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THE RELAXED EDGE-COLORING GAME AND

k-DEGENERATE GRAPHS

CHARLES DUNN, DAVID MORAWSKI, AND JENNIFER FIRKINS NORDSTROM

Abstract. The (r, d)-relaxed edge-coloring game is a two-player game
using r colors played on the edge set of a graph G. We consider this game
on forests and more generally, on k-degenerate graphs. If F is a forest
with ∆(F ) = ∆, then the first player, Alice, has a winning strategy for
this game with r = ∆− j and d ≥ 2j + 2 for 0 ≤ j ≤ ∆− 1. This both
improves and generalizes the result for trees in [10]. More broadly, we
generalize the main result in [10] by showing that if G is k-degenerate
with ∆(G) = ∆ and j ∈ [∆+ k− 1], then there exists a function h(k, j)
such that Alice has a winning strategy for this game with r = ∆+ k− j

and d ≥ h(k, j).

1. Introduction

The map-coloring game was first conceived by Steven Brams and pub-
lished by Martin Gardner in his column in Scientific American [17]. In this
game two players alternate coloring the countries on a map such that no
two countries with a non-trivial border receive the same color. It was not
until 1991, that Bodlaender [2] reinvented it by framing the game in terms
of coloring vertices of a graph.

In the original version of the game two players, Alice and Bob alternate
coloring the vertices of a finite graph G using colors from a set X of r colors.
Alice goes first. On each turn, the players must choose an uncolored vertex
to color such that at the end of the player’s turn, no adjacent vertices have
the same color. Alice wins this game if all of the vertices are eventually
colored. Bob wins if there comes a time when there is an uncolored vertex
for which no allowable color exists. The least r such that Alice has a winning
strategy for this game is called the game chromatic number of G, denoted
χg(G). This parameter has been investigated extensively in a number of
papers [8, 16, 18, 20, 21, 25, 26].

Observe that in the above game, at every step every color class induces
an independent set in G, and that while playing the game, the players are
in the process of creating a proper coloring of the graph. We first consider
a variation of this game in which the players are creating a relaxed coloring,
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also called defect coloring, of the the graph G. This variation was introduced
by Chou et al. [4] and builds on the known work [5, 6, 7, 14, 24] concerning
defect colorings of graphs. The only difference between this game and the
original version is which colors the players are allowed to use. In this version
of the game, a color α ∈ X is legal for an uncolored vertex u if after u
is colored α each color class H ⊆ G satisfies ∆(H) ≤ d, where ∆(H) is
the maximum degree in H, and d is a fixed nonnegative integer set at the
beginning of the game. We call d the defect. As in the original game, Alice
wins if every vertex is eventually colored. Bob wins if there comes a time in
the game when there is an uncolored vertex for which no legal color exists.
We call this game the (r, d)-relaxed coloring game. For a fixed d, the least r
for which Alice has a winning strategy is called the d-relaxed game chromatic

number of G, denoted dχg(G). If d = 0, we drop the initial superscript
and write simply χg(G). For a fixed r, the r-game defect of G, denoted
defg(G, r), is the least d such that Alice has a winning strategy. These
parameters have been further examined in a number of papers, including
[11, 12, 13, 9, 19].

It should be noted that the game chromatic number has some interesting
non-monotone properties. It is well known that χg(Kn,n) = 3 for n ≥ 2,
but if M is any perfect matching in Kn,n, then χg(Kn,n − M) = n. This
gives an example of a graph G with subgraph H such that χg(H) > χg(G).
Extending this idea to the (r, d)-relaxed coloring game, it is well known that
1χg(Kn,n) = n. This provides an example of a graph G such that χg(G) <
1χg(G). In fact, it was shown in [9] that for every m ∈ N, there exists a
graph G such that m ≤ χg(G) < 1χg(G). It remains open whether for all

nonnegative integers d there exists a graph G such that dχg(G) < d+1χg(G).
The focus of our work in this paper is a further variation of this game.

Rather than coloring vertices, the players color edges. Of course, for a given
graph G, this could be viewed as playing the (r, d)-relaxed coloring game
game on the line graph of G. For the purposes of this paper, however, we
will consider this game in terms of edge coloring. We call this variation the
(r, d)-relaxed edge-coloring game and formalize it in the following way.

Let G be a finite graph and let r be a positive integer and d be a non-
negative integer. As above, d is the defect and X is a set of r colors. The
players alternate coloring, with Alice coloring an edge first. We say that a
color α ∈ X is legal for an uncolored edge e if the following conditions are
satisfied:

(1) The edge e is incident with no more than d edges already colored α.
(2) If e′ is an edge incident to e and e′ has already been colored α, then

e′ is adjacent to no more than d− 1 edges colored α.

