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ABSTRACT
This study focuses on the robust aerodynamic design of the

bladed rotor of small horizontal axis wind turbines. The opti-
mization process also considers the effects of manufacturing and
assembly tolerances on the yearly energy production. The aero-
dynamic performance of the rotors so designed has reduced sen-
sitivity to manufacturing and assembly errors. The geometric
uncertainty affecting the rotor shape is represented by normal
distributions of the pitch angle of the blades, and the twistangle
and chord of their airfoils. The aerodynamic module is a blade-
element momentum theory code. Both Monte Carlo-based and
the Univariate Reduced Quadrature technique, a novel determin-
istic uncertainty propagation method, are used. The performance
of the two approaches is assessed both interms of accuracy and
computational speed. The adopted optimization method is based
on a hybrid multi-objective evolutionary strategy. The presented
results highlight that the sensitivity of the yearly production to
geometric uncertainties can be reduced by reducing the rota-
tional speed and increasing the aerodynamic blade loads.

NOMENCLATURE
BM Root bending moment.
EBM Mean ofBM for given wind speed.
ETE Mean of annual energy yield.
Nb Number of blades of the rotor.
R Tip radius.

∗Address all correspondence to this author.

TE Annual energy yield.
U Freestream wind velocity.
Urel Relative wind velocity.
a Axial induction factor.
a′ Circumferential induction factor.
r Radius along the blade.
x Array of design variables.
α Angle of attack.
θp Section pitch angle.
θp,0 Blade pitch angle.
θT Blade twist angle.
λ Tip speed ratio.
σ Rotor solidity.
σ2 Variance.
φ Angle of relative wind.
Ω Rotational speed.

INTRODUCTION
The present availability of large computational resources,

and recent progress of design and optimization technologies offer
the means to automate significant portions of product design. In
the past few years, several studies on the use of diverse optimiza-
tion techniques for the preliminary design of wind turbineshave
appeared. Some of these applications have focused on the opti-
mization of existing blades by means of local search approaches,
utilizing low- to medium-fidelity models. Due to the advances
in global stochastic search methods, it has also been possible to
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work on design projects, in which no initial shape is considered
and a global search is performed in a broad search space without
the use of a starting point [1].

To accelerate the design process and achieve a sound design,
two main factors must be considered:a) high-fidelity models
should be introduced into the design process as early as possible,
preferably since the preliminary design phase;b) the impact of
shape and operational uncertainties on the performance should
be assessed and minimized. The use of high-fidelity models and
uncertainty quantification tools increases the computational cost
of the design exercise, and this motivates the efforts aiming to de-
velop new approaches allowing one to efficiently integrate high-
fidelity and uncertainty propagation methods in the design sys-
tem.

The uncertainty management and quantification requires the
identification of suitable techniques, which can reliably predict
and propagate uncertainty limiting the computational burden of
the design task. The conceptually simplest way to propagate
uncertainty through a general function is to sample the space
of the independent variables by means of Monte Carlo (MC)
methods [2]. Unfortunately, MC methods are computationally
expensive, requiring a large number of function evaluations to
converge. For this reason, researchers have been developing al-
ternative, computationally more affordable approaches touncer-
tainty propagation. The main difficulty is to reduce computa-
tional costs with respect to MC methods while maintaining an
acceptable accuracy of the probabilistic parameters of theoutput
values. The techniques that have been proposed to accomplish
these two conflicting requirements range from the Taylor-based
method of moments [3,4] to quadrature methods [5] and polyno-
mial chaos expansion [6]. Among the proposed alternatives,an
appealing one is the Univariate Reduced Quadrature (URQ) ap-
proach [7], which has been successfully used for the robust shape
optimization of a transonic airfoil by means of a local gradient
based search. The use of this deterministic sampling technique
in robust design optimization based on global search methods is
appealing and promising, but so far the URQ uncertainty propa-
gation technique has not been used in global design optimization.

This paper focuses on the aerodynamic design of the bladed
rotor of small horizontal axis wind turbines (HAWT’s) with rated
power of up to approximately 60 kW. More specifically, it ana-
lyzes the effects of manufacturing and assembly toleranceson
the power and energy production of the turbine, and it includes
such effects in the design optimization process. This procedure
yields a robust aerodynamic design, namely a turbine rotor,the
aerodynamic performance of which has minimal sensitivity to
manufacturing and assembly errors. The main input parameters
are the yearly wind distribution at the selected site, represented
by a Weibull distribution, and the rotor swept area. The objective
function is the yearly mechanical energy of the turbine. Thegeo-
metric uncertainty affecting the rotor geometry is represented by
normal distributions of the pitch angle of the blades, and the twist

and chord of the airfoils making up the blades. The standard de-
viations associated with such distributions are representative of
those observed in the manufacturing process of the turbine class
considered in this paper. Moreover, since the rotor blades have
the same nominal shape, two cases have been considered, namely
one in which the stochastic shape of all blades is the same, and
the other in which the stochastic shape of each blade varies inde-
pendently from that of the other blades. The aerodynamic mod-
ule is a blade-element momentum (BEM) theory code developed
at the School of Engineering of Glasgow University.

Both the MC-based and the deterministic (URQ) uncertainty
propagation methods have been tested to investigate how these
sampling techniques behave when coupled with a global evolu-
tionary search approach, and determine the best compromisebe-
tween computational speed and accuracy for the level of standard
deviations typical of this problem. The adopted optimization
method is based on an evolutionary strategy (ES), which com-
bines the exploratory capabilities of a multi-objective Estimation
of Distibution algorithm [8, 9] with the exploitation capabilities
of a differential evolution (DE)-based approach [10]. Given that
the optimization is carried out taking into account the uncertainty
of the design variables, the robust optimization consists of maxi-
mizing the mean of the yearly energy production and minimizing
its standard deviation, leading to a multi-objective optimization
problem.

