1,534 research outputs found

    Achieving "Massive MIMO" Spectral Efficiency with a Not-so-Large Number of Antennas

    Full text link
    The main focus and contribution of this paper is a novel network-MIMO TDD architecture that achieves spectral efficiencies comparable with "Massive MIMO", with one order of magnitude fewer antennas per active user per cell. The proposed architecture is based on a family of network-MIMO schemes defined by small clusters of cooperating base stations, zero-forcing multiuser MIMO precoding with suitable inter-cluster interference constraints, uplink pilot signals reuse across cells, and frequency reuse. The key idea consists of partitioning the users population into geographically determined "bins", such that all users in the same bin are statistically equivalent, and use the optimal network-MIMO architecture in the family for each bin. A scheduler takes care of serving the different bins on the time-frequency slots, in order to maximize a desired network utility function that captures some desired notion of fairness. This results in a mixed-mode network-MIMO architecture, where different schemes, each of which is optimized for the served user bin, are multiplexed in time-frequency. In order to carry out the performance analysis and the optimization of the proposed architecture in a clean and computationally efficient way, we consider the large-system regime where the number of users, the number of antennas, and the channel coherence block length go to infinity with fixed ratios. The performance predicted by the large-system asymptotic analysis matches very well the finite-dimensional simulations. Overall, the system spectral efficiency obtained by the proposed architecture is similar to that achieved by "Massive MIMO", with a 10-fold reduction in the number of antennas at the base stations (roughly, from 500 to 50 antennas).Comment: Full version with appendice (proofs of theorems). A shortened version without appendice was submitted to IEEE Trans. on Wireless Commun. Appendix B was revised after submissio

    Efficient DSP and Circuit Architectures for Massive MIMO: State-of-the-Art and Future Directions

    Full text link
    Massive MIMO is a compelling wireless access concept that relies on the use of an excess number of base-station antennas, relative to the number of active terminals. This technology is a main component of 5G New Radio (NR) and addresses all important requirements of future wireless standards: a great capacity increase, the support of many simultaneous users, and improvement in energy efficiency. Massive MIMO requires the simultaneous processing of signals from many antenna chains, and computational operations on large matrices. The complexity of the digital processing has been viewed as a fundamental obstacle to the feasibility of Massive MIMO in the past. Recent advances on system-algorithm-hardware co-design have led to extremely energy-efficient implementations. These exploit opportunities in deeply-scaled silicon technologies and perform partly distributed processing to cope with the bottlenecks encountered in the interconnection of many signals. For example, prototype ASIC implementations have demonstrated zero-forcing precoding in real time at a 55 mW power consumption (20 MHz bandwidth, 128 antennas, multiplexing of 8 terminals). Coarse and even error-prone digital processing in the antenna paths permits a reduction of consumption with a factor of 2 to 5. This article summarizes the fundamental technical contributions to efficient digital signal processing for Massive MIMO. The opportunities and constraints on operating on low-complexity RF and analog hardware chains are clarified. It illustrates how terminals can benefit from improved energy efficiency. The status of technology and real-life prototypes discussed. Open challenges and directions for future research are suggested.Comment: submitted to IEEE transactions on signal processin

    A flexible network architecture for 5G systems

    Get PDF
    In this paper, we define a flexible, adaptable, and programmable architecture for 5G mobile networks, taking into consideration the requirements, KPIs, and the current gaps in the literature, based on three design fundamentals: (i) split of user and control plane, (ii) service-based architecture within the core network (in line with recent industry and standard consensus), and (iii) fully flexible support of E2E slicing via per-domain and cross-domain optimisation, devising inter-slice control and management functions, and refining the behavioural models via experiment-driven optimisation. The proposed architecture model further facilitates the realisation of slices providing specific functionality, such as network resilience, security functions, and network elasticity. The proposed architecture consists of four different layers identified as network layer, controller layer, management and orchestration layer, and service layer. A key contribution of this paper is the definition of the role of each layer, the relationship between layers, and the identification of the required internal modules within each of the layers. In particular, the proposed architecture extends the reference architectures proposed in the Standards Developing Organisations like 3GPP and ETSI, by building on these while addressing several gaps identified within the corresponding baseline models. We additionally present findings, the design guidelines, and evaluation studies on a selected set of key concepts identified to enable flexible cloudification of the protocol stack, adaptive network slicing, and inter-slice control and management.This work has been performed in the framework of the H2020 project 5G-MoNArch co-funded by the E

    Identifying 5G system enhancements: enabling technologies for multi-service networks

    Get PDF
    Proceeding of: 2018 IEEE Conference on Standards for Communications and Networking (CSCN)The fifth generation (5G) of mobile and wireless communications networks aims at addressing a diverse set of use cases, services, and applications with a particular focus on enabling new business cases via network slicing. The development of 5G has thus advanced quickly with research projects and standardization efforts resulting in the 5G baseline architecture. Nevertheless, for the realization of native end-to-end (E2E) network slicing, further features and optimizations shall still be introduced. In this paper, we provide a gap analysis of current 5G system (5GS) with respect to some specific enhancements and detail our insights on the enabling innovations that can fill the identified gaps. We will then discuss the essential building blocks and design principles of an evolved 5G baseline architecture capitalizing on the innovations that are being developed.This work has been performed in the framework of the H2020 project 5G-MoNArch co-funded by the EU