Note that if e is colored α, then at this point in the game, every edge has
at most d neighbors colored α. Alice wins if every edge is eventually legally
colored. Bob wins if there comes a time in the game when there is an
uncolored edge for which no legal color exists. For a fixed defect d, the least
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r such that Alice has a winning strategy for this game is called the d-relaxed
game chromatic index of G, denoted dχ′

g(G). Similarly, for a fixed r, the

r-edge-game defect of G, denoted def ′g(G, r), is the least d such that Alice
has a winning strategy. This game was first introduced in [10].

To provide the appropriate context for the work in this paper, we note
that for the class of forests, much is already known about the (r, d)-relaxed
(vertex) coloring game. We have the following sequence of results:

Theorem 1 (Faigle et al. [16]). If F is a forest, then χg(F ) ≤ 4. Moreover,

there exists a forest F0 such that χg(F0) = 4.

Theorem 2 (Chou et al. [4]). If F is a forest, then 1χg(F ) ≤ 3. Moreover,

there exists a forest F1 such that 1χg(F1) = 3.

Theorem 3 (He et al. [19]). If F is a forest, then 2χg(F ) ≤ 2. Moreover,

there exists a forest F2 such that 2χg(F2) = 2.

From a certain perspective, this fully describes the (r, d)-relaxed coloring
game on forests, as a class. The goal of this paper is to similarly describe the
(r, d)-relaxed edge-coloring game on both forests and k-degenerate graphs.
We begin by considering the following results:

Theorem 4 (Cai and Zhu [3], Lam et al. [23]). Let T be a tree with ∆(T ) =
∆. Then χ′

g(T ) ≤ ∆+ 2.

Theorem 5 (Dunn [10]). Let T be a tree with ∆(T ) = ∆. Then def ′g(T,∆+

1) ≤ 1. Moreover, if d ≥ 1, then dχ′

g(T ) ≤ ∆+ 1.

Theorem 6 (Dunn [10]). Let T be a tree with ∆(T ) = ∆. Then def ′g(T,∆) ≤

3. Moreover, if d ≥ 3, then dχ′

g(T ) ≤ ∆.

We note that Theorems 4, 5 and 6 can easily be extended to forests.
Therefore, thinking in terms of Theorems 1–3, Theorems 4–6 lead to the
following question:

Question 1. For any forest F with ∆(F ) = ∆ and j ∈ [∆ − 1] is there a

function h : N → N such that whenever d ≥ h(j) we have that dχ′

g(F ) ≤
∆− j?

In Section 2 of this paper we will answer Question 1 in the affirmative
with h(j) = 2j + 2. It should be noted that Theorem 4 was improved in
[15]. It was shown that if ∆ = 3 or ∆ ≥ 6, then any tree T with ∆(T ) = ∆
satisfies χ′

g(T ) ≤ ∆+1. In [1], this result was extended to trees (and forests)
with ∆ = 5. The case for ∆ = 4 remains open, indicating the difficulty of
determining these parameters, even in the non-relaxed environment.

For the more general class of k-degenerate graphs, which will be defined
in detail in Section 3, we note the following result of Cai and Zhu:

Theorem 7 (Cai and Zhu [3]). Let G be a k-degenerate graph with ∆(G) =
∆. Then χ′

g(G) ≤ ∆+ 3k − 1.
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As a consequence, in terms of the (r, d)-relaxed edge-coloring game, we
have that dχ′

g(G) ≤ ∆+ 3k − 1 for all k-degenerate graphs G when d = 0.
Also, in [10], the following result was proven:

Theorem 8 (Dunn [10]). Let G be k-degenerate with ∆(G) = ∆. Then

def ′g(G,∆ + k − 1) ≤ 2k2 + 4k. Moreover, if d ≥ 2k2 + 4k, then dχ′

g(G) ≤
∆+ k − 1.

Theorems 7 and 8 together lead to the following question:

Question 2. For any k-degenerate graph G with ∆(G) = ∆ and j ∈ [∆ +
k − 1] is there a function h : N× N → N such that whenever d ≥ h(k, j) we

have that dχ′

g(G) ≤ ∆+ k − j?

In Section 3 we answer Question 2 in the affirmative. In particular, we
will show that the following h(k, j) suffices:

h(k, j) =

{

2k2 + 4k, if j = 1;

2k2 + 4k + 2j − 4, if j ≥ 2.

We also derive corollaries for outerplanar graphs and planar graphs.

2. The Relaxed Edge-Coloring Game on Forests

Let F = (V,E) be a forest with ∆(F ) = ∆ for some positive integer ∆.
Let T1, T2, . . . , Tn be all components of F containing at least one edge. For
her strategy, for each i ∈ [n] Alice chooses an arbitrary leaf ri ∈ V (Ti) at
which she roots Ti. She then regards all edges in Ti as oriented toward ri.
Let E0 be the set of n edges in F that are incident to a root. For each vertex
v ∈ V \{r1, r2, . . . , rn}, define p(v) to be the unique outneighbor of v. Then
for each edge e ∈ E, there is a unique vertex x ∈ V such that e = xp(x).
We now introduce some terminology, as illustrated in Figure 1.