The paper first describes the aerodynamic model, the main
features of the two adopted optimizers and the strategy adopted
for coupling all modules. The definition of the considered opti-
mization problems is then provided, followed by a section pre-
senting the validation of the selected methods of uncertainty
propagation. This is followed by a section reporting the results
of the robust design optimizations, and another presentingthe
comparative analysis of the turbine obtained without considering
any geometry errors and one obtained by solving a robust design
optimization problem. The concluding section summarizes the
presented work and proposes further extensions of this study.

AERODYNAMIC MODEL
The aerodynamic module is WINSTRIP, a blade-element

momentum (BEM) theory FORTRAN code [11]. This low-
fidelity analysis tool is based on the radial subdivision of the rotor
blades into sections or strips of radial widthdr and mean radius
r. For each strip, the flow data and the aerodynamic forces are
determined by using two conditions. One condition is obtained
by equating the thrust acting on the considered rotor ring deter-
mined by using the one-dimensional conservation of the linear
momentum applied to the considered annular streamtube to that
associated with the lift and drag forces acting on the segment
(strip) of the blades intercepted by the annular streamtube. The
other condition is obtained by equating the torque acting onthe
considered rotor ring determined by using the one-dimensional
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conservation of the angular momentum applied to the considered
annular streamtube to that produced by the lift and drag forces
acting on the segment (strip) of the blades intercepted by the
annular streamtube. The main geometric and aerodynamic pa-
rameters of a generic strip are depicted in Fig. 1, in which the
sectional lift and drag forces are denoted bydFL and dFD re-
spectively. Denoting bydT the thrust acting on a rotor ring, the
elemental thrust coefficient isdCT = dT/(0.5ρU2A), whereR is
the tip radius,A = πR2 is the rotor surface, andρ andU denote
the freestream density and velocity respectively. The elemental
thrust coefficient computed using the conservation of linear mo-
mentum is:

dCT = 8a(1−a)r̃dr̃ (1)

wherea is the axial induction factor, and the superscript ˜ de-
notes nondimensionalization byR. The elemental thrust coeffi-
cient computed using lift and drag theory is:

dCT =
σλ2

cos2 φ
(1+a′)2(CL cosφ+CD sinφ)r̃2dr̃ (2)

whereσ = (Nbc/(πR) is the rotor solidity,Nb is the number of
blades of the rotor,c is the chord of the strip,λ = ΩR/U , Ω is
the angular speed of the rotor,a′ is the circumferential induc-
tion factor andCL, andCD are the lift and drag coefficients re-
spectively. The symbolφ denotes the angle of the relative wind
velocity vectorUrel with respect to the rotor plane. Its expres-
sion is φ = arctan[(1−a)/((1+a′)λr̃)], whereasUrel = [(1−
a)2U2 + (1+ a′)2(Ωr)2]1/2. Equating expressions (1) amd (2)
yields one equation in the two unknownsa anda′. This is be-
cause the coefficientsCL and CD can be obtained from CFD
codes or experimental data as functions of the Reynolds num-
ber, which depends linearly onUrel and the relative angle of at-
tack α, which is the angle between the airfoil chord andUrel .
As shown if Fig. 1,α = φ− θp, whereθp of the section pitch
angle. This parameter depends only on geometric features, and
its expression isθp = θp,0 + θT , whereθp,0 is the pitch angle of
the blade andθT is the section twist angle. Denoting bydQ the
torque acting on a rotor ring, the elemental torque coefficient is
dCQ = dQ/(0.5ρU2AR). The elemental torque coefficient com-
puted using the conservation of angular momentum is:

dCQ = 8a′(1−a)λr̃3dr̃ (3)

The elemental torque coefficient computed using lift and drag
theory is:

dQT =
σλ2

cos2 φ
(1+a′)2(CL sinφ−CD cosφ)r̃3dr̃ (4)

Figure 1. GEOMETRIC AND AERODYNAMIC PARAMETERS OF A

GENERIC BLADE STRIP.

Equating expressions (3) amd (4) yields another equation inthe
two unknownsa anda′. The nonlinear system resulting by equat-
ing the two expressions ofdCT anddCQ for each strip is solved
with Newton’s method. TheCL andCD data are stored in tables as
functions of the Reynolds number andα, and such data are com-
puted in a pre-processing step using the MIT aerodynamic solver
XFOIL. Tip and hub vortex losses are also included by means of
the Prandtl tip loss model [11]. Once the flow state of each strip
is known, the elemental powerdPcan be computed. WINSTRIP
uses a nondimensional power coefficientdCP = dP/(0.5ρU3A),
the expression of which is:

dQT =
σλ3

cos2 φ
(1+a′)2(CL sinφ−CD cosφ)r̃3dr̃ (5)

The mechanical power corresponding to a particular value ofU
is determined by integrating Eqn. (5) from the blade root to its
tip.

