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Abstract

The use of pervasive Internet of Things devices in Smart Cities has increased
the volume of data produced in many and many fields. Interesting and handy
applications have also grown in the eHealth domain, where smart devices are
employed to provide innovative services able to collect data and to fill medical
records of patients, so managing a considerable amount of data in a highly
distributed environment. One of the open problems for these services is the
gathering of data to produce records and to analyze medical records based
on their contents. Since data gathering in eHealth involves very di↵erent
and heterogeneous devices (not only wearable medical sensors but also en-
vironmental smart devices, like weather, pollution and other sensors), it is
challenging to classify data depending their contents to enable better man-
agement of the patients’ medical records. Indeed, medical records are written
in natural language, and the final objective is to populate them automatically
with data coming from smart devices. In this paper, we propose DAMEH,
a novel and highly scalable system able to determine the best features for
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classification, depending on existing medical records. DAMEH could be used
to provide innovative functionalities in the eHealth domain, as the sugges-
tion of therapies provided by others doctors based on the presence of the
same symptoms in the diagnosis or detecting anomalies between the diag-
nosis and the prescribed therapy. The implemented workflow is based on a
pre-filtering phase that relies on Natural Language Processing. This activity
enhances the e�ciency of the following step of Machine Learning classifica-
tion based on Random Forests. The entire workflow and the architecture has
been then experimented on a real-world dataset, constituted of about 5000
medical records (adequately anonymized) coming from various health-care
organizations in Italy. We evaluated the accuracy of the presented approach
in terms of Accuracy-Rejection Curves.

Keywords: Big Data Processing, eHealth, Machine Learning, Random
Forests, Multi-Classification Schema

The Internet of Things (IoT) paradigm is nowadays inlaid in many and
many activities we carry out in everyday life. IoT devices range from objects
we deal with every day (e.g. smartphones, fridges, washing machines) to
modern industrial equipment (e.g., smart monitoring systems, video surveil-
lance). The massive employment of these devices introduced a kind of “in-
telligence” in the management of the massive amount of data, so providing
complex value-added services to people. This phenomenon is the base for
the concept of “Smart Cities”.

Even if the pervasiveness of smart devices increases dramatically, the
problem of capturing, classifying, indexing, retrieving and using the infor-
mation in collaborative environments is still one of the open problems in the
literature about IoT, Big Data and smart environments [1, 2]. Cloud-based
applications may help to solve the storage problem, but many problems are
arising in respecting current regulations and laws about privacy. Therefore,
approaches that aim at extracting knowledge from data sources and at up-
dating prediction models immediately, without storing data for long times
(i.e., data streams), are now a solution to both storage and privacy manage-
ment. From the other hand, the variety of information, its huge volume and
the velocity of data production must be managed by proper techniques, and
at state of the art, Machine Learning techniques are the only viable solution
to this problem. Some studies have forecast that the global amount of data
generated by IoT devices will reach the amount of close to 80 zettabytes (ZB)
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per year by 20251.
Recent advantages in digital technologies made more easy gathering and

managing vast amounts of data. It resulted in increments in volumes of col-
lected data, leading to the necessity of storing and analyzing as much data
as possible, and to enact complex statistical and data mining procedures in
order to discover new correlations among data [3], even prospecting the sce-
nario of “Big Data as a Service” [4]. It is worth to consider some numerical
examples that show the amount of data production in several application ar-
eas, ranging from economic transaction to social network data: i) more than
144.8 billion e-mail messages are sent every day; ii) Twitter, a microblogging
source, produces more than 10 TB of data per day; iii) a Boeing jet engine
can produce 10 TB of operational information for every 30 minutes of flight
and sensors networks and smart devices even in small cities can generate
more than 1 TB of data per day.

Even the eHealth domain is not free from the influences of new tech-
nologies and IoT [5]. eHealth applications benefit from the pervasiveness of
IoT devices, of Edge and Cloud Computing, and Big-Data analysis systems.
Smart devices and sensors allow for monitoring patients at home, of course,
but even the retrieval of pollution, weather and other types of data from
sensor networks are useful to retrieve undiscovered correlations in medicine
[6]. One of the central and challenging problems in eHealth is that all data
collected from smart (medical or not) devices, as well as health records, are
unstructured; they can be placed on di↵erent electronic medical records, and
they can have di↵erent sources (both direct and indirect). Furthermore,
eHealth data are collected from di↵erent media, like results of laboratories,
images, medical reports and so on. Accessing to this valuable amount of
information and making advanced analytics is decisive, not only to improve
the patient care and the outcomes but also to give insights to evidence-based
health services and decision making, in which doctors contextualize the best
available research evidence by integrating it with their clinical expertise and
their patient’s values and expectations.

Big Data analysis needs innovative forms of data processing in order to
extract information and discovering knowledge from data. Volume and Va-
riety of data (two of the well-known Vs of Big Data analytics [7]) directly

1
https://www.analyticsinsight.net/billions-iot-devices-produce-79-4-zettabytes-data-

2025-says-idc, accessed on Jan. 2020
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impact on load. So increasing volumes of data imply that the computa-
tional power should increase in order to reduce latency providing actionable
intelligence at the right time. Traditional query mechanisms can report un-
desirable results and disregards significant results, depending on how the
queries are implemented [8], while retrieving valuable amount of information
and making advanced analytics is crucial, not only to improve patients care
and the outcomes but also to advance the evidence-based health services and
decision-making procedures.

Innovative data processing procedures are needed in order to extract infor-
mation and to discover knowledge from big data. At state of the art, ad-hoc
architectural solutions have been developed. They range from classical data
warehouse techniques to innovative cloud-based architectures that provide
potentially infinite resource and power computation [9], or in-memory com-
puting architectures on heterogeneous CPU-GPU clusters for big data[10, 11],
that use GPU’s massive parallel processing ability, with a Just-In-Time (JIT)
compiling schema and a heterogeneous task management strategy to maxi-
mize the computation capabilities of big data processing clusters.

The application of such new techniques may have great limitations for the
eHealth domain, and the main reason relies on data privacy issues, the second
one is related to the needed operational skills to setup/use/manage/audit a
private cloud [12, 13]. Nevertheless, special purpose machines may not be
suitable to implement high accuracy classification systems, as they are not
programmable and many classifications and decision support systems need
tuning and reprogramming. Furthermore, the classifier tuning activity is
usually manually performed.