For every edge e = xp(x) with p(x) 6= ri for some i ∈ [n], define the parent
of e, denoted p(e), to be the edge p(x)p2(x), where p2(x) = p(p(x)). We say
that e is a child of p(e). Note that, because p(x) is well defined, p(e) is also
well defined. Whenever pi(e) is defined and pi(e) is not incident with the
root, define pi+1(e) = p(pi(e)). Define the descendants of e to be

G(e) = {e′ ∈ E | e = pk(e′) for some positive integer k}.

For each edge e = xp(x), define the siblings of e to be

B(e) = {yp(y) ∈ E | p(y) = p(x) and y 6= x}

and B[e] = B(e) ∪ {e}. Define the children of e to be

S(e) = {yp(y) ∈ E | x = p(y)}.

We call the set of all edges incident to an edge e the neighborhood of e,
denoted N(e).

Fix j ∈ [∆ − 3] and let X be a set of ∆ − j colors. Note that |X| ≥ 3.
At any point in the game, let C and U be the set of colored and uncolored
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S(e)
p(e)

p(p(x)) p(x)

e

B(e)

x

Figure 1. For an edge e = xp(x), the vertex p(p(x)) =
p2(x), the edge p(e), and the sets B(e) and S(e).

edges, respectively. For each α ∈ X, we call the set of all edges colored α
the color class of α, denoted Cα. For a colored edge e, denote the color of
e by c(e).

For each colored edge e, define the defect of e to be the number of neigh-
bors of e colored with c(e). If e is uncolored, we set the defect of e to be
zero. We denote the defect of e by def(e). Thus

def(e) =

{

∣

∣N(e) ∩ Cc(e)

∣

∣ , if e ∈ C;

0, otherwise.

We say that color α ∈ X is eligible for edge e if p(e) /∈ Cα. We denote the
set of eligible colors for e by X(e). When coloring an edge e, Alice always
chooses an eligible color. Note that since |X| ≥ 3, this is always possible.

For any edge e, we say that B[e] is secure if there exist edges e1, e2, . . . , ej+1 ∈
B(e) and a color α such that c(ei) = α for i ∈ [j + 1]. In other words, B[e]
is secure if e has j+1 siblings colored with the same color. Note that if B[e]
is secure, then the number of distinctly colored siblings of e is at most

|B(e) \ {e1, e2, . . . , ej}| ≤ ∆− j − 2.

As |X(e)| ≥ ∆− j − 1, there is always a legal eligible color for an uncolored
edge e when B[e] is secure.

We will now define the strategy that Alice will use for this game with
trees. This strategy is a modification of the activation strategy developed
in [10]. In response to Bob’s moves, Alice designates certain edges active;
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precisely how she chooses these edges will be explained below. When an
edge e becomes active, we say that e has been activated. In addition, all
colored edges are active. We denote the set of active edges by A, and remark
that C ⊆ A. This set has the property that once an edge e is in A, e will
remain active for the remainder of the game.

Modified Forest Strategy

Alice begins the game by coloring the unique edge in E0 that is inci-
dent with r1 with any color. Suppose now that Bob has just colored edge
b = xp(x) in Ti for some x ∈ V \ {r1, r2, . . . , rn} and some i ∈ [n]. Alice’s
response has two stages: a Search Stage and a Coloring Stage. In the Search
Stage, Alice finds an edge e to color. In the Coloring Stage, Alice chooses a
color for e.

Search Stage

• If b ∈ E0, then set e to be any uncolored edge in E0, if such an edge
exists, or any uncolored edge whose parent is colored.

• If p(b) ∈ U , then activate each edge along the (x, ri)-path until
reaching either an edge g with g ∈ E0 ∩ U or p(g) ∈ A. [Note that
this includes Alice activating the edge b.] If g ∈ E0 ∩U or p(g) ∈ C,
set e := g. Otherwise, set e := p(g).

• If p(b) ∈ C with c(p(b)) = c(b) and p2(b) ∈ U , then set e := p2(b).
• If p(b) ∈ C with c(p(b)) = c(b), p2(b) ∈ C, and B(p(b)) ∩ U 6= ∅,
then set e to be any uncolored sibling of p(b).

• Otherwise, set e to be any uncolored edge in E0, if such an edge
exists, or any uncolored edge whose parent is colored.

Coloring Stage

• If B[e] is secure, then color e with an eligible color for e that does
not appear among the siblings of e.

• Otherwise, B[e] is not secure. Let f be the last edge to be colored
with a color eligible for e such that c(f) = c(p(f)) and p(f) ∈ B(e).
If such an edge exists, then color e with c(f). If no such edge exists,
then color e with any eligible color for e that minimizes def(e).

We are now ready to state and prove our result for (r, d)-relaxed edge-
coloring game on forests.

