (RLMS) algorithm is derived and its properties discussed. A normalized 

version of the RLMS algorithm is included which compensates for the 

nonuniformity of the error performance surface. The Gauss-Newton and 

Recursive Maximum Likelihood algorithms are considered, but similarly to the 

RLS algorithm for the conventional FIR ALE, are shown to be computationally 

complex and may be numerically unstable, and hence discounted for real 

application in the ALE.

4.1 Optimal Forward Prediction Filter Structure for the ALE

The optimal forward prediction filter structure is derived in the same manner 

as Friedlander [58]. The input process to the ALE is assumed to be the sum of a 

stationary autoregressive (AR) signal process s(k) and a stationary white noise 

process n(k), that is

y ( k )  =  s ( k )  +  n ( k ) (4.1)

and
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j(*) = 2  ams(k-m ) + n ^ k )  (4.2)
m  =  1

where nAR( 1) is a white noise process which drives the AR signal model. Thus, 

with the use of the unit delay operator q~l, defined such that x(k)q~l = jc(fc-l), 

(4.1) can be reformulated as

x(*) = ~ n ^ k )  + n ( k )  = - (n/U?(l) + yt^(g~1)n(fc)) (4.3)

where AN(q~l) = 1 -  axq~x- a Nq~N. As nAR{k) and n(k) are unmeasurable 

independent processes it is possible to replace them with a single noise process 

e(k) provided that the spectrum of x(k) is unaltered. Set

(*/u?(*0 + ^ ( ? -1M*)) = CN(q~l)e(k) (4.4)

where CN(q~l) is chosen such that the power spectrum of the left and right hand 

side of (4.4) are equal, i.e.,

<t * C n ( z ) C n ( z ~ 1) =  u nJ  +  Aw(z )A N( z _1)cTn ( 4 . 5 )

and a2, (rnA]t2 and a2 are the variances of e(k), ^ ( 1 ) ,  and n(k); and 

CN(z) = 1-cjz"1-  • • * - cn z ~n , that is, the z-transform of the FIR filter applied to 

the noise process e(k). Thus with the combination of (4.3) and (4.5) an 

autoregressive moving average (ARMA) representation of the process y(k) 

results, namely

x(*) = T 7 ^ T " c(fc) • (4.6)

A single sinusoid in noise process is well-known [59] to satisfy such a model as in

(4.6) when N=2, C 2( q ~ 1) = A 2{ q ~ x) ,  and the zeros of the function q 2A 2( q ~ l) lie at

tfl* voq = «

The solution of the problem of the estimation of s(k) in (4.1) from 

observations of x(k), with the assumption that the ams , cmj, and u 2 are known, is 

well-established [60]. Denote i(fc + l|fc) as the prediction of x (k+ 1) given data up
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to time k. Thus

x(k  +  l \ k )
x M r ' )

c w(<r‘)
x { k )  =  x { k ) - e [ k )  , (4.7)

and the observation that i(ifc + l|Jfc) = £(J:+l|fc) + /$(JH-1|*)  where f i (k + \ \ k )  = 0 as 

the noise is white, and hence £(fc+l|*) = i(* + l|*). Therefore the optimal 

predictor filter for the process x(k) has an infinite impulse response (HR) transfer 

function of the form

= 1 -  ■ (4.8)
Cn(z)

Such a filter can be realised as shown in Figure 4.1, which corresponds to 

rewriting (4.6) as

e { k ) = x ( k ) ~  a mx ( k - m ) +  ^  c „ e { k - m )  =  x ( k ) ~  £ ( k \ k -  1) , (4.9)
m= 1 w=l

where the enhancer output f(it|A:-l) corresponds to the prediction of s(k) from all 

the data up to time k-1. Notice that, if the c ms  are set to zero, this corresponds to 

the conventional FIR transversal filter form of the ALE. The model in (4.6) 

reveals the reason a large number of zeros is required for the conventional FIR 

ALE, particularly when the additive noise is significant, since the am parameters 

of the FIR filter must model both the poles and zeros of the essentially ARMA 

observed input process. Such a process is well-modelled however by a filter with 

poles and zeros as in the structure shown in Figure 4.1.

The transfer function from the input x(k) to the enhancer output has a band

pass filter form and, when the coefficients are fixed, is given by

H { z )
( - c 1+ q 1) z  1+ ( - c 2+ a 2)z  2 

(1 - c lz ~ l - c 2z ~ 2)
(4.10)

which has the appropriate dimension for the enhancement of a single sinusoid in 

additive noise. Theoretically, from the ARMA model of a single sinusoid in 

additive noise the zeros of z 2 - c j z - c 2 are at z = e ±jZvVe, however, this would
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Figure 4.1. HR forward prediction error filter

represent an unrealisable filter in practice, because the poles of the transfer 

function given in (4.10) lie on the unit circle, and therefore the filter would be 

essentially unstable. Thus to realise (4.10) the poles must be chosen to lie at 

z = p e ±j2rrv° where p ,  the pole radius, tends to, but does not equal, unity. The 

transfer function from the input x(k) to the prediction error output e(k) is given 

by

(1—aiz a-jz 2)
H ( z ) =  ----- ---------L

(1 - c xz 1 c2z 2)
(4.11)

and if the zeros of this transfer function are chosen to lie at z = e±J2*v° then (4.11) 

can be rewritten as



- I l l  -

H ( z )
( l - p z ^ z - ' X l - p e - ^ z - ' )

(4.12)

which corresponds to the transfer function of a notch filter. This is intuitively 

reasonable because to obtain optimal performance from a forward prediction error 

filter the sinusoid only must be removed and the noise should pass unaffected. In 

Chapter V constraints will be applied to the HR filter structure in the forward 

prediction error filter to guarantee a notch frequency response, even when the 

parameters of the filter are adapted.

The filter structure in Figure 4.1 is not unique and the forward prediction error 

filter could be realised as in Figure 4.2 with the feedback from the enhancer 

output.

Figure 4.2. Alternative HR forward prediction error filter
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However the parameters of the feedforward multipliers are not directly equivalent 

to those of the assumed model, and therefore the form in Figure 4.1 is preferred.

Consideration of the means by which the optimal parameters, namely the ams 

and cms,  which in a real application are unknown a priori, are found is a further 

issue. Inspection of the prediction error as given in (4.9), which is written more 

compactly in vector notation as

e(k) = x ( k ) -  a!x . (k- l )  + c ! a ( k - l )  = d { k ) - d { k ) (4.13)

where a!  =  [a Xia2, . . . , a N\t c! =  [ c ^ , . . . , ^ ] ,  d (k -  1) =  [e(k-l),e(k-2),...,e(k-N)], 

and d(k) is the forward prediction of the desired response, which equals 

a'&ik-l)-d&ik-V), reveals the more difficult problem of the adaptation of an HR 

filter. The difficulty arises because any change in the am or cm parameters causes 

a concomitant change in e(k), and therefore the values in e.(k-1), thus the forward 

prediction error is nonlinear with respect to the cm parameters [61] because of the 

c!e.(k-1) term contained in (4.13). This nonlinearity produces problems in the 

development of adaptive algorithms as described in the next section.

4.2 The Recursive Least Mean Square Algorithm

In order to develop an adaptive algorithm which iteratively finds the optimal 

parameters of the forward prediction error filter shown in Figure 4.1 some 

performance metric must be chosen. As for the LMS algorithm, developed in 2.2, 

the mean square prediction error is selected.

4.2.1 Recursive Least Mean Square Algorithm Derivation

To obtain a usable algorithm which does not require precise knowledge of 

input statistics the mean squared error is replaced by its instantaneous estimate, 

namely the error squared. Thus a steepest descent algorithm can be developed to 

update the am and c,„ parameters with the form

fl(Jfc) = n(*- l)-
Fa de2(k)  
2 da a(k-\),a = c(*-l)2 da

(4.14)
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and

(4.15)

where the step size parameters and \lc are usually chosen to be different for the 

feedback and feedforward parameters. The crucial issue is the calculation of the 

gradient terms with respect to the filter parameters (a,c) [52]. The nonlinearity of 

the error term (4.13) means that the error squared function is not quadratic with 

respect to the c. parameters and therefore the shape of the mean squared error 

performance E{e2(k)} is not hyperparabolic as for a feedforward only FIR filter 

and is generally highly nonuniform. In some cases the surface does not have a 

unique minimum. This is shown, for a system identification structure, to occur 

when there is insufficiency in the degree of the adaptive filter 

chosen [62,63,64,65].

To calculate the necessary derivatives in (4.14) differentiate (4.13) to obtain

where the last term in the parentheses presents the most difficulty. This can be 

rewritten as

l a  =  a ( * ~  1 ) ,  c  =  c ( * - l ) da l a  =  a ( * - l ) .  c  =  c ( * - l )

(4.16)

(4.17)

m=1 dal

which shows that a total of N 2 new gradient terms must be calculated to obtain the 

exact expression for (4.16). Similarly for (4.15) the gradient term becomes
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d e 2( k )

dc.
a ( k - 1), c -  c(*-l) ~ 2e ( k )

d e ( k )
da -  a (* - l ) ,  c =» c(*~ 1)

= - 2 e { k ) -  e.(k - 1) -  -^7 [c!tL{k - 1) ] la = a (* - l ) .  c = c ( * - l ) (4.18)

and part of the last term on the right hand side of (4.18) is rewritten as

d e ( k )
^  la = a (* - l ) .  c = c ( k - 1) &(k  1) ^ 1 )) la = a (* - l ) ,  c = c(* — 1)

c la = a(* — 1). c = c(*-l) (4.19)

= -£ (* -  1)- 2  c*
m = 1

—— e { k — m) , ——  e { k — m) , . . . , ——  e ( k  — m )  dct v d c 2 d c N v ' la = a ( * - l ) ,  c = c (* - l )

which also requires N2 new gradient calculations. The substantial increase in 

algorithm complexity is due to the feedback in the HR filter. To make the 

calculation manageable a simplifying assumption is usually invoked [52,66,67] 

namely that the selection of the step size parameters in (4.14) and (4.15) are small 

enough so that a ( k ~ l ) ~ a ( k - 2 ) ~  • • • ~ a ( k - N + 1) and similarly 

— l)~c(T — 2)~ • • • ~ c . ( k - N + 1) so that

^  l^ lf l  = c = c (* - i )

N
2  c m( k - 1) d e ( k - r n ) _____d e ( k - m )

d a i ( k  — m — 1) ’ d a 2( k — m — 1) *
d e ( k - m )  

d a N( k — m — 1) (4.20)

and thus (4.16) can be rewritten as

d e ( k )
d a ( k ) ~ * (* - i) -  2  c„(k- 1)

m = l

d e ( k - m )  
d a ( k —m — 1) (4.21)

or

d e ( k )  
d a ( k ) + 2  cm(k- 1)

m - 1

d e ( k - m )  
d a ( k  — m — 1) ~ i(* - l) (4.22)

which represents a recursive form for the calculation of the approximation to

. With the definition of ita(fc) to be the approximation of de[k\ - and theda{k) da(k)

operator C(q~l, k - 1) to be cl(k-l)q~'+c2(k-l)q~2+ ■ • - +cN(k-l)q~N (4.22)
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becomes

*«(*) = [1 + C {q- \k - l ) ] -^{k - l )  (4.23)

which shows that N separate AR filters, driven by the terms within i (* - l) ,  are 

needed to generate the necessary gradient approximations to update the a(fc) 

parameters. In a similar manner to (4.20-3) the required filtering to obtain the 

updates necessary for the c.{k) coefficients is given by

!kc(t) = [l+CO T1,*—1)]-' -£ (* -1 )  . (4.24)

The Recursive LMS algorithm is now defined as

a(k) = a ( k - 1) + pae(*)ik,(A:) (4.25)

and

c(k) = z ( k - 1) + pee(fc)3|i<;(&) (4.26)

where the ilr(Jt) terms are calculated from (4.23) and (4.24). The choice of the 

step size parameters \ia and determines the speed of convergence and algorithm 

stability in a similar manner to the step size parameter in the LMS algorithm. 