The set of input variables of the BEM code is made up of:
U , Ω, Nb and the blade geometry. This latter is defined by root
and tip radius, radial distributions of chordc and section twist
θT , and blade pitch The set of output variables includes: me-
chanical power, rotor thrust, bending moment at the blade root,
and radial distributions of all kinematic data (e.g.a, a′, α) and
aerodynamic forces. The WINSTRIP code has been validated by
comparing its output with that of the National Renewable Energy
BEM cosa WTPERF [12] using several realistic blade geometry.
In all cases, the root-mean-square of the difference of all output
radial distributions of kinematic and aerodynamic data is within
machine error, which demonstrate the correctness of WINSTRIP.
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HYBRID EVOLUTIONARY SOLVER
Evolutionary Algorithms (EA’s) solve optimization prob-

lems by making a generation of individuals (turbines, in this
study) evolve subject to selection and search operators. This it-
erative process eventually leads to a population containing the
fittest possible individuals (best turbine designs), or individuals
who are anyway significantly fitter than those of the startingpop-
ulation. The role of the selection operators is to identify the fittest
or more promising individuals of the current population, whereas
search operators such as crossover and mutationattemptto gen-
erate better offsprings starting from suitably selected individuals
of the current generation. Each individual is defined by genes,
which correspond to design variables in design optimization. The
solution of the optimization problems reported in this study is
based on a hybrid approach, which makes a combined use of two
different EA’s: the Multi-Objective Parzen-based Estimation of
Distribution (MOPED) [8] and the Inflationary DifferentialEvo-
lution Algorithm (IDEA) [10].

The MOPED algorithm belongs to a subset of EA’s, and
it was developed to circumvent certain algorithmic problems of
conventional EA’s. Standard EA’s can be ineffective when the
problem at hand features a high level of interaction among the de-
sign variables. This is mainly due to the fact that the recombina-
tion operators are likely to disrupt promising sub-structures that
may lead to optimal solutions. Additionally, the use the crossover
and mutatioan operators may result in slow convergence to the
solution of the optimization, that is it may require a large num-
ber of generations to obtain very fit individuals. MOPED was
developed to circumvent shortfalls of this kind. Its use of statis-
tical tools enables it to preserve promising sub-structures asso-
ciated with variable interaction from one generation to another
(automatic linkage learning). Such statistical tools alsoreplace
the crossover and mutation operators of standard EA’s, and they
allow a faster convergence of MOPED with respect to the latter
class of optimizers. Starting from the individuals of the current
population, MOPED builds an approximate probabilistic model
of the search space. The role of the crossover and mutation
operators is replaced by sampling of this probabilistic model.
There exist similar other evolutionary methods that use theafore-
mentioned strategy, and they are called Estimation of Distribu-
tion Algorithms (EDA’s) [13]. MOPED is a multi-objective op-
timization EDA for continuous problems that uses the Parzen
method [14] to build a probabilistic representation of Pareto so-
lutions, and can handle multivariate dependencies of the vari-
ables [8, 9]. This EDA optimizer implements the general layout
and the selection techniques of the Non-dominated Sorting Ge-
netic Algorithm II (NSGA-II) [15], but traditional crossover and
mutation search approaches of NSGA-II are replaced by sam-
pling of the Parzen model. NSGA-II was chosen as the base for
MOPED mainly due to its simplicity, and also for the excellent
results obtained for many diverse optimization problems using
this approach [16,17]

The Parzen method utilizes a non-parametric approach to
kernel density estimation, and results in an estimator thatcon-
verges everywhere to the true Probability Density Function
(PDF). Additionally, when the true PDF is uniformly continu-
ous, the Parzen estimator can also be made uniformly consistent.
The Parzen method allocatesNind identical kernels (whereNind

is the number of individuals of the current population), each one
centered on a different element of the sample. Then,a probabilis-
tic model of the promising search space portion is built on the
basis of the statistical data provided byNind individuals through
their kernels, andτENind new individuals (τE ≥ 1) are sampled.
The variance of each kernel depends on(i) the location of the
individuals in the search space and(ii) the fitness value of these
individuals, and its construction leads to values that favour sam-
pling in the neighbourhood of the most promising solutions.

The features of MOPED often prevent the true Pareto front
from being achieved, particularly when the front is broad and
the individuals of the population are spread over differentareas,
which are far apart from each other in the feasible space. This
circumstance has suggested to couple MOPED with another EA,
which has better convergence properties. To this aim, the Infla-
tionary Differential Evolution Algorithm (IDEA) [10] has been
selected. IDEA was first developed for the design optimization
of interplanetary trajectories, and it is an improved variant of
the differential evolution (DE) algorithms [10]. The IDEA al-
gorithm is based on a synergic hybridization of a standard DE
algorithm and the strategy behind the monotonic basin hopping
(MBH) [18]. The resulting algorithm was shown to outperform
both standard DE optimizers and the MBH algorithm in the so-
lution of challanging space trajectory design problems, featuring
a multiple funnel-like structure. In this paper, a modified version
of IDEA has been used to move the individuals of the approxi-
mate Pareto front obtained woth MOPED closer to the true front.

The main features of the original IDEA algorithm are re-
ported in [10]. The IDEA algorithm works as follows: a DE
process is performed several times and each process is stopped
when the population contracts below a predefined threshold.At
the end of each DE step, a local search is performed in order to
get closer to the local optimum. In the case of non-trivial func-
tions, there is a high likelihood of converging to local optima,
the combined DE/local search is usually iterated several times,
performing either a local or a global restart on the basis of apre-
defined scheduling.

