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TE Annual energy yield.

This study focuses on the robust aerodynamic design of theU Freestream wind velocity.

bladed rotor of small horizontal axis wind turbines. Theiopt
mization process also considers the effects of manufagfamnd
assembly tolerances on the yearly energy production. The ae
dynamic performance of the rotors so designed has reduced se
sitivity to manufacturing and assembly errors. The geoimetr
uncertainty affecting the rotor shape is represented bymadr
distributions of the pitch angle of the blades, and the taiggle
and chord of their airfoils. The aerodynamic module is a lelad

element momentum theory code. Both Monte Carlo-based andg,

the Univariate Reduced Quadrature technique, a novel dater
istic uncertainty propagation method, are used. The penforce

Ul Relative wind velocity.
a Axial induction factor.

a Circumferential induction factor.
r Radius along the blade.

x Array of design variables.
o Angle of attack.

Bp Section pitch angle.

Bpo Blade pitch angle.
Blade twist angle.

A Tip speed ratio.

o Rotor solidity.

of the two approaches is assessed both interms of accuraty an ;2 \szriance.

computational speed. The adopted optimization methodssda
on a hybrid multi-objective evolutionary strategy. Theganeted
results highlight that the sensitivity of the yearly protion to
geometric uncertainties can be reduced by reducing the-rota
tional speed and increasing the aerodynamic blade loads.

NOMENCLATURE

BM Root bending moment.

Esm Mean ofBM for given wind speed.
Ere Mean of annual energy yield.

Np Number of blades of the rotor.

R Tip radius.

*Address all correspondence to this author.

¢ Angle of relative wind.
Q Rotational speed.

INTRODUCTION

The present availability of large computational resources
and recent progress of design and optimization techncadier
the means to automate significant portions of product design
the past few years, several studies on the use of diversaiapti
tion techniques for the preliminary design of wind turbihese
appeared. Some of these applications have focused on tihe of
mization of existing blades by means of local search appresc
utilizing low- to medium-fidelity models. Due to the advamce
in global stochastic search methods, it has also been p@ssib
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work on design projects, in which no initial shape is consde
and a global search is performed in a broad search spacewvitho
the use of a starting point [1].

and chord of the airfoils making up the blades. The standerd d
viations associated with such distributions are repregiset of
those observed in the manufacturing process of the turlbéss c

To accelerate the design process and achieve a sound designconsidered in this paper. Moreover, since the rotor blades h

two main factors must be considered) high-fidelity models
should be introduced into the design process as early abfmss
preferably since the preliminary design phasgthe impact of
shape and operational uncertainties on the performanaddsho
be assessed and minimized. The use of high-fidelity models an
uncertainty quantification tools increases the computatioost

of the design exercise, and this motivates the efforts ajiunle-
velop new approaches allowing one to efficiently integrégé-h
fidelity and uncertainty propagation methods in the design s
tem.

the same nominal shape, two cases have been consideredy narr
one in which the stochastic shape of all blades is the santke, ar
the other in which the stochastic shape of each blade vaies i
pendently from that of the other blades. The aerodynamic-mod
ule is a blade-element momentum (BEM) theory code develope
at the School of Engineering of Glasgow University.

Both the MC-based and the deterministic (URQ) uncertainty
propagation methods have been tested to investigate h@& the
sampling techniques behave when coupled with a global evolt
tionary search approach, and determine the best comprbetise

The uncertainty management and quantification requires the tween computational speed and accuracy for the level oflatan

identification of suitable techniques, which can reliabtgdgict
and propagate uncertainty limiting the computational bardf

deviations typical of this problem. The adopted optimizati
method is based on an evolutionary strategy (ES), which com

the design task. The conceptually simplest way to propagate bines the exploratory capabilities of a multi-objectivéilstion
uncertainty through a general function is to sample the espac of Distibution algorithm [8, 9] with the exploitation capéites
of the independent variables by means of Monte Carlo (MC) of a differential evolution (DE)-based approach [10]. Githat

methods [2]. Unfortunately, MC methods are computatignall
expensive, requiring a large number of function evaluatitm
converge. For this reason, researchers have been deghlpin
ternative, computationally more affordable approachescer-
tainty propagation. The main difficulty is to reduce computa
tional costs with respect to MC methods while maintaining an
acceptable accuracy of the probabilistic parameters aftitgut
values. The techniques that have been proposed to accomplis
these two conflicting requirements range from the Taylaeba
method of moments [3, 4] to quadrature methods [5] and pelyno
mial chaos expansion [6]. Among the proposed alternatiaes,
appealing one is the Univariate Reduced Quadrature (URQ) ap
proach [7], which has been successfully used for the rolhagtes
optimization of a transonic airfoil by means of a local geadi
based search. The use of this deterministic sampling tqakni

in robust design optimization based on global search mstisod
appealing and promising, but so far the URQ uncertainty @rop
gation technique has not been used in global design optiimiza

the optimization is carried out taking into account the utaiaty
of the design variables, the robust optimization consisisaxi-
mizing the mean of the yearly energy production and miningzi
its standard deviation, leading to a multi-objective ofitation
problem.

