6 research outputs found

    Impact of day/night time land surface temperature in soil moisture disaggregation algorithms

    Get PDF
    Since its launch in 2009, the ESA’s SMOS mission is providing global soil moisture (SM) maps at ~40 km, using the first L-band microwave radiometer on space. Its spatial resolution meets the needs of global applications, but prevents the use of the data in regional or local applications, which require higher spatial resolutions (~1-10 km). SM disaggregation algorithms based generally on the land surface temperature (LST) and vegetation indices have been developed to bridge this gap. This study analyzes the SM-LST relationship at a variety of LST acquisition times and its influence on SM disaggregation algorithms. Two years of in situ and satellite data over the central part of the river Duero basin and the Iberian Peninsula are used. In situ results show a strong anticorrelation of SM to daily maximum LST (R˜-0.5 to -0.8). This is confirmed with SMOS SM and MODIS LST Terra/Aqua at day time-overpasses (R˜-0.4 to -0.7). Better statistics are obtained when using MODIS LST day (R˜0.55 to 0.85; ubRMSD˜0.04 to 0.06 m3 /m3 ) than LST night (R˜0.45 to 0.80; ubRMSD˜0.04 to 0.07 m3 /m3 ) in the SM disaggregation. An averaged ensemble of day and night MODIS LST Terra/Aqua disaggregated SM estimates also leads to robust statistics (R˜0.55 to 0.85; ubRMSD˜0.04 to 0.07 m3 /m3 ) with a coverage improvement of ~10-20 %.Peer ReviewedPostprint (published version

    Impact of day/night time land surface temperature in soil moisture disaggregation algorithms

    Get PDF
    18 pages, 5 figures, 1 tableSince its launch in 2009, the ESA’s SMOS mission is providing global soil moisture (SM) maps at ~40 km, using the first L-band microwave radiometer on space. Its spatial resolution meets the needs of global applications, but prevents the use of the data in regional or local applications, which require higher spatial resolutions (~1-10 km). SM disaggregation algorithms based generally on the land surface temperature (LST) and vegetation indices have been developed to bridge this gap. This study analyzes the SM-LST relationship at a variety of LST acquisition times and its influence on SM disaggregation algorithms. Two years of in situ and satellite data over the central part of the river Duero basin and the Iberian Peninsula are used. In situ results show a strong anticorrelation of SM to daily maximum LST (R≈0.5 to -0.8). This is confirmed with SMOS SM and MODIS LST Terra/Aqua at day time-overpasses (R≈-0.4 to -0.7). Better statistics are obtained when using MODIS LST day (R≈0.55 to 0.85; ubRMSD≈0.04 to 0.06 m/m) than LST night (R≈0.45 to 0.80; ubRMSD≈0.04 to 0.07 m/m) in the SM disaggregation. An averaged ensemble of day and night MODIS LST Terra/Aqua disaggregated SM estimates also leads to robust statistics (R≈0.55 to 0.85; ubRMSD≈0.04 to 0.07 m/m) with a coverage improvement of~10-20 %This work was supported by the Spanish Ministry of Economy and Competitiveness, through a Formación Personal Investigador (FPI) grant BES-2011-043322, the project PROMISES: ESP2015-67549-C3, ERDF (European Regional Development Fund) and the BBVA foundationPeer Reviewe

    A sensitivity study of land surface temperature to soil moisture using in-situ and spaceborne observations

    No full text
    Surface Soil Moisture (SSM) affects the soil surface energy balance and thus affects the Land Surface Temperature (LST), and viceversa. Currently, LST and SSM are remotely sensed using TIR sensors and L-band radiometers, respectively. The NASA's Terra/Aqua missions provide full coverage of LST measurements under clear sky conditions using MODIS. The ESA's SMOS mission is the first satellite providing frequent SSM and ocean salinity observations at global scale. In this paper, a sensitivity study about the relationship of the LST and SSM is performed using in-situ measurements from the REMEDHUS network and spaceborne observations from MODIS and SMOS. Results show that the correlation between SSM and LST (both in-situ and remotely sensed) is highest using the daily maximum LST. This could help improving SSM algorithms and deriving new SSM products at higher resolution from the synergy of microwave and TIR observations.Peer ReviewedPostprint (published version

    A sensitivity study of land surface temperature to soil moisture using in-situ and spaceborne observations

    No full text
    2014 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2014) & 35th Canadian Symposium on Remote Sensing, 13-18 july 2014, Québec City, Québec, Canada.-- 3 pages, 3 figuresSurface Soil Moisture (SSM) affects the soil surface energy balance and thus affects the Land Surface Temperature (LST), and viceversa. Currently, LST and SSM are remotely sensed using TIR sensors and L-band radiometers, respectively. The NASA's Terra/Aqua missions provide full coverage of LST measurements under clear sky conditions using MODIS. The ESA's SMOS mission is the first satellite providing frequent SSM and ocean salinity observations at global scale. In this paper, a sensitivity study about the relationship of the LST and SSM is performed using in-situ measurements from the REMEDHUS network and spaceborne observations from MODIS and SMOS. Results show that the correlation between SSM and LST (both in-situ and remotely sensed) is highest using the daily maximum LST. This could help improving SSM algorithms and deriving new SSM products at higher resolution from the synergy of microwave and TIR observationsPeer Reviewe

    A sensitivity study of land surface temperature to soil moisture using in-situ and spaceborne observations

    No full text

    A sensitivity study of land surface temperature to soil moisture using in-situ and spaceborne observations

    No full text
    Surface Soil Moisture (SSM) affects the soil surface energy balance and thus affects the Land Surface Temperature (LST), and viceversa. Currently, LST and SSM are remotely sensed using TIR sensors and L-band radiometers, respectively. The NASA's Terra/Aqua missions provide full coverage of LST measurements under clear sky conditions using MODIS. The ESA's SMOS mission is the first satellite providing frequent SSM and ocean salinity observations at global scale. In this paper, a sensitivity study about the relationship of the LST and SSM is performed using in-situ measurements from the REMEDHUS network and spaceborne observations from MODIS and SMOS. Results show that the correlation between SSM and LST (both in-situ and remotely sensed) is highest using the daily maximum LST. This could help improving SSM algorithms and deriving new SSM products at higher resolution from the synergy of microwave and TIR observations.Peer Reviewe
    corecore