However, there is no available upper bound on their choice, because of the 

difficulty of the analysis of an HR adaptive filter, which is caused by the time- 

varying filter data covariance matrix. The careful selection of is important 

both because it is a characteristic of adaptive HR filters that poles converge slower 

than zeros [68], and since as Macchi and Jaidane [69] show, for an assumed 

narrow-band input, the |jlc parameter corresponds to a bifurcation parameter, 

which, if chosen too large, can lead to chaotic behaviour from the filter. The 

initial parameter vectors are typically chosen to be a(0) = c(0) = Q. Note that the 

filtering within the gradient terms in (4.23) and (4.24) is in a sense [52] a 

compensation for the additional recursive filtering implicit in the calculation of 

e(k) in (4.13).
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4.2.2 RLMS Stability Monitoring

Throughout adaptation the stability of the algorithm is critically dependent 

upon the locations of the roots of [ l + C ( q ~ l, k - 1)]. Should these roots, or loosely 

termed poles, wander outside the unit circle in the z-plane, then instability can 

ensue. Therefore, it is often necessary to monitor the root locations of 

[1 +C(<7-1,* - 1)], which inevitably introduces a substantial burden on the 

complexity of the algorithm, to ensure stability of the algorithm [16,52,68]. For 

this reason many modifications to the basic structure of an adaptive IIR filter have 

been considered, in order to ease the difficulty of monitoring pole 

locations [68,70], which at the same time, have less sensitivity to finite precision 

errors, i.e. coefficient roundoff. Stability monitoring can be achieved with the 

Jury [71] test which determines whether or not a polynomial is minimum phase. 

However, this test does not show explicitly which roots are nonminimum phase 

and therefore a factorization algorithm is also required, which is computationally 

complex for N>2. A projection technique is then necessary to relocate the poles 

at stable positions. The neglection of unstable pole updates is not generally 

sufficient because the poles of the adaptive filter tend to lock up for an indefinite 

period of time [52]. A more robust technique is to relocate the unstable poles at

reciprocal radii, namely zp- \ .  The combination of stability monitoring,

polynomial factorization, and pole projection however is felt to be too 

computationally complex to provide a usable adaptive algorithm. In application of 

the adaptive IIR forward prediction error filter to the adaptive line enhancement 

problem, it is fundamentally important not to expect that \lc can be chosen small 

enough so that the poles never wander outside the unit circle, and the need for a 

stability monitoring algorithm can be removed [72]. This is because for sinusoidal 

inputs the update term in (4.26), «(Jk)s|tc(ib) almost always has a nonzero value, and 

therefore inevitably an unstable update can arise. Moreover, the assumption that 

the parameter vector c. is slowly varying, which is used in the derivation of the 

gradient terms, is no longer valid if the roots are allowed to move outside the unit 

circle.



- 1 1 7  -

4.2.3 RLMS Gradient Simplification

The N filter operations in (4.23) and (4.24) require a significant amount of 

memory storage, i.e. 2N2 past values. Therefore a simplification is possible with 

the recognition that the driving vectors in (4.23) and (4.24) contain only delayed 

samples. Define a filtered version of x(k) and e(k) to be

xf(k)  =  [ l + C ( q ~ l , k - l ) ] - ' x { k )  (4.27)

and

ef(k) = [l+c(q-l,k-l)]~l -e{k) (4.28)

and then simplified versions of (4.23) and (4.24) can be written as

* « '(* )  =  [ x H k - \ ) , x f ( k - 2 ) , . . . , x ! ( k - N ) } '  (4.29)

and

JllcW = (4.30)

and, provided the c(fc-l) parameters are varying slowly, these values are

reasonable approximations [52]. Thus only 2 additional AR filters are required 

and on the order of N storage spaces. The gradient terms in (4.29) and (4.30) can 

be reduced still further if the filtering is neglected completely so that

il^"(fc) = [x{k-\),x{k-2).....x(*-JV)]' (4.31)

and

!|£c'#(*) = [ e ( k - l ) , e ( k - 2 ) , . . . , e ( k - N ) ] '  . (4.32)

These expressions are equivalent to the gradient terms used in HR adaptive 

filtering first proposed by Feintuch [19]. Much controversy developed into the 

utility of such gradient approximations [73,74] and it was shown by simulation 

that the parameters to which such an HR adaptive filter converges are biased away 

from the optimal parameters in the mean square sense. More recently, in the 

application of an adaptive HR forward predictor as defined in (4.12), it is
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established that this gradient approximation causes the adaptive HR filter to have
/

useful stability properties [72]. This property, termed self stabilization, means that 

if a pole of the adaptive HR filter is forced outside the unit circle, which leads to a 

growing term in the prediction error, the adaptive algorithm registers such a 

growth and counteracts it with the automatic relocation of the poles back within 

the unit circle. This property is not generally found when the more exact 

expressions are used for the gradient. However, such a gradient simplification 

leads to a bias in the steady state parameter positions and thus it may be necessary 

to use the more accurate gradient expressions, provided that stability can be 

guaranteed.

4.2.4 Normalized RLMS Algorithm

The nonuniformity of the error performance surface of an HR adaptive filter 

can cause problems for a basic gradient descent algorithm such as the RLMS 

algorithm. Therefore a normalized version of the RLMS has been 

developed [75]. This algorithm counteracts the variability of the gradient of the 

error performance surface with the division of the step size parameter by an 

approximation to the power contained in the signals within the gradient vectors iL, 

and iL-. Thus the Normalized RLMS (NRLMS) algorithm can be written as

fl(*) = a ( k - 1) + -r^«(*)s|£<,(*) , (4.33)

in the same manner as for the NLMS algorithm, and a similar expression can be 

written for the update of the &(*) vector. The various techniques introduced in

2.2.5 can be used to approximate P(fc). This variable step size can be replaced by 

a time-varying matrix, as for the RLS algorithm, and is therefore developed.

4.3 Gauss-Newton Algorithms

The convergence properties of an adaptive HR filter can generally be improved 

dramatically by the introduction of an approximation to the Hessian matrix [16] 

into the combined update equations (4.14) and (4.15). In order to do this, a joint 

parameter vector @ with dimension 2N, that is
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@ —f<*iVfCl,C2J...>Cjvr > (4.34)
/

is defined and therefore a recursive Gauss-Newton algorithm form can be written 

as

m )  = + (4.35)

where ili(fc) is a 2N dimension filtered regression vector defined as [^(Jfc),^ (*)]', 

e(k) is the prediction error, and R~l(k) is an approximation to the inverse of the 

Hessian matrix defined as E {&(*)&'(*)}. The update of the approximation to the 

inverse Hessian matrix is performed with the aid of the matrix inversion lemma, 

as for the RLS algorithm, and its initial value is chosen to be R(0) = 81. The 

number of computations necessary for the update of this matrix and the amount of 

storage space required is on the order of (2N)2, and therefore, if the 

dimensionality of the filter is large, then the computational and storage demands 

may prohibit its application. More importantly the same numerical instability 

problems, as for the RLS algorithm, can occur when (4.35) is used, because the 

approximation to the Hessian matrix may become indefinite. Therefore some 

technique must be used to overcome this problem, such as the update of a square 

root form of the matrix [58]. The filtered regression vector i|t(it) can be composed 

of any of the gradient approximations previously introduced, namely (4.23-4), 

(4.29-30) or (4.31-2). For the equations (4.23-4) the adaptive HR filter algorithm 

(4.35) is known as the Recursive Prediction Error (RPE) algorithm [16]; and as 

the simplified RPE algorithm [68] with (4.29-30), which has been generalised into 

a complex form by Shynk [76]. If the filtering is neglected, as in (4.31-2), then 

the algorithm (4.35) is known as the PseudoLinear Regression (PLR) algorithm, 

since the nonlinearity implicit in (4.13) is neglected. Significantly, the PLR 

algorithm has the useful property of self-stabilization [16] but has the disadvantage 

that it produces parameter estimates which are biased away from the parameters 

which are optimal in the mean square sense. The PLR algorithm could be used 

temporarily to force the RPE algorithm back into stability [68], which has better 

performance than for an RPE algorithm which simply neglects unstable updates.



- 120-

An algorithm with a similar form to that of the RPE algorithm is named the
/

Recursive Maximum Likelihood (RML) algorithm, and is applied to the adaptive 

HR forward prediction error filter, for the line enhancing problem, by 

Friedlander [58]. The RML algorithm is based on the approximate optimization 

of the likelihood function of the input data sequence {x(0),...,x(k)} parameterized 

by the coefficients of the ARMA model (4.6), i.e. the ams and the cms . The 

algorithm is listed in [58] but the essential difference to that of the RPE algorithm 

is that an a posteriori prediction error, which is obtained from a forward 

prediction error of the form

e(fc) = x(fc)-a'(A:)£(*-l) + £'(*)£(*-l) , (4.35)

is used, and is propagated as the data in the filter and in the regression vector 

sji( )̂. This a posteriori error, sometimes called residual, is closer to an 

uncorrelated process and its use speeds the convergence of an adaptive HR filter. 

There are additional directions by which algorithms for HR adaptive filters have 

evolved.

4.4 Other Approaches to Algorithm Development

Due to the possible multi-modality of the mean square error performance 

surface random search algorithms can be considered for the minimisation of the 

output mean squared error [77]. Another family of algorithms suitable for HR 

adaptive filters is based on the concept of hyperstability [21]. Unfortunately, 

however, the convergence of such algorithms is dependent upon a strict positive 

real condition, on an essentially unknown transfer function, and has therefore 

limited severely their application. Moreover the parameter convergence of such 

algorithms does not correspond to the optimum mean square output error 

solution. More recently a technique based on the Steiglitz-McBride identification 

scheme has been developed by Fan [78]. However as stated by Soderstrom and 

Stoica [79] this algorithm also does not correspond to the minimisation of the 

output mean squared error. Therefore, as it is the intention to minimise the 

output mean squared output error of the HR forward prediction error filter, these
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other algorithms are not pursued.
t

The various algorithms available for HR adaptive filters have been introduced. 