The paper first describes the aerodynamic model, the mai
features of the two adopted optimizers and the strategytadop
for coupling all modules. The definition of the consideredi-op
mization problems is then provided, followed by a sectioe-pr
senting the validation of the selected methods of uncdytain
propagation. This is followed by a section reporting theaultss
of the robust design optimizations, and another preseritiag
comparative analysis of the turbine obtained without aderéing
any geometry errors and one obtained by solving a robuggesi
optimization problem. The concluding section summarihes t
presented work and proposes further extensions of thiy.stud

This paper focuses on the aerodynamic design of the bladed AERODYNAMIC MODEL

rotor of small horizontal axis wind turbines (HAWT's) withted
power of up to approximately 60 kW. More specifically, it ana-
lyzes the effects of manufacturing and assembly toleranoes
the power and energy production of the turbine, and it inetud
such effects in the design optimization process. This mhoce
yields a robust aerodynamic design, namely a turbine rdter,
aerodynamic performance of which has minimal sensitivity t
manufacturing and assembly errors. The main input paramete
are the yearly wind distribution at the selected site, regnéed
by a Weibull distribution, and the rotor swept area. The ctije
function is the yearly mechanical energy of the turbine. Gbe-
metric uncertainty affecting the rotor geometry is représe by
normal distributions of the pitch angle of the blades, amdist

The aerodynamic module is WINSTRIP, a blade-elemen
momentum (BEM) theory FORTRAN code [11]. This low-
fidelity analysis tool is based on the radial subdivisiorhefitotor
blades into sections or strips of radial widthand mean radius
r. For each strip, the flow data and the aerodynamic forces ar
determined by using two conditions. One condition is ol&din
by equating the thrust acting on the considered rotor ririgrele
mined by using the one-dimensional conservation of thealine
momentum applied to the considered annular streamtubato th
associated with the lift and drag forces acting on the segmer
(strip) of the blades intercepted by the annular streamtiibe
other condition is obtained by equating the torque actinghen
considered rotor ring determined by using the one-dimerasio
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conservation of the angular momentum applied to the corside
annular streamtube to that produced by the lift and drageforc
acting on the segment (strip) of the blades intercepted by th
annular streamtube. The main geometric and aerodynamic pa-
rameters of a generic strip are depicted in Fig. 1, in whieh th
sectional lift and drag forces are denoteddfy anddFp re-
spectively. Denoting bgT the thrust acting on a rotor ring, the
elemental thrust coefficient &Cr = dT/(0.5pU2A), whereRis

the tip radius A = TiR? is the rotor surface, anplandU denote
the freestream density and velocity respectively. The efeal
thrust coefficient computed using the conservation of limea-
mentum is:

dCr = 8a(1—a)fdr 1)
wherea is the axial induction factor, and the superscript = de-
notes nondimensionalization i The elemental thrust coeffi-
cient computed using lift and drag theory is:

2
dcr — OA

"2 N2
co§¢(1+a> (CLcosp+Cp sing)f<df

(2)

whereo = (Npc/(TR) is the rotor solidity,N, is the number of
blades of the rotor; is the chord of the striph = QR/U, Q is
the angular speed of the rot@, is the circumferential induc-
tion factor andCy, andCp are the lift and drag coefficients re-
spectively. The symbap denotes the angle of the relative wind
velocity vectorU, with respect to the rotor plane. Its expres-
sion is @ = arctar{(1—a)/((1+&)AF)], whereadJye = [(1—
a)2U? + (14 &)%(Qr)?)Y2. Equating expressions (1) amd (2)
yields one equation in the two unknowasanda’. This is be-
cause the coefficient§. and Cp can be obtained from CFD
codes or experimental data as functions of the Reynolds num-
ber, which depends linearly de and the relative angle of at-
tack a, which is the angle between the airfoil chord ddog,.

As shown if Fig. 1,0 = ¢@— 6y, where8, of the section pitch
angle. This parameter depends only on geometric featunes, a
its expression i®, = Op o + 67, wherefp g is the pitch angle of
the blade an@r is the section twist angle. Denoting by the
torque acting on a rotor ring, the elemental torque coeffide
dCo = dQ/(0.5pU2AR). The elemental torque coefficient com-
puted using the conservation of angular momentum is:

dCq = 8a/(1— a)AF3df (3)

The elemental torque coefficient computed using lift andydra
theory is:

_ oN? N2 , o3 4o
dQr = ogp(l @) (CLsing—Cocosp)rdr  (4)

-

chord line -~

) plane of blade rotation

Figure 1. GEOMETRIC AND AERODYNAMIC PARAMETERS OF A
GENERIC BLADE STRIP.

Equating expressions (3) amd (4) yields another equatitimein
two unknownsaanda’. The nonlinear system resulting by equat-
ing the two expressions @iCr anddCq for each strip is solved
with Newton’s method. Th€_ andCp data are stored in tables as
functions of the Reynolds number aadand such data are com-
puted in a pre-processing step using the MIT aerodynamiesol
XFOIL. Tip and hub vortex losses are also included by means o
the Prandtl tip loss model [11]. Once the flow state of eadp str
is known, the elemental powdP can be computed. WINSTRIP
uses a nondimensional power coefficid@ = dP/(0.5pU3A),
the expression of which is:

oA3

"2 o 63y
co§(p(1+a) (CLsing— Cp cosp)r~drf

dQr = (5)

The mechanical power corresponding to a particular valug of
is determined by integrating Eqn. (5) from the blade root$o i
tip.

The set of input variables of the BEM code is made up of:
U, Q, Ny and the blade geometry. This latter is defined by roof
and tip radius, radial distributions of chocdand section twist
Or, and blade pitch The set of output variables includes: me
chanical power, rotor thrust, bending moment at the bladg ro
and radial distributions of all kinematic data (ea.a’, a) and
aerodynamic forces. The WINSTRIP code has been validated b
comparing its output with that of the National Renewablergpe
BEM cosa WTPERF [12] using several realistic blade geometry
In all cases, the root-mean-square of the difference ofiaput
radial distributions of kinematic and aerodynamic dataitbhiwv
machine error, which demonstrate the correctness of WINBTR
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HYBRID EVOLUTIONARY SOLVER