The design optimization presented in this study is con-
strained. Therefore, the DE step must be modified so that the
fitness assessment of the individuals during the DE process also
take into account the constraints. The constraint handlingtech-
nique used herein is one of the approaches that can be adopted
in evolutionary computing, and is indeed the approach used by
MOPED. In the unconstraint DE algorithm [19], and also in the
unconstrained IDEA algorithm [10], each parent solution iscom-
pared with its offspring, and the solution with a better value of
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the objective function is passed to the next generation. In the con-
strained case, on the other hand, when parents and offsprings are
compared, the solutions are fist evaluated in terms of constraint
compatibilitycp. Its definition is: defined as:

cp(xxx) =
m

∑
j=1

sj (xxx) (6)

wherex is the array of design variables,m is the number of con-
straints, and the constraint factord j is:

sj(xxx) = max{g j(xxx),0} (7)

The constraint factor equals 0 when the constraint is satisfied and
is strictly positive when the constraint is violated. The solution
with the better values ofcp is then passed to the next generation.
When thecp of parent and offspring are the same, the selection
is performed based on the basis of the objective function.

In the current implementation, MOPED and IDEA are
weakly coupled: the two algorithms are used one after the other.
When MOPED reaches the maximum number of generations,
clustered sub-populations of its final population are passed to
IDEA as initial solutions. Since IDEA is a single objective opti-
mizer, this algorithm moves the individuals of a sub-population
of the MOPED front closer to the true Pareto front by considering
a weighted sum of the original objective functions. The resulting
hybrid optimizer blends the exploratory capabilities of MOPED
(global exploration) and the favourable convergence characteris-
tics of IDEA (exploitation of local information).

PROBLEM DEFINITION
In order to thoroughly analyze both the algorithmic and en-

gineering aspects of the proposed robust design optimization sys-
tem, the optimization problem has been formulated and solved
in several different manners. On the algorithmic side, the aim
of such analyses has been that of cross-comparing the computa-
tional cost of the MC and URQ methods for uncertainty propaga-
tion in the context of robust design optimization based on evolu-
tionary methods, and also to assess strengths and weaknesses of
both approaches in the context of global search methods. On the
engineering side, two different definitions of the problem have
been considered. One assumes that the shape of all the bladesis
identical, namely that identical manufacturing and assembly er-
rors affect all blades of the rotor. The other assumes that such er-
rors are not identical for all blades, though they are described by
the same probability distribution functions. The latter scenario
is representative of rotors the blades of which are manufactured
and attached to the rotor separately. Therefore, 4 different opti-
mization exercises have been performed, all withNb = 3. The

first optimization problem uses URQ sampling, assumes that the
stochastic shape of all 3 blades is iiiidentical, and is denoted by
URQ1; the second problem uses MC sampling, it also assumes
that the stochastic shape of all 3 blades is iiiidentical, and is de-
noted by MC1;; the third problem, called URQ3, uses URQ sam-
pling, but adopts a different set of geometric errors for each of the
3 blades of a given turbine; the fourth problem, MC3, also adopts
a different set of geometric errors for each of the 3 blades ofa
given turbine, but it uses MC sampling for calculating the robust
functionals.

In all 4 cases, The considered turbine type is regulated by ro-
tational speed variations before the rated wind speed is reached,
and is stall-regulated above the rated wind speed. The blades
feature a single airfoil geometry, namely the NACA4413 airfoil,
and the root and tip radii of the blades are fixed to 1.3[m] and
6.3[m] respectively. The nominal blade shape is parametrized
by means of 6 design parameters defining the radial idstribution
of the chordc, 6 design parameters defining the radial distri-
bution of the twist angleθT , and 1 design parameter defining
the blade pitch angleθp,0. The rotational speedΩ associated
with each wind speed is also a design variable. Since we con-
sidered 7 wind speeds, given byUi = 5+ i, i = 1,7, we have
7 additional design variables, which are the 7 rotational speeds
Ω1 associated with the 6 wind speedsUi . the total number of
design parameters is thus 20. The rated wind speed of the con-
sidered turbine type typically varies between 10 and 12m/s. Al-
though power extraction also takes place beyond this range of
rated speed, the analyses were limited to winds not exceeding
12 [m/s]. This was done because reliable airfoil force data were
unavailable for the stalled regimes, and XFOIL cannot be used
for stalled flows. This omission, however, is not believed tosig-
nificantly affect the validity of the proposed robust designop-
timization technology for wind turbines, the presentationand
application of which are impotant elements of this study. The
design variablesx1 to x6 are the chordc at the radial positions
(r1 r2 r3 r4 r5 r6) = (1.3 2 3 4 5 6.3)[m], and the design
variablesx7 to x12 are the twistθT at the same 6 radial positions.
The shape of the blade is obtained by using the MATLABR©

shape-preserving piecewise cubic interpolation functionpchip
over the 6 radial stations. The variablex13 is the blade pitch angle
θp,0, and the variablesx14 to x20 are the 7 vallllues ofΩ associ-
ated with the 7 considered values ofU . The bounds of all design
variables are given in Table 1.

The parameters to be set for the MOPED algorithm are: size
of the populationNind, number of constraint classesNcl , fitness
parameterα f and sampling proportionτE. The values of these
variables for the problem at hand areNind = 100,NgenMAX= 100,
Ncl = 3; α f = 0.5; τE = 1.