Minimisation of the output mean squared error of such a filter is shown to be 

more involved than for an FIR filter adaptive filter due to the parameter 

nonlinearity implicit in the forward prediction error. This nonlinearity implies 

that the error performance surface may be multi-modal and that additional 

filtering is necessary to form the gradient terms necessary in the parameter update 

equations, a characteristic of adaptive HR filters. Most significantly however, is 

the possibility of algorithm instability due to the relocation of the poles of the HR 

filter instantaneously outside the unit circle in the z-plane. This problem can be 

overcome with structural constraints applied to the forward prediction error filter, 

for example to be a notch filter, as in (4.12), accompanied with the adaptation of 

only the pole angle parameter and a restriction on the pole radius, to ensure 

stability. Such a structural constraint is the basis for further consideration.
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CHAPTER V HR Adaptive Line Enhancing with Constrained Notch Filters
i

The Adaptive Notch Filter (ANF) is introduced as a method for HR adaptive 

line enhancing which overcomes the major problem of algorithm instability within 

adaptive HR filters. Such an ANF can provide not only a line enhancing output, 

but also a simple facility for frequency tracking with a very much reduced level of 

computational complexity than that for the conventional FIRALE. Many 

workers [80,81,82,83, 84, 85,86] have proposed structures for ANFs and these 

are reviewed. Two new structures are then proposed for ANFs which are 

synthesised from all-pass filters. The derivations of which are included. The all

pass filters are realised as structurally lossless bounded real functions with a 

minimum number of delay elements and multipliers. Both structures admit 

orthogonal tuning of their notch frequency and bandwidth. Frequency tracking is 

achieved simply through the evaluation of a function of a single parameter. 

Connections are shown with the structures used by R.A. David [80] and T. Kwan 

and K. Martin [81]. Signal enhancement outputs are obtained from both 

structures, and their signal-to-noise improvement ratios are given. The mirror- 

image pair of polynomials present in a real all-pass function is shown to provide 

significant simplification in generation of the necessary terms used in parameter 

adaptation. This simplification has major importance when a cascade of such 

ANFs is used to track multiple sinusoids. Simulations are also included to verify 

the performance of these structures when used for line enhancing and to track 

both single and multiple sinusoids in additive broad-band noise.

5.1 The Adaptive Notch Filter Concept

In equation (4.12) it was shown that a notch filter structure is the ideal transfer 

function for a realisable HR forward prediction error filter when its input is a 

single sinusoid in additive white noise, repeated here for convenience

H n o tc h i .2 }
( \ - e !2vv’z - ' Y l - e - ilvv’z - ^

(1-
(5.1)

OfThis notch filter transfer function is defined by two parameters, namely p and v(
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which correspond to the pole radius, and pole angle parameter 2 ttv0 . The pole

zero plot for such a filter is shown in Figure 5.1.

Figure 5.1. Pole zero plot for a second-order notch filter

The frequency transfer function of such a filter is zero at the normalized 

frequency v 0, i.e. H ( e ±J2vVe) = 0, which is the notch frequency of the filter. The 

width of the notch is controlled by the pole radius p. The poles lie on the same 

radii as the zeros, and the closer the poles are to the zeros the smaller is the notch 

width. An example is given in Figure 5.2 which represents the magnitude of the 

frequency response for such a filter with p = 0.9 and v = 0.1.

An adaptive filter can therefore be conceived which has a fixed filter transfer 

function with the same form as (5.1), and the parameters p and v0, which can be 

adapted to minimise the output mean squared error. Such an adaptive filter is
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Figure 5.2. Frequency response magnitude for a second-order notch filter

termed an Adaptive Notch Filter. Crucially, with the application of a constraint 

on the value of p,  algorithm stability can be maintained, and the need for stability 

monitoring removed.

The choice of a transfer function with the same form as (5.1) corresponds, in 

the structure of an IIR forward predictor as shown in Figure 4.1, with the z- 

transfer function, from the filter input to the forward prediction output, denoted 

as H bpX{z ) ,  of the form

HbpM
( l - p ) z  1(2 coj2 ttv0 - ( 1 + p)z ’) 

( l - p ^ z - ^ C l - p ^ ^ z - 1)
* lHbpi(z) , (5.2)

as in (4.10), which is a band-pass filter with a pole zero plot of the form shown in

Figure 5.3, where the zero is located at z=- —. The notch and band-pass
2 cos2 ttv0 r
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Figure 5.3. Pole zero plot for a second-order band-pass filter

filters are related by

H no, c h ( * )  = 1 -  H bpX(z )  . (5.3)

Moreover, since Hbp]{g-'27TV<,)= l, that is, the magnitude of such a band-pass filter is 

unity, and the phase shift is zero, at the notch frequency, a simple subtraction as 

in (5.3) is all that is necessary to obtain a notch filter. The frequency response for 

such a band-pass filter is shown in Figure 5.4, where p = 0.9 and v a = 0.1. 

Therefore an ANF can be based on the choice of a particular filter structure 

suitable for the realisation of a band-pass filter. Notice v Q and p together control 

the resonant frequency and the bandwidth of the band-pass filter. The output of a 

band-pass filter as described by (5.2), for a sinusoid in noise input, is an enhanced 

version of the input sinusoid, if the p and v 0 parameters are appropriately set.
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Figure 5.4. Frequency response magnitude for a second-order band-pass filter

Therefore, if these optimum parameters are found by an adaptive algorithm, then 

such a filter can perform as an adaptive line enhancer. The adaptive notch filter 

with line enhancement output is shown in Figure 5.5 where a close relationship to 

the basic FIR ALE is shown. The single delay which precedes the band-pass filter 

Hhp2 acts as a decorrelation parameter, so that the noise in the desired response 

d(k) and that in its estimate d(k), are uncorrelated.

5.1.1 Frequency Tracking Possibilities

Once the adaptation algorithm has reached approximate steady-state the value 

of the v0 parameter gives an indication of the unknown sinusoid input frequency 

and therefore is utilised as a means by which frequency tracking can be achieved. 

Significantly the adaptive nature of the filter means that such a filter has the
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Figure 5.5. Adaptive notch filter

capacity to follow changes in the input frequency. The ease with which such a 

frequency tracking output can be obtained is dependent upon the particular 

realisation of the adaptive filter. However, it is generally a matter of the 

evaluation of a transcendental function, for example sin_1(.) or cos_l(.), of a 

function of a number of the parameters of the filter [81], as detailed later. Such a 

transcendental function can be realised with a look-up table technique. This 

simplicity compares favourably with the computational complexity necessary for 

frequency tracking with a conventional FIR ALE. One possible method for 

frequency tracking with the conventional FIR ALE is illustrated in Figure 5.6, 

and uses a length N Fast Fourier Transform (FFT) to obtain the instantaneous 

spectrum of the parameter vector of the FIR ALE. Notice the subscript k in 

ANk(z) which emphasises the time-varying nature of the parameter vector. The



- 128 -

nput x(k)

Frequency  
Est  innate

Figure 5.6. Frequency tracking with the FIR ALE

magnitude of this spectrum is then calculated, and finally some peak detection 

method is necessary to estimate the frequency of the input sinusoid. Such a 

technique is employed by Treichler [5] named the Weight Vector - Discrete 

Fourier Transform (WV-DFT) technique , but the additional computational 

burden, in comparison with the adaptive notch filter, is not justified. A further 

frequency tracking method based on the conventional FIR ALE is derived from 

the notion that, in operation, the adaptive filter can be considered as on-the-fly 

autoregressive modelling. This method, proposed by Griffiths [87], forms an 

estimate of the input spectrum of the form

l l - A ^ O ^ P  * (5'4)

formed again with the use of the instantaneous parameter vector, obtained from
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the adaptive filter. The spectrum estimate can be evaluated for a grid of values of 

normalized frequencies v in the baseband region, i.e. ve[0.0,0.5], and finally, the 

peak value extracted to yield the estimate of the frequency of the input sinusoid. 

This method is also too computationally complex to provide a usable method for 

frequency tracking. An exact comparison of the computational complexity 

between this method of frequency tracking and the use of an HR ALE is found in 

Appendix B of [82]. Thus the advantage of frequency tracking with adaptive 

notch filters, which requires only the evaluation of a single transcendental 

function, is evident. The types of structure previously chosen for adaptive notch 

filtering are next reviewed.

5.2 Earlier Adaptive Notch Filter Structures

The notch filter transfer function in (5.1) is the basis for the adaptive notch 

filter developed by Rao and Kung [83]. They used the Gauss-Newton algorithm 

to adapt only the numerator parameters of the notch filter written in the form

HnoM =
1 — a^z l —a 2z 2—. . .  — a Nz N

1— p a \ z  l —p 2a 2z  2—
(5.5)

The p parameter determines the radius of the poles of the notch filter, as in (5.1). 

At each new time sample, k, the feedforward parameters are updated with the 

adaptation algorithm, and their new values are substituted in the denominator 

polynomial, preappended by the appropriate power of p, so that in effect an 

adaptive HR filter is realised, but with constrained pole locations. Since p is 

always chosen in the range 0« p < l ,  and as the zeros of (5.5) are expected to 

converge onto the unit circle, to cancel the sinusoids, the poles should remain 

within the unit circle and so stability maintained. Similarly, Romano and 

Bellanger [88] use the same filter structure and adaptation technique. However, 

they apply the fast recursive least-squares algorithm to the problem of parameter 

adaptation so as to lessen significantly, by an order of magnitude, the 

computations required to update the filter parameters. Nehorai in [84] recognizes 

that if the zeros of the numerator of (5.5) are all on the unit circle in complex
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conjugate pairs, as necessary for the cancellation of a number of sinusoids, then
i

the coefficients of such a monic polynomial are necessarily symmetric. Therefore, 

throughout adaptation, only half of the numerator parameters are adapted. This 

symmetry is implicit in the denominator, if the multiplication by the various p 

terms is neglected. Nehorai uses a Recursive Prediction Error algorithm to adapt 

both the numerator and the denominator parameters of the filter. Significantly, 

the constraint of symmetry in the numerator parameters of (5.5) is not sufficient 

to guarantee that the zeros of the adaptive filter are positioned on the unit circle, 

but because the adaptive filter is designed to minimise the output mean square 

error it is expected, and found by simulation [84], that that is where they are 

positioned. Recently in [89,90] the frequency tracking performance of the 

adaptive notch filters developed by Nehorai, and Rao and Kung, have been 

analysed for a second-order case. The analysis has verified theoretically the 

simulation results reported in [84] and [83]. Friedlander and Smith [86] conceived 

an adaptive notch filter with zeros constrained to be on the unit circle and soft- 

constrained poles. This filter is adapted with a Recursive Maximum Likelihood 

algorithm and is related to one of the new structures introduced later.