To face these two open issues, in this paper, we propose a system for DAta
Management in eHealth Domain (namely DAMEH) that is a distributed sys-
tem for eHealth data gathering and processing. Indeed, DAMEH comprises
a workflow and a concrete architecture where all pertaining data are seman-
tically processed to extract structured information. Then, collected data are
stored on a central server, so enabling all kind of classification and analysis
for decision support. DAMEH could be potentially used to provide innova-
tive functionalities, as the suggestion of therapies provided by others doctors
based on the presence of the same symptoms in the diagnosis or detecting
anomalies between the diagnosis and the prescribed therapy.

DAMEH architecture includes two main components. The first is devoted
to the extraction and the semantic processing of both documents of medi-
cal operators and data from smart devices. This component is distributed
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on the smart devices, so moving the computational e↵ort of the information
extraction and structuring towards the Edge of IoT in a distributed way.
The second component is devoted to the collection and storage of structured
data on a central server. The classification system is based on multi-classifier
schema [14], which combines lexical (Terms), syntactical (Lemmas) and se-
mantic (Synonyms) modules. As will be described in the following, the com-
putational complexity of the second component is considerably reduced by
the pre-filtering operations executed by during the first stage. The resulting
architecture promotes the scalability thanks to the distribution of the physi-
cal components, making a↵ordable the management of a comprehensive data
volume and preserving the e�ciency of resources.

In this paper, we also demonstrate that the classification performed by
DAMEH, obtained by combining the three filters based on Terms, Lemmas
and Synonyms, increases the performance of each one of them in terms of
Accuracy-Rejection Curves. The classifier in DAMEH relies on Random
Forests classifier [15], widely adopted for classification tasks in several ap-
plication areas. At last, the paper also describes the validation of DAMEH,
performed by applying the workflow and the components to a real-world case
study coming from various health-care organizations in Italy. In particular,
the classifier output demonstrates the significant potential value-added of-
fered by DAMEH and the innovative functionalities it enables in real eHealth
context. The main contributions introduced by this paper are in the integra-
tion of well-known techniques in DAMEH and their concrete application to
the eHealth domain. Moreover, the high scalability of the concrete architec-
ture supporting DAMEH as well as the validation over real-world data are
additional contributions of this work.

The rest of the paper is organized as follows. Section 1 discusses the
motivations for the design of DAMEH and gives an overview of the systems
and of the implemented workflow. Sections 2 and 3 give all the details of the
phases of the DAMEH workflow. Section 4 shows and describes experimental
results obtained by applying DAMEH to real-world data. Section 5 discusses
related works and the innovations introduced by DAMEH in the plethora of
work addressing natural language processing. Section 6 ends the paper by
drawing conclusions and addressing future work.
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1. Motivation and overview of DAMEH

The availability of increasingly large amounts of heterogeneous health
data represents a significant opportunity to improve patient care as long as
current medical information systems are capable of exploiting big data tech-
nologies and processing data. Nowadays, health organizations increasingly
rely on digital systems for the management of medical records. Electronic
medical records usually comply with standards like the Health Level 7 [16]
(HL7). HL7 is the internationally recognized standard for managing the
exchange of information relating to clinical and administrative health data,
which allows health systems to communicate with each other. HL7 defines
the interoperability level for the exchange of messages among the various
systems and organizations for decision support, the mark-up languages used
for defining documents, integration of interfaces and methods for developing
messages and the data representation model. It is a roadmap for the pre-
sentation and communication of information between two or more parties,
in a technological context that provides for an uninterrupted exchange and
integration of the transmitted data. HL7 is nowadays present in more than
35 countries in the world.

Even if HL7 was born to contribute to the transition towards an incremen-
tal data structuring when a larger volume of loosely structured documents
and data have been produced in eHealth, current medical information sys-
tems are often designed with relational databases and interfaces, but they
still present many unstructured fields. Users are enabled to place and store
free text information in the main field of health records. An example of
unstructured fields could be a diagnosis and a prognosis of a patient, which
are usually represented as free text in electronic medical records. More-
over, things got worst when dealing with data collected by smart devices for
eHealth. Even though data is categorized and labelled, and although some
alarm conditions automatically arise when dealing with dangerous situations
(like with cardiopathic patients), human intervention is still needed in many
cases to analyze information. Thus, an eHealth information system should
be able to elaborate medical and smart sensors standards, that, like HL7,
contains both structured (annotated) and unstructured record fields.

DAMEH has been designed to cope with these issues. It has to deal with
the data heterogeneity, so including not only structured data (e.g., in HL7)
but also text documents from other sources written in natural language.
The main problems of this phase are making the interoperability and design
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of a way to understand the meaning of data contained in medical records.
Besides, information has to be extracted and elaborated from data: a really
smart system should be able to correlate medical records and data from
di↵erent sources automatically. For this reason, in DAMEH, we promote the
combined usage of natural language processing (NLP) and unstructured data
mining approaches.

DAMEH is a medical record processing system that assists doctors in
the medical record composition and analysis, suggesting parts to be inserted
in the free text fields, where data sources include smart devices for eHealth
applications. The proposed system exploits semantic procedures applied to
the medical records to extract and codify concepts that express health in-
formation. Furthermore, the analysis step is based on a high-throughput
classification system that aims at processing all medical records, creating a
data model in order to extract concepts properly.

The architecture of DAMEH is constituted of two main components en-
acting the following activities: semantic processing of unstructured texts
from medical records, and classification of data, through a centralized node
that collects pre-processed data from heterogeneous sources and performs
inferences and classification actions on data. Of course, when dealing with
large amounts of information, data pre-elaboration and processing represent
the two hard task with the highest computational complexity. For this rea-
son, the first component is executed directly on smart (medical) devices,
so taking advantage of distribution and enabling scalability. The DAMEH
classifier (o↵ering the second functionality), which is instead centralized and
may be a bottleneck for the whole system, is designed to be realized on re-
configurable hardware. The reconfigurability of this node is a fundamental
property, as we need to train the classifier for this particular domain, in order
to have the highest classification e�ciency and throughput.