Since the adopted algorithms are designed to minimize ob-
jective functions, all 4 problems are set so as to have two objec-
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x1 ∈ [0.10,0.90] [m] c(r1)

x2 ∈ [0.10,0.90] [m] c(r2)

x3 ∈ [0.10,0.90] [m] c(r3)

x4 ∈ [0.10,0.60] [m] c(r4)

x5 ∈ [0.10,0.50] [m] c(r5)

x6 ∈ [0.10,0.40] [m] c(r6)

x7 ∈ [0,50] [deg] θT(r1)

x8 ∈ [0,50] [deg] θT(r2)

x9 ∈ [0,40] [deg] θT(r3)

x10 ∈ [0,20] [deg] θT(r1)

x11 ∈ [0,10] [deg] θT(r5)

x12 ∈ [0,10] [deg] θT(r6)

x13 ∈ [−10,10] [deg] θp,0

x14−20 ∈ [50,150] [rpm] Ωi(Ui), i = 1,7

Table 1. RANGE OF DESIGN VARIABLES.

tives to minimize:

F1 = −ETE

F2 = σ2
TE

(8)

whereETE andσ2
TE are respectively the mean value and the vari-

ance of the annual energy productionTE in kWh. The considered
constraints and the associated elements of constraint factors are
respectively:

C1 : F1 ≤−4e4
C2 : F2 ≤ 2e7
C3 : max(EBM) ≤ 12

(9)

g1 : (F1 +4e4)/4e4
g2 : (F2−2e7)/2e7
g3 : (max(EBM)−12)/12

(10)

where the subscriptBM denotes the bending moment ([kNm])
at the blade root, and the symbolEBM denotes the expectation
of BM for each of the 7 wind speeds.

The parameters defining the blade geometry are assumed to
be affected by normally distributed uncertainty. These Gaussian

distributions are centered at the nominal value of each parameter
and have a standard deviation corresponding to 1cm for lengths
and≤ 2.5degfor angles. Since the optimizers use a nondimen-
sionalized search space, with variables varying in the interval
∈ [0,1], the vector of nondimensional standard deviations of
each blade, obtained by dividing each standard deviation by
the dimensional range of the corresponding variable, isσ1 =
[0.0125 0.0125 0.0125 0.02 0.025 0.0333 0.05 0.05 0.05
0.1 0.2 0.2 0.1]. In the URQ1 and MC1 cases, the 3 blades are
taken to be identical and therefore the 13 geometric parameters
define the whole rotor. As the deterministic sampling of URQ
requires 2n+ 1 evaluations [7], each robust analysis requires 27
computations of the full annual energy production, namely 189
runs of the BEM code. By contrast, 10000 samples (i.e. 70000
BEM runs) are performed in the MC1 case.

The implementation of problems URQ3 and MC3 is slightly
more involved and its solution is computationally more expen-
sive. The nominal geometry is still described by 13 parameters,
but the sampling to statistically characterize objective functions
and constraints is done considering that the geometric uncer-
tainty affects each blade independently. Denotingµ1 the vector
of mean values for the case in which all three blades are identical,
the mean and standard deviation vectors for the case in which
each blade is affected by independent uncertainty are respec-
tively µ3 = [µ1 µ1 µ1]T andσ3 = [σ1 σ1 σ1]. Each step of the
URQ3 optimization requires 13x3x2+1= 79 evaluations of the
annual energy production (483 BEM runs) whereas a sampling
of 10000 individuals has been used for the MC3 case. In princi-
ple, each step of the MC3 optimization should have used a larger
sampling base than the MC1 problem. This has not been done
to maintain the overall cost of the MC3 analysis within afford-
able bounds and, as shown in the next section, the use of 10000
samples for each MC3 robust evaluation yields results with asuf-
ficient level of convergence for optimization applications.

The parameters of the DE in IDEA are set as follows:
weighting factorF = 0.9, crossover probabilityCR= 0.9, strat-
egy “DE/best/1/bin”. The IDEA algorithm stops when the pop-
ulation contracts to 25% of maximum expansion during the evo-
lution [10].

The considered wind speeds and the corresponding relative
cumulative times used to compute the annual energy production
are depicted in Figure 2, This annual wind speed curve corre-
sponds to a Weibull distribution with scale parameterλW = 7
and shape parameterk = 2.

In order to assess the impact of considering the manufac-
turing and assembly tolerances in the design optimization,a de-
terministic optimization,i.e. one not including and uncertainty,
has also been carried out. The aforementioned assessment is
then made by comparing the aerodynamic characteristic and the
shape of the turbine obtained by using either the deterministic or
the robust optimization approach. The deterministic optimiza-
tion problem has a single-objective function, namelyF = −TE,
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Figure 2. WIND SPEEDS AND CUMULATIVE TIMING USED TO COM-

PUTE THE ANNUAL ENERGY PRODUCTION.

and the constraints are:

C1 : F ≤−4e4
C2 : max(BM) ≤ 12

(11)

The process has been carried out using the IDEA optimizer, start-
ing with a random population of 20 individuals.

ASSESSMENT OF SAMPLING TECHNIQUES
Before running the 4 optimizations, the URQ and MC sam-

pling techniques have been assessed and compared both in terms
of accuracy and computational requirements. Given a nominal
blade geometry and the error distributions previously described,
mean and standard deviation ofTE andBM have been computed
for 2 scenarios:a) all blades of the rotor are identical because
identical manufacturing and assembly errors affect all blades,
and b) the blades of the rotor are affected by different errors,
though such errors belong to the same probability distribution
function. The results of this analysis are summarized in Tables 2
and 3, which provide mean and variance values respectively.The
symbolσ2

maxEBM
In the third column of Table 3 indicates the vari-

ance of the functionalmaxEBM.
A good agreement between the URQ and MC results is ob-

served. With either definition of the errors affecting the beome-
try of the blades, the mean of the annual energy computed with
URQ and MC differs by less than 0.1%. The variance of this
functional computed with URQ and MC differs at most by 5.3%.
A good agreement between the URQ and MC approaches is also
obtained for the bending moment: the difference of mean and
variance values are at most 0.24% and 6.4% respectively. Note
that using either definition of the geometric errors does notlead
to differences ofTE, but leads to differences of its variance. The
variance ofTE when the geometric errors are common to all 3

Sampling techniqueETE [kWh] max(EBM) [kNm]

URQ1 61136.9 5.2652

MC1 61191.7 5.2683

URQ3 61136.9 5.2652

MC3 61198.9 5.2693

Table 2. COMPARISON OF URQ AND MC SAMPLING TECHNIQUES:

MEAN VALUES.

