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COMPLETE MULTIPARTITE GRAPHS AND THE

RELAXED COLORING GAME

CHARLES DUNN

Abstract. Let k be a positive integer, d be a nonnegative integer,
and G be a finite graph. Two players, Alice and Bob, play a game
on G by coloring the uncolored vertices with colors from a set X
of k colors. At all times, the subgraph induced by a color class
must have maximum degree at most d. Alice wins the game if all
vertices are eventually colored; otherwise, Bob wins. The least k

such that Alice has a winning strategy is called the d-relaxed game
chromatic number of G, denoted χd

g(G). It is known that there

exist graphs such that χ0
g(G) = 3, but χ1

g(G) > 3. We will show
that for all positive integersm, there exists a complete multipartite
graph G such that m ≤ χ0

g(G) < χ1
g(G).

1. Introduction

The (k, d)-relaxed coloring game is played on a finite graph G with a
finite set of k colors X , where d is a nonnegative integer. Two players,
Alice and Bob, alternate coloring the uncolored vertices ofG, with Alice
going first. At any point in the game for any α ∈ X , let Cα be the set
of vertices colored α at that point. We say that a color α ∈ X is legal
for the uncolored vertex u, if after u is colored with α we have that
∆(G[Cα]) ≤ d; that is, the subgraph induced by all vertices colored
α has maximum degree at most d. On each turn, players must color
vertices with legal colors. Alice wins the game if all vertices are colored;
otherwise, Bob wins when there is an uncolored vertex for which no
legal color exists. The least k for which Alice has a winning strategy
for this game on G is called the d-relaxed game chromatic number of

G, denoted χd
g(G). When d = 0, we refer simply to the game chromatic

number of G and write χg(G). The game chromatic number was first
introduced by Bodlaender in [2]. It has since been studied extensively,
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2 CHARLES DUNN

including in [4, 8, 10]. The relaxed game chromatic number has been
considered in [3, 5, 6, 7, 9].
Suppose that Alice and Bob are playing the (k, d)-relaxed coloring

game on a graph G. For the purposes of analyzing strategies for Alice
or Bob, we note that a color α is legal for an uncolored vertex u if the
following two conditions hold:

(1) The vertex u has at most d neighbors already colored α.
(2) If v is a neighbor of u and v is already colored α, then v has at

most d− 1 neighbors already colored α.

It has been well established that the parameter χg(G) has some in-
teresting and possibly unexpected properties. For example, while it is
true that if H is a subgraph of G, then χ(H) ≤ χ(G), it is not nec-
essarily the case that χg(H) ≤ χg(G). For example, as discussed in
[1], if G = Kn,n and n ≥ 2 we have that χg(G) = 3. However, if M
is any perfect matching in G, then χg(G − M) = n. So for n ≥ 4,
χg(G −M) > χg(G). In addition, with related reasoning, it is known
that if G = Kn,n with n ≥ 2, then χ1

g(G) = n. So for n ≥ 4, there is
a class of graphs for which χ0

g(G) = 3 but χ1
g(G) ≥ 4. In light of this

latter example, we consider the following question:

Question 1. For every m ∈ N, does there exist a graph G such that

m ≤ χg(G) < χ1
g(G)?

Generalizing from bipartite graphs to complete multipartite graphs
settles Question 1 in the affirmative.
For ease of notation, we denote the complete r-partite graph with

each partite set of size n by Kr∗n. We will also label the partite sets in
the order that they receive their first colored vertex. In this manner,
for j ∈ {1, 2, . . . , r} we denote the j-th partite set of Kr∗n to receive
its first colored vertex by Pj.

2. The Game Chromatic Number

We begin by showing that the game chromatic number of Kr∗n is
always bounded above by a function of r. We will also show that the
upper bound is tight. We will show this with two lemmas.

Lemma 1. Let r and n be positive integers, and let G = Kr∗n. Then

χg(G) ≤ 2r − 1. Moreover, if n = 3 and r ≥ 3, then χg(G) ≤ 2r − 2.

Proof. Suppose Alice and Bob are playing the (2r−1, 0)-coloring game
on G. We will show that Alice has a winning strategy for this game.
We begin by making a simple observation. Suppose that at some point
in the game vertex v ∈ Pi is colored with color α ∈ X . Now, for the



COMPLETE MULTIPARTITE GRAPHS 3

remainder of the game, the color α is legal for any uncolored vertex in
Pi and not legal for any uncolored vertex outside Pi. Thus, once each
partite set has a colored vertex, every vertex will have a legal color and
Alice will eventually win.
On each of her turns, Alice will color a vertex in a new partite set.

