12,061 research outputs found

    TOWARDS AN ONTOLOGICAL FRAMEWORK FOR KNOWLEDGE SHARING IN HEALTHCARE SYSTEMS

    Get PDF
    The ability to share EHR’s (Electronic Health Record) underlying knowledge both internally and externally within healthcare organizations has been accepted as a method to improve the quality and delivery of care but has also raised important questions related to legal and privacy issues. This paper aims to explore the critical factors that impact knowledge sharing in the French healthcare sector. Our main research focus is to answer the question of how to improve Knowledge sharing in the healthcare sector? An exploratory qualitative study was handled to investigate EHR’s underlying Knowledge sharing in French hospitals. Three major issues were identified, namely the need for: a common healthcare terminology, the interoperability among healthcare information systems and the patient\u27s informed consents before sharing his sensitive data. To fill this business gap, this paper proposes an ontological framework that extends the Systematized Nomenclature of Medicine Clinical Terms with privacy dimension, to secure access to sensitive patient’s data

    Privacy and Confidentiality in an e-Commerce World: Data Mining, Data Warehousing, Matching and Disclosure Limitation

    Full text link
    The growing expanse of e-commerce and the widespread availability of online databases raise many fears regarding loss of privacy and many statistical challenges. Even with encryption and other nominal forms of protection for individual databases, we still need to protect against the violation of privacy through linkages across multiple databases. These issues parallel those that have arisen and received some attention in the context of homeland security. Following the events of September 11, 2001, there has been heightened attention in the United States and elsewhere to the use of multiple government and private databases for the identification of possible perpetrators of future attacks, as well as an unprecedented expansion of federal government data mining activities, many involving databases containing personal information. We present an overview of some proposals that have surfaced for the search of multiple databases which supposedly do not compromise possible pledges of confidentiality to the individuals whose data are included. We also explore their link to the related literature on privacy-preserving data mining. In particular, we focus on the matching problem across databases and the concept of ``selective revelation'' and their confidentiality implications.Comment: Published at http://dx.doi.org/10.1214/088342306000000240 in the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Enhancing Random Forest Classification with NLP in DAMEH: A system for DAta Management in EHealth Domain

    Get PDF
    The use of pervasive IoT devices in Smart Cities, have increased the Volume of data produced in many and many field. Interesting and very useful applications grow up in number in E-health domain, where smart devices are used in order to manage huge amount of data, in highly distributed environments, in order to provide smart services able to collect data to fill medical records of patients. The problem here is to gather data, to produce records and to analyze medical records depending on their contents. Since data gathering involve very different devices (not only wearable medical sensors, but also environmental smart devices, like weather, pollution and other sensors) it is very difficult to classify data depending their contents, in order to enable better management of patients. Data from smart devices couple with medical records written in natural language: we describe here an architecture that is able to determine best features for classification, depending on existent medical records. The architecture is based on pre-filtering phase based on Natural Language Processing, that is able to enhance Machine learning classification based on Random Forests. We carried on experiments on about 5000 medical records from real (anonymized) case studies from various health-care organizations in Italy. We show accuracy of the presented approach in terms of Accuracy-Rejection curves

    A generic privacy ontology and its applications to different domains

    Get PDF
    Privacy is becoming increasingly important due to the advent of e-commerce, but is equally important in other application domains. Domain applications frequently require customers to divulge many personal details about themselves that must be protected carefully in accordance with privacy principles and regulations. Here, we define a privacy ontology to support the provision of privacy and help derive the level of privacy associated with transactions and applications. The privacy ontology provides a framework for developers and service providers to guide and benchmark their applications and systems with regards to the concepts of privacy and the levels and dimensions experienced. Furthermore, it supports users or data subjects with the ability to describe their own privacy requirements and measure them when dealing with other parties that process personal information. The ontology developed captures the knowledge of the domain of privacy and its quality aspects, dimensions and assessment criteria. It is composed of a core ontology, which we call generic privacy ontology and application domain specific extensions, which commit to some of application domain concepts, properties and relationships as well as all of the generic privacy ontology ones. This allows for an evaluation of privacy dimensions in different application domains and we present case studies for two different application domains, namely a restricted B2C e-commerce scenario as well as a restricted hospital scenario from the medical domain