Sampling techniqueσ2
TE [kWh2] σ2

maxEBM
[kNm2]

URQ1 26022484.6 0.3721

MC1 24922486.4 0.3498

URQ3 8674161.5 0.3721

MC3 8237023.3 0.3563

Table 3. COMPARISON OF URQ AND MC SAMPLING TECHNIQUES:

VARIANCE VALUES.

blades of a turbine is 3 times that obtained when the geometric er-
rors of the 3 blades are different. The relationship betweenmean
and variance using either definition of the geometry errors can
also be obtained analytically by using the analytical expressions
of the URQ mean and variance reported in [5].

Figures 3, and 4 show the convergence of the MC samplings,
and their curves highlight that 10000 samplings are sufficient to
obtain good convergence levels, which are adequate for evolu-
tionary optimization processes.

RESULTS
Comparative analysis of robust optimizations

The hybrid optimizer is implemented in MATLABR© and,
for the cases with MC sampling, it is also partially parallelized on
a linux cluster, in order to accelerate the optimisation processes.

Based on 10000 robust function evaluations (100 nominal
turbine geometries for each of the 100 populations), MOPED
gives the estimation of the 4 Pareto fronts of problems URQ1,
MC1, URQ3 and MC3 reported in Figures 5 and 6. Figure 5
reports the 2 clouds labeled URQ1 and MC1 corresponding to
the final population determined by MOPED for problems URQ1
and MC1, along with two additional points labeled indURQ1 and
indMC1, which are the solutions of the IDEA refinement for pro-
cesses URQ1 and MC1, respectively. For both cases, the refine-
ment process in performed as follows: given the final population
of the MOPED process, a sub-population containing the solution
maximizing the annual energy production is selected and used

7 Copyright c© 2012 by ASME
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as stating point of the IDEA process. The aim of this latter is
to maximize the annual energy production, subject to the con-
straints (9).

Figure 6 reports the solutions determined by MOPED for
the problems URQ3 and MC3 along with two additional points
labeled indURQ3 and indMC3, corresponding to solutions of the
IDEA refinement for process URQ3 and MC3, respectively.

The comparison of the results obtained with URQ sampling
(URQ1 and URQ3) and with MC sampling (MC1 and MC3)
highlights that the sampling technique influences the conver-
gence of the optimizers. More precisely, the two sampling ap-
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proaches have different sensitivity to the irregularitiesof the
BEM solver: when a nominal shape has in its neighborhood
some blade geometries for which the BEM code does not con-
verge, the MC approach has many more chances than the URQ
approach to sample one or more of these ”defective” solutions; in
this circumstance, since an undetermined solution cannot be used
to compute the statistical characteristics of the performance, the
nominal geometry itself is considered ”defective” and it isdis-
carded (the corresponding solution vector is ranked poorlyand,
when compared to other solutions it has no chance to influence
the rest of the evolution). When the URQ approach is used,
the MOPED solver is able to quickly converge in regions of the
search space corresponding to higher amounts of energy produc-
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tion, while the high level of noise of the MC sampling slows
down MOPED, which at the end of the allowed generations is
still far from the pareto front.

The position of the refined IDEA solutions in the objec-
tive function space relative to the MOPED Pareto fronts helps
to highlight the difficulties of having MOPED converge to the
true Pareto front. The convergence of all multi-objective evolu-
tionary algorithms to the true Pareto front of non trivial problems
is always an asymptotic process [20], where the final resultsde-
pend on the search capabilities (global exploration and local con-
vergence) of the solver and the time (usually measured in genera-
tions) that the solver is allowed to run. If the solution of the prob-
lem is nota priori known, a measure of convergence can only be
given by comparing the obtained solution to the best known one.
As discussed in the section describing the MOPED and IDEA al-
gorithms, IDEA has higher convergence capabilities and it stops
only when contraction of the population below a certain thresh-
old demonstrates the convergence to the optimum, which is a
better approximation of a point of the Pareto front. Then, the
distance between the Pareto approximation obtained by MOPED
and the refinement obtained by IDEA gives a quality measure
of the MOPED result. The solution indURQ1 (refinement of a
sub-group of the final URQ1 population) is relatively close to
the best solution obtained by the multi-objective solver, produc-
ing nearly 5500 kWh more, with unchanged variance (Figure 5).
The better convergence properties of IDEA allow one to exploit
the search space at the limit of the allowed constraint on themax-
imum bending moment. Almost the same happens for the refine-
ment of an URQ3 sub-population, with solution indURQ3 pro-
ducing nearly 4800 kWh more than the best solution (in terms of
F1) of the front, but in this case better performance in terms of
energy production are also coupled to a reduction of the variance
(Figure 6). Both refinement processes required a few hundred
evaluations of the statistical characteristics: 1200 for indURQ1,
and 1600 for indURQ3. In the MC1 case, the IDEA refinement
leading to the indMC1 solution is actually able to greatly im-
prove the performance obtained by MOPED, both reducing the
variance of the solution and increasing the energy production by
17700 kWh, but it also required nearly 3600 evaluations of the
statistical characteristics, just for the DE part of IDEA. The solu-
tion indMC1 tends to indURQ1, but the difficulties encountered
by the MC sampling do not allow one to reach the same front.
The comparison between optimization process adopting URQ3
and MC3 samplings highlight an analogous behaviour of the al-
gorithms. The IDEA refinement pushes indMC3 solution toward
the indURQ3 one, but due to the noise of the objective and con-
straint functions, and the initial difference of the starting points,
indMC3 stops to a local optimum.

