196 research outputs found

    Basics of RF electronics

    Full text link
    RF electronics deals with the generation, acquisition and manipulation of high-frequency signals. In particle accelerators signals of this kind are abundant, especially in the RF and beam diagnostics systems. In modern machines the complexity of the electronics assemblies dedicated to RF manipulation, beam diagnostics, and feedbacks is continuously increasing, following the demands for improvement of accelerator performance. However, these systems, and in particular their front-ends and back-ends, still rely on well-established basic hardware components and techniques, while down-converted and acquired signals are digitally processed exploiting the rapidly growing computational capability offered by the available technology. This lecture reviews the operational principles of the basic building blocks used for the treatment of high-frequency signals. Devices such as mixers, phase and amplitude detectors, modulators, filters, switches, directional couplers, oscillators, amplifiers, attenuators, and others are described in terms of equivalent circuits, scattering matrices, transfer functions; typical performance of commercially available models is presented. Owing to the breadth of the subject, this review is necessarily synthetic and non-exhaustive. Readers interested in the architecture of complete systems making use of the described components and devoted to generation and manipulation of the signals driving RF power plants and cavities may refer to the CAS lectures on Low-Level RF.Comment: 36 pages, contribution to the CAS - CERN Accelerator School: Specialised Course on RF for Accelerators; 8 - 17 Jun 2010, Ebeltoft, Denmar

    Wired, wireless and wearable bioinstrumentation for high-precision recording of bioelectrical signals in bidirectional neural interfaces

    Get PDF
    It is widely accepted by the scientific community that bioelectrical signals, which can be used for the identification of neurophysiological biomarkers indicative of a diseased or pathological state, could direct patient treatment towards more effective therapeutic strategies. However, the design and realisation of an instrument that can precisely record weak bioelectrical signals in the presence of strong interference stemming from a noisy clinical environment is one of the most difficult challenges associated with the strategy of monitoring bioelectrical signals for diagnostic purposes. Moreover, since patients often have to cope with the problem of limited mobility being connected to bulky and mains-powered instruments, there is a growing demand for small-sized, high-performance and ambulatory biopotential acquisition systems in the Intensive Care Unit (ICU) and in High-dependency wards. Furthermore, electrical stimulation of specific target brain regions has been shown to alleviate symptoms of neurological disorders, such as Parkinson’s disease, essential tremor, dystonia, epilepsy etc. In recent years, the traditional practice of continuously stimulating the brain using static stimulation parameters has shifted to the use of disease biomarkers to determine the intensity and timing of stimulation. The main motivation behind closed-loop stimulation is minimization of treatment side effects by providing only the necessary stimulation required within a certain period of time, as determined from a guiding biomarker. Hence, it is clear that high-quality recording of local field potentials (LFPs) or electrocorticographic (ECoG) signals during deep brain stimulation (DBS) is necessary to investigate the instantaneous brain response to stimulation, minimize time delays for closed-loop neurostimulation and maximise the available neural data. To our knowledge, there are no commercial, small, battery-powered, wearable and wireless recording-only instruments that claim the capability of recording ECoG signals, which are of particular importance in closed-loop DBS and epilepsy DBS. In addition, existing recording systems lack the ability to provide artefact-free high-frequency (> 100 Hz) LFP recordings during DBS in real time primarily because of the contamination of the neural signals of interest by the stimulation artefacts. To address the problem of limited mobility often encountered by patients in the clinic and to provide a wide variety of high-precision sensor data to a closed-loop neurostimulation platform, a low-noise (8 nV/√Hz), eight-channel, battery-powered, wearable and wireless multi-instrument (55 × 80 mm2) was designed and developed. The performance of the realised instrument was assessed by conducting both ex vivo and in vivo experiments. The combination of desirable features and capabilities of this instrument, namely its small size (~one business card), its enhanced recording capabilities, its increased processing capabilities, its manufacturability (since it was designed using discrete off-the-shelf components), the wide bandwidth it offers (0.5 – 500 Hz) and the plurality of bioelectrical signals it can precisely record, render it a versatile tool to be utilized in a wide range of applications and environments. Moreover, in order to offer the capability of sensing and stimulating via the same electrode, novel real-time artefact suppression methods that could be used in bidirectional (recording and stimulation) system architectures are proposed and validated. More specifically, a novel, low-noise and versatile analog front-end (AFE), which uses a high-order (8th) analog Chebyshev notch filter to suppress the artefacts originating from the stimulation frequency, is presented. After defining the system requirements for concurrent LFP recording and DBS artefact suppression, the performance of the realised AFE is assessed by conducting both in vitro and in vivo experiments using unipolar and bipolar DBS (monophasic pulses, amplitude ranging from 3 to 6 V peak-to-peak, frequency 140 Hz and pulse width 100 µs). Under both in vitro and in vivo experimental conditions, the proposed AFE provided real-time, low-noise and artefact-free LFP recordings (in the frequency range 0.5 – 250 Hz) during stimulation. Finally, a family of tunable hardware filter designs and a novel method for real-time artefact suppression that enables wide-bandwidth biosignal recordings during stimulation are also presented. This work paves the way for the development of miniaturized research tools for closed-loop neuromodulation that use a wide variety of bioelectrical signals as control signals.Open Acces

