3,877 research outputs found

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    Intelligent Processing in Wireless Communications Using Particle Swarm Based Methods

    Get PDF
    There are a lot of optimization needs in the research and design of wireless communica- tion systems. Many of these optimization problems are Nondeterministic Polynomial (NP) hard problems and could not be solved well. Many of other non-NP-hard optimization problems are combinatorial and do not have satisfying solutions either. This dissertation presents a series of Particle Swarm Optimization (PSO) based search and optimization algorithms that solve open research and design problems in wireless communications. These problems are either avoided or solved approximately before. PSO is a bottom-up approach for optimization problems. It imposes no conditions on the underlying problem. Its simple formulation makes it easy to implement, apply, extend and hybridize. The algorithm uses simple operators like adders, and multipliers to travel through the search space and the process requires just five simple steps. PSO is also easy to control because it has limited number of parameters and is less sensitive to parameters than other swarm intelligence algorithms. It is not dependent on initial points and converges very fast. Four types of PSO based approaches are proposed targeting four different kinds of problems in wireless communications. First, we use binary PSO and continuous PSO together to find optimal compositions of Gaussian derivative pulses to form several UWB pulses that not only comply with the FCC spectrum mask, but also best exploit the avail- able spectrum and power. Second, three different PSO based algorithms are developed to solve the NLOS/LOS channel differentiation, NLOS range error mitigation and multilateration problems respectively. Third, a PSO based search method is proposed to find optimal orthogonal code sets to reduce the inter carrier interference effects in an frequency redundant OFDM system. Fourth, a PSO based phase optimization technique is proposed in reducing the PAPR of an frequency redundant OFDM system. The PSO based approaches are compared with other canonical solutions for these communication problems and showed superior performance in many aspects. which are confirmed by analysis and simulation results provided respectively. Open questions and future Open questions and future works for the dissertation are proposed to serve as a guide for the future research efforts

    A Novel 3D Indoor Node Localization Technique Using Weighted Least Square Estimation with Oppositional Beetle Swarm Optimization Algorithm

    Get PDF
    Due to the familiarity of smart devices and the advancements of mobile Internet, there is a significant need to design an effective indoor localization system. Indoor localization is one of the recent technologies of location-based services (LBS), plays a vital role in commercial and civilian industries. It finds useful in public security, disaster management, and positioning navigation. Several research works have concentrated on the design of accurate 2D indoor localization techniques. Since the 3D indoor localization techniques offer numerous benefits, this paper presents a Novel 3D Indoor Node Localization Technique using Oppositional Beetle Swarm Optimization with Weighted Least Square Estimation (OBSO-WLSE) algorithm. The proposed OBSO-WLSE algorithm aims to improvise the localization accuracy with reduced computational time. Here, the OBSO algorithm is employed for estimating the initial locations of the target that results in the elimination of NLOS error. With respect to the initial location by OBSO technique, the WLSE technique performs iterated computations rapidly to determine the precise final location of the target. To improve the efficiency of the OBSO technique, the concept of oppositional based learning (OBL) is integrated into the traditional BSO algorithm. A number of simulations were run to test the model's accuracy, and the results were analyzed using a variety of metrics

    A Novel 3D Indoor Node Localization Technique Using Weighted Least Square Estimation with Oppositional Beetle Swarm Optimization Algorithm

    Get PDF
    Due to the familiarity of smart devices and the advancements of mobile Internet, there is a significant need to design an effective indoor localization system. Indoor localization is one of the recent technologies of location-based services (LBS), plays a vital role in commercial and civilian industries. It finds useful in public security, disaster management, and positioning navigation. Several research works have concentrated on the design of accurate 2D indoor localization techniques. Since the 3D indoor localization techniques offer numerous benefits, this paper presents a Novel 3D Indoor Node Localization Technique using Oppositional Beetle Swarm Optimization with Weighted Least Square Estimation (OBSO-WLSE) algorithm. The proposed OBSO-WLSE algorithm aims to improvise the localization accuracy with reduced computational time. Here, the OBSO algorithm is employed for estimating the initial locations of the target that results in the elimination of NLOS error. With respect to the initial location by OBSO technique, the WLSE technique performs iterated computations rapidly to determine the precise final location of the target. To improve the efficiency of the OBSO technique, the concept of oppositional based learning (OBL) is integrated into the traditional BSO algorithm. A number of simulations were run to test the model's accuracy, and the results were analyzed using a variety of metrics

    SVC device optimal location for voltage stability enhancement based on a combined particle swarm optimization-continuation power flow technique

    Get PDF
    The increased power system loading combined with the worldwide power industry deregulation requires more reliable and efficient control of the power flow and network stability. Flexible AC transmission systems (FACTS) devices give new opportunities for controlling power and enhancing the usable capacity of the existing transmission lines. This paper presents a combined application of the particle swarm optimization (PSO) and the continuation power flow (CPF) technique to determine the optimal placement of static var compensator (SVC) in order to achieve the static voltage stability margin. The PSO objective function to be maximized is the loading factor to modify the load powers. In this scope, two SVC constraints are considered: the reference voltage in the first case and the total reactance and SVC reactive power in the second case. To test the performance of the proposed method, several simulations were performed on IEEE 30-Bus test systems. The results obtained show the effectiveness of the proposed method to find the optimal placement of the static var compensator and the improvement of the voltage stability