Evolutionary Algorithms (EAS) solve optimization prob-
lems by making a generation of individuals (turbines, irsthi
study) evolve subject to selection and search operatoris. itFh
erative process eventually leads to a population contgitiie
fittest possible individuals (best turbine designs), oiittdials
who are anyway significantly fitter than those of the startiog-
ulation. The role of the selection operators is to identify fittest
or more promising individuals of the current population endas
search operators such as crossover and mutattem ptto gen-
erate better offsprings starting from suitably selectelividuals
of the current generation. Each individual is defined by gene
which correspond to design variables in design optimizafidhe
solution of the optimization problems reported in this stusl

The Parzen method utilizes a non-parametric approach t
kernel density estimation, and results in an estimator ¢bat
verges everywhere to the true Probability Density Functior
(PDF). Additionally, when the true PDF is uniformly continu
ous, the Parzen estimator can also be made uniformly censist
The Parzen method allocathlgg identical kernels (wher8ling
is the number of individuals of the current population),teane
centered on a different element of the sample. Then,a pilasab
tic model of the promising search space portion is built aa th
basis of the statistical data provided Ky individuals through
their kernels, andgNjhg new individuals tg > 1) are sampled.
The variance of each kernel depends(onthe location of the
individuals in the search space afid the fitness value of these
individuals, and its construction leads to values that fasam-

based on a hybrid approach, which makes a combined use of twopling in the neighbourhood of the most promising solutions.

different EA's: the Multi-Objective Parzen-based Estiinatof
Distribution (MOPED) [8] and the Inflationary Differenti&vo-
lution Algorithm (IDEA) [10].

The MOPED algorithm belongs to a subset of EAs, and
it was developed to circumvent certain algorithmic protdesh
conventional EAs. Standard EAs can be ineffective whea th
problem at hand features a high level of interaction amoaglé:
sign variables. This is mainly due to the fact that the recdoab
tion operators are likely to disrupt promising sub-struesuthat
may lead to optimal solutions. Additionally, the use thessaver
and mutatioan operators may result in slow convergenceeto th
solution of the optimization, that is it may require a largem
ber of generations to obtain very fit individuals. MOPED was
developed to circumvent shortfalls of this kind. Its usetatis-
tical tools enables it to preserve promising sub-strustasso-
ciated with variable interaction from one generation tothao
(automatic linkage learning). Such statistical tools aksglace
the crossover and mutation operators of standard EA's, laayd t
allow a faster convergence of MOPED with respect to theratte
class of optimizers. Starting from the individuals of therent
population, MOPED builds an approximate probabilistic mlod

The features of MOPED often prevent the true Pareto fron
from being achieved, particularly when the front is broad an
the individuals of the population are spread over diffeseis,
which are far apart from each other in the feasible spaces Thi
circumstance has suggested to couple MOPED with another E/
which has better convergence properties. To this aim, tfie-In
tionary Differential Evolution Algorithm (IDEA) [10] hasden
selected. IDEA was first developed for the design optimarati
of interplanetary trajectories, and it is an improved wvatriaf
the differential evolution (DE) algorithms [10]. The IDEA-a
gorithm is based on a synergic hybridization of a standard DE
algorithm and the strategy behind the monotonic basin hmppi
(MBH) [18]. The resulting algorithm was shown to outperform
both standard DE optimizers and the MBH algorithm in the so-
lution of challanging space trajectory design problemetifeng
a multiple funnel-like structure. In this paper, a modifiegision
of IDEA has been used to move the individuals of the approxi-
mate Pareto front obtained woth MOPED closer to the truetfron

The main features of the original IDEA algorithm are re-
ported in [10]. The IDEA algorithm works as follows: a DE
process is performed several times and each process isestopf

of the search space. The role of the crossover and mutationwhen the population contracts below a predefined threst#dgld.

operators is replaced by sampling of this probabilistic edod
There exist similar other evolutionary methods that usefbee-
mentioned strategy, and they are called Estimation of Distr
tion Algorithms (EDA's) [13]. MOPED is a multi-objective ep
timization EDA for continuous problems that uses the Parzen
method [14] to build a probabilistic representation of Paus®o-
lutions, and can handle multivariate dependencies of thie va
ables [8,9]. This EDA optimizer implements the general layo
and the selection techniques of the Non-dominated Sortiexg G
netic Algorithm Il (NSGA-II) [15], but traditional cross@r and

mutation search approaches of NSGA-II are replaced by sam-

the end of each DE step, a local search is performed in order 1
get closer to the local optimum. In the case of non-triviadu
tions, there is a high likelihood of converging to local o,
the combined DE/local search is usually iterated sevaraddi
performing either a local or a global restart on the basisprkea
defined scheduling.

The design optimization presented in this study is con-
strained. Therefore, the DE step must be modified so that th
fitness assessment of the individuals during the DE prodsss a
take into account the constraints. The constraint handénb-
nigue used herein is one of the approaches that can be adopt

pling of the Parzen model. NSGA-II was chosen as the base for in evolutionary computing, and is indeed the approach used b

MOPED mainly due to its simplicity, and also for the excetlen
results obtained for many diverse optimization probleniagis
this approach [16, 17]

MOPED. In the unconstraint DE algorithm [19], and also in the
unconstrained IDEA algorithm [10], each parent solutiocam-
pared with its offspring, and the solution with a better eabf

Copyright © 2012 by ASME



the objective function is passed to the next generatiorhdmcon-
strained case, on the other hand, when parents and offspaieg
compared, the solutions are fist evaluated in terms of cainstr
compatibilitycp. Its definition is: defined as:

cpx) = 3 5% ©)
=1

wherex is the array of design variables,is the number of con-
straints, and the constraint factyris:

sj(x) = max{gj(x), 0} (7

The constraint factor equals 0 when the constraint is sadisfind

is strictly positive when the constraint is violated. Théuson
with the better values afpis then passed to the next generation.
When thecp of parent and offspring are the same, the selection
is performed based on the basis of the objective function.

