2,277 research outputs found

    Deep learning with convolutional neural networks for decoding and visualization of EEG pathology

    Get PDF
    We apply convolutional neural networks (ConvNets) to the task of distinguishing pathological from normal EEG recordings in the Temple University Hospital EEG Abnormal Corpus. We use two basic, shallow and deep ConvNet architectures recently shown to decode task-related information from EEG at least as well as established algorithms designed for this purpose. In decoding EEG pathology, both ConvNets reached substantially better accuracies (about 6% better, ~85% vs. ~79%) than the only published result for this dataset, and were still better when using only 1 minute of each recording for training and only six seconds of each recording for testing. We used automated methods to optimize architectural hyperparameters and found intriguingly different ConvNet architectures, e.g., with max pooling as the only nonlinearity. Visualizations of the ConvNet decoding behavior showed that they used spectral power changes in the delta (0-4 Hz) and theta (4-8 Hz) frequency range, possibly alongside other features, consistent with expectations derived from spectral analysis of the EEG data and from the textual medical reports. Analysis of the textual medical reports also highlighted the potential for accuracy increases by integrating contextual information, such as the age of subjects. In summary, the ConvNets and visualization techniques used in this study constitute a next step towards clinically useful automated EEG diagnosis and establish a new baseline for future work on this topic.Comment: Published at IEEE SPMB 2017 https://www.ieeespmb.org/2017

    A Review on Machine Learning Techniques for Neurological Disorders Estimation by Analyzing EEG Waves

    Get PDF
    With the fast improvement of neuroimaging data acquisition strategies, there has been a significant growth in learning neurological disorders among data mining and machine learning communities. Neurological disorders are the ones that impact the central nervous system (including the human brain) and also include over 600 disorders ranging from brain aneurysm to epilepsy. Every year, based on World Health Organization (WHO), neurological disorders affect much more than one billion people worldwide and count for up to seven million deaths. Hence, useful investigation of neurological disorders is actually of great value. The vast majority of datasets useful for diagnosis of neurological disorders like electroencephalogram (EEG) are actually complicated and poses challenges that are many for data mining and machine learning algorithms due to their increased dimensionality, non stationarity, and non linearity. Hence, an better feature representation is actually key to an effective suite of data mining and machine learning algorithms in the examination of neurological disorders. With this exploration, we use a well defined EEG dataset to train as well as test out models. A preprocessing stage is actually used to extend, arrange and manipulate the framework of free data sets to the needs of ours for better training and tests results. Several techniques are used by us to enhance system accuracy. This particular paper concentrates on dealing with above pointed out difficulties and appropriately analyzes different EEG signals that would in turn help us to boost the procedure of feature extraction and enhance the accuracy in classification. Along with acknowledging above issues, this particular paper proposes a framework that would be useful in determining man stress level and also as a result, differentiate a stressed or normal person/subject

    MMF-DRL: Multimodal Fusion-Deep Reinforcement Learning Approach with Domain-Specific Features for Classifying Time Series Data

    Get PDF
    This research focuses on addressing two pertinent problems in machine learning (ML) which are (a) the supervised classification of time series and (b) the need for large amounts of labeled images for training supervised classifiers. The novel contributions are two-fold. The first problem of time series classification is addressed by proposing to transform time series into domain-specific 2D features such as scalograms and recurrence plot (RP) images. The second problem which is the need for large amounts of labeled image data, is tackled by proposing a new way of using a reinforcement learning (RL) technique as a supervised classifier by using multimodal (joint representation) scalograms and RP images. The motivation for using such domain-specific features is that they provide additional information to the ML models by capturing domain-specific features (patterns) and also help in taking advantage of state-of-the-art image classifiers for learning the patterns from these textured images. Thus, this research proposes a multimodal fusion (MMF) - deep reinforcement learning (DRL) approach as an alternative technique to traditional supervised image classifiers for the classification of time series. The proposed MMF-DRL approach produces improved accuracy over state-of-the-art supervised learning models while needing fewer training data. Results show the merit of using multiple modalities and RL in achieving improved performance than training on a single modality. Moreover, the proposed approach yields the highest accuracy of 90.20% and 89.63% respectively for two physiological time series datasets with fewer training data in contrast to the state-of-the-art supervised learning model ChronoNet which gave 87.62% and 88.02% accuracy respectively for the two datasets with more training data

    DEVELOPMENT OF AN ACCURATE SEIZURE DETECTION SYSTEM USING RANDOM FOREST CLASSIFIER WITH ICA BASED ARTIFACT REMOVAL ON EEG DATA

    Get PDF
    Abstract The creation of a reliable artifact removal and precise epileptic seizure identification system using Seina Scalp EEG data and cutting-edge machine learning techniques is presented in this paper. Random Forest classifier used for seizure classification, and independent component analysis (ICA) is used for artifact removal. Various artifacts, such as eye blinks, muscular activity, and environmental noise, are successfully recognized and removed from the EEG signals using ICA-based artifact removal, increasing the accuracy of the analysis that comes after. A precise distinction between seizure and non-seizure segments is made possible by the Random Forest Classifier, which was created expressly to capture the spatial and temporal patterns associated with epileptic seizures. Experimental evaluation of the Seina Scalp EEG Data demonstrates the excellent accuracy of our approach, achieving a 96% seizure identification rate A potential strategy for improving the accuracy and clinical utility of EEG-based epilepsy diagnosis is the merging of modern signal processing methods and deep learning algorithms
    • …
    corecore