6 research outputs found

    Complete Multipartite Graphs and the Relaxed Coloring Game

    Get PDF
    Let k be a positive integer, d be a nonnegative integer, and G be a finite graph. Two players, Alice and Bob, play a game on G by coloring the uncolored vertices with colors from a set X of k colors. At all times, the subgraph induced by a color class must have maximum degree at most d. Alice wins the game if all vertices are eventually colored; otherwise, Bob wins. The least k such that Alice has a winning strategy is called the d-relaxed game chromatic number of G, denoted χ gd (G). It is known that there exist graphs such that χ g0 (G) = 3, but χ g1 (G) \u3e 3. We will show that for all positive integers m, there exists a complete multipartite graph G such that m ≤ χ g0 (G) \u3c χ g1 (G)

    The Relaxed Game Chromatic Index of \u3cem\u3ek\u3c/em\u3e-Degenerate Graphs

    Get PDF
    The (r, d)-relaxed coloring game is a two-player game played on the vertex set of a graph G. We consider a natural analogue to this game on the edge set of G called the (r, d)-relaxed edge-coloring game. We consider this game on trees and more generally, on k-degenerate graphs. We show that if G is k-degenerate with ∆(G) = ∆, then the first player, Alice, has a winning strategy for this game with r = ∆+k−1 and d≥2k2 + 4k

    The Relaxed Edge-Coloring Game and \u3cem\u3ek\u3c/em\u3e-Degenerate Graphs

    Get PDF
    The (r, d)-relaxed edge-coloring game is a two-player game using r colors played on the edge set of a graph G. We consider this game on forests and more generally, on k-degenerate graphs. If F is a forest with ∆(F) = ∆, then the first player, Alice, has a winning strategy for this game with r = ∆ − j and d ≥ 2j + 2 for 0 ≤ j ≤ ∆ − 1. This both improves and generalizes the result for trees in [10]. More broadly, we generalize the main result in [10] by showing that if G is k-degenerate with ∆(G) = ∆ and j ∈ [∆ + k − 1], then there exists a function h(k, j) such that Alice has a winning strategy for this game with r = ∆ + k − j and d ≥ h(k, j)

    The game chromatic number of trees and forests

    Get PDF
    While the game chromatic number of a forest is known to be at most 4, no simple criteria are known for determining the game chromatic number of a forest. We first state necessary and sufficient conditions for forests with game chromatic number 2 and then investigate the differences between forests with game chromatic number 3 and 4. In doing so, we present a minimal example of a forest with game chromatic number 4, criteria for determining the game chromatic number of a forest without vertices of degree 3, and an example of a forest with maximum degree 3 and game chromatic number 4.Comment: 18 pages, 15 figures, submitte

    Digraph Coloring Games and Game-Perfectness

    Get PDF
    In this thesis the game chromatic number of a digraph is introduced as a game-theoretic variant of the dichromatic number. This notion generalizes the well-known game chromatic number of a graph. An extended model also takes into account relaxed colorings and asymmetric move sequences. Game-perfectness is defined as a game-theoretic variant of perfectness of a graph, and is generalized to digraphs. We examine upper and lower bounds for the game chromatic number of several classes of digraphs. In the last part of the thesis, we characterize game-perfect digraphs with small clique number, and prove general results concerning game-perfectness. Some results are verified with the help of a computer program that is discussed in the appendix
    corecore