In the current implementation, MOPED and IDEA are
weakly coupled: the two algorithms are used one after theroth
When MOPED reaches the maximum number of generations,
clustered sub-populations of its final population are phdee
IDEA as initial solutions. Since IDEA is a single objectivptn
mizer, this algorithm moves the individuals of a sub-popata
of the MOPED front closer to the true Pareto front by considger
a weighted sum of the original objective functions. The lasy
hybrid optimizer blends the exploratory capabilities of RIED
(global exploration) and the favourable convergence dtaris-
tics of IDEA (exploitation of local information).

PROBLEM DEFINITION

In order to thoroughly analyze both the algorithmic and en-
gineering aspects of the proposed robust design optiraizayis-
tem, the optimization problem has been formulated and golve
in several different manners. On the algorithmic side, tine a
of such analyses has been that of cross-comparing the camput
tional cost of the MC and URQ methods for uncertainty propaga
tion in the context of robust design optimization based ariev
tionary methods, and also to assess strengths and wea&nésse
both approaches in the context of global search methodshé®n t
engineering side, two different definitions of the probleavé
been considered. One assumes that the shape of all the [Hades
identical, namely that identical manufacturing and asdgrab
rors affect all blades of the rotor. The other assumes tledt s
rors are not identical for all blades, though they are dbsdrby
the same probability distribution functions. The latteersario
is representative of rotors the blades of which are manurfadt
and attached to the rotor separately. Therefore, 4 diffeypti-
mization exercises have been performed, all Wigh= 3. The

first optimization problem uses URQ sampling, assumes ligat t
stochastic shape of all 3 blades is iiiidentical, and is detbdy
URQZ1; the second problem uses MC sampling, it also assume
that the stochastic shape of all 3 blades is iiiidenticadl isrde-
noted by MC1;; the third problem, called URQS3, uses URQ sam
pling, but adopts a different set of geometric errors fohezthe

3 blades of a given turbine; the fourth problem, MC3, alsgusio

a different set of geometric errors for each of the 3 blades of
given turbine, but it uses MC sampling for calculating thisust
functionals.

In all 4 cases, The considered turbine type is regulated-by rc
tational speed variations before the rated wind speed chesh
and is stall-regulated above the rated wind speed. The blad
feature a single airfoil geometry, namely the NACA4413aiyf
and the root and tip radii of the blades are fixed t8[rh] and
6.3[m| respectively. The nominal blade shape is parametrize
by means of 6 design parameters defining the radial idsimibbut
of the chordc, 6 design parameters defining the radial distri-
bution of the twist anglét, and 1 design parameter defining
the blade pitch angl@po. The rotational spee@ associated
with each wind speed is also a design variable. Since we cor
sidered 7 wind speeds, given by =5+1i, i =17, we have
7 additional design variables, which are the 7 rotationaksis
Q, associated with the 6 wind speelds the total number of
design parameters is thus 20. The rated wind speed of the co
sidered turbine type typically varies between 10 anah/2 Al-
though power extraction also takes place beyond this rafge ¢
rated speed, the analyses were limited to winds not excgedir
12 [m/g. This was done because reliable airfoil force data were
unavailable for the stalled regimes, and XFOIL cannot beluse
for stalled flows. This omission, however, is not believeditp
nificantly affect the validity of the proposed robust desap:
timization technology for wind turbines, the presentatand
application of which are impotant elements of this study.e Th
design variableg; to xg are the chord at the radial positions
(re rp2r3ra rs rg) = (1.3 2 3 4 5 63)[m], and the design
variables; to x;2 are the twisBr at the same 6 radial positions.
The shape of the blade is obtained by using the MATIRB
shape-preserving piecewise cubic interpolation fungbiohi p
over the 6 radial stations. The varialzlg is the blade pitch angle
Bp,0, and the variables;4 to xpo are the 7 vallllues of2 associ-
ated with the 7 considered valuesldbf The bounds of all design
variables are given in Table 1.

The parameters to be set for the MOPED algorithm are: siz
of the populatiorNi,g, number of constraint classeg, fithess
parameten s and sampling proportiong. The values of these
variables for the problem at hand &gy = 100,Ngenmax= 100,

Ng =3;0f =0.5;1 = 1.

Since the adopted algorithms are designed to minimize ob
jective functions, all 4 problems are set so as to have twembj
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X1 | €[0.10,0.90] [m] c(ry)

X2 | €[0.10,0.90 [m| c(r2)

X3 | €[0.10,0.90] [m] c(r3)

Xa | €[0.10,0.60] [m] c(ra)

xs |€[0.10,0.50] [m] c(rs)

X |€[0.10,0.40] [m] c(rg)

X7 € (0,50 [deg 6r(r1)

xg | €[0,50] [deg Br(r2)

X9 € 10,40 [deg Br(r3)
x10 | €10,20 [deg 6r(r1)
X11 € 10,10] [deg Br(rs)
X12 € 10,10] [deg Br(re)
x13 | €[—10,10] [ded Bp.0

X14-20| € [50,150 [rpm] | Q;(U;), i=1,7

Table 1. RANGE OF DESIGN VARIABLES.

tives to minimize:

Fi=—Ere
8
F =0 ®)

whereErg ando%E are respectively the mean value and the vari-
ance of the annual energy productibi in kW h The considered
constraints and the associated elements of constraimtréaate
respectively:

Ci:F<-4e4
Co: Fo < 267 9)
Cs: ma>(EBM) <12

01: (F1+4ed)/4e4

92 (Fo—2e7)/2e7 (10)

O3: (ma>(EBM) — 12)/12

where the subscrid8M denotes the bending moment ([kNm])
at the blade root, and the symhbggy denotes the expectation
of BM for each of the 7 wind speeds.

distributions are centered at the nominal value of eachnpeter
and have a standard deviation correspondingcto fbr lengths
and< 2.5degfor angles. Since the optimizers use a nondimen-
sionalized search space, with variables varying in thenmte

€ [0,1], the vector of nondimensional standard deviations of
each blade, obtained by dividing each standard deviation b
the dimensional range of the corresponding variableglis=
[0.0125 00125 Q0125 002 0025 Q0333 005 005 005

0.1 0.2 0.2 0.1]. Inthe URQ1 and MC1 cases, the 3 blades are
taken to be identical and therefore the 13 geometric paemet
define the whole rotor. As the deterministic sampling of URQ
requires 2+ 1 evaluations [7], each robust analysis requires 27
computations of the full annual energy production, name9 1
runs of the BEM code. By contrast, 10000 samples 70000
BEM runs) are performed in the MC1 case.