Theorem 9. Let F = (V,E) be a forest and ∆(F ) = ∆ for some positive

integer ∆. Let j be an integer with 0 ≤ j ≤ ∆− 1, and define h(j) = 2j+2.
Then def ′g(F,∆− j) ≤ h(j). Moreover, if d ≥ h(j) then dχ′

g(F ) ≤ ∆− j.

Proof. Suppose that Alice and Bob are playing the (∆− j, d)-relaxed edge-
coloring game on F for some d ≥ h(j). Note that when either j = ∆ − 1
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or j = ∆− 2, the result is immediate. Hence, it will suffice to consider the
game with color set X with |X| ≥ 3. We will assume that Alice uses the
Modified Forest Strategy.

Claim 1. If e ∈ U , then e has at most two active children. Furthermore,

when e has two active children, Alice colors e.

Proof. Let f be the first active child of e. When Alice activates f , she also
activates e. Note that while e is uncolored, Alice never colors an edge in
G(e)\G(f) before Bob. If Bob colors an edge b ∈ G(e)\G(f), Alice activates
p(b), p2(b), . . ., and so on, until she reaches e. Since e is active, Alice colors
e. �

Claim 2. Suppose that Alice has chosen to color edge e with α ∈ X. Then

at the end of Alice’s turn, def(e) ≤ j + 2.

Proof. Since α ∈ X(e), then p(e) does not contribute to the defect of e. By
Claim 1, e has at most two active children; hence, e has at most two children
colored α. If B[e] is secure, then Alice would have chosen a color that does
not appear among the siblings of e. In this case, def(e) ≤ 2. Otherwise,
when B[e] is not secure, there are at most j siblings of e colored α. Thus,
def(e) ≤ j + 2. �

Claim 3. Suppose that e is about to be colored α and p(e) ∈ U . Then e has

at most one child colored α. Furthermore, if e has a child colored α, then
Bob colors e and Alice colors p(e).

Proof. If some sibling f ∈ B(e) is the first active child of p(e), then Alice
colors p(e) when the first edge in G(p(e)) \G(f) is activated. Since p(e) is
uncolored and e is to be colored, we conclude that e has no active children
and hence no children colored. So assume that e is the first active child of
p(e). Note that p(e) ∈ A. If an edge in G(p(e)) \ G(e) is then activated,
Alice colors p(e). Otherwise, we may assume that e has no colored siblings
at the time when e is colored. Before e is colored, it is incident with at most
two colored edges, which are children of e. Since |X| ≥ 3, there is a color
that does not appear on any child of e. Then, because Alice will choose a
color to minimize def(e), Alice never chooses to color e with α if a child
of e has already been colored α. So, if e has two active children before e
is colored, then Alice colors e with α only when neither child is colored α.
Thus, if e has a child colored α, then Bob must be coloring e with α, and
since p(e) ∈ A, Alice responds by coloring p(e). �

Suppose f ∈ S(e) ∩ Cα. By Claim 3, if f has a child colored α before
f is colored, then Bob must have colored f and Alice responds by coloring
e. Thus def(f) = 2 once e is colored. Otherwise, f has no children colored
α before f is colored. Since e has at most two active children before e
is colored, f has at most one sibling colored α before e is colored. Then
def(f) ≤ 2 once e is colored.
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Now consider the siblings of e. If B[e] is secure, since Alice is choosing
to color e with α, then α does not appear among the siblings of e. Hence,
coloring e with α does not affect the defect of any edge in B(e).

Finally, we consider the case that B[e] is not secure.

Claim 4. Suppose Alice has chosen to color edge e with α ∈ X and B[e] is
not secure. If there exists an edge f ∈ B(e)∩Cα, then def(f) ≤ 2j +2 once

e is colored.

Proof. Let E′ = B(e) ∩Cα. Since B[e] is not secure, we have that |E′| ≤ j.
Let f ∈ E′ such that |S(f) ∩ Cα| is maximal, and let

S(f) ∩ Cα = {s1, s2, . . . , sm},

where i < j implies that si is colored before sj. We show that m ≤ |E′|+2.
By Claim 1, f has at most two active children before it is colored. Hence, f
has at most two children colored α before f is colored. So only the following
cases need be considered:

Case 1: The edge f is colored before s1.
Since p(si) = f for each i ∈ [n] and c(f) = α, Alice does not color any si.

For each si that Bob colors, Alice then colors p(e) if p(e) ∈ U , an edge in
E′ \ {f} if p(e) ∈ C, or e if E′ ∩U = ∅. Then at most |E′|+ 1 children of f
are colored α before Alice colors e. Hence, m ≤ |E′|+ 1.

Case 2: The edge f is colored after s1 and before s2.
Alice does not color si for any i ≥ 2. As in the previous case, when Bob

colors si with i ≥ 2, Alice then colors p(e), an edge in E′ \ {f}, or e. Thus,
once f ∈ C, at most |E′| + 1 children of f are colored α. Including s1, we
have that m ≤ |E′|+ 2.