    Using Particle Swarm Optimization Algorithm in the Distribution System Planning

    Get PDF
    Technology advancement, the drive to reduce environmental pollution and energy security concern, have led to an increase in the use of Distributed Generations (DGs). One of the important aspects of the power system is the optimal operation of distribution networks. Therefore, the objective of this paper is to determine the possible solution for optimal operation of distribution networks which takes into account the impact of DG. Since the optimal operation of distribution networks is an optimization problem with discrete and continuous variables, it can be introduced as an integer problem that can be formulated using the metaheuristic approach. This paper utilizes the Particle Swarm Optimization (PSO) algorithm to solve the distribution planning problem with DG. In addition, a case study on IEEE 34 bus system has been carried out to demonstrate the effectiveness of the PSO algorithm with regards to Genetic Algorithm (GA). Results indicate that PSO have better performance over the GA in terms of cost of losses minimization and convergence time. Future work should consider to minimize the overall network cost simultaneously that takes into account the DG investment cost, cost of losses and maintenance cost

    Dynamic Quality Monitoring System to Assess the Quality of Asphalt Concrete Pavement

    Get PDF
    [EN] With the rapid development of new technologies, such as big data, the Internet of Things (IoT) and intelligent sensing, the traditional asphalt pavement construction quality evaluation method has been unable to meet the needs of road digital construction. At the same time, the development of such technologies enables a new management system for asphalt pavement construction. In this study, firstly, the dynamic quality monitoring system of asphalt concrete pavement is established by adopting the BeiDou Navigation Satellite System, intelligent sensing, the IoT and 5G technology. This allows key technical indicators to be collected and transmitted for the whole process of asphalt mixture, which includes the mixing plant, transport vehicle, paving and compaction. Secondly, combined with AHP and the entropy weight (EW) method, the index combination weight is calculated. The comprehensive index for the pavement digital construction quality index (PCQ) is proposed to reflect the impact of monitoring indicators on pavement quality. An expert decision-making model is formed by using the improved particle swarm optimization (PSO) algorithm coupled with radial basis function neural network (RBF). Finally, the digital monitoring index and pavement performance index are connected to establish a full-time and multi-dimensional digital construction quality evaluation model. This study is verified by a database created from the digital monitoring data of pavement construction collected from a highway construction project. The system proposed in this study can accurately reflect the quality of pavement digital construction and solve the lag problem existing in the feedback of construction site.This research is supported by the Branch of China Road and Bridge Corporation (Cambodia) Technology Development Project(No.2020-zlkj-04); National Social Science Fund projects (No.20BJY010); National Social Science Fund Post-financing projects (No.19FJYB017); Sichuan-tibet Railway Major Fundamental Science Problems Special Fund (No.71942006); Qinghai Natural Science Foundation (No.2020-JY-736); List of Key Science and Technology Projects in China's Transportation Industry in 2018-International Science and Technology Cooperation Project (No.2018-GH-006 and No.2019-MS5-100); Emerging Engineering Education Research and Practice Project of Ministry of Education of China (No.E-GKRWJC20202914); Shaanxi Social Science Fund (No.2017S004); Xi'an Construction Science and Technology Planning Project (No.SZJJ201915 and No.SZJJ201916); Shaanxi Province Higher Education Teaching Reform Project (No.19BZ016); Fundamental Research for Funds for the Central Universities (Humanities and Social Sciences), Chang'an University (No.300102239616, No.300102281669 and No.300102231641).Ma, Z.; Zhang, J.; Philbin, SP.; Li, H.; Yang, J.; Feng, Y.; Ballesteros-PĂ©rez, P.... (2021). Dynamic Quality Monitoring System to Assess the Quality of Asphalt Concrete Pavement. Buildings. 11(12):1-18. https://doi.org/10.3390/buildings11120577S118111

    Dynamic Quality Monitoring System to Assess the Quality of Asphalt Concrete Pavement

    Get PDF
    With the rapid development of new technologies, such as big data, the Internet of Things (IoT) and intelligent sensing, the traditional asphalt pavement construction quality evaluation method has been unable to meet the needs of road digital construction. At the same time, the development of such technologies enables a new management system for asphalt pavement construction. In this study, firstly, the dynamic quality monitoring system of asphalt concrete pavement is established by adopting the BeiDou Navigation Satellite System, intelligent sensing, the IoT and 5G technology. This allows key technical indicators to be collected and transmitted for the whole process of asphalt mixture, which includes the mixing plant, transport vehicle, paving and compaction. Secondly, combined with AHP and the entropy weight (EW) method, the index combination weight is calculated. The comprehensive index for the pavement digital construction quality index (PCQ) is proposed to reflect the impact of monitoring indicators on pavement quality. An expert decision-making model is formed by using the improved particle swarm optimization (PSO) algorithm coupled with radial basis function neural network (RBF). Finally, the digital monitoring index and pavement performance index are connected to establish a full-time and multi-dimensional digital construction quality evaluation model. This study is verified by a database created from the digital monitoring data of pavement construction collected from a highway construction project. The system proposed in this study can accurately reflect the quality of pavement digital construction and solve the lag problem existing in the feedback of construction site
    • …
    corecore