    Airborne UHF Radar for Fine Resolution Mapping of Near Surface Accumulation Layers in Greenland and West Antarctica

    Get PDF
    The usefulness of accurate, fine resolution accumulation layer measurements over central Greenland and West Antarctica is significant for the improvement of ice sheet models. These models are critical to both global climate models as well as understanding sea level rise. Previously developed accumulation layer radars were used as templates for the current single channel system. Improvements were incorporated including increased output power, increased receiver sensitivity, single antenna operation, and reduced susceptibility to external noise sources. Steps were also taken to reuse previously purchased components to reduce development costs. Externally developed Vivaldi and elliptical dipole antennas were utilized. Collected data shows the system is capable of measuring layering to a depth of nearly 300 m in most dry snow regions of Greenland and West Antarctica with a resolution of ~0.5 m. Future revisions will focus on reducing size and weight, as well as incorporate multiple receive channels to allow for clutter rejection algorithms to be applied; this will allow for viable data collection in percolation and wet snow zone of major ice sheets

    Transverse Diagnostics For High Energy Hadron Colliders

    Get PDF
    The Large Hadron Collider (LHC) is a circular synchrotron accelerator that will explore new Physics at the higher energies ever achieved, aiming to find the Higgs boson. The LHC is being built at CERN and by 2007 it will be ready to produce head-on collisions of protons at a centre-of-mass energy of 14 TeV. The employment of superconducting magnets for achieving high energies, the high luminosity required for physics, the limited dynamic aperture and the large energy stored in the beams will make the machine very challenging to operate, especially during the injection process and the energy ramp. Two particular problems will be a high sensitivity to beam losses and a relatively poor field quality requiring the use of many types of magnetic correction elements. This may lead to the inclusion of certain beam measurements in feedback loops, making special demands on the control system. The injection and acceleration of the LHC proton beams without particle losses and emittance blow up will require an accurate control of the beam parameters. The value of the betatron tune is about 63 units and needs to be controlled to a level of ΔQ=±0.003\Delta Q = ±0.003. Orbit excursions should be limited to less than 0.5 mm. The linear chromaticity should be limited to some units (nominal value QH′V=2Q'_HV = 2). This Thesis will be focused on the improvement of new instrumentation for the measurement of beam parameters that is compatible with LHC high intens ity running. In this sense, the importance for the performance of the accelerator of terms such as tune or chromaticity will be pointed out. This work can be considered to be divided into two differentiated parts: the tests performed to a potentially beam diagnostics device and the improvement of the sensitivity of an already existing monitor. However, behind both subjects there is a common objective: the need of implementing new sensitive and non destructive methods for measuring parameters of major importance to keep the beam within the tight tolerances imposed to the superconducting and high energy accelerator LHC

    Improvements to Optical Communication Capabilities Achieved through the Optical Injection of Semiconductor Lasers

    Get PDF
    Optically injection locked lasers have shown significant improvement in the modulation capabilities of directly modulated lasers. This research creates a direct-modulated optical communications system to investigate the bit-rate distance improvements achievable using optically injected Fabry-Pérot laser diodes. The injection strength and detuning frequency of the injection signal was varied to determine their impact on the optical communication link\u27s characteristics. This research measured a 25 fold increase in bit-rate distance product using optical injection locking as compared to the injected laser\u27s free-running capability. A 57 fold increase was measured in the bit-rate distance product when signal power is considered in a power-penalty measurement. This increased performance is attributed to the injected signals tolerance to dispersion given its reduced linewidth and chirp. This work also investigates the suitability of optical injection for radio over fiber applications using the period-one dynamic of optical injection. The all-optically generated, widely tunable microwave subcarrier frequency, well above the 3-dB cutoff frequency of the laser\u27s packaging electronics, was modulated with the same baseband electronics. This optically carried, ultra-wide spread spectrum signal was transported over 50km of standard-single-mode fiber. After detection at a high-speed photo- detector and the baseband modulation component was removed, the resultant signal was found to be suitable for broadcasting with an antenna or added to a frequency division multiplexed channel