David, Stearns, Elliott and Etter in [91] introduce an adaptive notch filter 

which is based on a band-pass filter with transfer function of the form

H bp(z)
(i - p2k

w
q+p2)

( 1 — wz * + p 2z 2)
(5.7)

which similarly to (5.2), has the desired property that Hfrp(e-/27rv°) = 1 so that a 

simple notch filter can be formed as Hnot{z) = 1 - t f bp(z), with a notch frequency

given by v = y L-cos_1 |-^ -^-^ -j, which can be used to form a frequency tracking

output. To adapt (5.7), the Normalized RLMS algorithm is used to vary the w 

parameter. To enhance and track multiple sinusoids the notch filter formed from

(5.7) can be cascaded [92] or formed in parallel as in [80]. The main drawback 

with these arrangements however is that each notch filter is minimising its own 

local error and therefore biased frequency estimates are obtained due to the effect
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of the additional sinusoids in these local errors. Kumar and Pal in [93] perform 

adaptive line enhancing and frequency tracking with the use of a recursive center- 

frequency adaptive filter based on a Butterworth band-pass filter with the use of a 

Gauss-Newton algorithm, and with a RLMS algorithm in [94]. Recently the 

performance analysis of such recursive center-frequency adaptive filters is 

reported in [95]. Kwan and Martin [81] choose another form for a band-pass 

filter to use within the adaptive notch filter which has a transfer function of the 

form .

ttbpi*)
2̂ _____ (1+2 *)(1 — Z *)_____

2  l - ( 2 - k 1- k \ ) z ~ l + ( l - k 2) z ~ 2
(5.8)

The k2 parameter, which controls the pole radius, is fixed in adaptation to 

maintain stability, and the k x parameter is adapted, with a NRLMS algorithm, to 

control the center frequency of (5.8) which corresponds to the notch frequency of 

the notch filter H nol(z ) =  1 - H bp(z ) .  The transfer function (5.8) has a peak gain of

unity at v i • -i— sin  1
TT

and the evaluation of this expression

provides a frequency tracking output for the adaptive notch filter. A cascade of 

such second-order notch filters allows a number of sinusoids to be tracked, and if 

the final output mean squared error is minimised the frequency estimates have the 

desired unbiased property. Since the final output mean squared error is minimised 

the necessary gradient terms required for adaptation are shown to grow 

geometrically with the cascade length; that is, to track N sinusoids a total of 

N(N+ l)/2 +N second-order sections are required. With this basis of work, novel 

structures for adaptive notch filters are introduced.

5.3 New Structures for Adaptive Notch Filters

The contribution to the field of adaptive notch filtering is the use of all-pass 

filter blocks to synthesize two novel types of second-order adaptive notch filter 

structures. One structure is based on a frequency transformation of a low-pass 

filter into a band-pass filter, henceforth referred to as NFA, as shown in
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nput x(k)

Figure 5.7. Notch filter structure A

Figure 5.7. This is achieved with the replacement of the delay element of the 

low-pass filter by a second-order all-pass element with a single adjustable 

parameter. The new structure contains a first-order all-pass filter which is 

realized as a structurally lossless bounded real function. Therefore, NFA has, 

essentially, only two multipliers which allow orthogonal tuning of the filter 

bandwidth and notch frequency. A single additional second-order section is 

shown to be necessary for gradient generation. An interesting link between this 

filter and the section used by David [80], is shown.

The second structure, referred to as NFB, consists of two all-pass functions 

connected in parallel as in Figure 5.8, and is related to the adaptive notch filter 

proposed by Friedlander [86]. One path is only a direct link while the other is a 

second-order all-pass filter. The notch frequency is that frequency at which the
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Inp ut  x ( k )

Figure 5.8. Notch filter structure B

output of the second-order all-pass filter is in anti-phase with the signal in the 

direct link. Again a structurally lossless bounded real form is used for the all-pass 

filter. The structure also admits orthogonal tuning of the notch frequency and the 

bandwidth. Due to the mirror-image polynomials present in the all-pass filter 

transfer function the gradient derivation is shown to be trivial, as no extra filtering 

is required. In the NFB structure no direct signal enhancement output is 

available. However, it is shown that a bilinear band-pass output, as Kwan [81] 

used, can be achieved with the inclusion of one extra adder. For both the NFA 

and NFB structures simple constraints on the notch filter parameters ensure 

stability and that the poles remain complex. Frequency tracking is additionally 

made possible with a function of a single parameter of the notch filters. Further 

consideration of all-pass functions is necessary.

or e (k )
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5.3.1 All-Pass Functions and their Realisations

An all-pass frequency transfer function ff(ejl7rv) has unit magnitude response 

for all v viz.

|ff(e'2lTV)|2 = 1 for all v . (5.9)

The transfer function of a stable first-order all-pass function has the form [96]

= t — with Ip I < 1 » (5.10)1 -  02-1

whereas a stable second-order real all-pass function with complex poles, is given 

by

, - 2  _ (1 + a)Pz 1 + a .
Hapl{z) = 7 --- 77 V ,-- ~ ^ 2  Witk 0 < a < 1 and P2 <

4a
1 — (1 + a)pr 1 + a z (1 + a )2

(5.11)

As shown in Chapter III, an all-pass transfer function can be represented as

= ! ~N -^TT 1  (512)D(z)

where N is the filter order. This shows that the numerator polynomial can be 

obtained from the denominator polynomial with a reversal of the order of the 

coefficients. Thus the numerator and denominator polynomials are known as a 

mirror-image pair [96]. This symmetry is used when the gradient function of the 

adaptive notch filter output with respect to a parameter of the all-pass filter is 

formed. In a similar manner to the method used by Rao [83] an assumption that 

the denominator parameters of the all-pass filter are fixed is made, and only the 

partial derivative with respect to one of the numerator coefficients is calculated. 

Nonetheless, throughout adaptation both the numerator and denominator 

coefficients are adjusted by the adaptive algorithm.

Another property of all-pass filters is that they are lossless, which can be easily 

shown from (5.9). If the transfer function of an all-pass transfer function is given 

by
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Hap^  ’ (5 , 13)

then with the application of (5.9) yields

|F(e-'2irv)|2 = |x(e;2irv)|2 . (5.14)

Next both sides of (5.14) are integrated with respect to v over the baseband region 

to give

1  i
2 2

f  |y(e-'2,rv)|2 rfv = f  \ X { e ^ vv) \2 d v  (5.15)
_ i _ !

2 2

and finally, appeal to Parseval’s theorem to obtain [23]

£  y2(m) — £  *2(m ). (5.16)
m  =  ~ x  m  =  - s c

This shows that the input energy is equal to the output energy for an all-pass

filter, for all finite energy inputs and with the assumption that infinite precision

arithmetic is used , i.e. an all-pass filter is lossless. An all-pass filter with poles 

inside the unit circle is termed as Lossless Bounded Real (LBR). When an all

pass filter is realised a number of different structures can be used [23]. However, 

to force the transfer function of the filter to remain all-pass, independent of 

numerical errors, it is preferred to use structures with a minimum number of 

multipliers. These structures are termed structurally LBR and can be found in the 

work of Valenzuela and Constantinides [97]. One such structure is shown in 

Figure 5.9 and is used in the realisation of the adaptive notch filters. As stated in 

Chapter III all-pass functions are the basis for the frequency transformations 

developed by Constantinides [53] which replace the delay elements in a prototype 

low-pass filter to obtain some desired filter specification. Application of these 

transformations in HR filters is not a simple matter of the replacement of the 

delay elements with the necessary all-pass elements, because delay free loops are 

introduced, as shown in Figure 3.4. Another low-pass to band-pass all-pass 

transformation, which is used in Section 5.3.2 for the realisation of the adaptive
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Figure 5.9. First-order structurally LBR all-pass function Hapl(z)

NFA structure, is given by

2-l z-l (z  1 -  P ) 
( 1 -  P z '1)

(5.17)

This mapping can directly replace the delay elements within the low-pass 

prototype filter because it does not introduce delay free loops. The frequency 

mapping nature of (2.9) can be simply shown through the replacement of z by 

g J2lTV, and then equate phase angles to yield

v’p = 7  + vtp + 7  tan~ '[ (i 1 p )lan('irv^ ))  ■ (5 1 8)

From (5.18) it can be shown that when vbp = -^-cos"1̂ )  and vtp = 0, the phaseZiTi

shift produced by both functions in (5.17) is zero. This simple relationship,
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v bp = -— cos !(0), is used for frequency tracking.
2 i t  t

5.3.2 Formation of Notch Filters with All-Pass Filter Elements

The first type of adaptive notch filter structure, NFA, is based on a frequency 

transformation of a low-pass prototype given as

(1 -  « ) - - .  (5.19)
(1  -  c tz  *)

This low-pass filter has unity gain and zero phase shift at d.c.. The a parameter 

controls the two-sided 3dB bandwidth given by

i  cor* - ( f - 2 + £ ) |  . (5.20)

Application of the mapping (5.17) yields a band-pass filter with a peak gain of

unity and zero-phase shift at an angular frequency v peak = -^-cos_1(0). Moreover2-jt
the 3dB bandwidth of the band-pass filter is only dependent upon the a parameter.

The overall band-pass transfer function, after simplification, becomes

HbPM  = (1 -  cl) - *~!(p -  s"1)
(1 + a ) 0 z -1+ a z ~ z

(5.21)

which is exactly the transfer function used by David [80]. The transfer function in 

the form of (5.21), however, requires a non-minimum number of multipliers. 

The transfer function formulation based on (5.19), with the delay element 

replaced directly by the mapping (5.17), in conjunction with a structurally LBR 

realization of the first-order all-pass filter, is used. This band-pass filter 

realization has essentially two multipliers that allow orthogonal tuning of the 

resonant frequency and bandwidth. One extra scaling factor (1 -  a)  must precede 

the band-pass filter. If the output of the band-pass filter is subtracted from its 

input a notch filter is formed, as in Figure 5.7, with the following transfer 

function
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Hnot l(^) 1 -  2 3 z ~ 1 + z~2 
1 — (1 + a ) 0 z -1 + a z-2 ’ (5.22)

which has a notch frequency v„otch = -^-cos *(0) which corresponds with the peak2tt

frequency of the band-pass filter.

The second type of adaptive notch filter structure, NFB, is shown in 

Figure 5.8. Only the phase difference between the two paths achieves the overall 

notch filter response. The second-order all-pass filter has a transfer function as 

given in (5.11) which leads to the notch transfer function of the form

(1 + a)_____1 — 20 z 1 + z 2
2 1 — (1 + a ) 0 z -1 + a z-2

(5.23)

Notice that the notch filters in (5.22) and (5.23) have, to within a scale factor, the 

same form and therefore frequency tracking can be achieved in the same manner

from v notch = -^-cos- 1(0). The additional scaling in (5.23) means that the second
2tt

notch filter has unity gain at d.c. and at the Nyquist frequency. For both the NFA 

and NFB structures the 3dB notch bandwidth can be shown to be related to the 

square of the pole radius a by

Bw -tan-l
IT

1 -  a
1 + a

(5.24)

Therefore, adaptation of the notch frequency, and notch bandwidth, can be 

achieved independently for both structures with the adjustment of the 0 and a 

parameters. Although a signal enhancement output is not directly available in 

Figure 5.8, the inclusion of an additional adder to form the output

H ( z )  = i [ l  -  ff„„2(2)] (5.25)

provides a bilinear band-pass output, as used by Kwan [81], with a transfer 

function of the form
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(5.26)

This transfer function has unity gain, and zero phase shift, at the same frequency 

as the notch frequency. The basic difference between the use of the two adaptive 

notch filter structures is found in the generation of the gradient term necessary to 

adapt the p parameter.