Case 3: The edge f is colored after s2.
If p(e) ∈ U , then Claim 3 implies that f has at most one child colored α

before f is colored. Since f has two children colored α before f is colored,
p(e) must be colored before f . Furthermore, Alice colors f immediately
after s2 is colored, as s1 and s2 must be the first two active children of f .
Once f is colored, each time Bob colors a child of f with α, Alice colors an
edge in E′ \ {f}. Therefore, once f is colored, Bob can color at most |E′|
children of f with α before e is colored. So m ≤ |E′|+ 2.

Thus we have that

m = |S(f) ∩ Cα| ≤
∣

∣E′
∣

∣+ 2 ≤ j + 2

once e is colored. Since f was chosen to maximize |S(f) ∩ Cα| and each
f ′ ∈ E′ has at most j siblings colored α before e is colored, we have that

def(f ′) ≤ |S(f) ∩ Cα|+ j ≤ 2j + 2

for all f ′ ∈ E′. �
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Note now that if Alice is coloring edge e with α, according to the Modified
Forest Strategy, Claim 2 guarantees that def(e) ≤ h(j). We have also shown
that for any edge f ∈ N(e) ∩ Cα, immediately after e is colored, def(f) ≤
h(j). As Bob may adopt Alice’s strategy at any point in the game, every
edge is eventually colored, and Alice wins the game. Thus

def ′g(F,∆ − j) ≤ 2j + 2 = h(j).

Moreover, if the game is being playing with some defect d > 2j + 2, and an
edge e eventually has defect at least d, then it must be through the actions of
Bob that this occurs. At the time that e is uncolored, the above arguments
show that it is possible to color e with an eligible color α such that coloring
e does not increase the defect of any edge e′ with def(e′) > 2j + 2. Thus,
for any d ≥ h(j), we have that

dχ′

g(F ) ≤ ∆− j,

as desired. �

We note that the above theorem generalizes the bound in Theorem 6
(Theorem 3 in [10]). Moreover, for j = 0, Theorem 9 provides that for
a forest F with ∆(F ) = ∆, we have that def ′g(F,∆) ≤ 2. This is an
improvement by 1 of Theorem 6.

3. The Relaxed Edge-Coloring Game on k-Degenerate Graphs

As discussed in Section 1, we now consider the (r, d)-relaxed edge-coloring
game on the class of k-degenerate graphs. Recall that a graph G = (V,E)
is k-degenerate if there exists a linear ordering L = v1, v2, . . . , vn of V such
that for every i ∈ [n], we have that

|{ j | vi ↔ vj and j < i }| ≤ k.

For example, trees and forests are 1-degenerate, outerplanar graphs are
2-degenerate, planar graphs are 5-degenerate, and partial k-trees are k-
degenerate.

We now develop some necessary notation and terminology for our strategy
with k-degenerate graphs. Let G = (V,E) be a finite graph and let L be
a linear ordering of V . Once L is established, when we write xy ∈ E we
assume that x < y in L. We will also assume that the edge xy is oriented
y → x. Let e = xy be an edge in G. As in [10], we now define sets of edges
relative to e using L and this orientation of E(G).

P (e) = {wx ∈ E | w ∈ N+(x) } P [e] = P (e) ∪ {e}

B(e) = {xv ∈ E | v ∈ N−(x) } B[e] = B(e) ∪ {e}

H(e) = {uy ∈ E | u ∈ N+(y) } H[e] = H(e) ∪ {e}

S(e) = { yz ∈ E | z ∈ N−(y) } S[e] = S(e) ∪ {e}

R(e) = P (e) ∪H(e)
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S(e)P(e)
x y

B(e)

e

H(e)

Figure 2. For an edge e and linear ordering L, sets P (e),
H(e), B(e), and S(e), relative to e and L.

We call the edges in P (e) the parents of e and the edges in S(e) the
children of e. We note that N(e) = R(e) ∪ S(e) ∪B(e). See Figure 2.

Consider the linear ordering L of E induced lexicographically from L. So
xy < wz in L if and only if either x < w in L or both x = w and y < z in
L. Although L is used in the strategy below, since L is determined by L, it
is L that determines the strategy.

As with the game on trees, at any time in the game we define U to
be the set of uncolored edges and C to be the set of colored edges. For
e ∈ C, let the color assigned to e be c(e). Define the defect set of e by
D(e) = { e′ ∈ N(e) | c(e′) = c(e) }. If e ∈ U , then D(e) = ∅. In either case,
the defect of e is defined by def(e) = |D(e)|.

Let F ⊆ E. We define

X(F ) =
⋃

e′∈F

{c(e′)},
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where {c(e′)} = ∅ if e′ ∈ U . For an edge e, we then let X(e) = X−X(R(e)).
In other words, X(e) is the set of colors not used on any edge in R(e). As
before, we call X(e) the set of eligible colors for e.