    Wi-Fi Denial of Service Attack on Wired Analog RF Channel Emulator

    Get PDF
    This report presents the design and implementation of an analog wireless channel emulator to examine various denial of service attacks in multiple mobile scenarios. The scenarios emulated in this project involve three node topologies of wireless interferers (Wi-Fi radios), including a software defined radio that transmits one of three denial of service (DoS) waveforms. The testbed was functional and met the original specifications. Results from mobile experiments show a clear distinction in performance among the three DoS waveforms depending on the node topology; a digital waveform using binary phase shift keying (BPSK) is most effective at reducing total network throughput at close range while sweep waveforms exhibit minor throughput reduction from a greater distance

    The Efficacy of Programming Energy Controlled Switching in Resistive Random Access Memory (RRAM)

    Get PDF
    Current state-of-the-art memory technologies such as FLASH, Static Random Access Memory (SRAM) and Dynamic RAM (DRAM) are based on charge storage. The semiconductor industry has relied on cell miniaturization to increase the performance and density of memory technology, while simultaneously decreasing the cost per bit. However, this approach is not sustainable because the charge-storage mechanism is reaching a fundamental scaling limit. Although stack engineering and 3D integration solutions can delay this limit, alternate strategies based on non-charge storage mechanisms for memory have been introduced and are being actively pursued. Resistive Random Access Memory (RRAM) has emerged as one of the leading candidates for future high density non-volatile memory. The superior scalability of RRAMs is based on the highly localized active switching region and filamentary conductive path. Coupled with its simple structure and compatibility with complementary metal oxide semiconductor (CMOS) processes; RRAM cells have demonstrated switching performance comparable to volatile memory technologies such as DRAMs and SRAMs. However, there are two serious barriers to RRAM commercialization. The first is the variability of the resistance state which is associated with the inherent randomness of the resistive switching mechanism. The second is the filamentary nature of the conductive path which makes it susceptible to noise. In this experimental thesis, a novel program-verify (P-V) technique was developed with the objective to specifically address the programming errors and to provide solutions to the most challenging issues associated with these intrinsic failures in current RRAM technology. The technique, called Compliance-free Ultra-short Smart Pulse Programming (CUSPP), utilizes sub-nanosecond pulses in a compliance-free setup to minimize the programming energy delivered per pulse. In order to demonstrate CUSPP, a custom-built picosecond pulse generator and feedback control circuit was designed. We achieved high (108 cycles) endurance with state verification for each cycle and established high-speed performance, such as 100 ps write/erase speed and 500 kHz cycling rate of HfO2-based RRAM cells. We also investigate switching failure and the short-term instability of the RRAM using CUSPP

    A high-performance 8 nV/root Hz 8-channel wearable and wireless system for real-time monitoring of bioelectrical signals

    Get PDF
    Background: It is widely accepted by the scientific community that bioelectrical signals, which can be used for the identification of neurophysiological biomarkers indicative of a diseased or pathological state, could direct patient treatment towards more effective therapeutic strategies. However, the design and realisation of an instrument that can precisely record weak bioelectrical signals in the presence of strong interference stemming from a noisy clinical environment is one of the most difficult challenges associated with the strategy of monitoring bioelectrical signals for diagnostic purposes. Moreover, since patients often have to cope with the problem of limited mobility being connected to bulky and mains-powered instruments, there is a growing demand for small-sized, high-performance and ambulatory biopotential acquisition systems in the Intensive Care Unit (ICU) and in High-dependency wards. Finally, to the best of our knowledge, there are no commercial, small, battery-powered, wearable and wireless recording-only instruments that claim the capability of recording electrocorticographic (ECoG) signals. Methods: To address this problem, we designed and developed a low-noise (8 nV/√Hz), eight-channel, battery-powered, wearable and wireless instrument (55 × 80 mm2). The performance of the realised instrument was assessed by conducting both ex vivo and in vivo experiments. Results: To provide ex vivo proof-of-function, a wide variety of high-quality bioelectrical signal recordings are reported, including electroencephalographic (EEG), electromyographic (EMG), electrocardiographic (ECG), acceleration signals, and muscle fasciculations. Low-noise in vivo recordings of weak local field potentials (LFPs), which were wirelessly acquired in real time using segmented deep brain stimulation (DBS) electrodes implanted in the thalamus of a non-human primate, are also presented. Conclusions: The combination of desirable features and capabilities of this instrument, namely its small size (~one business card), its enhanced recording capabilities, its increased processing capabilities, its manufacturability (since it was designed using discrete off-the-shelf components), the wide bandwidth it offers (0.5 – 500 Hz) and the plurality of bioelectrical signals it can precisely record, render it a versatile and reliable tool to be utilized in a wide range of applications and environments
    • …
    corecore