53,310 research outputs found

    Reliability-based design optimization using kriging surrogates and subset simulation

    Full text link
    The aim of the present paper is to develop a strategy for solving reliability-based design optimization (RBDO) problems that remains applicable when the performance models are expensive to evaluate. Starting with the premise that simulation-based approaches are not affordable for such problems, and that the most-probable-failure-point-based approaches do not permit to quantify the error on the estimation of the failure probability, an approach based on both metamodels and advanced simulation techniques is explored. The kriging metamodeling technique is chosen in order to surrogate the performance functions because it allows one to genuinely quantify the surrogate error. The surrogate error onto the limit-state surfaces is propagated to the failure probabilities estimates in order to provide an empirical error measure. This error is then sequentially reduced by means of a population-based adaptive refinement technique until the kriging surrogates are accurate enough for reliability analysis. This original refinement strategy makes it possible to add several observations in the design of experiments at the same time. Reliability and reliability sensitivity analyses are performed by means of the subset simulation technique for the sake of numerical efficiency. The adaptive surrogate-based strategy for reliability estimation is finally involved into a classical gradient-based optimization algorithm in order to solve the RBDO problem. The kriging surrogates are built in a so-called augmented reliability space thus making them reusable from one nested RBDO iteration to the other. The strategy is compared to other approaches available in the literature on three academic examples in the field of structural mechanics.Comment: 20 pages, 6 figures, 5 tables. Preprint submitted to Springer-Verla

    Two-Stage Subspace Constrained Precoding in Massive MIMO Cellular Systems

    Full text link
    We propose a subspace constrained precoding scheme that exploits the spatial channel correlation structure in massive MIMO cellular systems to fully unleash the tremendous gain provided by massive antenna array with reduced channel state information (CSI) signaling overhead. The MIMO precoder at each base station (BS) is partitioned into an inner precoder and a Transmit (Tx) subspace control matrix. The inner precoder is adaptive to the local CSI at each BS for spatial multiplexing gain. The Tx subspace control is adaptive to the channel statistics for inter-cell interference mitigation and Quality of Service (QoS) optimization. Specifically, the Tx subspace control is formulated as a QoS optimization problem which involves an SINR chance constraint where the probability of each user's SINR not satisfying a service requirement must not exceed a given outage probability. Such chance constraint cannot be handled by the existing methods due to the two stage precoding structure. To tackle this, we propose a bi-convex approximation approach, which consists of three key ingredients: random matrix theory, chance constrained optimization and semidefinite relaxation. Then we propose an efficient algorithm to find the optimal solution of the resulting bi-convex approximation problem. Simulations show that the proposed design has significant gain over various baselines.Comment: 13 pages, accepted by IEEE Transactions on Wireless Communication

    Towards goal-based autonomic networking

    Get PDF
    The ability to quickly deploy and efficiently manage services is critical to the telecommunications industry. Currently, services are designed and managed by different teams with expertise over a wide range of concerns, from high-level business to low level network aspects. Not only is this approach expensive in terms of time and resources, but it also has problems to scale up to new outsourcing and/or multi-vendor models, where subsystems and teams belong to different organizations. We endorse the idea, upheld among others in the autonomic computing community, that the network and system components involved in the provision of a service must be crafted to facilitate their management. Furthermore, they should help bridge the gap between network and business concerns. In this paper, we sketch an approach based on early work on the hierarchical organization of autonomic entities that possibly belong to different organizations. An autonomic entity governs over other autonomic entities by defining their goals. Thus, it is up to each autonomic entity to decide its line of actions in order to fulfill its goals, and the governing entity needs not know about the internals of its subordinates. We illustrate the approach with a simple but still rich example of a telecom service

    On Engineering Support for Business Process Modelling and Redesign

    Get PDF
    Currently, there is an enormous (research) interest in business process redesign (BPR). Several management-oriented approaches have been proposed showing how to make BPR work. However, detailed descriptions of empirical experience are few. Consistent engineering methodologies to aid and guide a BPR-practitioner are currently emerging. Often, these methodologies are claimed to be developed for business process modelling, but stem directly from information system design cultures. We consider an engineering methodology for BPR to consist of modelling concepts, their representation, computerized tools and methods, and pragmatic skills and guidelines for off-line modelling, communicating, analyzing, (re)designing\ud business processes. The modelling concepts form the architectural basis of such an engineering methodology. Therefore, the choice, understanding and precise definition of these concepts determine the productivity and effectiveness of modelling tasks within a BPR project. The\ud current paper contributes to engineering support for BPR. We work out general issues that play a role in the development of engineering support for BPR. Furthermore, we introduce an architectural framework for business process modelling and redesign. This framework consists of a coherent set of modelling concepts and techniques on how to use them. The framework enables the modelling of both the structural and dynamic characteristics of business processes. We illustrate its applicability by modelling a case from service industry. Moreover, the architectural framework supports abstraction and refinement techniques. The use of these techniques for a BPR trajectory are discussed

    Robust aerodynamic design of variable speed wind turbine rotors

    Get PDF
    This study focuses on the robust aerodynamic design of the bladed rotor of small horizontal axis wind turbines. The optimization process also considers the effects of manufacturing and assembly tolerances on the yearly energy production. The aerodynamic performance of the rotors so designed has reduced sensitivity to manufacturing and assembly errors. The geometric uncertainty affecting the rotor shape is represented by normal distributions of the pitch angle of the blades, and the twist angle and chord of their airfoils. The aerodynamic module is a blade element momentum theory code. Both Monte Carlo-based and the Univariate ReducedQuadrature technique, a novel deterministic uncertainty propagationmethod, are used. The performance of the two approaches is assessed both interms of accuracy and computational speed. The adopted optimization method is based on a hybrid multi-objective evolutionary strategy. The presented results highlight that the sensitivity of the yearly production to geometric uncertainties can be reduced by reducing the rotational speed and increasing the aerodynamic blade loads

    Ultra-Reliable Cloud Mobile Computing with Service Composition and Superposition Coding

    Full text link
    An emerging requirement for 5G systems is the ability to provide wireless ultra-reliable communication (URC) services with close-to-full availability for cloud-based applications. Among such applications, a prominent role is expected to be played by mobile cloud computing (MCC), that is, by the offloading of computationally intensive tasks from mobile devices to the cloud. MCC allows battery-limited devices to run sophisticated applications, such as for gaming or for the "tactile" internet. This paper proposes to apply the framework of reliable service composition to the problem of optimal task offloading in MCC over fading channels, with the aim of providing layered, or composable, services at differentiated reliability levels. Inter-layer optimization problems, encompassing offloading decisions and communication resources, are formulated and addressed by means of successive convex approximation methods. The numerical results demonstrate the energy savings that can be obtained by a joint allocation of computing and communication resources, as well as the advantages of layered coding at the physical layer and the impact of channel conditions on the offloading decisions.Comment: 8 pages, 5 figures, To be presented at CISS 201
    • 

    corecore