Classification is based on the tree-like model defined by the learner, and
the tree visiting algorithm is usually executed sequentially. Each tree node
contains a predicate that represents a condition, while leaves are labelled
with classes the samples belong to. The implementation on reconfigurable
hardware of the component named Predictor, i.e. the component performing
classification, intrinsically exploits hardware parallelism to reach the best
performance. Hence, its implementation can be optimized depending on
structures of data models used for classification. In particular, DAMEH can
synthesize “on the fly” the Predictor through the generation of proper VHDL
code.
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Figure 1: Workflow: from medical records to hardware implementation of the predictor

The workflow implemented by DAMEH is depicted in Figure 1; it is
made of three phases: (i) the Data Extraction phase; (ii) the Model Building
phase, and (iii) the Hardware Synthesis phase. The first block automatically
structures heterogeneous data into a common schema, extracting relevant
information by implementing the methodology proposed by Amato et al. in
[17, 18]. The output, stored in a tabular format, is given in input to the
Model Building block that implements the learning phase. The output of
this step are parameters for the prediction model (PMML [19]) that is and
used for classification.

The predictor model is translated in a hardware description written in
VHDL (Very High Speed Integrated Circuit Hardware Description Language)
language [20] and synthesized on an FPGA (Field Programmable Gate Ar-
ray). It is implemented as a set of comparators to obtain the best perfor-
mance. In the Hardware Synthesis step, the VHDL description is synthesized
to obtain a predictor working on reconfigurable hardware. Periodically, or
when a given rate of misclassification happens, the learner can recompute the
parameters based on a new training set in order to refine the behaviour of the
classifier (possibly excluding the predictor behaviours that lead to the mis-
classifications) and generating updated parameters for the prediction model.
Again, optimization is performed to generate a new VHDL realization of an
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updated and more e�cient predictor.

Feature 
Extractor

Features
List

Suggestio
ns

Features Vectors

Server with FPGA based 
hardware predictor

 accelerator

Figure 2: Doctors Medical Records management.

Figure 2 depicts the final architecture. As previously described, the fea-
ture extractor is located on smart medical devices and performs the data
extraction step. The feature lists, coming from di↵erent devices, are sent
to the central server equipped with the FPGA implementing the predictor.
Suggestions evaluated by the classifier are sent back to smart medical de-
vices. Periodically, the predictor is updated by performing the described
optimizations.

Even if DAMEH is centred on eHealth application, the whole method-
ology is general enough to be applied to di↵erent domains. However, in a
domain like eHealth, where the availability of support systems for fast and
quick decision-making actions is crucial, DAMEH is appealing since designed
to reduce time complexity and has the aims of automatically classifying data.
Of course, another important innovation introduced by DAMEH resides in
its distributed architecture, which exploits the parallelism of proper software
and hardware solutions.

Next sections will illustrate in details every single step of the workflow
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and will describe the internal of each module.

2. Data Extraction and Model Building

In this section we describe the details of the phases Data Extraction and
Model Building of the workflow depicted in Figure 1.

The final goal of these phases is to create the classification model for
the classification in DAMEH, so to apply edge filters to data retrieving only
relevant information for classification, and to define a data model to organize
retrieved information.

The Data Extraction phase aims at extracting all relevant tokens from
the input elements that are both data streams from IoT devices and other
medical records. It selects relevant features by two sub-modules: Feature
Extraction and Feature Selection.

Notice that this phase addresses both XML-annotated data from IoT de-
vices (e.g., in HL7), as well as text documents from other sources. The main
problem of this phase is to extract information from text, to realize inter-
operability among di↵erent formats, standards, and documents in natural
languages as well.

The Feature Extraction module performs the following activities: (i) it
breaks up a data stream into a list of words, (ii) it marks up tokens related
to parts of speech, (iii) it associates useful lemma to parts of speech, (iv) it
filters token list obtaining the most relevant ones to build a features list and
(v) it selects the most relevant features for the domain we are considering.

In order to extract the relevant tokens from input data streams and doc-
ument corpora, the Feature Extractor submodule realizes a text processing
pipeline implementing the sequential steps: Text Tokenization, Text Nor-
malization, Part-Of-Speech Tagging, Lemmatization and Synset Recognition.
Figure 3 shows the activities of Feature Extraction sub-module.

The main goal of these procedures is the extraction of relevant terms used
to recognize concepts in the text. Text Tokenization and Text Normalization
procedures perform a first grouping of the extracted terms [21], introducing
a partitioning scheme that establishes an equivalence class on terms. In par-
ticular, Text Tokenization removes any punctuation, splitting the document
up by spaces to get our tokens, making everything lowercase and removing
stop words. Text Normalization aims at reducing the “entropy” of the input
data applying techniques that eliminate numbers or non-letter characters,
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Figure 3: Feature Extraction sub-module

unifying special characters, disambiguate sentence boundary and identifying
abbreviations or acronyms.

The Part-Of-Speech Tagging and Lemmatization steps aim at enriching
text with meta-information about syntactical aspects associated to the ex-
tracted tokens, aiming at performing the second type of grouping of the
words, based on reduction of terms in a basic form, independently from the
conjugations or declination.

In natural language, many words may have di↵erent meanings, (this char-
acteristic is called “polysemy”). We can identify the correct meaning of an
ambiguous word through the context where it appears. For this reason, we
apply on the text a word-sense disambiguation technique, that assigns the
most suitable meaning to content words [22], such as nouns, verbs, adverbs
or adjectives, based on probabilistic analysis of the word context [23].

The Lemmatization phase is performed on the list of disambiguated terms,
to reduce all the inflected forms to related lemmas, or citation form, coin-
ciding with the singular male/female form for nouns, the singular male form
for adjectives and the infinitive form for verbs. Lemmatization introduces
a second partitioning scheme on the set of extracted terms, creating new
equivalence classes: it produces a more compact dataset because more terms
are grouped.

Once relevant terms are detected, the Synset Recognition procedure pro-
ceeds in clustering lemmas in synsets. This procedure allows for associating
proper concepts to the list of terms chosen to address them. In this way, it is
possible to refer a concept independently from the particular term used for
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denoting it. The clustering has been performed by integrating two external
resources: medical ontologies by “UMLS” and “Mesh” [24], and several the-
sauri of medical terms. The use of specialized external resources has a double
purpose: the first is “endogenous” (di↵erent terms can refer same concepts);
the second is “exogenous” (in a natural language query, a given concept
can be denoted by using terms which are di↵erent from those occurring in
documents).