5.3.3 Derivation of the Adaptive Algorithms necessary for NFA and NFB

The strategy used for the adaptation of both structures is to pre-set the notch 

bandwidth, i.e. the a parameter, and to adapt only the notch frequency parameter 

p. Therefore, no stability problems are expected throughout adaptation, because 

the poles of the notch filter are constrained to lie on a circle within, and concentric 

to, the unit circle. The error performance surface as a function of p, with fixed 

a, can be plotted from an expression obtained from an equation of the same form 

as (2.9), namely

With the assumption of an input which consists of a single input sinusoid of 

normalized frequency (v0 = 0.1), and unity power, and additive, zero mean, noise 

with variance o-J, (5.27) for NFB becomes

and is plotted in Figure 5.10, for a noise variance level of 0.1. Inspection of 

Figure 5.10 evidences the nonuniformity of such a function, and how its shape is 

critically dependent upon the choice of a.  Therefore, for the adaptive NFA and 

NFB structures, when the value of a is chosen it is important to consider three 

issues, the effect on the notch bandwidth, the shape of the error performance 

surface and the range of reachable angular frequencies given by

J ( k )  =  -^-:S\Hnotch(z)\2® xx(z ) dz •ziry c (5.27)

(5.28)
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Figure 5.10. Error performance surface function

— cos 2 tx
2V“ ]

/

< v < — cOs-1
1 + aV. /

2 IT
V

2Va 
1 + a (5.29)

The selection of the initial value for the p parameter also has significant effect on 

the algorithm performance, and if a cascade of notch filters is used to track a 

number of sinusoids, it is advisable to choose different starting values for each 

section. In a statistically stationary application it may be advantageous to adapt 

the a parameter after the appropriate notch frequency is found, over a constrained 

region, so as to narrow the notch bandwidth, as Nehorai [84].

Due to the non-uniformity of the error performance surface the NRLMS 

algorithm is used to adapt the p parameter. The NRLMS algorithm for the 

adaptation of p is
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P(fc+ 1) = p(fc) — \i V(fc) / 2\j/(J:)

v(k) = 
y J ap

*K*) = 7 vjj(fc-l) + (1 -  7) d(d(k)) X 
ap J

(5.30)

(5.31)

(5.32)

where 7 is a forgetting factor, with range (0 «  7 < 1) and p, is the step size 

parameter. \|j(jfc) represents a smoothed estimate of the instantaneous power in

d(4.(*))  ̂ which is evaluated in (5.34) and (5.35). To calculate the appropriateap

gradient terms each notch filter structure is considered separately. For the NFA 

structure e(k) = d{k)-d{k) and therefore

d(e(k) )2 = _  2 ek d(d(*))
ap ap (5.33)

The calculation of the derivative but only with respect to the p in the

numerator of the all-pass function, yields

. - 1

!(*(*)).
ap 2h fc (1 ~ a ) '

1 -  p z ' 1

1 + az - i ± -l _
1 -  P z~l

X ( z ) z* 1 dz (5.34)

which is the expression for the gradient generation filtering illustrated in 

Figure 5.11. Note the output from the all-pass filter ffflpl(z) in the ANF structure 

corresponds to the gradient extraction term shown in Figure 5.9.

For the NFB structure e(k) = d(k) + d{k)  so (5.31) becomes

d(e (*))2 =  2 e(k) d(d(k)) 
ap K J ap

and the derivative with respect to the numerator p becomes

K d (k ) )  _  1 r  1
a p 2 -it j  c  2

-  (1 -  oQz 1

(5.35)

1̂ — (1 — a ) p z  1 + az  2j
X ( z ) z k 1 dz (5.36)



- 142-
Inpul i(k)

Figure 5.11. The complete adaptive NFA structure

In Figure 5.12 the complete adaptive NFB structure is shown. With the addition of 

one extra multiplication the necessary gradient term is generated. Note that if a 

direct-form II structure [23] is used to realize the second-order all-pass function, 

which requires three multipliers, the simplified gradient term in (5.36) is available 

with no extra multiplication.

5.3.4 Gradient Terms necessary for a Cascade of NFB Structures

When an input consists of a number of sinusoids in white noise a cascade of 

second-order sections is necessary for frequency tracking. Therefore it is 

necessary to consider the generation of the requisite gradient terms. In order to 

obtain unbiased frequency estimates and good performance when the input 

sinusoids have disparate powers the final output error is minimised. For N
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Figure 5.12. The complete adaptive NFB structure

sections the output error is given by

e(*) _ ~ Y ~ J T [ H no tch( z )X(z ) zk Xd z  t-TTJ Ci= 1 (5.37)

and therefore, the gradient term for the jth 3 can be calculated, as in (5 .35), to be

i i M  = 2e(* )M *2
33;

and with the use of (5.37) becomes

33 j (5.38)

“ 2e(i) ^ j [ ^ ‘̂ z) j f HLci,U)X(z)zk-'dz . (5.39)
i*j

Finally, with the application of (5.36), the required gradient is given by
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d e 2(k )
d$j -e(k) 1 r N

j r j f  m27TJ c/ = i 
i * j

notCia(z)
(!~ a y) -i

( l - ( l - a j ) $ j Z  1+ cljz 2)
— ~ X (z )zk ldz . (5.40)

Equation (5.40) reveals that only a total of N(N+l)/2 sections are necessary for 

the generation of the gradient terms and the notch filter sections for frequency 

tracking. For N = 2, only one extra second-order section is necessary for the 

gradient generation to facilitate frequency tracking, of two sinusoids in noise, for 

NFB and is shown in Figure 5.13.

Figure 5.13. Cascade structure for tracking two sinusoids with the use of the 

adaptive NFB structure

To obtain two line enhancement outputs two additional adders and one additional 

notch filter section is required, to that shown in Figure 5.13. The exact gradient 

terms given in (5.34), (5.36) and (5.40) can only be approximated in the adaptive
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filter realisation since the exact values of the p ŝ are unknown, and must be 

replaced by their instantaneous estimates Pj(ifc)s.

5.3.5 Performance Measures for the Outputs of the Adaptive Notch Filter 

Structures

The SNR Improvement Ratio (SNIR) is generally regarded [91] as the 

optimum overall measure of the steady-state performance of an ALE. This is 

defined as the ratio of the SNR at the line enhancing output to the SNR at the 

input to the filter. For NFA, with an assumed input of a single sinusoid with 

unity power and additive noise with a variance equal to a j, the SNRIR is given by

S N R I R  =

dz
-l

(5.41)

which can be simplified significantly since HbpX{eJ1'nVm) = 1 , and the noise variances 

cancel, to yield

S N R I R  =

-l
(5.42)

which can be calculated with the use of residues to yield S N R I R  = and in a
( 1 - a )

2similar manner for NFB, to be S N R I R  =  - --------- - .( l-« )

5.3.6 Unbiased Frequency Estimates obtained from the NFA and NFB Structures

In Chapter II, a limitation of an algorithm, which minimises the output mean 

squared error for the conventional adaptive line enhancer was noted, in that the 

noise component of the output MSE is dependent upon the parameters of the FIR 

filter. Therefore, the values for the optimal parameter set is a compromise 

between the minimisation of the two components of the output mean squared 

error, i.e. that due to the sinusoid and that due to the noise. This problem does 

not arise for the NFA and NFB structures because the component of the output 

MSE due to the noise is independent of the adapted p parameter. For NFA and
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NFB the noise components of the output mean squared error are given as

NFA  =  •• 2—  , and NFB  = . (5.43)
(1 + a) 2

Therefore in adaptation, with a fixed, the optimal value for 0 is that value which 

minimises the output mean squared error due only to the sinusoid. Thus, 0 can be 

chosen so that the notch is exactly coincident with the input sinusoid frequency 

and so the frequency estimate obtained, in steady-state, from the calculation of

— cos- 1(0) is unbiased. Additionally, as shown in [84] because the filter2ir
structure is constrained, the variance of such estimates are expected to be lower 

than for an unconstrained filter.

5.4 Simulations of the NFA and NFB Structures

The NFA and NFB structures are simulated for both frequency tracking and 

line enhancing operation.

5.4.1 Frequency Tracking Simulations

The simulations are on lines similar to those reported by Kwan [81] in order to 

provide some comparison. The simulation results given are plots of the 

instantaneous normalized frequency against sample number. For the adaptive

NFA and NFB structures the plots are achieved with the use of -^L-cos- 1(0Jt). The2ir
results of Kwan [81] are based on a notch filter structure with transfer function

Hnotchi.2}

. 2(2-* 2-* l2)
2—*2 1 - ~ 2- * r ~"2 +z

2 1 — (2 — k2 ~  k \2)z-1 + (1 — k2) z ~ 2
(5.44)

which allows frequency tracking with the application of —sin-1TT
2 1 -

h'j I 2

In all the simulations the a parameter is set to 0.9025 which from (5.24) 

corresponds to a 3dB notch bandwidth of 0.016 and a range of reachable
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frequencies, as given by (5.29), of (0.0082,0.4918). This is evidently almost the 

entire baseband region of [0.0,0.5]. The input signal for these simulations 

consists of a number of sinusoids and zero-mean additive white gaussian noise 

with variances chosen to give the necessary signal-to-noise ratio (SNR).

The first simulations are based on Example 1 from Kwan [81]. 

Figures 5.14, 5.15 and 5.16 show the transient response for the structure of Kwan 

and Martin, and for the new adaptive NFA and NFB structures, when used to 

track a single sinusoid with unity power. The input SNR is lOdB, and the initial 

frequency is set at 0.15, and after 100 sample points is switched to 0.2. In order 

to repeat the results of Kwan and Martin as reported in their publication [81] it is 

found that the input to the instantaneous power calculation used in (5.32) should 

not be pre-multiplied by (1 -  7) - which is used to obtain an overall d.c. gain of 

unity. The simulations for the adaptive NFA and NFB structures used the NRLMS 

algorithm exactly as listed in 5.3.3. Note that the scaling in the gradient filtering 

used by Kwan [81] is such that the input sinusoids appear at the gradient outputs, 

after the adaptive notch filter has converged, with practically the same amplitude. 

Whereas, the gain through the gradient filtering for the adaptive NFA and NFB 

structures is greater than unity, at resonance. This accounts for the preferred use 

of the (1 -  7) factor in (5.32) for the adaptive all-pass based notch filters. 7 is 

chosen as 0.99 and i{/0 = 1 .0. The adaptation gain f t ,  chosen to give equal tracking 

performance, is 0.01 for the NFA structure and 0.0005 for the NFB structure. 

For all the structures 0O was selected to pre-set the notch frequency to be 0.15.

Moreover, inspection of the tracks verifies that, for a single section, the 

adaptive NFA and NFB structures can follow satisfactorily a frequency jump, and 

this confirms that the gradient simplification does not degrade the adaptive 

algorithm performance. The track for the NFA structure is appreciably more 

noisy due to the larger value of ft used.
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Figure 5 .14 . Instantaneous frequency track obtained from the structure o f Kwan

and Martin
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Figure 5 .15. Instantaneous frequency track obtained from the N FA  structure
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Figure 5.16. Instantaneous frequency track obtained from the NFB structure

Since the adaptive NFB structure has a smoother track in Figure 5.16, and because 

it has the simpler gradient structure it is used for the other sets of simulations. 