The implementation of problems URQ3 and MC3 is slightly
more involved and its solution is computationally more expe
sive. The nominal geometry is still described by 13 paramete
but the sampling to statistically characterize objectivections
and constraints is done considering that the geometricrunce
tainty affects each blade independently. Denofifidhe vector
of mean values for the case in which all three blades areim#nt
the mean and standard deviation vectors for the case in whic
each blade is affected by independent uncertainty are cespe
tively u3= [ul ul pl]" ando3=[ol ol al]. Each step of the
URQS3 optimization requires ¥3x2+ 1 = 79 evaluations of the
annual energy production (483 BEM runs) whereas a samplin
of 10000 individuals has been used for the MC3 case. In princi
ple, each step of the MC3 optimization should have used atarg
sampling base than the MC1 problem. This has not been dor
to maintain the overall cost of the MC3 analysis within adfor
able bounds and, as shown in the next section, the use of 100(
samples for each MC3 robust evaluation yields results wéthfa
ficient level of convergence for optimization applications

The parameters of the DE in IDEA are set as follows:
weighting facto= = 0.9, crossover probabilit¢R= 0.9, strat-
egy “DE /best/1/bin". The IDEA algorithm stops when the pop-
ulation contracts to 25% of maximum expansion during the evo
lution [10].

The considered wind speeds and the corresponding relativ
cumulative times used to compute the annual energy pramucti
are depicted in Figure 2, This annual wind speed curve corre
sponds to a Weibull distribution with scale parametgr= 7
and shape parameter= 2.

In order to assess the impact of considering the manufac
turing and assembly tolerances in the design optimizatiate-
terministic optimizationj.e. one not including and uncertainty,
has also been carried out. The aforementioned assessment
then made by comparing the aerodynamic characteristictend t
shape of the turbine obtained by using either the detertitrts

The parameters defining the blade geometry are assumed tothe robust optimization approach. The deterministic ojaém

be affected by normally distributed uncertainty. These $3&n

tion problem has a single-objective function, namiely- —TE,
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Figure 2. WIND SPEEDS AND CUMULATIVE TIMING USED TO COM-
PUTE THE ANNUAL ENERGY PRODUCTION.

and the constraints are:

Ci:F <—4e4

Cz: maxBM) <12 (11)

The process has been carried out using the IDEA optimizet; st
ing with a random population of 20 individuals.

ASSESSMENT OF SAMPLING TECHNIQUES

Before running the 4 optimizations, the URQ and MC sam-
pling techniques have been assessed and compared botm ter
of accuracy and computational requirements. Given a ndmina
blade geometry and the error distributions previously dieed,
mean and standard deviationE andBM have been computed
for 2 scenariosa) all blades of the rotor are identical because
identical manufacturing and assembly errors affect altésa
andb) the blades of the rotor are affected by different errors,
though such errors belong to the same probability distiobut
function. The results of this analysis are summarized ine&d
and 3, which provide mean and variance values respectivhdy.
symbolo? In the third column of Table 3 indicates the vari-

maxigm
ance of the functionahaxkgy.

A good agreement between the URQ and MC results is ob-

served. With either definition of the errors affecting thene-

Sampling techniqueEre [kWH | maxEgm) [KNmj
URQ1 61136.9 5.2652
MC1 61191.7 5.2683
URQ3 61136.9 5.2652
MC3 61198.9 5.2693

Table 2. COMPARISON OF URQ AND MC SAMPLING TECHNIQUES:
MEAN VALUES.

Sampling techniquio? g (kW] | 07,ys,,, [KNNT]
URQ1 26022484.6 0.3721
MC1 24922486.4  0.3498
URQ3 8674161.5 0.3721
MC3 8237023.3 0.3563

Table 3. COMPARISON OF URQ AND MC SAMPLING TECHNIQUES:
VARIANCE VALUES.

blades of a turbine is 3 times that obtained when the geotrestri
rors of the 3 blades are different. The relationship betweean
and variance using either definition of the geometry errars ¢
also be obtained analytically by using the analytical egpiens
of the URQ mean and variance reported in [5].

Figures 3, and 4 show the convergence of the MC samplings
and their curves highlight that 10000 samplings are suffidie
obtain good convergence levels, which are adequate fouevol
tionary optimization processes.