Let e ∈ E. We define M(e) = U ∩ P [e]. If M(e) 6= ∅, we define the
mother of e by m(e) = minLM(e). So the mother of e, if it exists, is either

the L-least uncolored parent of e, or e itself. Note that if e ∈ U then m(e)
must be defined since e is a candidate. For any colored edge e we define
D∗(e) ⊆ D(e) by

D∗(e) = { e′ ∈ D(e) | m(e′) exists }.

Using this definition, for a colored edge e, let F (e) = P (e)∩ (U ∪D∗(e)). If
F (e) 6= ∅, define the father of e by f(e) = minL F (e). So the father of e, if

it exists, is either the L-least uncolored parent of e, or the L-least parent of
e colored c(e) whose mother exists.

We now assume that G is k-degenerate and that L is a linear ordering
witnessing this. Let ∆(G) = ∆. Alice and Bob will be playing the (r, d)-
relaxed edge-coloring game with ∆+ k − j colors, for some j ∈ [∆ + k − 1].
Extending the idea with forests above, we define B[e] to be secure if there
exist edges e1, e2, . . . , ej+k−1 ∈ B(e) and a color α such that c(ei) = α for
i ∈ [j + k − 1]. Finally, we define l(e) = minLB(e) ∩ U , if such an edge
exists.

We are now ready to define the strategy that Alice will employ in the
(r, d)-relaxed edge-coloring game on k-degenerate graphs. This is a modifi-
cation and extension of the strategy developed in [10].

Modified K Strategy

Let G = (V,E) be a k-degenerate graph with a linear ordering L of V
witnessing this. Let X be a set of colors. Alice will again maintain an edge
set A of active edges. Similar to the case with forests, we note that all
colored edges are active. Alice starts by activating and coloring the least
edge in L. Suppose that Bob has just colored edge b. First Alice activates b.
Then, as in the Modified Forest Strategy, Alice’s response has two stages: a
Search Stage and a Coloring Stage. In the Search Stage, Alice finds an edge
e to color. The Search Stage includes an Initial Step and a Recursive Step.
In the Coloring Stage, Alice chooses a color for e.

Search Stage

Initial Step

• If f(b) exists and f(b) ∈ U , then set g := f(b) and move to the
Recursive Step.

• If f(b) exists and f(b) ∈ C, then set g := m(f(b)) and move to the
Recursive Step.

• If f(b) does not exists and l(b) exists, then set e := l(b) and move to
the Coloring Stage.
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• Otherwise, set e := minL U . If e is inactive, activate it. Move to the
Coloring Stage.

Recursive Step

• If g /∈ A, then activate g, set g := m(g), and repeat the Recursive
Step.

• Otherwise, set e := g and move to the Coloring Stage.

Coloring Stage

• If B[e] is secure, then color e with an eligible color for e that does
not appear in B(e).

• Otherwise, B[e] is not secure. Let f be the last edge to be col-
ored with a color eligible for e such that c(f) = c(f ′) for some
f ′ ∈ B(e) ∩ P (f). If such an edge exists, then color e with c(f). If
no such edge exists, then color e with any eligible color for e that
minimizes def(e).

Note that three of the options for response in the Initial Step are to move
from b to f(b), m(f(b)), and l(b). We will refer to these actions as jumping,
skipping, and sliding, respectively. When Alice either activates or colors an
edge e, we say that she is taking action at e. Note that Alice can take action
at a edge at most twice. As before, this will play an important role in the
proof of our main result, which we are now ready to state and prove.

Theorem 10. Let G be k-degenerate with ∆(G) = ∆. Let j ∈ [∆ + k − 1].
Let

h(k, j) =

{

2k2 + 4k, if j = 1;

2k2 + 4k + 2j − 4, if j ≥ 2.

Then def ′g(G,∆ + k − j) ≤ h(k, j). Moreover, if d ≥ h(k, j) then dχ′

g(G) ≤
∆+ k − j.

Proof. We begin by noting that if ∆− k ≤ j ≤ ∆+ k− 1 and G has at least
two edges, then

h(k, j) = 2k2 + 4k + 2j − 2

≥ 2k2 + 4k + (2∆− 2k)− 2

= 2∆− 2 + 2k2 + 2k

> 2∆− 2.

However, an edge e in G is incident with at most 2∆− 2 other edges. Since
our allowable defect is greater than this, Alice can always win. Also, if
G has only one edge, the result is trivial. So for the remainder of our
argument, we will assume that j ∈ [∆−k−1]. Let X be a set of colors with
|X| = ∆+ k − j. We will assume that Alice uses the Modified K Strategy.
We first show throughout the game, if e ∈ U , then e has at least one legal
eligible color. Note that |P (e)| ≤ k and |H(e)| ≤ k − 1. First suppose that
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B[e] is not secure. Thus, the only colors that Alice must avoid are those
used on edges in R(e). So we have that

|X(e)| =
∣

∣X −X(R(e))
∣

∣

≥ ∆+ k − j − |R(e)|

= ∆+ k − j − |P (e) ∪H(e)|

≥ ∆+ k − j − (2k − 1)

= ∆− k − j + 1

≥ 1.