All these operations are performed to detect relevant words, by skim-
ming the text of grammatical words not carrying useful information. These
procedures are language-dependent, consisting of several sub-steps, and are
implemented by using the state of the art NLP modules [25].

At this point, a list of tokens is obtained from the text. The Features
Extraction phase produces a vector-based representation of inputs documents
that lead to very high-dimensional problem feature spaces. In the adopted
Bag of Word model [26], each distinct word corresponds to a feature. In this
way, thousands of di↵erent terms are produced even for a moderate-sized
data collection. Even if it is desirable to use as many features as possible
to classify various documents so that a feature selection algorithm has more
choices to find the optimal subset obtaining a high accuracy, having many
dimensions leads to very long computing time because it can be expensive
to run algorithms on huge vectors.

Moreover, it is not better to use more features but to use the right fea-
tures. Many classifiers are known not to scale very well to high problem sizes
[27]. Moreover, high dimension feature vectors could also cause overfitting,
which is the trend of learning models to classify better objects they were
trained with.

To avoid these problems, the list of extracted terms is processed by a di-
mensionality reduction stage, i.e. the Feature Selection, that reduces the size
of vectors, to reduce the probability of overfitting and to make the vectors
more manageable for the learning module. In the Feature Selection stage,
each term is scored using a function that is indicative of its degree of cor-
relation with the document class, and only terms with the highest score are
used as features in document representation, so we select only the ones that
best discriminate between classes. We applied several well-known feature se-
lection approaches [28] to cut down the features by using various evaluation
measures such as word frequency, document frequency, Correlation, Infor-
mation Gain and Information Gain Ratio [29]. These approaches produce a
ranking of features. We consider for further processing only the first Topk
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features of the ordered list.
To evaluate the e↵ectiveness of the applied selection, we evaluate the

accuracy of the classification results (performed on the data built on these
features). For this reason, in the evaluation phase described in the following
of this paper, we set di↵erent thresholds and evaluate the accuracy classi-
fication results for the three selection methods while varying the threshold
k and, consequently, the number of selected features. Once the filtered list
of features is identified, we proceed to evaluate the semantic relevance of
the selected features in the document corpus by the TF-IDF matrix (Term
Frequency - Inverse Document Frequency) [30], computed over the corpus
vocabulary on the base of the term frequency and term distribution within
the corpus. This matrix gives an indication of the semantic relevance of the
features for each document in the corpus.

To build the model, we need to provide to the Learner module, the TF-
IDF matrix with, also, a column specifying the class assigned for each row/-
document.

2.1. Application of Data Extraction

After the description of the first two phases of the DAMEH workflow, that
are Data Extraction and Model Building, we give in this subsection the first
proof of concept of the proposed framework for the pre-processing of medical
records. The goal is to show through a concrete application to real-world data
all the steps to pre-process data and give proper input to the learner to set up
the parameters for the classifier. Notice that the learning phase is executed
o↵-line and just once. In this concrete application, we chose a fragment of
a clinical record coming from Italian Hospitals that uses IoT smart devices
in order to collect data from both remote and hospitalized patients. The
data were anonymized, and we provided the proper English translation of
each reported sentence (that were given to us in the Italian language). We
use a set of over 67.000 medical diagnoses coming from various health care
organizations, with 600 smart devices for patients monitoring.

The whole dataset has been classified in the following macro-categories:
consulting, doppler, ecoc (for eco cardio), echography, endoscopy, operation,
radiology, and synthesis. The data stream from IoT devices is clear: it con-
tains information that identifies patients, the detected medical information
and a timestamp (like for doppler data from portable ultrasounds).

The most complicated part is the management of medical records asso-
ciated with retrieved data. They are in natural language and contain a de-
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scription of patient health care on which we performed the analysis process,
and an Exam code, containing the numerical ID of the exam.

Consider, as an example, the health report fragment reported below:

The patient reports the occurrence of paresthesias and cold
sensation in the lower limbs during night. TAC L/S and doppler
exams are required. Successively, elettromiografia exam to lower
limbs.2

We extracted relevant terms of this fragment and the associated concepts
according to the described Feature Extraction step.

Table 1 shows all transformations performed on the list of tokens in the
Features Extraction module. Notice that transformations have been per-
formed on the Italian version; in Table 1, we report the English translation.
In the Part of Speech phase, the acronyms tagging the words indicates the
grammar category, for example, VER is for the verb, NOUN is for the name,
NPR is for Proper noun, ADJ is for the adjective, and ADV is for adverb.
The interested reader can find further details and examples on the method
adopted for NLP in [17].

The extracted tokens are then filtered by the Feature Selection stage,
whose goal is to reduce the number of features to improve the classification
learning phase from a performance point of view but without losing accuracy.

To this aim, the feature vector is processed by di↵erent well-known fea-
ture selection approaches, in order to choose an appropriate subset of words
for useful classification automatically. The features are processed with the
following three methods, and the results are evaluated based on obtained ac-
curacy. In this way, no manual selection is required. The chosen methods are
well-known selection techniques, highly suggested and adopted in the current
literature [31]. As it will be shown in the following, the obtained results are
satisfying.

We used the following three techniques:

• Information Gain method, where the Information Gain of a feature is
calculated by measuring the di↵erence in uncertainty (i.e., entropy),

2
The original Italian version is: La paziente riferisce la comparsa notturna di parestesie

e di sensazione di freddo agli arti inferiori. Si richiede TAC L/S e doppler arteriovenoso
arti inferiori. Successivamente elettromiografia agli arti inferiori.
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Phase Processed Fragment of Clinical Record

Original The patient reports the occurrence of paresthesias and cold sensa-

tion in the lower limbs during night. TAC L/S and doppler exams

are required. Successively, elettromiografia exam to lower limbs.

Tokenization The-patient-reports-the-occurrence-of-paresthesias- and-cold-

sensation-in-the-lower-limbs-during-night.-TAC-L/S-and-

doppler-exams-are-required.-Successively,-elettromiografia-exam-

to-lower-limbs.