RESULTS
Comparative analysis of robust optimizations
The hybrid optimizer is implemented in MATLAB and,
for the cases with MC sampling, it is also partially paradieti on
a linux cluster, in order to accelerate the optimisatiorcpeses.
Based on 10000 robust function evaluations (100 nomina
turbine geometries for each of the 100 populations), MOPEL
gives the estimation of the 4 Pareto fronts of problems URQ1

try of the blades, the mean of the annual energy computed with MC1, URQ3 and MC3 reported in Figures 5 and 6. Figure 5

URQ and MC differs by less thanT%. The variance of this
functional computed with URQ and MC differs at most b§%.

reports the 2 clouds labeled URQ1 and MC1 corresponding ti
the final population determined by MOPED for problems URQ1

A good agreement between the URQ and MC approaches is alsoand MC1, along with two additional points labeled indURQ an
obtained for the bending moment: the difference of mean and indMC1, which are the solutions of the IDEA refinement forpro

variance values are at mosk@% and 64% respectively. Note
that using either definition of the geometric errors doedead

to differences ofl E, but leads to differences of its variance. The
variance ofT E when the geometric errors are common to all 3

7

cesses URQ1 and MC1, respectively. For both cases, the-refin
ment process in performed as follows: given the final pojrat
of the MOPED process, a sub-population containing the solut
maximizing the annual energy production is selected and use
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Figure 4. CONVERGENCE OF MC1 AND MC3 SAMPLINGS: VARI-
ANCE OF ANNUAL ENERGY PRODUCTION AND ROOT BENDING
MOMENT.

as stating point of the IDEA process. The aim of this latter is
to maximize the annual energy production, subject to the con
straints (9).

Figure 6 reports the solutions determined by MOPED for
the problems URQ3 and MC3 along with two additional points
labeled indURQ3 and indMC3, corresponding to solutionsef t
IDEA refinement for process URQ3 and MC3, respectively.

The comparison of the results obtained with URQ sampling
(URQ1 and URQ3) and with MC sampling (MC1 and MC3)
highlights that the sampling technique influences the cenve
gence of the optimizers. More precisely, the two sampling ap

8
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Figure 5. OPTIMIZATION RESULTS: PROBLEMS URQ1 AND MC1.
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Figure 6. OPTIMIZATION RESULTS: PROBLEMS URQ3 AND MC3.

proaches have different sensitivity to the irregularitedsthe
BEM solver: when a nominal shape has in its neighborhooc
some blade geometries for which the BEM code does not cor
verge, the MC approach has many more chances than the UR
approach to sample one or more of these "defective” solstion
this circumstance, since an undetermined solution carenaséd

to compute the statistical characteristics of the perforceathe
nominal geometry itself is considered "defective” and idis-
carded (the corresponding solution vector is ranked paanrty,
when compared to other solutions it has no chance to influenc
the rest of the evolution). When the URQ approach is used
the MOPED solver is able to quickly converge in regions of the
search space corresponding to higher amounts of energygrod

Copyright © 2012 by ASME



tion, while the high level of noise of the MC sampling slows
down MOPED, which at the end of the allowed generations is
still far from the pareto front.

The position of the refined IDEA solutions in the objec-
tive function space relative to the MOPED Pareto fronts $ielp
to highlight the difficulties of having MOPED converge to the
true Pareto front. The convergence of all multi-objectivele-
tionary algorithms to the true Pareto front of non triviabpblems
is always an asymptotic process [20], where the final resiaits
pend on the search capabilities (global exploration anal loan-
vergence) of the solver and the time (usually measured iargen
tions) that the solver is allowed to run. If the solution o firob-
lem is nota priori known, a measure of convergence can only be
given by comparing the obtained solution to the best knowe on
As discussed in the section describing the MOPED and IDEA al-
gorithms, IDEA has higher convergence capabilities antbjis
only when contraction of the population below a certain shre
old demonstrates the convergence to the optimum, which is a
better approximation of a point of the Pareto front. Ther, th
distance between the Pareto approximation obtained by MIDPE
and the refinement obtained by IDEA gives a quality measure
of the MOPED result. The solution indURQ1 (refinement of a
sub-group of the final URQ1 population) is relatively close t
the best solution obtained by the multi-objective solveodoic-
ing nearly 5500 kWh more, with unchanged variance (Figure 5)
The better convergence properties of IDEA allow one to ekplo
the search space at the limit of the allowed constraint omidve-
imum bending moment. Almost the same happens for the refine-
ment of an URQ3 sub-population, with solution indURQ3 pro-
ducing nearly 4800 kWh more than the best solution (in terfns o
F1) of the front, but in this case better performance in terms of
energy production are also coupled to a reduction of thewmas
(Figure 6). Both refinement processes required a few hundred
evaluations of the statistical characteristics: 1200 Mot JRQ1,
and 1600 for indURQ3. In the MC1 case, the IDEA refinement
leading to the indMC1 solution is actually able to greatly im
prove the performance obtained by MOPED, both reducing the
variance of the solution and increasing the energy prododty
17700 kWh, but it also required nearly 3600 evaluations ef th
statistical characteristics, just for the DE part of IDEAe€Tsolu-
tion indMC1 tends to indURQ1, but the difficulties encourtkr
by the MC sampling do not allow one to reach the same front.
The comparison between optimization process adopting URQ3
and MC3 samplings highlight an analogous behaviour of the al
gorithms. The IDEA refinement pushes indMC3 solution toward
the indURQ3 one, but due to the noise of the objective and con-
straint functions, and the initial difference of the stagtpoints,
indMC3 stops to a local optimum.

The differences between the indURQ1 and indMC1 solu-
tions in terms of maximum power and annual energy as a func-
tion of the wind speed are shown in Figures 7 and 8 respegtivel
The statistical characteristics (mean and standard dew)adre

evaluated by URQ sampling. The curves of Fig. 8 confirm what
already shown in Fig. 5, namely that the refined solution i@dM