If B[e] is secure, then we must show that the number of distinctly colored
edges in R(e) ∪ B(e) is less than ∆ + k − j. Let m be this number. First
note that since B[e] is secure, then within B(e), at least k+ j − 1 edges are
colored the same. So

m ≤ |R(e) ∪B(e)| − (k + j − 2)

= |P (e) ∪B(e)|+ |H(e)| − (k + j − 2)

≤ ∆− 1 + (k − 1)− (k + j − 2)

= ∆− j

< ∆+ k − j.

Thus, every uncolored edge has a legal eligible color. Suppose Alice is
about to color edge e with α ∈ X. We consider the defect of both e and any
α-colored neighbors of e. We will show that immediately after Alice colors
e, none of these edges has defect greater than h(k, j).

Claim 1. If e ∈ U , then e has at most 2k children colored α.

Proof. Let e′ ∈ S(e)∩Cα. Note that α ∈ X(e) implies that α is not used on
any edge in H(e). When e′ is activated or colored, Alice does not skip, as
this would require that both e′ and f(e′) ∈ H[e] are colored α. Also, Alice
does not slide, since e is a candidate for f(e). Thus, Alice takes action in
H[e]. So we have that

|S(e) ∩ Cα| ≤ 2 |H[e]| ≤ 2k.

�

Claim 2. If e ∈ U , then e is incident with at most 3k + j − 2 edges colored

α.

Proof. Since α ∈ X(e), then |R(e) ∩ Cα| = 0. So it will suffice to show

|S(e) ∩ Cα|+ |B(e) ∩ Cα| ≤ 3k + j − 2.

By Claim 1, we have that

|S(e) ∩ Cα| ≤ 2k.
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Now, if B[e] is secure, then |B(e) ∩ Cα| = 0. Otherwise, there are at most
j + k − 2 edges in B(e) colored α. Thus, in either case,

|B(e) ∩ Cα| ≤ j + k − 2.

Hence,
|S(e) ∩ Cα|+ |B(e) ∩ Cα| ≤ 3k + j − 2,

as desired. �

By Claim 2, immediately after Alice colors e with α, we have that def(e) ≤
3k+ j − 2 < h(k, j). We will now consider the defect of a child of e already
colored α.

Claim 3. If g ∈ S(e) ∩ Cα, then before e is colored def(g) ≤ 2k2 + 4k − 1.

Proof. Observe that since B(g) ⊂ S(e) and g /∈ D(g), Claim 1 implies that
|D(g) ∩B(g)| ≤ 2k − 1. We also have that P (g) = H[e], implying that
P (g) ∩D(g) = ∅. Let |D(g) ∩H(g)| = a, noting that 0 ≤ a ≤ k − 1, by our
choice of L. Thus we have that

|D(g)| = |D(g) ∩ P (g)| + |D(g) ∩B(g)|+ |D(g) ∩H(g)|+ |D(g) ∩ S(g)|

≤ 2k − 1 + a+ |D(g) ∩ S(g)| .

Thus, it will suffice to show that |D(g) ∩ S(g)| ≤ 2k2 + 2k − a.
Let S = D(g) ∩ S(g). We partition S into {S1, S2}. We define S1 to be

the set of edges e′ where Alice responds to the activation of e′ by jumping
and, therefore, taking action at an edge in H[g]. Similarly, S2 is the set of
edges e′ where Alice responds to the activation of e′ by skipping. Note that
Alice will not respond by sliding since e is uncolored. At first, we have that
|S1| ≤ 2k. However, this would imply that Alice both activates and colors
the edges in H[g]. But she can color at most one edge in H[g] with α. Since

|Cα ∩H(g)| = |D(g) ∩H(g)| = a,

we have that |S1| ≤ 2k − a.
Now let e′ ∈ S2. Let Q =

⋃

h∈H[g] P (h). Since Alice will skip once e′ is

activated, she next will take action at an edge in Q. Therefore, as Alice can
take action at most twice at any given edge, we have that |S2| ≤ 2 |Q| ≤ 2k2.
Hence, we have

|S| = |S1|+ |S2| ≤ 2k2 + 2k − a,

as desired. �

So by Claim 3 once e is colored, def(g) ≤ 2k2 + 4k for any child of e
already colored α. If j = 1, then def(g) ≤ h(k, j), since h(k, 1) = 2k2 + 4k.
Otherwise, if j ≥ 2, we note that

h(k, j) = 2k2 + 4k + 2j − 4 ≥ 2k2 + 4k.

Thus, in either case, def(g) ≤ h(k, j).
Finally, we consider the effect of coloring e with α on any sibling of e

already colored α.
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Claim 4. If g ∈ B(e)∩Cα, then before e is colored def(g) ≤ 2k2+4k+2j−5.