By her r-th turn, Alice will have ensured that each partite set has a
colored vertex. At this time, she will have used r colors and Bob could
have used at most r − 1 other colors. Thus Alice will win.
Now suppose n = 3, r ≥ 3, and that Alice and Bob are playing the

(2r − 2, 0)-coloring game on G. Assume that X = {1, 2, . . . , 2r − 2}.
On her first turn Alice will color a vertex with 1. On her second turn,
she will color in a partite set that already has a colored vertex, either
in the partite set in which she colored on her first turn, or the one in
which Bob has just colored. She will repeat a color that has already
been used in that partite set. Hence, using the fact that n = 3, by
the end of Bob’s second turn, at least two partite sets have colored
vertices and at most 3 colors have been used. On her next r− 2 turns,
Alice will ensure that each of the remaining partite sets has a colored
vertex. So the number of colors that Bob can use during this portion
of the game is r − 3. Thus the number of colors used will be at most
3 + (r − 2) + (r − 3) = 2r − 2. Since each partite set has a colored
vertex by this point, Alice will win the game. �

Next we show that the above upper bounds are in fact lower bounds
as well.

Lemma 2. Let r and n be positive integers, and let G = Kr∗n. If

n ≥ 2 and n 6= 3, then χg(G) ≥ 2r − 1. If n = 3 and r ≥ 3, then
χg(G) ≥ 2r − 2.

Proof. Suppose that Alice and Bob are playing the (k, 0)-coloring game
on G where k ≤ 2r−1. Recall that we will assume that the partite sets
are numbered according to the order in which they receive their first
colored vertex. Bob’s strategy will be as follows. Suppose that Alice
has just colored a vertex in Pi. If there exists an uncolored vertex in Pi,
Bob will color such a vertex with a new color. If Pi has no remaining
uncolored vertices, Bob will color in a partite set with a colored vertex,
if possible, preferably using a new color. Otherwise, Bob will color in
a partite set with no colored vertices.
First suppose that Bob is never forced to be the first to color in a

partite set. Then all but the last partite set will have at least two
different colors used in them. Since no color can be used in more
than one partite set, the number of colors necessary for Alice to win is
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2(r − 1) + 1 = 2r − 1. Note that if n is even, this will always be the
case, as Bob can always follow Alice, coloring in the same partite as
she did on her most recent turn. So if n is even and k ≤ 2r − 2, then
Bob will win.
We may now assume that n is odd, n ≥ 3 and that at some time in

the game, Bob is forced to be the first to color in a partite set. Consider
the last time in the game that this happens. Suppose Bob is forced to
color first in Pi+1. Since Bob’s strategy has him preferring to color in
partite sets with colored vertices, we have that all ni vertices in ∪i

j=1Pj

are already colored. Note that the colors of the first vertices colored
in each of these partite sets are distinct and that Bob has colored at
most half of them. Thus, in addition, the number of colors that Bob

has used on the remaining vertices in ∪i
j=1Pj is at least (n−1)i

2
. So the

number of colors used by this point in the game is at least i+ (n−1)i
2

+1.
Let m be the number of colors necessary for Alice to win the game

in this situation, if still possible at all. Let us first consider the case
that r = i + 1. So Bob has just colored in the final partite set (thus
giving Alice victory). If n = 3, then

m ≥ i+
(n− 1)i

2
+ 1

= 2r − 1.

We note, however, in the case that n = 3, in light of Lemma 1, that
Alice and Bob are playing with k ≤ 2r − 2 colors. Thus, the only
way that the game has reached this point is if Alice has not played
optimally. Hence, we may conclude that if Bob plays with the above
strategy, he will win when n = 3 and k ≤ 2r − 3. If n ≥ 5, we have
that

m ≥ i+
(n− 1)i

2
+ 1

≥ 3r − 2

≥ 2r − 1.

Thus, in light of Lemma 1, we may again conclude that if Bob plays
with the above strategy, he will win when n ≥ 5 and k ≤ 2r − 2.
So assume that r ≥ 3, r > i + 1, and there are j remaining partite

sets with no colored vertices for some j ≥ 1. So r = i+ j + 1. As Pi+1

was the last partite set that Bob was forced to color in first, for the
remainder of the game Alice will color in each of the remaining partite
sets first, and will use at least j new colors. Bob, using his strategy,
will use at least j − 1 new colors distinct from these. Thus we have
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that

m ≥ i+
(n− 1)i

2
+ 1 + j + (j − 1)

= i+ 2j +
(n− 1)i

2
.