Normalization The-patient-reports-the-occurrence-of-paresthesias- and-cold-

sensation-in-the-lower-limbs-during-night-TAC-L/S-and-doppler-

exams-are-required-successively-elettromiografia-exam-to-lower-

limbs

Part of Speech Tag-

ging

The (ART) – patient (NOUN) – reports (VER) – the (ART) –

occurrence (NOUN) – of (PRE) – paresthesias (NOUN) – and

(CON) – cold (ADJ) – sensation (NOUN) – to (PRE) – the (ART)

– lower (ADJ) – limbs (NOUN) – during (ADV) – night (NOUN)

– TAC (NOUN) - L/S (NPR)- and (CON) - doppler(NPR) - ex-

ams (NOUN) - are required (VER) - successively (ADV) - elet-

tromiografia (NOUN) - exam (NOUN) - to (PRE) - lower (ADJ)

– limbs (NOUN)

Lemmatization The (ART) – patient (NOUN) – report (VER) - the (ART) - oc-

currence (NOUN)- of (PRE) – paresthesias (NOUN) - and (CON)

– cold (ADJ) – sensation (NOUN) – to (PRE) - the (ART) –

lower (ADJ) - limb (NOUN) - during (ADV) - night (NOUN)

- TAC (NOUN) - L/S (NPR) - and (CON) - doppler (NPR)-

exam (NOUN) - require (VER) - successively (ADV) - elettro-

miografia (NOUN) - exam (NOUN) - to (PRE) - lower (ADJ) -

limb (NOUN)

Table 1: Example of Processing of Clinical Record Fragment
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Information Gain Gain Ratio Correlation

sclerosis rate cardiac
normal cholecyst sclerosis

instruction thickening gall-bladder
education ECG biliary bladder
formation echocardiogram cholecyst
constitution gizzard spleen
assistance sonogram splene
operation belly liver
presence abdomen pancreas
frequency sinuses courage

Table 2: Fragment of Top feature lists extracted by the three considered method

between the cases without and with knowledge of the value of that
attribute;

• Information Gain Ratio method is the normalized version of Informa-
tion Gain, as it evaluates Information Gain divided by the entropy of
the attribute. It can be used when the Information Gain approach
overestimates the importance of features with large numbers of values;

• Correlation-based method, which evaluates the worth of features by
measuring the Pearson’s correlation between it and the class[28].

The top-ranked features extracted with the selected methods, on a small
dataset of five documents, are shown in Table 2, adequately translated from
Italian to English.

Based on empirically derived thresholds, we just considered the Topk of
the list of the ranked features, outputted by each method. Furthermore,
based on the evaluation scores for the features selected with the di↵erent
methods, shown in Table 3, we choose as feature list the first Topk ranked
features outputted by the Correlation method (with better accuracy). As said
previously, the results in Table 3 confirm that a selection of features leads to
better results in terms of accuracy, in addition to better performance in the
learning state due to a lower number of features to consider.

At this point, the semantic relevance of the features in the document
corpus is evaluated by the TF-IDF matrix, based on terms frequencies and
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Selection Feat. Accuracy FMeasure Precision Recall

No Selection 2967 68.00% 66.88% 74.81% 68.00%

Correlation 303 88.00% 85.57% 83.86% 88.00%

GainRatio 436 83.00% 81.22% 80.94% 83.00%

InfoGain 363 87.00% 86.03% 85.95% 87.00%

Table 3: Accuracy results evaluated on the filtered features, for the considered dataset

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11

Doc1 1.91 0 0 1.91 0 0 0 1.91 0 3.31 0
Doc2 0 0 0 0 1.22 0 1.91 0 1.91 0 0
Doc3 2.13 0 1.51 0 1.12 1.91 0 0 0 0 0
Doc4 0 0 1.31 0 1.22 0 0 0 0 0 1.91
Doc5 0 1.91 0 0 0 0 0 0 0 0 0

Table 4: TF-IDF Matrix for the considered dataset

distributions within the corpus. In Table 4, we report a matrix portion with
TF-IDF computed for the five medical reports fragments. The first row is
related to the fragment discussed above; columns represent the features, i.e.,
the TF-IDF value of the following concepts (translated adequately from Ital-
ian to English): f1 =arteryvenous, f2 =articular, f3 =biopsy, f4 =doppler,
f5 =echodriven, f6 =echostructure, f7 =lower, f8 =paresthesia, f9 =patient,
f10 =request, f11 =CAT.

This matrix with the addition of the column of the class (assigned and re-
fined by a domain expert) is the input for the adopted C4.5 learner module[32],
which is responsible for building the model of the Predictor that will be syn-
thesized in hardware and used online on the whole set of medical records to
classify. In our experiments, for the learning phase, we used a training set of
1000 labelled clinical records.

3. From model to hardware synthesis

This section continues the description of the workflow by illustrating the
phases from model building to the hardware synthesis. As depicted in Fig-
ure 4, the preliminary phases are composed by Feature Extraction and Fea-
ture Reduction. As described in the previous section, the first steps aimed at
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Figure 4: Classification System Architecture

analysing the medical records to extract useful information, called Features,
to represent them in the classification process. In our framework we take
into account three di↵erent features types: Terms, Lemmas and Synonyms.
Each input document has been represented using a feature vector, which is
a row of the TF-IDF matrix.

Since the number of features extracted from medical records is very high,
the size of this matrix is very large. On the one hand, it is desirable to use
as many features as possible to classify various documents and to obtain a
high classification accuracy; on the other hand, it can be expensive to run
algorithms on a very large vector, and it could also introduce “rumour” (con-
fusion) during the learning phase of Classification Stage. This phenomenon
is also known as curse of dimensionality, first introduced by Bellman [33].
For these reasons, in the second phase of Preprocessing, a step of Feature
Reduction has been applied to TF-IDF matrix [34].

In the second phase, a classifier exploits the feature matrix to build the
classification model and to assign a class to new unseen documents. Our
classification approach is based on a Multiple (Parallel) Topology which is
the most common implementation of a multi-classifier system that combines
the results of some base classifiers [35]. As shown in Figure 4, we combine
the results of three classifiers, one for each feature type.

