609 research outputs found

    Assessing Resilience in Power Grids as a Particular Case of Supply Chain Management

    Get PDF
    Electrical power grids represent a critical infrastructure for a nation as well as strategically important. Literature review identified that power grids share basic characteristics with Supply Chain Management. This thesis presents a linear programming model to assess power grid resilience as a particular case of Supply Chain Management. Since resilient behavior is not an individual or specific system\u27s attribute but a holistic phenomenon based on the synergic interaction within complex systems, resilience drivers in power grids were identified. Resilience is a function of Reliability, Recovery Capability, Vulnerability and Pipeline Capacity. In order to embed heterogeneous variables into the model, parameterization of resilience drivers were developed. A principle of improving resilience through redundancy was applied in the model by using a virtual redundancy in each link which allows reliability improvement throughout the entire network. Vulnerability was addressed through the standard MIL-STD 882D, and mitigated through security allocation. A unique index (R) integrates the resilience complexity to facilitate alternate scenarios analysis toward strategic decision making. Decision makers are enabled to improve overall power grid performance through reliability development as well as security allocation at the more strategic links identified by the optimal solutions. Moreover, this tool lets decision makers fix grid variables such as reliability, reduced pipeline capacity, or vulnerabilities within the model in order to find optimal solutions that withstand disruptions. The model constitutes an effective tool not only for efficient reliability improvement but also for rational security allocation in the most critical links within the network. Finally, this work contributes to the federal government mandates accomplishment, intended to address electrical power-related risks and vulnerabilities

    Supply chain resilience and risk management strategies and methods

    Get PDF
    Abstract. The changing global market due to Industry 4.0 and the recent pandemic effect has created a need for more responsiveness in an organization’s supply chain. Supply chain resilience offers the firm not only to avoid disruptions but also to withstand the losses due to a disruption. The objective of this research is to find out how resilience is defined so far in other literature and find out the strategies available to gain the resilience fit for an organization. First, in the literature review, the previous studies on resilience were studied to understand what supply chain resilience means. Then, the key results and findings are discussed and conclusions are presented. The research found some interesting strategies for gaining the resilience fit. The benefits and the stakeholders for each strategy are also pointed out. These strategies can be used according to the organization’s business strategy. These strategies aligned with the business strategy can make a huge difference to withstand potential disruption and gaining a competitive advantage against the market competitors

    Stochastic service network design with rerouting

    Get PDF
    Service network design under uncertainty is fundamentally crucial for all freight transportation companies. The main challenge is to strike a balance between two conflicting objectives: low network setup costs and low expected operational costs. Together these have a significant impact on the quality of freight services. Increasing redundancy at crucial network links is a common way to improve network flexibility. However, in a highly uncertain environment, a single predefined network is unlikely to suit all possible future scenarios, unless it is prohibitively costly. Hence, rescheduling is often an effective alternative. In this paper, we proposed a new stochastic freight service network design model with vehicle rerouting options. The pro- posed model explicitly introduces a set of integer variables for vehicle rerouting in the second stage of the stochastic program. Although computationally more expensive, the resultant model provides more options (i.e. rerouting) and flexibility for planners to deal with uncertainties more effectively. The new model was tested on a set of instances adapted from the literature and its performance and characteristics are studied through both comparative studies and detailed analyses at the solution structure level. Implications for practical applications are discussed and further research directions are also provided

    International Advisory Board

    Full text link

    Volume II Acquisition Research Creating Synergy for Informed Change, Thursday 19th Annual Acquisition Research Proceedings

    Get PDF
    ProceedingsApproved for public release; distribution is unlimited

    Advances in Manufacturing Technology XXVII: Proceedings of the 11th International Conference on Manufacturing Research (ICMR2013)

    Get PDF
    ICMR2013 was organised by Cranfield University on the 19-20 September 2013. The conference focuses on any aspects of product development, manufacturing technology, manufacturing systems, information systems and digital technologies. It provides an excellent avenue for researchers to present state-of-the-art multidisciplinary manufacturing research and exchange ideas. In addition to the four keynote speeches from Airbus and Rolls-Royce and three invited presentations, there are 108 papers in these proceedings. These papers are split into 24 technical sessions. The International Conference on Manufacturing Research is a major event for academics and industrialists engaged in manufacturing research. Held annually in the UK since the late 1970s, the conference is renowned as a friendly and inclusive environment that brings together a broad community of researchers who share a common goal; developing and managing the technologies and operations that are key to sustaining the success of manufacturing businesses. For over two decades, ICMR has been the main manufacturing research conference organised in the UK, successfully bringing researchers, academics and industrialists together to share their knowledge and experiences. Initiated a National Conference by the Consortium of UK University Manufacturing Engineering Heads (COMEH), it became an International Conference in 2003. COMEH is an independent body established in 1978. Its main aim is to promote manufacturing engineering education, training and research. To achieve this, the Consortium maintains a close liaison with government bodies concerned with the training and continuing development of professional engineers, while responding to the appropriate consultative and discussion documents and other initiatives. COMEH is represented on the Engineering Professor’s council (EPC) and it organises and supports national manufacturing engineering education research conferences and symposia
    corecore