The differences between the indURQ1 and indMC1 solu-
tions in terms of maximum power and annual energy as a func-
tion of the wind speed are shown in Figures 7 and 8 respectively.
The statistical characteristics (mean and standard deviation) are

evaluated by URQ sampling. The curves of Fig. 8 confirm what
already shown in Fig. 5, namely that the refined solution indMC1
is as robust as the indURQ1 solution (the 2 standard deviations
are similar), but provides lower nominal and mean annual en-
ergy. Note also that the energy peaks at 10[m/s] in Fig.8 are
due to the fact that the product of power and number of hours
at which this power level is achieved is maximum at this wind
speed. The position of this maximum depends, other than the tur-
bine characteristics, also on the wind distribution at the selected
site. The top and bottom plots of Fig. 9 report the chordc and
the pitch angleθpd radial profiles associated with the indURQ1,
indMC1, indURQ3 and indMC3 solutions. The indMC1 nom-
inal blade has twist angles that are higher than those of the in-
dURQ1 nominal blade over most of the blade height. This leads
to lower relative angles of attack and thus lift coefficientsof the
blade indMC1 over the blade indURQ1. Additionally, theU −Ω
curve of the indMC1 turbine (not reported for brevity) is sig-
nificantly lower than that associated with the turbine indURQ1.
These 2 occurrences explain the lower energy production of the
indMC1 turbine. On the other hand, the geometric differences
between blades indURQ1 and indURQ3 are substantially smaller
than those between blades indMC1 and indURQ1. The chord
profiles obtained with the MC-based optimizations present min-
imal chord values in the root area, and structural loading issues
make unlikely their practical use. On the other hand, the URQ
blades have a smooth chord distribution. The pitch ngle pro-
files of the URQ blades are smooth but slightly unconvential.
Nevertheless, it is expected that their shape would not poseany
significant problem neither for structural integrity nor for manu-
facturing processes.
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The use of the MC sampling forces the optimizer to act in
a conservative way with respect to the considered model. The
stochastic properties of the solution of the problem inqMC1eval-
uated by means of URQ sampling are very close to those ob-
tained with the MC sampling. By contrast, the expectation and
the variance of the inqURQ1 and indURQ3 solutions cannot be
evaluated by means of the MC sampling. Making conservative
analyses is often an important requirement in engineering appli-
cations. In this case, however, the conservative estimatesof the
MC-based optimization arise from the fact that the MC sampling
suffers from an excessive sensitivity to irregularities ofthe BEM

model, which do not necessarily correspond to actual character-
istics of the real system. In other words, the fact that the BEM
analysis of certain rotor geometries fails, does not necessarily im-
ply that such configurations would deliver no power at all. The
MC-based optimization, however, ignores completely such ge-
ometries, discarding significant portions of the design space pre-
sumably due to much smaller regions where the rotor geometry
is truly unacceptable from an aerodynamic viewpoint.

Another important issue addressed by these analyses is the
modeling decision as whether to assume in the uncertainty prop-
agation process that all blades are affected by identical geometry
errors or such errors randomly vary among the 3 blades. As dis-
cussed in the previous section, considering the same or different
errors for all the blades appears not to affect the estimatesof ETE.
Conversely, variance of the energy yoeldσ2

TE is higher when
considering identical geometry errors for all 3 blades. This im-
plies that the robust design optimization based on this assumption
is more pessimistic, and therefore, overly conservative, since the
assumption of different manufacturing and assembly tolerances
for the 3 blades is closer to reality. The effect of using either
modeling of the geometry errors can be visualized by comparing
the Pareto fronts reported in Fig. 5 and 5. The range ofETE as-
sociated with the Pareto front of URQ1 and URQ3 are about the
same, but the range ofσ2

TE of the URQ1 front is larger than that
of the URQ3 front. Indeed, the constraint onσ2

TE is active in the
former case.

It should be noted that in the absence of active constraints,
despite the fact that the Pareto fronts corresponding to either er-
ror model would have the same range ofETE and a different
range ofσ2

TE, the turbine geometries correspondingerror to a
point of either front having the sameETE would be the same.
This is because the two two-objective optimizations would have
a common objective function(ETE) and would have the other
objective functionσ2

TE which in one case is three times that of
the other. Such a scaling would not affect the set of design vari-
ables corresponding to a solution of eother problem having the
sameETE. On the other hand, the presence of active constraints
would break this correspondence, and therefore the use of either
error model would lead to different turbine geometries giving the
sameETE This highlights the importance of selecting the most
realistic model to account for the effects of manudacturingand
assembly tolerances.

Comparative analysis of robust and deterministic opti-
mizations

The optimal shape obtained by using the determinisitc opti-
mization problem yields a nominal annual energy productionof
100200 [kWh], with expectationETE = 93600 [kWh]. Here this
turbine, called indDET1, is compared to that associated with the
indURQ1 solution, which has a nominal annual energy produc-
tion of 99400[kWh] andETE = 94700 [kWh]. As expected the
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variance of the indDET1 turbineσ2
TE = 2.95e7 [kWh2] (com-

puted with the URQ1 approach) is significantly higher than the
indURQ1 turbineσ2

TE = 1.06e7 [kWh2]. These numbers imply
that the standard deviation ofTE of the turbine indURQ1 is more
than 40 % lower than that of the turbine indDET1.