3.1. Preprocessing

The Preprocessing stage extracts the most discriminant features, based
on lexical, syntactic and semantic analysis, to build the TF-IDF matrix of
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Figure 5: Feature Extraction Module

the input medical records.
This stage is composed of two steps: feature extraction and feature reduc-

tion. The first step builds the document Index (Indexing) while the second
step applies Feature Reduction methods to remove non-discriminant infor-
mation from TF-IDF matrix in order to reduce computational complexity
and, more importantly, to improve classification performance.

3.1.1. Features Extraction
The Feature extraction step extracts from documents: Terms, Lemmas,

Synonyms. As depicted in Figure 5 we define a di↵erent pipeline for each of
three groups of features.

To obtain the Terms we apply lexical analysis based on NLP techniques
to documents: Tokenisation, Deleting Stop Words and Lower Casing. To-
kenisation is based on text segmentation. The input of this process is the
plain text and the output is a stream of text composed by words (terms)
or other significant items, called tokens. Stop words (as for examples En-
glish determiners “the”, “a” or “an”, or Italian conjunctions such as “e” or
“o”. ) are text element useless to understand documents meanings and then
they can be ignored to improve the information extraction. Lower Case filter
normalises input tokens to lower case.

In order to extract Lemmas from documents, we add the Lemmatization
module to the pipeline composed by the modules described above. Lemma-
tisation is the activity of grouping together some inflected forms of a given
token so that they can be analysed as a single element: for instance, the
lemma of the tokens “have”, “has”, “had” is “have”. To determine a lemma
for a given token it is necessary the context understanding and the labeling of
a token with its own Part-of-Speech (PoS) tag. The PoS tagging is a process
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to tag each token with its tag which represents the syntactic category of own
token (i.e. the – DT, DeTerminer for “an” or “the”). The Italian PoS tag-
ger employs in the implementation is TreeTagger3. Applying Tokenisation,
Lemmatization, Deleting Stop Words and Lower Casing to each document,
we analyse syntactically the input of our system, as in the second pipeline
shown in Figure 5.

Finally, in order to extract Synonyms, we apply a Synonymous Expan-
sion block, that exploits a multilingual lexical database, namely MultiWord-
Net4, to retrieve the synset starting from given lemmas and its PoS tags. A
synset is a set of all synonyms of predetermined lemma, and its items rep-
resent a concept expressed by the lemma. For example, the synset of the
lemma “home” contains the followings words : “dwelling”, “home”, “domi-
cile”, “abode”, “habitation”, etc. These words are handy to describe the
meaning (concept) of token “home”. Synonymous Expansion is the main
part of our semantic analysis of the input medical records.

The implementation of lexical, syntactic and semantic analyses are based
on Apache Lucene5. Within the Lucene framework, these modules are called
filters because they filter from the documents only the required information.
The schema of the implemented semantic-based classifier is depicted in Figure
6.

The values of features identified according to previous analysis were eval-
uated considering their relevance both, locally within each document and
globally considering their impact within the corpora. We considered TF-IDF
matrix [36] to compute the values of the features. The TF-IDF is a m ⇥ n

matrix where m is the number of documents in the collection, and n is the
number of features. Each row represents a document, and it contains the
values of the corresponding features (term or lemma or synonymous). Each
value represents how important an element is for a specific medical record
and for the whole corpora[37]. The values of the TF-IDF matrix, named
(tf � idf), are defined as follows: tf � idf = tf ⇥ idf , where tf represents the
local parameter, and it is the number of occurrences of the feature within
the specific document; whereas the idf represents the global parameter and

3
Software is freely available here http://www.cis.uni-muenchen.de/~schmid/

tools/TreeTagger/
4
See the following web page http://multiwordnet.fbk.eu/english/home.php for a

more detailed overview of MultiWordNet.
5
Software is freely available here http://lucene.apache.org/
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Figure 6: Schema of the Semantic Based Classifier

it is the measure of whether the feature is common or rare across the whole
collection of documents.

3.1.2. Features Reduction
The main motivation to reduce the original feature space is the curse of

dimensionality introduced the first time by Bellman [33] in 1957. More gen-
erally, the curse of dimensionality is the expression of all phenomena that
appear with high-dimensional data, and that often has unfortunate conse-
quences on the behaviour and performances of learning algorithms.

In this work, we considered as feature reduction method the selection
strategy, and we applied it to the TF�IDF matrix. In details, we choose an
algorithm based on the Gain Ratio (GR) [38]. GR selects the most discrim-
inant features considering as fitness function the Information Gain divided
by the entropy of the attribute, as summarized in the following formula:

GR(Class,Attribute) =
H(Class)�H(Class\Attribute)

H(Attribute)
(1)

We selected this method because it is a good trade-o↵ between the dis-
criminant power of each attribute and the minimisation of the degree of
redundancy from each other.
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Classification technique Accuracy
Random Forest 0,885
Random Forest (regression) 0,993
Fuzzy rule 0,899
Naive Bayes 0,774
PNN 0,836
MLP 0,823

Table 5: Accuracy values of di↵erent classification techniques on a preliminary dataset

3.2. Classification

We adopted a multi-classification schema based on the parallel topology
which is one of the most common implementations of a multi-classifier sys-
tem [35]. The concept of combining classifiers has been intensely exploited in
literature, and it is well known that it improves the performances of the base
classifiers if they are independent enough [39]. The input of this combination
consists of results of the individual classifiers, and the output is a unique
combined decision.

We have evaluated various types of classifiers to assess which one was the
most suitable for our classification module. In particular, we considered the
following classification techniques: Random forest, Näıve Bayes, Fuzzy rule,
Machine Learning Neural Network, Probabilistic Neural Network.

We used a smaller dataset, compared to the one that will be shown in
Section 4, made by 1523 of medical records, appropriately anonymised and
randomly chosen, that we wanted to classify in order to identify patients
su↵ering from certain pathologies. The classification has been done according
to the Early Warning Score (EWS), a patient instability assessment scale,
used in hospital by nurses to monitor clinical conditions. Five physiological
parameters are evaluated; for each of them a score from 0 to 3 is given, then
added to the others for a total ranging from a minimum of 0 to a maximum
of 14. The higher the value, the greater will be the patient’s health risk.