This simulation, the results of which are given in Figures 5.17 and 5.18, shows 

that the new adaptive NFB structure, when cascaded, can track two sinusoids with 

unequal powers as in Example 3 [81]. The input is composed of two sinusoids, 

one with unity power at a frequency of 0.12 and one with power of 0.01 at a 

frequency of 0.14. The variance of the noise is 0.01 so that the respective SNRs 

which correspond to each sinusoid are 20dB and OdB. The notch filter structures 

are initialised so that their notch frequencies are 0.10 and 0.11. The adaptive 

algorithm parameters for the NFB structures are the same as those for Simulation 

1 except for p. which is 0.000125.
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Figure 5 .17 . Instantaneous frequency track obtained from the structure o f Kwan

and Martin
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Figure 5.18. Instantaneous frequency track obtained from the NFB structure

These two simulations display the potential of the simplified gradient, all-pass 

based, constrained adaptive notch filter for frequency tracking.

A further set of simulations, shown in Figures 5.19 and 5.20, display that the 

NFB structure can track three sinusoids as in example 4 of Kwan and Martin [81]. 

The input consists of three sinusoids with equal powers and normalized 

frequencies of 0.1, 0.12 and 0.14, and with additive noise such that each sinusoid 

has a SNR of lOdB. The notch structures are initialised so that their notch 

frequencies are 0.08, 0.1 and 0.12. The adaptive algorithm parameters for the 

NFB structures are the same as those for the other simulations except for n which 

is 0.0003. For the structure of Kwan and Martin a total of nine second-order 

sections are necessary, whereas for a cascade of NFB structures six second-order 

structures only are required. These simulations justify the potential for multiple
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frequency tracking offered by the new NFB structure. Since the adaptive NFB 

structure is based on an all-pass filter it would be worth the consideration of a 

realisation which uses finite precision arithmetic on a digital signal processor. The 

line enhancement performance of these structures is simulated in the following 

section.

Figure 5.19. Instantaneous frequency track obtained from the structure of Kwan 

and Martin
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Figure 5.20. Instantaneous frequency track obtained from the NFB structure

5.4.2 Signal Enhancement Simulations

Before the new NFA and NFB structures are simulated the SNlRs are 

calculated. For a conventional FIR ALE, with a single sinusoid input, this ratio is 

Ngiven by — [4] where N is the tap length of the ALE with the assumption that

there is zero adaptation noise. For NFA and NFB, with a = 0.9025 as used in the 

simulations, the SNR improvement ratio given in (5.43) are respectively 19.5 and

20.5. Therefore, to obtain a compatible performance with an FIR ALE, 

independent of adaptation noise, would require a tap-length. of the order of 40 

which clearly shows the reduced complexity offered by HR adaptive filters. 

Further increase of the pre-set pole radius would improve this comparison. 

Theoretically, as a approaches unity this improvement becomes infinite; however,
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other effects, such as finite wordlength effects and adaptation noise, limit this 

improvement. The simulations shown in Figures 5.21 and 5.22 are plots of the 

approximate ensemble averages, obtained from 50 independent trials, of the mean 

squared error for NFA and NFB. These plots are indicative of the line 

enhancement performance of the notch filters, since the closer the final value of 

these curves is to the level of the additive noise the nearer the enhancement 

outputs are to pure sinusoids. The input signal is as in the simulation in 2.4.3, 

and consists of a single sinusoid of normalized frequency 0.1 and additive noise at 

a level of 20dB. The p parameter is initialised for both sections to be zero, which 

corresponds to a notch frequency of 0.25. The precipitous fall-off of the error 

learning curve is characteristic of the shape of the error performance surface, as 

once the value of p nears its optimal value, the gradient of the surface increases 

significantly, and so the parameter p speeds to the optimum. The value of p for 

NFA and for NFB is 0.01. The final MSE for NFA and NFB are respectively 

-19.0dB, and -18.9dB.

These enhancement results are summarised in Table 5.1 in a form consistent 

with the results shown in Table 3.1. The results show the good convergence and 

noise reduction properties of the new ANF structures, which are synthesised from 

numerically robust all-pass sections, when used for line enhancing. Moreover, the 

NFB structure has the marked advantage of a particularly simple mechanism for 

gradient generation.

TABLE 5.1. New ANF structure enhancement simulation results

Structure Fig. No. Time to steady-state Average MSE dB

NFA 5.21 200 -19.0

NFB 5.22 200 -18.9

The SNR improvement ratio for the new NFA structure, given in Section

5.3.5, is the same as that for the structure used by Hush [82]. Whereas, for the 

NFB structure the SNR improvement ratio corresponds to that for the structure of 

Kwan [81].
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Figure 5.21. Error squared learning curve for the N FA  structure
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Figure 5.22. Error squared learning curve for the NFB structure

In conclusion the novel adaptive notch filter structures introduced, particularly 

NFB, are shown to have good performance for both line enhancing and frequency 

tracking. They are preferable to the techniques introduced in Chapter III since it 

is not necessary to have a priori knowledge of the approximate locality of the 

input sinusoid frequency. The performance of these adaptive notch filters can be 

improved still further with the inclusion of additional pre-filtering and multirate 

techniques.
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CHAPTER VI Multirate Adaptive Line Enhancing

An adaptive line enhancer is designed to minimise the output mean squared 

error. Therefore, the components within the input spectrum which have the largest 

power content have the maximum effect on the frequency response of the adaptive 

filter within the adaptive line enhancer. Thus the enhancement performance of 

the conventional adaptive line enhancer, when its input signal consists of two 

sinusoids, with disparate powers, in additive noise, is best for the sinusoid with 

the maximum power. Moreover, the low-level sinusoid can receive negligible 

enhancement when its power is particularly low. If the input frequencies are 

sufficiently different, however, then the input spectrum can be split, to allow 

separate line enhancement operations, and so achieve reasonable line enhancement 

for both the sinusoids, independent of their relative powers.

In order to split the input spectrum into sub-bands, fixed filters are used, in 

combination with multirate techniques. Therefore, the type of filters applied, and 

the operation of the basic multirate building blocks, i.e. decimators and 

interpolators, are reviewed. Then the structure of a multirate adaptive line 

enhancer is considered, and a method by which problems of spectral gaps can be 

removed is shown. Simulations are included to verify the performance of the 

multirate adaptive line enhancer when composed of conventional FIR adaptive 

filters. The inclusion of the HR adaptive line enhancer, namely the NFB 

structure, as developed in Chapter V, is then proposed, and the simulations 

establish the possibilities for multirate HR adaptive line enhancing.

6.1 Components for Band Splitting

The filters which are used to sub-divide the input spectrum are half-band 

filters.

6.1.1 Half-Band Filters

A pair of filters is necessary to divide the input spectrum into halves, namely, 

a low-pass filter which ideally passes only the normalized frequency range
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v € [0,4-]. and a high-pass filter which passes only the frequency range v €
4 4 2

Such filters are given the name half-band filters since they pass one half of the

baseband region. The magnitude of the frequency response of an ideal half-band

low-pass filter is shown in Figure 6.1.

Magni tude

Figure 6.1. Magnitude response of an ideal half-band low-pass filter

A complementary pair of odd-length, symmetrical, half-band FIR filters is a very 

computationally efficient method by which to achieve the required division [98]. 

FIR filtering is chosen because, provided the impulse response sequence is 

symmetric, the filter has exact linear phase and therefore no phase distortion is 

introduced. Moreover, a half-band, odd-length, symmetric FIR filter has the 

property that, apart from the center coefficient, its every other parameter value is 

zero; this is to be expected from the fourier series representation of a square
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wave, which has zero odd harmonics. The center coefficient, which corresponds 

to the mean value of the magnitude of the frequency response, shown in 

Figure 6.1, is 0.5 and so is a trivial multiplication. To realise the complementary 

high-pass filter only one additional adder is necessary. With the assumption that 

the length L low-pass filter has a z-transform function Hlp(z), the high-pass filter 

has a transfer function of the form

q-i)
Hhp(z) =  z 2 “  HiP(z) • (6 -l)

The fact that HJp(z) and Hhp(z) are a complementary pair is seen from 

IHiP(ei2vv) + = 1- The implementation of such a complementary pair of

filters is shown in Figure 6.2 for length 7 filters. The design of the coefficients 

for such a half-band low-pass filter can be easily performed with the use of a 

well-established optimal digital filter design routine such as the Remez exchange 

algorithm or, for a finite wordlength realisation, integer programming techniques 

can be applied [3]. A pair of filters which split a signal into low-pass and high- 

pass constituent parts, is known as an analysis pair. For a half-band filter the 

parameter hlp( 1) is also zero, in Figure 6.2, therefore only two nontrivial 

multiplications are necessary for the two outputs, i.e. the low-pass and the high-

pass output. Hence, generally, ^  nontrivial multiplications are necessary forO
each output sample [98]. This complexity is a factor of 4 lower than that for 

quadrature mirror filters, of similar length, which could be used for 

bandsplitting [98]. A similar complementary filter realisation structure, with the 

same level of computational complexity, can be used for the recombination of a 

low-pass and high-pass signal input pair.

6.1.2 Multirate System Building Blocks

A multirate system is one in which the sampling rate is not constant [99]. 

Within such systems there are decimators, which down sample a sequence, and 

interpolators, which perform up sampling. Decimators and interpolators are the 

essential building blocks of multirate systems, and therefore their operation is
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Figure 6.2. Analysis filters; complementary pair filter realisation structure

reviewed.

A 2-fold decimator is shown in Figure 6.3, with an input x(k) and output y(k) 

which is a compressed version of x(k). The down arrow is indicative of the down 

sampling operation performed by a decimator. The output y(k) is composed of 

only the values of x(k) which occur at multiples of 2. The input-output relation is 

given by y(k) = x(2k). A decimator is a linear device, but not time-invariant. 

Therefore it can not be represented by a transfer function. However, a frequency 

domain description for a 2-fold decimator can be obtained. As a decimator 

compresses the input signal in the time domain a stretching [100] is expected in the

j2v{—)
frequency domain. The frequency transform X(e  2 ) is a stretched version of 

X (e J'2‘nv); but it has a period of 2, rather than 1, and so does not represent a valid
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Figure 6.3. A 2-fold decimator

transform of a sequence. Crochiere and Rabiner [99] establish that Y ( e J2ltv) has in

fact two terms, namely X{e 2 ) and X(-<? 2 ), which has the desired unity period.

The second term is a shifted version, by unity, of the first term. Thus the transfer 

domain input-output relationship for a 2-fold decimator is written as

1 1  1  
Y ( z )  = y [ * ( * 2) + * ( - z 2)] or

K(e;^v) = i [ X(e 2  ) + x ( - e  2 )] . (6.2)

An input signal to a decimator must be bandlimited, so as to avoid aliasing in its 

output spectrum. A low-pass signal, for example, as shown in Figure 6.4A, must

be limited to the normalized frequency range v e to avoid aliasing which
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J 2 i r ( f )  J27r(^)
would be caused by the overlap of the X(e  2 ) and the X ( - e  2 ) terms. For a 

high-pass signal, as shown in Figure 6.4B, aliasing is avoided provided that the 

signal has no spectral content within the normalized frequency range of

V €
< - M > -

To avoid aliasing, in practice, a signal input to a decimator is

filtered, to limit it spectral content. Such filters are known as decimation filters, 

and the complementary filters previously introduced can approximately perform 

this operation. For the decimator output, with a high-pass input signal as in

Figure 6.4B, attention is drawn to the baseband region v e [0,y], since the

frequency components are reversed to their arrangement in the input signal, that is 

a direction of increasing frequency in the input signal, within the baseband region, 

corresponds to a reducing frequency direction in the output signal baseband 

region.