The performance of the 2 turbines is compared in greater
detail in Figures 10 and 11, which provide respectively the
power and the annual energy of the 2 configurations. Here,
indURQ1nomandindURQ1meandenote respectively nominal and
mean values of the turbine indURQ1, whileindDET1nom and
indDET1mean denote nominal and mean values for the turbine
indDET1. The statistical characteristics are evaluated bymeans
of the URQ1 sampling. As expected, the indDET1 turbine has
a slightly better nominal performance, but slightly worse mean
values. More importantly, however, the power and annual en-
ergy variaces of the turbine indDet1 are significantly higher than
those associated with the turbine indURQ1. This confirms that
the use of robust design optimization yields turbine rotorswhich
outperform, in a statistical sense, those obtained by usingthe de-
terministic design approach, which neglects the geometricerrors
associated with manufacturing and assembly tolerances.
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SIGN: POWER CURVES.

The radial profiles of the chordc and the pitch angleθp of
the 2 turbines are reported in the top and bottom plots of Fig.12.
One sees that chords of the 2 turbines are very close, whereas
the picth angle distributions differ by up to about 3deg. The
optimal rotational speed of the 2 turbines for all considered wind
speeds is reported in Fig. 13, which highlights that the turbine
indURQ1 has lowerΩ’s than the turbine indDET1. The slope
discontinuity of the curve indDET1 atU = 11 [m/s] is due to
the fact that the constraint on the bending moment becomes ac-
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Figure 11. COMPARISON OF ROBUST AND DETERMINISTIC DE-

SIGN: ANNUAL ENERGY YIELD.

tive atU = 12 [m/s], reducing the rotational speed with respect
to the case in which this constraint had remained inactive. To
provide one more element to the comparative analysis of the 2
designs, the nominal and stochastic performance of the indDET1
rotor geometry using the rotational speeds of the indURQ1 ge-
ometry have been computed. The nominal and mean annual en-
ergy of this hybrid turbine configuration are 94600[kWh] and
ETE = 91000 [kWh] respectively. More importantly, however,
theσ2

TE value of the hybrid turbine is 2.95e7 [kWh2] is substan-
tially higher that the value associated with the turbine indDET1.
The performance of this hybrid configuration is poorer than that
of both the indDET1 and indURQ1 configurations, as expected.
The main conclusion of these analyses appears to be that design
robustness (i.e. minimal variations of the annual energy yield due
to manufacturing and assembly tolerances) can be achieved by
adopting lower rotational speeds and compensating the reduc-
tion of power due to lower circumferential velocities by shifting
upwards the radial profile of the lift coefficient. In turn, this can
be achieved by increasing the angle of attack. This is the reason
why the indURQ1 blade has lower values ofθp: lower values of
the pitch angle lead to higher values ofα. An additional con-
tribution to the increment ofα also comes from the reduced cir-
cumferential speed, which results in higher values of the relative
wind angleφ. The radial profile of the mean value ofα along the
blade forU = 12 m/s is reported in Figures 14, which confirms
that the angle of attack along the indURQ1 blade is higher than
that of the indDET1 blade due to the 2 effects highlighted above.
Note also that the standard deviation ofα for a given radial po-
sition is about the same for the 2 turbines. This is due to the fact
that equal errors of the section pitch angle lead to equal variations
of α. The higher values of the mean radial profile ofα of the in-
dURQ1 blade result in significantly higher values of the mean
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profile of the lift coefficientCL, as shown in Fig. 15, which also
refers toU = 12 m/s. It is important to note that the standard
deviation ofCL of the blade indURQ1 is lower than that of the
blade indDET1 along the entire blade height. This is becausethe
levels ofα along the outboard part of the indURQ1 blade are in a
region where the slope of theα−CL curve starts to decrease with
respect to the linear part corresponding to lower angles of attack.
Hence the variation of the lift coefficient caused by a given vari-
ation of α is smaller for the indURQ1 blade. The lower values
of the standard deviation ofCL are the main reason for the lower
standard deviation of the annual energy production of the turbine
indURQ1 with respect to that of the turbine indDET1.
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CONCLUSIONS
A hybrid evolutionary algorithm has been applied to the ro-

bust design of a wind turbine rotor to maximise its annual energy
production and minimize the variations of this parameter due to
manufacturing and assembly tolerances of the blades. The uncer-
tainty propagation based on MC sampling has been compared to
the propagation based on the faster deterministic URQ sampling.
The URQ approach better filters irregularities of the designspace
due to possible modeling limitations of the BEM model, and this
feature, along with its high computational speed makes it anideal
tool for robust design optimization based on evolutionary algo-
rithms.

The considered robust design optimization of a wind turbine
rotor leads to a Pareto front of mean and standard deviation of
annual energy yield. The comparative analysis of the turbine de-
sign obtained without the inclusion of any uncertainty, andthe
turbine design obtained considering manufacturing and assem-
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bly tolerances and having the same mean annual energy produc-
tion of the deterministic optimum highlights that the standard
deviation of the energy production of the robust optimal turbine
design is more than 40 % lower than the value of this variable
associated with the deterministically optimal turbine. The lower
sensitivity to geometry errors is achieved by adopting lower ro-
tational speeds and increasing the loading of the outboard part of
the blade, moving to the range of higher values of the angle of
attack where the slope of theα−CL cirve is lower than for lower
values ofα.
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