    Building a semantically annotated corpus of clinical texts

    Get PDF
    In this paper, we describe the construction of a semantically annotated corpus of clinical texts for use in the development and evaluation of systems for automatically extracting clinically significant information from the textual component of patient records. The paper details the sampling of textual material from a collection of 20,000 cancer patient records, the development of a semantic annotation scheme, the annotation methodology, the distribution of annotations in the final corpus, and the use of the corpus for development of an adaptive information extraction system. The resulting corpus is the most richly semantically annotated resource for clinical text processing built to date, whose value has been demonstrated through its use in developing an effective information extraction system. The detailed presentation of our corpus construction and annotation methodology will be of value to others seeking to build high-quality semantically annotated corpora in biomedical domains

    A Survey on Understanding and Representing Privacy Requirements in the Internet-of-Things

    Get PDF
    People are interacting with online systems all the time. In order to use the services being provided, they give consent for their data to be collected. This approach requires too much human effort and is impractical for systems like Internet-of-Things (IoT) where human-device interactions can be large. Ideally, privacy assistants can help humans make privacy decisions while working in collaboration with them. In our work, we focus on the identification and representation of privacy requirements in IoT to help privacy assistants better understand their environment. In recent years, more focus has been on the technical aspects of privacy. However, the dynamic nature of privacy also requires a representation of social aspects (e.g., social trust). In this survey paper, we review the privacy requirements represented in existing IoT ontologies. We discuss how to extend these ontologies with new requirements to better capture privacy, and we introduce case studies to demonstrate the applicability of the novel requirements

    Network Security Monitoring in Environments where Digital and Physical Safety are Critical

    Get PDF

    Garantia de privacidade na exploração de bases de dados distribuídas

    Get PDF
    Anonymisation is currently one of the biggest challenges when sharing sensitive personal information. Its importance depends largely on the application domain, but when dealing with health information, this becomes a more serious issue. A simpler approach to avoid this disclosure is to ensure that all data that can be associated directly with an individual is removed from the original dataset. However, some studies have shown that simple anonymisation procedures can sometimes be reverted using specific patients’ characteristics, namely when the anonymisation is based on hidden key attributes. In this work, we propose a secure architecture to share information from distributed databases without compromising the subjects’ privacy. The work was initially focused on identifying techniques to link information between multiple data sources, in order to revert the anonymization procedures. In a second phase, we developed the methodology to perform queries over distributed databases was proposed. The architecture was validated using a standard data schema that is widely adopted in observational research studies.A garantia da anonimização de dados é atualmente um dos maiores desafios quando existe a necessidade de partilhar informações pessoais de carácter sensível. Apesar de ser um problema transversal a muitos domínios de aplicação, este torna-se mais crítico quando a anonimização envolve dados clinicos. Nestes casos, a abordagem mais comum para evitar a divulgação de dados, que possam ser associados diretamente a um indivíduo, consiste na remoção de atributos identificadores. No entanto, segundo a literatura, esta abordagem não oferece uma garantia total de anonimato, que pode ser quebrada através de ataques específicos que permitem a reidentificação dos sujeitos. Neste trabalho, é proposta uma arquitetura que permite partilhar dados armazenados em repositórios distribuídos, de forma segura e sem comprometer a privacidade. Numa primeira fase deste trabalho, foi feita uma análise de técnicas que permitam reverter os procedimentos de anonimização. Na fase seguinte, foi proposta uma metodologia que permite realizar pesquisas em bases de dados distribuídas, sem que o anonimato seja quebrado. Esta arquitetura foi validada sobre um esquema de base de dados relacional que é amplamente utilizado em estudos clínicos observacionais.Mestrado em Ciberseguranç
    corecore