The schematic representation for a 2-fold interpolator is shown in Figure 6.5. 

Such a block inserts a zero between adjacent samples in the input sequence and so 

produces a stretching [100] in the time domain, which corresponds to a 

compression in the frequency domain. Since y(ej2lTV) contains a replica, or image, 

of the basic input spectrum as shown in Figure 6.5, the interpolator is said to 

introduce an imaging effect [100]; this is the dual of the aliasing effect of a 

decimator. The transform domain relationship for a 2-fold interpolator is given 

by

y ( z )  =  X ( z 2) or Y { e ^ v) = X ( e ^ 2v)) . (6.3)

Such an interpolator is a time-varying linear system. In practice, an interpolator is 

followed by a filter called an interpolation filter, which eliminates the images in 

y(e-'2lTV), so that the resulting output is a simple band-pass signal; whether it is 

low-pass or high-pass. In terms of the time domain such a filter fills in values for 

the zeros which are inserted by the interpolator.

If a decimator precedes an interpolator, then provided that the input spectrum 

is appropriately bandlimited, e.g. v e [— outPut spectrum is an imaged
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Figure 6.4. Decimator input and output spectra for a low-pass and high-pass 

input signal

version of the input spectrum. When an interpolator precedes a decimator the 

result is an identity system, since the decimator merely removes the zeros inserted 

by the interpolator. Both decimators and interpolators can be generalised to M- 

fold operation [100]. The combined application of the half-band filter and the 

multirate building blocks are therefore used to form a multirate adaptive line 

enhancer.

6.2 Multirate Adaptive Line Enhancing

The input signal to the adaptive line enhancer can be divided into two sub

bands when passed through a complementary pair of half-band filters. To apply 

adaptive line enhancing directly to these low-pass and high-pass sub-bands is not
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Figure 6.5. A 2-fold interpolator; its input and output spectra and the frequency 

response of an interpolation filter

advisable since the filtering has coloured the additive white noise within the input 

signal. Such colouration would mean that the decorrelation delay parameter 

within the adaptive line enhancer must be selected sufficiently large so that the 

noise correlation introduced by the filters is removed, and so is a function of the 

length L of the FIR filters used for bandsplitting. This problem is overcome with 

the application of decimators immediately after each of the complementary pair of 

half-band filters. The decimation operation as shown in Figure 6.4 causes the two

components in the decimator output spectrum, namely X(e  2 ) and X ( - e  2 ), and 

so the noise component within each of the sub-bands is essentially white, and, 

crucially, with only half the power. Thus, the decorrelation parameter for the 

sub-band line enhancers can be set at unity. After the sub-band line enhancers,
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the reconstruction of the signal at the original rate is necessary, and this can be 

achieved with a combination of interpolators and a complementary pair of half

band filters.

6.2.1 The Multirate Adaptive Line Enhancer Structure

Figure 6.6. The multirate adaptive line enhancer

The complete structure for the multirate adaptive line enhancer is shown in 

Figure 6.6. The low-pass, high-pass, complementary filter pair Hip(z)  and Hhp(z ) 

are known as the analysis filters, whilst the G0(z) and G x(z)  filters are known as 

synthesis filters [100]. If the sub-band adaptive filters and the decorrelation 

delays are neglected, that is replaced with straight wires, an expression for the 

output transform Y(z) can be written in terms of the input spectrum X(z), with 

the use of (6.2) and (6.3), as
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I ' M  =  j ( f f / , ( z ) G o «  +  Hhp( z ) G M ) X ( z )

+ •i-(H„(-2)G„(z) + Hhp(-z)G t(z))X{-z) . (6.4)

The second term in the right hand side of (6.4) represents the aliasing term in the 

output, and can be removed with the choice of synthesis filters of the form 

G0(z) -  _ 2/yAp(-z) and G1(z) = 2/7/p(-z ), so that Y(z) becomes

T(z) = (Hhp{z)Hlp{ - z )  -  Hlp(z)Hhp( - z ) ) X ( z )  , (6.5)

which is a linear and time-invariant system which has a transfer function.

From (6.1) G0(z) can also be written as

(£ - P  ( L - l )

GoOO = GiOO "  2 (-l)  2 z 2 . (6.6)

The substitution of (6.1) into (6.5) yields

(!■ -!) ( L - 1)
Y(z)  = z 2 ( / / „ ( - * ) - ( - 1 )  2 Hlp(z) )X(z )

( L - 1)
= z 2 D(z)X(z) (6.7)

q-D
where D(z) = Hlp( - z ) - (-1) 2 Hip(z), which is representative of a distortion 

function. When is odd, i.e. L = 3 ,7 ,ll,..., D(z) = Htp( - z ) + Htp(z);

whereas when ^  is even, i.e. L=5,9,13,..., D(z) = Hlp( ~ z )  - H,p(z).  The

synthesis filter pair G0(z) and Gt(z) can be efficiently realised as shown in 

Figure 6.7, where the symmetry of the impulse response sequence of Gj(z) is 

used. Note, from the definition G^z) = 2ff/p(-z ), the parameters gY(k) are found 

directly from the low-pass filter parameters, and thus alternate parameters are, 

except for the center coefficient, zero.

Consideration is next given to the properties of the distortion function D(z). 

Since the low-pass filter Hlp(z)  has a symmetric impulse response sequence, D(z) is 

linear phase and so there is no phase distortion. However, some magnitude 

distortion is expected. The magnitude of the output signal, from (6.7), is given
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Figure 6.7. Synthesis filters; complementary filter realization structure

by

|lr( ^ 2irv) |  =  \D (e }‘lvv) \ \X (e ]'l l "’) \  ’ ( 6 . 8 )

and therefore any ripples in D(e'2lTV) distort the input spectrum. The analysis of 

Lim [98] proceeds with the definition of zero phase versions of ff/p(e-'27TV) and 

D(e^1TV), namely

H ip ( 2 t t v )

D (  2-irv)

„ (L-l)j l - r t v '  ’
e 2 H lp( e ^ v) and  

* e 2 D{e^vv) , (6.9)

where the caret denotes a zero phase function. Then set 8(2 ttv) to be the ripple 

function of H lp( 2ttv) , that is
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H ip (2ttv) = l+8(27rv) 0 < v < v p

= 8(2itv) vf^v:s-^- (6 .10)

where v p and v, are, respectively, the passband and stopband edges o f H ( 2 ttv). 

Thus from the definition o f D(z) in (6 .7) and (6 .9 ), and (6 .10)

D(2ttv) = 1 ± (8(2ttv) — 8(2tt(- -̂ — v)) , (6.11)

for 0=sv=£vp or V j < v ^ y , and with the definition o f <J>(2ttv) to be the ripple 

function o f  z3(2ttv) which is bounded by

|cj)(2'irv)| <; |8(2irv)| -  |8 (2 'rr(y -v ))| (6 .12)

for O^v^Vp or . This ripple can be reduced by the choice o f a larger

length FIR filter. M ore significantly, for the transition band o f  H { e jlvv) ,  i.e . 

V,<V<Vp, the zero phase distortion function becom es

D (2ttv) = {Hlp( 2 ' n v ) - H i p{ 2 ' n { ^ - - v ) ) ,  (6 .13)

and so when v = —, D(2ttv) = 0; thus there is a notch in the distortion function, 
4

which m eans that any input signals at or very close to v = — are attenuated
4

significantly. This band can be made very narrow by the choice o f  a large FIR 

length, therefore a reasonable assumption can be made that the input sinusoids, to 

the multirate adaptive line enhancer, are not located around midband.

6 .2 .2  A M ethod to overcom e Spectral Gaps

The problem  o f a spectral null in the overall transfer function o f a sub-band 

filter bank has been addressed by Somayazulu, Mitra and Shynk [101]. With the 

inclusion o f an auxiliary sub-band, which is not decim ated, the problem  is 

rem oved. An auxiliary sub-band o f the same form is developed for the 

com plem entary half-band filters related by (6 .1 ). The structure is proposed in 

Figure 6 .8 . To validate this structure, equations (6 .2 ) and (6 .3 ) are used with the
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Figure 6.8. Multirate adaptive line enhancer with an auxiliary sub-band

assumption that the sub-band adaptive line enhancers are replaced by direct 

connections to yield

a-i)
I ' M  =  [ ( - * )  2 - H lp( - z ) ] z - ' [ H , p( z ) X ( z ) - H , p( - z ) X ( - z ) ]

+ 2 Hlp{z)H,p( - z ) z - '

«■-» 1)
+ *- ' » ( „ ( - * ) [ ( *  2 - H , p( z ) ) X ( z ) + ( ( - z )  2 - H lp( - z ) ) X ( - z ) ]  . (6.14)

From which the aliasing terms are given as

- 0 ^ - 1) (1 - 1)
- z - ' [ ( - 2) 2 - H lp( - z ) ] H lp( - z )  +  z - ' H lp( - z ) [ ( - z )  2 - H lp( - z )  ] X ( - z )

which cancel, as required. This leaves a linear system with transfer function given 

by
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= 2 - H , p( ~ z )  +  2Hlp(z)Hlp( - z ) z ->

( L- 1)

+ z~ lHlP( ~ z)[z 2 ~Hlp(z)]
(L + l)  L -1

= z~ 2 (ff/p( - z )  + ( - 1) 2 »,„(*)) . (6.15)

L -1

The expression Htp( - z )  +  ( - 1 )  2 Hlp(z) ,  for a half-band odd-length symmetric

. - ( L - i )  L - 1  L - 1filter, is equal t o -------—  for ------ odd, and z 2 for ------ even, thus the
2 2 2

overall transfer function is

X(z)  “
(6.16)

which is a pure delay with no amplitude distortion and only a trivial ± tt phase 

change dependent upon the choice of L. The auxiliary sub-band transfer function 

is

»««,(*) = 2  z - ' H lp(z)Hlp( - z )  (6.17)

and has the important property that \Haux(z)\  = \Haux( - z ) \  which is a necessary 

condition for a filter symmetric about midband; as expected from a filter which 

replaces the missing gap in the spectrum. Since the auxiliary band filter has an 

essentially band-pass filter transfer function the amount of the input noise which 

passes through it is proportional to the ratio of the bandwidth of the band-pass 

filter to that of the length of the entire baseband. Somayazulu [101] suggests that 

this small level of noise means that an auxiliary sub-band line enhancer need have

only a very small length, i.e. th to -ĵ - th of the lengths in the other two bands.

The colouration of the noise contained in this sub-band, however, has an effect on 

the operation of the adaptive line enhancer and means that the decorrelation delay 

parameter should be carefully chosen. Therefore, if it can be guaranteed that the 

input sinusoids do not lie around the midband, the preference is to omit the 

auxiliary band. The possibility exists to extend the idea of sub-band adaptive 

filters further with the use of more than two main sub-bands. A tree of sub-band
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networks could be used [102] or a parallel network with more than two main sub

bands [100].