The metric chosen methodologies’ comparison is the accuracy : the ratio
between the sum of TruePositive and TrueNegative and the total of the
analysed elements. Results of preliminary evaluation session are reported in
Table 5. The preliminary data, confirmed by the full experimental session
reported in Section 4, showed that Random Forest has higher accuracy than
the other techniques.
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Regarding the classification module implementation, as shown in Figure
4, we considered three base classifiers, one for each feature type (Terms,
Lemmas, and Synonyms). Each one of them is based on Random Forest
(RF) [40].

RF is a classifier based on an ensemble learning method. It builds a
multitude of decision trees at training time and outputting the class that
is the mode of the classes output by individual trees. Each of the decision
tree models is learned on a di↵erent set of rows (records) and a di↵erent set
of columns (attributes). The records for each decision tree are created by
bagging - bootstrap aggregation - and have the same size as the input table.
This technique starts from the original training set : N smaller subsets are
created using random sampling with a replacement called bootstrap. For
each node in a decision tree, a new set of attributes is determined by taking
a random sample of sqrt(m) size - square root - where m is the total number
of attributes. The output model describes a random forest and is applied to
the corresponding predictor node.

The base classifiers outputs are then combined using a Weighted Majority
Voting (WMV) [41]. If we want to formalize this method, we can assume
that the outputs of each classifier will be denoted with a binary vector of
size M , [di,1, . . . , di,M ]T 2 {0, 1}M , i = {1, . . . B}, where B is the number of
classifiers involved into the ensemble, M is the number of the possible classes,
and where di,j = 1 if the ith classifier votes the class Cj for the actual sample,
while di,j = 0 otherwise. To consider the weighted version we have to define
another coe�cient vector b, where bi represents the weights associated with
the i

th classifier. So the system will decide for the class Ck if:

BX

i=1

bidi,k =
M

max
j=1

BX

i=1

bidi,j (2)

In our work, the coe�cient vector bi contains the probability associated
with the aftermath of classes predicted by the RF classifier.

For the parallel implementation of the random forest classifier on FPGA,
we followed the approach described in [42], that is FastRF, a Fast Imple-
mentation of Random Forest Classifier. This approach improves both speed
and memory usage, by an average speed-up factor of 2.3. The choice of this
implementation method was justified by the fact that it is compliant with the
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memory constraints of the Nexys board we used in the experimental session.
Note that random forests parallel implementations have been deeply studied
in literature [43, 44], but all the other analysed solutions require the usage
of specific hardware, not available on the board.

4. Experimental Results

This section reports results of the classification system proposed for each
base classifier built for (Terms, Lemma and Synonyms) and for the combi-
nation of them using the Weighted Majority Voting.

Here we present results in terms of Accuracy-Rejection Curves (ARC)
obtained using the ten-fold cross-validation methodology. The points of the
curves represent the accuracy as a function of the rejection rate. We used
an experimental dataset that includes original medical records and data col-
lected from smart devices, coming from various Italian healthcare organiza-
tions.

4.1. Data Set

In our experimental assessment, we used a subset of our corpus, which
contain over than 5.000 medical records coming from various healthcare or-
ganizations located in Campania (Italy). In the rest of the paper, we call this
data set ”medical records”. Since each fragment is a real document or an
acquired record from a smart device that reports patients’ ID, they have been
properly anonymized, by deleting any sensitive personal information about
patients. Each medical record is characterized by three columns, as shown
in Table 6. We report the original record in the Italian language between
parenthesis.

4.2. Evaluation Measures

We compare classifier performances using the Accuracy-Rejection Curves.
These curves represent the classifier accuracy as a function of the rejection
rate. An ARC is therefore produced by plotting the accuracy of a classifier
against its rejection rate, varying it in the range [0%, 100%]. The main char-
acteristics of the ARCs are: i) all ARCs have an accuracy of 100% for a rejec-
tion rate of 100%, and therefore they converge on the point (100%, 100%);
ii) they always start from a point (0%, a%), where a% is the best accuracy
obtainable without rejection. The reject option is based on the idea that
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Table 6: Examples of Medical Records

Class Report Exam Code
Consultation Visit Urological. The prostate appears in the standard size. 8406

(Visita Urologica. La prostata appare di dimensioni nella norma.)

Doppler Absence of hemodynamically significant stenosis. 8041

(Assenza di stenosi emodinamicamente significative.)

Ecoc Mild dilatation of the left atrium. Aortic sclerosis. 3201

(Lieve dilatazione dell’atrio sinistro. Sclerosi aortica.)

Ecographic In the normal thyroid volume in regular contours. 8021

(Tiroide in sede di normale volume a contorni regolari.)

Endoscopy Esophagus normal. Normoconformed stomach. 8061

(Esofago nella norma.Stomaco normoconformato.)

Intervention Right inguinal hernia. Neo suprapubic region. 2623

(Ernia inguinale destra. Neo regione sovrapubica.)

Radiology Marked bilateral knee OA, in pre ankylosis, more marked on the right. 8128

(Marcata gonartrosi bilaterale,in preanchilosi, piu’ marcata a destra.)

the documents, for which the classification reliability is less than a thresh-
old value, will be rejected to reduce the likelihood of error. Observing the
value of the reject rate computed when the accuracy is equal to 100%, we
can establish if the classification system is e�cient on not. If this value is
very low, the number of a not classified element is meaningless (very reliable
classification system).

4.3. Results

In our experiments, we varied the size of the rejection rate from 0% to
100%, by increments of 5%. These rates are plotted against the classification
accuracies obtaining several ARCs, as shown in Figure 7. To improve pre-
sentation and visualization of our results, classification accuracy is included
in the interval [95%; 100%]; this range is justified because our worst classifier
achieves the accuracy of 96.88%.

In the graph shown in Figure 7(a), the three base classifiers built on
Terms, Lemmas and Synonyms have been compared. Each of them is built
using 10-fold Cross-Validation. The cross-validation has been applied after
the preprocessing phase, described in Section 3.1, to validate the model.

As we can see in Figure 7(a), the best of three classifiers is the one based
on the Terms because it obtains the accuracy value equal to 100% with
a rejection rate of 31.90%. On the contrary, other two classifiers, based on
Lemmas and Synonyms respectably, achieve the same accuracy with rejection
rates of 33.50% and 100%. The ARC points of Term classifiers are always
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greater than the same points related to two other systems (based on Lemmas
and Synonyms) because the last two feature extraction methods introduce
noise in the classification model.