If n = 3 we have that m ≥ 2i + 2j = 2r − 2. If n = 5 we have that
m ≥ 3i+ 2j. Since i ≥ 1, this gives that m ≥ 2r − 1, as desired. Note
that if n ≥ 7, we have that m ≥ 4i + 3j. Using that i ≥ 1 this gives
that m ≥ 2r. With Lemma 1, using k ≤ 2r − 1, we have that Alice
cannot win, as she has already played suboptimally. �

Trivially, note that if n = 1, then G = Kr∗n = Kr and χg(G) = r.
If r = 1, then G is an independent set and χg(G) = 1 = 2r − 1. And,
as remarked above, if r = 2, then G = Kr∗n = Kn,n and χg(G) = 3 =
2r − 1. Combining this with Lemmas 1 and 2, we have proven the
following theorem:

Theorem 1. Let r and n be positive integers. If G = Kr∗n, then

χg(G) =











r if n = 1;

2r − 2 if n = 3 and r ≥ 3;

2r − 1 otherwise.

Therefore, χg(Kr∗n) is always bounded above by a function of r and
is, for all intents and purposes, independent of n.

3. The 1-Relaxed Game Chromatic Number

Now we will consider the relaxed coloring game with Kr∗n. We show
that for G = Kr∗n, we have that χ1

g(G) → ∞ as n → ∞.

Theorem 2. Let r and n be positive integers with r ≥ 2. If G = Kr∗n,

then χ1
g(G) = ⌈nr

2
⌉.

Proof. We begin by noting that χ1
g(G) ≤ ⌈nr

2
⌉, since every color can

be used at least twice. We suppose that Alice and Bob are playing the
(k − 1, 1)-relaxed coloring game on G with k = ⌈nr

2
⌉. Suppose that on

her turn Alice colors a vertex in Pi with α. Bob’s strategy will be as
follows. He will use color α, and he will color a vertex in a partite set
different from Pi which has the largest number of uncolored vertices.
Note that if Bob is successful with this, then Alice will be forced to use
a new color on each of her turns. The only possible obstacle for Bob
would be if there comes a time in the game when Alice has just colored
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in partite set Pi and the only remaining uncolored vertices are in Pi.
We will show that this can never happen.
At the end of turn t, let ε(t) be the difference in the number of

uncolored vertices between a partite set with the largest number of
uncolored vertices and one with the next largest number of uncolored
vertices. Note that ε(t) is well-defined since r ≥ 2. We claim that by
following his strategy, at the end of each of Bob’s turns, ε(t) ≤ 1.
We proceed inductively. Clearly, at the end of Bob’s first turn, ε(2) ≤

1. Suppose that on turn t − 1, Alice colors a vertex in Pi with α.
Since Bob ensured that ε(t − 2) ≤ 1, then at the end of Alice’s turn,
ε(t−1) ≤ 2, as she can affect the difference by at most 1. If ε(t−1) = 0,
then there are at least two partite sets with a maximum number of
uncolored vertices. Bob will choose one of them, say Pk, such that
i 6= k, and color a vertex in Pk with α (in case there is still an uncolored
vertex). Thus, at the end of his turn, he has maintained that ε(t) ≤ 1.
If ε(t−1) = 1 or ε(t−1) = 2, then there must be a unique partite set

Pk with a maximum number of uncolored vertices (again with i 6= k).
Bob will then color a vertex in Pk with α, resulting in ε(t) = ε(t−1)−1.
Thus, after Bob’s turn he has maintained that ε(t) ≤ 1. So there will
never come a time in the game when, at the beginning of Bob’s turn,
there are at least two uncolored vertices in a partite set while all other
partite sets are completely colored. Hence, Alice is forced to use a new
color on each turn. This implies that if only k − 1 colors are available,
then Bob will win, as Alice will not be able to color on her last turn. �

Conclusion

Our direction moving from the example of Kn,n was to consider
graphs with higher game chromatic number. However, another inter-
esting question that remains open is the following.

Question 2. Is it true that for every nonnegative integer d, there exists

a graph G such that χd
g(G) < χd+1

g (G)?

While it is clearly true for d = 0, it is unknown whether this is true
for arbitrary d.
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