The adaptive line enhancer structures used in the multirate structures have 

typically been of an FIR form. The length of the conventional FIR filters 

necessary for use in the sub-bands is shorter than for a single channel adaptive line 

enhancer due to the noise reduction offered by the combination of the analysis 

filtering and the decimators. In [101] the suggestion is made to use adaptive 

filters in the sub-bands with one half the length required for a single channel 

adaptive line enhancer. Additionally the output, and algorithm, computations of 

the sub-band adaptive line enhancers can be performed at one half the rate 

necessary for a single channel adaptive line enhancer. The total computation 

complexity, in terms of multiplications per output sample, necessary for a 

conventional single channel adaptive line enhancer is equal to twice, i.e. 2N, the 

length of the adaptive filter within the line enhancer. For a two band multirate 

adaptive line enhancer, as shown in Figure 6.6, which has two separate line 

enhancers, each with one half the length of a conventional single channel adaptive 

line enhancer, only half the number of computations are required, i.e. N, to form 

each output sample. The additional analysis and synthesis filter pairs with lengths

L require only a total of multiplications per output sample due to the

simplification already shown in odd-length symmetric half-band filter realisation. 

The multirate adaptive line enhancer is next simulated.

6.2.3 Simulations of the Multirate Adaptive Line Enhancer

A simulation of a two band multirate adaptive line enhancer, without an 

auxiliary channel as in Figure 6.6, is performed. The results obtained are 

compared with those from a conventional single channel adaptive line enhancer. 

The input signal, similar to that used by Somayazulu [101], is given by

*(*) = 0 .1 s in (^ -)  + s in ( - ^ )  + n(k)  (6.18)

where n(k) is a white noise sequence which has a variance of o-J = 0.2. In
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Figure 6.9 the spectrum of this input signal is shown. The low power input 

frequency, i.e. v= “ -, has such low power that it is essentially buried [101] within

the noise. Figures 6.10 and 6.11 display the output spectra which result from the 

use of the conventional and the multirate adaptive line enhancer. These spectra 

are computed from 1024 enhancer output samples after the line enhancer has run 

for 2000 samples, so that the adaptive line enhancers have, approximately, 

converged. A length 200 conventional single channel adaptive line enhancer is 

used. For the multirate adaptive line enhancer the two main sub-bands adaptive 

filters have lengths equal to 100. The analysis and synthesis filters within the 

multirate adaptive line enhancer each have a length of 63. These half-band filters 

are designed so that the low-pass and high-pass filters are essentially non 

overlapping so that no aliasing problems are encountered [103,101].

The step-size parameter p., for the single channel adaptive line enhancer is 

0.005, and 0.015 for the two main sub-bands of the multirate adaptive line 

enhancer. Such a large value of p, is due to the reduced length of the adaptive 

filter and also because the input power level is decreased, due to the reduction of 

the noise level.
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Figure 6 .9 . Input signal spectrum
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Figure 6 .10 . Output signal spectrum of a conventional single channel adaptive

line enhancer
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Figure 6.11. Output signal spectrum of the conventional multirate adaptive line 

enhancer

The input signal used in these simulations is carefully chosen so that the two 

sinusoids lie in different sub-bands. For the conventional FIR adaptive line 

enhancer the output spectrum shown in Figure 6.10 displays that only the high 

power sinusoid is enhanced and no noticeable improvement of the low level 

sinusoid is seen. However, for the multirate adaptive line enhancer, both the 

sinusoids are significantly enhanced, thus the improved performance of the 

multirate adaptive line enhancer is evident. For this simulation there is clearly no 

need for the auxiliary band. Moreover, if the lower or upper band has no 

sinusoid content then it would be reasonable to consider the removal of the 

appropriate arm.
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6.2.4 Inclusion of the NFB Structure in a Multirate Adaptive Line Enhancer

The computational complexity of a multirate adaptive line enhancer could be 

reduced still further if HR adaptive filters are used within the sub-bands. 

Therefore, the NFB structure, as previously developed, is proposed as a 

replacement for the FIR adaptive line enhancers within the main sub-bands as 

shown in Figure 6.12.

Figure 6.12. Multirate NFB adaptive line enhancer

The auxiliary sub-band is not used since it is again assumed that no input sinusoid 

lies around midband. The low-pass and high-pass sub-bands are assumed to 

contain only one sinusoid. Therefore, only one second-order section is necessary 

in each sub-band, and so the very efficient second-order adaptive notch filter B 

structure, as shown in Chapter V, can be used. The multirate HR adaptive line
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enhancer is therefore simulated. The same input signal as in (6.18) is used and 

the resulting spectrum shown in Figure 6.14. This spectrum is again calculated 

from the last 1024 points of a 3024 sample point simulation. The NLMS 

algorithm is used to adapt the two NFB structures. The step size parameters are 

both chosen to be 0.001. The pole radius a parameters are set at 0.9025. The 

initial 0 parameters are both set at 0.0 which correspond to a notch frequency at 

midband. The stretching effect of the decimation operation in the low-pass sub

band, interestingly, moves the input frequency at v=—j- closer to the midband

frequency and so aids convergence. The resulting spectrum shows that the 

multirate NFB adaptive line enhancer has performance significantly better than 

that of the multirate adaptive line enhancer with conventional FIR adaptive filters; 

but with a substantial reduction in computational complexity, only three 

multiplications for each output of the NFB structures.

In conclusion, the possibilities of multirate adaptive line enhancing have been 

shown. The proposal to replace the adaptive FIR filters in the sub-bands with the 

NFB structures appears to have much potential for line enhancement, accompanied 

with a significant reduction in computational complexity.
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Figure 6 .13 . Output signal spectrum o f the multirate NFB adaptive line enhancer
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CHAPTER VII Conclusions; Suggestions for Future Work

The conventional FIR adaptive line enhancer was introduced in Chapter I, and 

the two main families of algorithm suitable for its adaptation, i.e. the LMS and 

RLS algorithm, described in Chapter II. These two algorithm families were 

compared, and due to the simplicity, and robustness, of the LMS algorithm it was 

proposed as the most suitable algorithm for real-time adaptive line enhancing. An 

integrator interpretation of the update equation of the LMS algorithm was used as 

a method for the relation of the basic LMS algorithm to other members of the 

LMS algorithm family. The FIR filter within the conventional FIR adaptive line 

enhancer was then shown in Chapter III, however, not to be the optimal structure 

for the realisation of the required forward prediction filter. Therefore, novel 

structures for the realisation of such a filter were postulated.

In Chapter III specific fixed HR filter blocks were used to replace the delay 

elements within the transversal FIR filter. These sub-blocks were based on all

pass functions representative of spectral transformations or, with slight 

modification, as a set of functions orthogonal on the unit circle. The adaptive 

capacity of these new structures was maintained with the adjustment of the 

feedforward parameters of the new filter structures. Significantly, the output 

error was shown to be linear with respect to these feedforward parameters and 

therefore a stochastic gradient algorithm, such as the LMS algorithm was suitable 

for the adaptation of these parameters. Simulations, and an analysis of the 

transformed error performance surface, were used to validate the improved 

performance expected of these new filter structures. Improved convergence rate, 

and noise performance, were obtained, provided that the parameters of the 

additional filter sub-blocks were appropriately chosen. Sensitivity studies were 

included to show that some error in the selection of the parameters within the 

fixed filter sub-blocks could be tolerated. The general conclusion drawn from 

these studies was that the parameter selection must be a compromise between the 

best setting for the pole radius in terms of optimal noise performance, and a 

choice which allowed some degree of error between the actual input frequency and
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the selection of the fixed pole angles. This is the major limitation of the adaptive 

line enhancer structures proposed in Chapter III, since without some guidance to 

the input sinusoid frequency it was found that the performance of the new 

structures can be worse that that for the conventional transversal filter structure. 

However, if the parameters are appropriately chosen, significant performance 

improvement was shown, by simulation, to be possible. In some applications, 

such a priori guidance to the approximate location of the frequencies of the input 

sinusoids, may not be available, thus other structures were considered.

The optimal forward prediction filter for a sinusoid in noise was shown in 

Chapter IV to have a recursive filter structure. A major implication of the use of 

a recursive filter for adaptive line enhancing was shown to be that the forward 

prediction error is nonlinear with respect to the feedback parameters of the 

forward prediction filter. This nonlinearity was given as the reason for the 

hostility of the adaptation of an unconstrained recursive filter structure. The 

important issue of gradient calculation was shown generally to require some form 

of additional filtering which increases the overall complexity of the filter. More 

critically, however, algorithm instability was stated to be a significant problem 

when the full expressions are used for gradient generation. A simplified RLMS 

algorithm was mentioned which has the useful self-stabilization property, however 

it was not pursued, because it is sub-optimal in terms of the minimisation of the 

output mean squared error. Thus, structural constraints were given as a method 

by which the problem of algorithm instability can be surmounted and accurate 

gradient terms used.

Constrained adaptive recursive filters, in the form of adaptive notch filters, 

were reviewed in Chapter V. From the optimal forward prediction filter 

introduced in Chapter IV the design of an adaptive notch filter was shown to be 

possible from a band-pass filter with unity gain and zero phase shift at the notch 

frequency. Two novel structures were then proposed for the realisation of 

adaptive notch filters denoted as NFA and NFB structures. These new structures 

were synthesised from all-pass filter blocks realised as structurally lossless
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bounded real functions. The NFA structure was designed from a low-pass to 

band-pass transformation of a low-pass proto-type filter and shown to be related 

to a structure used by R.A. David [80]. The band-pass filter was shown to have 

essentially two parameters, which permit orthogonal tuning of the notch frequency 

and bandwidth. The NFB structure was composed of the parallel combination of 

two all-pass functions and related to the structure of B. Friedlander and J.O. 

Smith [86]. This parallel combination consists of a straight wire and a second- 

order all-pass function with two parameters which also allowed orthogonal tuning 

of the notch frequency and bandwidth. The mirror-image polynomials present in 

an all-pass transfer function were shown to simplify significantly the gradient 

terms derived for the adaptation of these innovative notch filter structures, 

particularly NFB. Both frequency tracking and signal enhancement outputs were 

designed into these structures. Multiple frequency tracking and line enhancement 

was shown to be possible by cascading the NFB structure. Various simulations 

were used to verify the performance of these structures and to establish that the 

gradient simplification did not degrade their operation. These results confirmed 

that the NFB structure has much potential for frequency tracking and line 

enhancing applications. The important SNR improvement ratio was given for the 

two new structures and provided the justification for the use of adaptive recursive 

filters.

Multi-rate techniques were then introduced in Chapter VI as a method to 

improve further the performance of adaptive line enhancers. These techniques 

were then extended to the NFB structure and proposed as a method for 

performance improvement of adaptive recursive filters..

The work within this thesis could be extended in a number of directions. The 

fixed filter sub-blocks applied to the adaptive line enhancer in Chapter III could 

be considered for more general narrow band signals in noise, rather than only 

sinusoids in noise. Optimal methods for the selection of the fixed parameters, 

within these additional filter sub-blocks, is an open issue.
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The NFB structure which was derived in Chapter V could be realised on a 

digital signal processor and thus its performance in a finite wordlength application 

assessed. Also for the NFB structure further studies of the choice of the step size 

parameter jjl, and the initialisation parameters ps, requires more consideration. 

Moreover the performance of the NFB structure for sinusoids in coloured noise 

would be a valuable study.

Multirate HR adaptive line enhancing could be extended so that more than two 

main sub-bands are used. Techniques by which sub-bands, that contain no useful 

signals, can be turned off merits investigation.
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