Proof. Note that if B[e] is secure, then B(e) ∩ Cα = ∅, as Alice will not
choose to color e with any color already used in B(e). Thus, we may assume
that B[e] is not secure. As in Claim 3, it will suffice to consider

def(g) = |D(g)|

= |D(g) ∩ P (g)|+ |D(g) ∩B(g)|+ |D(g) ∩H(g)| + |D(g) ∩ S(g)| .

Since P (g) = P (e), we have that |D(g) ∩ P (g)| = 0. Let |D(g) ∩H(g)| = a,
noting that 0 ≤ a ≤ k− 1, by our choice of L. Also, since B[e] is not secure,
then |D(g) ∩B(g)| ≤ j + k − 3. It then suffices to show that

|D(g) ∩ S(g)| ≤ 2k2 + 3k + j − 2− a.

Let S = D(g)∩S(g), and partition S into {S1, S2, S3}. As in Claim 3, we
define S1 to be the set of edges e′ which Alice responds to the activation of
e′ by jumping and, therefore, taking action at an edge in H[g]. Similarly, S2

is the set of edges e′ which Alice responds to the activation of e′ by skipping.
Finally, S3 is the set of edges e′ which Alice responds to the activation of e′

by sliding. As in our argument in Claim 3, |S1| ≤ 2k − a and |S2| ≤ 2k2.
Let e′ ∈ S3. Since Alice responds by sliding, she colors an edge in B(g)

with α. Including the possible move on which she colors e, we have that
|S3| ≤ k + j − 2. Hence

|S| ≤ 2k − a+ 2k2 + k + j − 2 = 2k2 + 3k + j − 2− a,

as desired. �

Thus, by Claim 4, once e is colored α, we have that

def(g) ≤ 2k2 + 4k + 2j − 4

for any sibling of e already colored α. Note that if j = 1, then h(k, j) =
2k2 + 4k, and def(g) ≤ h(k, j). Otherwise, if j ≥ 2, we have h(k, j) =
2k2 + 4k + 2j − 4, and again we have that def(g) ≤ h(k, j).

We make two final observations. First, Bob can always borrow this strat-
egy to find a legal move. Second, if d > h(k, j) and an edge e eventually has
defect at least d then it must be through the actions of Bob that this has
occurred. At the time an edge e is uncolored, the above arguments show
that it is possible to color e with an eligible color α such that coloring e did
not increase the defect of any edge e′ where def(e′) > h(k, j). Thus, every
edge will eventually be colored, and Alice will win the game. �

We note that Theorem 10 generalizes Theorem 8 (Theorem 5 in [10]).
Additionally, while Theorem 10 includes forests when k = 1, Theorem 9
provides a better bound. Hence, we suspect strongly that there may be
room for improvement in the bound given by h(k, j) in Theorem 10.

Using the fact that outerplanar graphs are 2-degenerate and planar graphs
are 5-degenerate, we have the following corollaries to Theorem 10:
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Corollary 11. Let G be an outerplanar graph with ∆(G) = ∆ and let

j ∈ [∆ + 1]. Let

h(j) =

{

16, if j = 1;

2j + 12, if j ≥ 2.

Then def ′g(G,∆ + 2 − j) ≤ h(j). Moreover, if d ≥ h(j) then dχ′

g(G) ≤
∆+ 2− j.

Corollary 12. Let G be a planar graph with ∆(G) = ∆ and let j ∈ [∆+4].
Let

h(j) =

{

70, if j = 1;

2j + 66, if j ≥ 2.

Then def ′g(G,∆ + 5 − j) ≤ h(j). Moreover, if d ≥ h(j) then dχ′

g(G) ≤
∆+ 5− j.

Observe that taken together, Corollaries 11 and 12 generalize, and in fact
include as a corollary, Corollary 1 in [10].

4. Future Work

Thinking in terms of Theorem 4 and the work in [15], it is evident that
even the game chromatic index is difficult to determine for trees and forests.
Thus, determining the tightness of the bounds in Theorems 5, 6, and 9 for
the defect remain open problems. Additionally, the fact that the bound for
the defect in Theorem 10 is not as good for trees and forests as in Theorem 9
seems to imply that the results in Theorem 10 have room for improvement.
Our goal in this paper was first to show that such a bound exists. Future
work will ideally lead to tighter bounds.

Finally, there are many properties of χ′

g(G) and dχ′

g(G) that remain to

be studied. As discussed in the Introduction, both χg(G) and dχg(G) have
somewhat unexpected non-monotone properties, both in terms of subgraphs
and increasing the defect. It remains open to determine whether this is also
the case with edge coloring. We suspect the answer is yes, but have yet
to determine appropriate examples. Related to this question, it would be
interesting to determine whether the difference between χ′

g(G) and dχ′

g(G)

can be bounded by a function of d, or if dχ′

g(G) can be bounded by other
graph parameters. While some of these questions have been explored for
χg(G), very little, if any, has been studied for the relaxed version of the
games, either with vertex coloring or edge coloring.
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