is as robust as the indURQ1 solution (the 2 standard dewumtio
are similar), but provides lower nominal and mean annual en
ergy. Note also that the energy peaks at [t/ in Fig.8 are
due to the fact that the product of power and number of hour
at which this power level is achieved is maximum at this wind
speed. The position of this maximum depends, other thamthe t
bine characteristics, also on the wind distribution at #lected
site. The top and bottom plots of Fig. 9 report the chorhd
the pitch anglé@,d radial profiles associated with the indURQ1,
indMC1, indURQ3 and indMC3 solutions. The indMC1 nom-
inal blade has twist angles that are higher than those ofrthe i
dURQ1 nominal blade over most of the blade height. This lead
to lower relative angles of attack and thus lift coefficienitshe
blade indMC1 over the blade indURQ1. Additionally, the- Q
curve of the indMCL1 turbine (not reported for brevity) is-sig
nificantly lower than that associated with the turbine indIR
These 2 occurrences explain the lower energy productioheof t
indMC1 turbine. On the other hand, the geometric differance
between blades indURQ1 and indURQS3 are substantially emall
than those between blades indMC1 and indURQ1. The chor
profiles obtained with the MC-based optimizations presant m
imal chord values in the root area, and structural loadisgds
make unlikely their practical use. On the other hand, the URC
blades have a smooth chord distribution. The pitch ngle pro
files of the URQ blades are smooth but slightly unconvential
Nevertheless, it is expected that their shape would not poge
significant problem neither for structural integrity nor foanu-
facturing processes.
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Figure 7. POWER CURVES FOR SOLUTIONS INDURQ1 AND IN-
DMC1 (BOTH SOLUTIONS ARE EVALUATED BY URQ SAMPLING).
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model, which do not necessarily correspond to actual cherac

18 istics of the real system. In other words, the fact that thé/BE
analysis of certain rotor geometries fails, does not necégim-
1.6 ply that such configurations would deliver no power at alleTh
_ MC-based optimization, however, ignores completely sueh g
§ 1.4; ometries, discarding significant portions of the desigrcepgae-
X, -_.indURQ1 sumably due to much smaller regions where the rotor geometr
3 1.2r ) nom is truly unacceptable from an aerodynamic viewpoint.
E _mdURleean Another important issue addressed by these analyses is tl
F 1 ...indMC1nom 1 modeling decision as whether to assume in the uncertaiofy-pr
__indMC1 agation process that all blades are affected by identicahgéry
0.8 mean 1 errors or such errors randomly vary among the 3 blades. As dis
cussed in the previous section, considering the same erelift
0.6 : : errors for all the blades appears not to affect the estinudtese.
6 ! 9 10 1 12 Conversely, variance of the energy yoedg is higher when
U [m/s] ersely, . gy 'y E g :
considering identical geometry errors for all 3 blades.sTim-
Figure 8. ANNUAL ENERGY VYIELD: INDURQlyom AND plies that the robust design optimization based on thisaptan
INDURQLyEaN ARE NOMINAL AND MEAN ENERGY YIELD is more pessimistic, and therefore, overly conservatinegsthe
OF SOLUTION INDURQ1; INDMC1nom AND INDMC1yean ARE assumption of different manufacturing and assembly talsza
NOMINAL AND MEAN ENERGY YIELD OF SOLUTION INDMC1. for the 3 blades is closer to reality. The effect of using eith

modeling of the geometry errors can be visualized by compari
the Pareto fronts reported in Fig. 5 and 5. The rangéef as-

1 sociated with the Pareto front of URQ1 and URQS3 are about the
; same, but the range of ¢ of the URQ1 front is larger than that
E.05 of the URQ3 front. Indeed, the constraint of is active in the
© former case.
0 : : : ] ] It should be noted that in the absence of active constraint:
1 2 3 4 5 6 7 despite the fact that the Pareto fronts corresponding heeér-
—indURQ1 ror model would have the same rangeEfz and a different
00 indURQ3) | 2 i i i
N In Q range ofosg, the turbine geometries correspondingerror to a
S 100 S S S S L indMC1 | | point of either front having the santerg would be the same.
ke ---indMC3 This is because the two two-objective optimizations wotdudeh
o= O R e ) a common objective functiofErg) and would have the other
-10 ‘ ‘ ‘ ‘ ‘ objective functiono2¢ which in one case is three times that of
1 2 3 . [Arfn] 5 6 7 the other. Such a scaling would not affect the set of design va
ables corresponding to a solution of eother problem havieg t
Figure 9. NOMINAL RADIAL PROFILES OF CHORD AND SECTION sameEre. On t_he other hand, the presence of active constra?nt
PITCH OF THE BLADES ASSOCIATED WITH SOLUTIONS INDURQ1, would break this Correspondence, and therefore the us¢hafrei
INDURQ3, INDMC1, and INDMC3. error model would lead to different turbine geometriesmiMihe

sameErg This highlights the importance of selecting the most
realistic model to account for the effects of manudactuend
The use of the MC sampling forces the optimizer to act in  assembly tolerances.
a conservative way with respect to the considered model. The
stochastic properties of the solution of the problem inqgM@al-
uated by means of URQ sampling are very close to those ob- Comparative analysis of robust and deterministic opti-
tained with the MC sampling. By contrast, the expectatioth an mizations
the variance of the inqURQ1 and indURQ3 solutions cannot be The optimal shape obtained by using the determinisitc opti
evaluated by means of the MC sampling. Making conservative mization problem yields a nominal annual energy produabibn
analyses is often an important requirement in engineeippdj-a 100200 [kW H, with expectatiorErg = 93600 KW H. Here this
cations. In this case, however, the conservative estinudttse turbine, called indDET1, is compared to that associatel thi¢
MC-based optimization arise from the fact that the MC santpli indURQ1 solution, which has a nominal annual energy produc
suffers from an excessive sensitivity to irregularitieshe BEM tion of 99400kWH andErg = 94700 [kWH. As expected the
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variance of the indDET1 turbingZg = 2.95e7 [kKWI?] (com-
puted with the URQ1 approach) is significantly higher tham th
indURQ1 turbineo? ¢ = 1.06e7 [KW IF]. These numbers imply
that the standard deviation ©f of the turbine indURQ1 is more
than 40 % lower than that of the turbine indDET1.