    PROCESS CONFORMANCE TESTING: A METHODOLOGY TO IDENTIFY AND UNDERSTAND PROCESS VIOLATIONS IN ENACTMENT OF SOFTWARE PROCESSES

    Get PDF
    Today's software development is driven by software processes and practices that when followed increase the chances of building high quality software products. Not following these guidelines results in increased risk that the goal for the software's quality characteristics cannot be reached. Current process analysis approaches are limited in identifying and understanding process deviations and ultimately fail in comprehending why a process does not work in a given environment and what steps of the process have to be changed and tailored. In this work I will present a methodology for formulating, identifying and investigating process violations in the execution of software processes. The methodology, which can be thought of as "Process Conformance Testing", consists of a four step iterative model, compromising templates and tools. A strong focus is set on identifying violations in a cost efficient and unobtrusive manner by utilizing automatically collected data gathered through commonly used software development tools, such as version control systems. To evaluate the usefulness and correctness of the model a series of four studies have been conducted in both classroom and professional environments. A total of eight different software processes have been investigated and tested. The results of the studies show that the steps and iterative character of the methodology are useful for formulating and tailoring violation detection strategies and investigating violations in classroom study environments and professional environments. All the investigated processes were violated in some way, which emphasizes the importance of conformance measurement. This is especially important when running an empirical study to evaluate the effectiveness of a software process, as the experimenters want to make sure they are evaluating the specified process and not a variation of it. Violation detection strategies were tailored based upon analysis of the history of violations and feedback from then enactors and mangers yielding greater precision of identification of non-conformities. The overhead cost of the approach is shown to be feasible with a 3.4% (professional environment) and 12.1% (classroom environment) overhead. One interesting side result is that process enactors did not always follow the process for good reason, e.g. the process was not tailored for the environment, it was not specified at the right level of granularity, or was too difficult to follow. Two specific examples in this thesis are XP Pair Switching and Test Driven Development. In XP Pair Switching, the practice was violated because the frequency of switching was too high. The definition of Test Driven Development is simple and clear but requires a fair amount of discipline to follow, especially by novice programmers

    An open source multi-slice cell capacity framework

    Get PDF
    Número especial con los mejores papers de 2021.5G is the new 3GPP technology designed to solve a wide range of requirements. On the one hand, it must be able to support high bit rates and ultra-low latency services, and on the other hand, it should be able to connect a massive amount of devices with loose bandwidth and delay requirements. Network Slicing is a key paradigm in 5G, and future 6G networks will inherit it for the concurrent provisioning of diverse quality of service. As scheduling is always a delicate vendor topic and there are few free and complete simulation tools to support all 5G features, in this paper, we present Py5cheSim. This is a flexible and open-source simulator based on Python and specially oriented to simulate cell capacity in 3GPP 5G networks and beyond. To the best of our knowledge, Py5cheSim is the first simulator that supports Network Slicing at the Radio Access Network level. It offers an environment that allows the development of new scheduling algorithms in a researcher-friendly way without the need of detailed knowledge of the core of the tool. The present work describes its design and implementation choices, the validation process, the results and different use cases.Proyecto: FVF-2021-128– DICYT. Fondo Carlos Vaz Ferreira, Convocatoria 2021, Dirección Nacional de Innovación, Ciencia y Tecnología, Ministerio de Educación y Cultura, UruguayProyecto: FMV_1_2019_1_155700 "Inteligencia Artificial aplicada a redes 5G", Agencia Nacional de Investigación e Innovación, Urugua

    Improved Handover Through Dual Connectivity in 5G mmWave Mobile Networks

    Full text link
    The millimeter wave (mmWave) bands offer the possibility of orders of magnitude greater throughput for fifth generation (5G) cellular systems. However, since mmWave signals are highly susceptible to blockage, channel quality on any one mmWave link can be extremely intermittent. This paper implements a novel dual connectivity protocol that enables mobile user equipment (UE) devices to maintain physical layer connections to 4G and 5G cells simultaneously. A novel uplink control signaling system combined with a local coordinator enables rapid path switching in the event of failures on any one link. This paper provides the first comprehensive end-to-end evaluation of handover mechanisms in mmWave cellular systems. The simulation framework includes detailed measurement-based channel models to realistically capture spatial dynamics of blocking events, as well as the full details of MAC, RLC and transport protocols. Compared to conventional handover mechanisms, the study reveals significant benefits of the proposed method under several metrics.Comment: 16 pages, 13 figures, to appear on the 2017 IEEE JSAC Special Issue on Millimeter Wave Communications for Future Mobile Network
    • …
    corecore