The performance of the 2 turbines is compared in greater
detail in Figures 10 and 11, which provide respectively the
power and the annual energy of the 2 configurations. Here,
indURQLyomandindU RQLeandenote respectively nominal and
mean values of the turbine indURQ1, whildDET1nom and
indDE T1nean denote nominal and mean values for the turbine
indDET1. The statistical characteristics are evaluatethbgns
of the URQ1 sampling. As expected, the indDET1 turbine has
a slightly better nominal performance, but slightly worseam
values. More importantly, however, the power and annual en-
ergy variaces of the turbine indDet1 are significantly highan
those associated with the turbine indURQ1. This confirms tha
the use of robust design optimization yields turbine rotangch
outperform, in a statistical sense, those obtained by ubkimge-
terministic design approach, which neglects the geometrars
associated with manufacturing and assembly tolerances.
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Figure 10. COMPARISON OF ROBUST AND DETERMINISTIC DE-

SIGN: POWER CURVES.

The radial profiles of the chordand the pitch anglé, of
the 2 turbines are reported in the top and bottom plots of Elg.
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Figure 11. COMPARISON OF ROBUST AND DETERMINISTIC DE-

SIGN: ANNUAL ENERGY YIELD.

tive atU =12 [m/g], reducing the rotational speed with respect
to the case in which this constraint had remained inactive. T
provide one more element to the comparative analysis of the
designs, the nominal and stochastic performance of theETdD
rotor geometry using the rotational speeds of the indURQ1 ge
ometry have been computed. The nominal and mean annual e
ergy of this hybrid turbine configuration are 946N H and
Ete = 91000 [kWH respectively. More importantly, however,
theo%¢ value of the hybrid turbine is.9567 [KW I¥] is substan-
tially higher that the value associated with the turbindd&d 1.
The performance of this hybrid configuration is poorer tHzat t

of both the indDET1 and indURQ1 configurations, as expected
The main conclusion of these analyses appears to be thghdesi
robustnesd (e. minimal variations of the annual energy yield due
to manufacturing and assembly tolerances) can be achigved |
adopting lower rotational speeds and compensating thecredu
tion of power due to lower circumferential velocities byftihg
upwards the radial profile of the lift coefficient. In turnjgttan

be achieved by increasing the angle of attack. This is theorea
why the indURQ1 blade has lower valuesBpf lower values of
the pitch angle lead to higher valuesaf An additional con-
tribution to the increment ofi also comes from the reduced cir-
cumferential speed, which results in higher values of thaive
wind anglep. The radial profile of the mean value @falong the
blade forU = 12 m/sis reported in Figures 14, which confirms

One sees that chords of the 2 turbines are very close, whereaghat the angle of attack along the indURQ1 blade is highat tha

the picth angle distributions differ by up to aboutd®g The
optimal rotational speed of the 2 turbines for all considevind
speeds is reported in Fig. 13, which highlights that theiheb
indURQ1 has loweQ’s than the turbine indDET1. The slope
discontinuity of the curve indDET1 & = 11 [m/q] is due to

the fact that the constraint on the bending moment becomes ac

11

that of the indDET1 blade due to the 2 effects highlightedvabo
Note also that the standard deviationoofor a given radial po-
sition is about the same for the 2 turbines. This is due todhe f
that equal errors of the section pitch angle lead to equédtuans

of a. The higher values of the mean radial profileno6f the in-
dURQL1 blade result in significantly higher values of the mear
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profile of the lift coefficienC, as shown in Fig. 15, which also
refers toU = 12 m/s. Itis important to note that the standard
deviation ofC_ of the blade indURQL is lower than that of the
blade indDET1 along the entire blade height. This is becthese
levels ofa along the outboard part of the indURQ1 blade are in a
region where the slope of tlie— C_ curve starts to decrease with
respect to the linear part corresponding to lower anglettala
Hence the variation of the lift coefficient caused by a given-v
ation ofa is smaller for the indURQL1 blade. The lower values
of the standard deviation @f are the main reason for the lower
standard deviation of the annual energy production of tHare
indURQ1 with respect to that of the turbine indDET1.

—indURQ1
---indDET1

6, [deg]

4
r [m]

Figure 12. NOMINAL RADIAL PROFILES OF CHORD OF THE
BLADES ASSOCIATED WITH SOLUTIONS INDURQ1, AND INDDET1.

CONCLUSIONS

A hybrid evolutionary algorithm has been applied to the ro-
bust design of a wind turbine rotor to maximise its annuatgye
production and minimize the variations of this parametes tiu
manufacturing and assembly tolerances of the blades. Tde-un

tainty propagation based on MC sampling has been compared to

the propagation based on the faster deterministic URQ sagipl
The URQ approach better filters irregularities of the desjgace
due to possible modeling limitations of the BEM model, and th
feature, along with its high computational speed makesiieal
tool for robust design optimization based on evolutiondgpa
rithms.

The considered robust design optimization of a wind turbine
rotor leads to a Pareto front of mean and standard deviafion o
annual energy yield. The comparative analysis of the terde
sign obtained without the inclusion of any uncertainty, émel
turbine design obtained considering manufacturing andrass
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Figure 13. COMPARISON OF ROBUST AND DETERMINISTIC DE-
SIGN: OPTIMAL ROTATIONAL SPEEDS ASSOCIATED WITH CONSID-
ERED WIND SPEED.
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Figure 14. COMPARISON OF ROBUST AND DETERMINSITIC DE-
SIGN: DISTRIBUTION OF 0.

bly tolerances and having the same mean annual energy produ
tion of the deterministic optimum highlights that the stardi
deviation of the energy production of the robust optimabie
design is more than 40 % lower than the value of this variable
associated with the deterministically optimal turbine eTower
sensitivity to geometry errors is achieved by adopting iovee
tational speeds and increasing the loading of the outbcaitap
the blade, moving to the range of higher values of the angle o
attack where the slope of tle— C,_ cirve is lower than for lower
values ofa.
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