In Figure 7(b), we can see that the use of the combination of Terms and
Lemmas allows having greater performance than the one based on respec-
tively the Terms and the Lemmas. It is worth noting that when we consider
the rejection rate equal to 0%, the multi-classifier schema reached an accu-
racy of 98.60%, while for the two base classifiers, Terms and Lemmas, the
accuracies are respectively of 98.22% and 98.36%.

In Figure 7(c), we compare the performance, obtained combining with
WMV only the Term and Lemma base classifiers, to the one computed using
all the proposed classifiers. As we can observe, the WMV classifier based on
a combination of Terms and Lemmas reaches the accuracy at 100% with a
rejection rate of 14.32%, while for the combination of all the three classifiers
we reached 100% only for a rejection rate of 100%, these results are obtained
derive from the Synonymous extraction in which all synonyms of a given
lemma have been introduced in the feature set. This choice amplifies classifier
errors, and it does not reduce them.

Finally analyzing the experimental results in terms of accuracy without
rejecting, we can conclude that the classification process which obtains the
best performance is the combination of Terms, Lemmas, and Synonyms. On
the contrary, considering the ARCs, the combination of Terms and Lemmas
is the best choice. This is due, as just discussed before, to the synonyms
issues.

Before concluding, it is worth to report that the time needed by the clas-
sifier is not critical with respect to the concrete application of DAMEH in
a real-world context. The time consumption in this kind of e-Health ap-
plications is not a crucial feature since it is possible to wait also for some
minutes before having a result. This would lead in a new configuration of
the classifier, that can be synthesized on the board, so updating the classifier
itself. However, with the applied dataset, we experimented a maximum clas-
sification time of a single sample on the Nexys board lower than 20 seconds.
Obviously, this value can be optimized by using a more e�cient FPGA.

5. Related Work

Knowledge management systems should provide instruments for building,
maintaining, and development of a knowledge base which represent the cen-
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(a) ARCs for the base classifiers obtained for
Terms, Lemmas, Synonyms

(b) Comparison among the best combination
approach (Terms-Lemmas) and each base clas-
sifier involved into the ensemble

(c) ARCs obtained for the multiclassification
schema based on Term-Lemmas and Terms-
Lemmas-Synonyms

(d) Comparison among the combination of all
the three base classifiers and the performance
of each of them

Figure 7: Area Rejection Curves to compare our classifiers

tral unit of any knowledge-based intelligent system. The first step involved
in the knowledge base development consists in the activity of knowledge
acquisition that involves information extraction and machine learning tech-
niques. The increasing availability of on-line sources of information in the
form of natural-language texts increased the accessibility of textual informa-
tion. The overwhelming quantity of available information has led to a strong
interest in technology for processing text automatically in order to extract
task-relevant information [45, 46]. The main task of information extraction
is to automatically extract structured information from unstructured and/or
semi-structured documents, exploiting di↵erent kinds of text analysis.

Once the text has been extracted, the aim of a document management
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system is to correctly group the information according to a specific task.
The task of grouping information and assigning a document into a class or
category is known as information categorization. It involves classification
and clustering techniques that are respectively commonly known as super-
vised and unsupervised learning techniques for automatic document organi-
zation. In many specialist domains, as the healthcare one, the introduction
of automatic tools for Managing Information is extremely appealing. Many
projects have exploited Natural Language Processing (NLP) approaches to
extract the information from the free text part of medical reports [47]. For
instance, in [48] these NLP methods have been used to generate structured
patient records and then supervised machine learning techniques (classifica-
tion) have been applied to code the presence of clinically important injuries.
Their results showed that the use of structured information (built using NLP
technique) improves raw text classification. In [49] an initial exploratory
work on the development of an NL parser for medical reports is presented
that attempts to assign a stability metric of a reference word within a given
sentence and proposed parse configuration. Moreover, in [50] an automatic
system, based on NLP methods to add annotations of clinical documents
using a Clinical Document Architecture (CDA), is proposed. In [51] the au-
thors studied, evaluated and proposed di↵erent swarm intelligence techniques
for mining information from loosely structured medical textual records with
no a-priori knowledge. The output of this task is a set of ordered/nominal
attributes suitable for rule discovery mining and automated processing.

Some text categorization approaches exploit lexical, syntactic and se-
mantic features extracted with NLP methods (as for example Part-of-Speech
tagging, Tokenization, etc.), but in other methods, as for example [52, 53],
semantic features (synonym or hypernym or hyponym, etc.) have been em-
ployed to improve the performance [54]. Moreover, the main contribution
of [52] is that semantic features lead in text categorization rather than fea-
ture selection and machine learning techniques.

Moreover in [55], a methodology for automatic document categorization,
based on the adoption of unsupervised learning techniques, is proposed. Ex-
periments were performed on a corpus of real medical records written in
Italian. The objective of their work was both to extract semantic (Concepts)
and syntactic (Lemmas and Terms) features in order to define the vector
space models. In [56], the authors discusses the importance of Accuracy in
classifiers for medical applications. High dimensional dataset degrades the
classification accuracy, therefore, they used the Feature Selection (FS), a pro-
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cess used to select the most informative features from the given medical data
sets, as in our classification framework. In the [57] a method of Chinese text
feature selection and weighting based on Synonym merge has been presented.
They use synonymous concepts to extract feature values in text based using
a Thesaurus called “TongYiCi CiLin”.

The need to properly manage and preserve records for quality assurance
implies that specific processes for electronic document and records manage-
ment are required that should be able to support the users in the management
of information by means of on-line and/or o↵-line functionalities. Moreover,
to deal with big data, innovative forms of data processing are required in or-
der to enable process optimization and enhance decision making tasks while
the volume and variety of data directly impact computational load, the ve-
locity, in most of the data mining methods[58, 59]. In high performance ap-
plications, the data increasing implies that the computational power should
increase in order to reduce latencies providing actionable intelligence at the
right time. Thus hardware implementation of machine learning algorithm
can improve the computational power.

Random forests is a widely used method for machine learning classifi-
cation. Thanks to their inherent concurrent memory accesses and compu-
tational parallelism FPGAs are a good platform for performance boost of
random forests. In [60] authors demonstrate the trade-o↵s between area uti-
lization and context switch time between di↵erent architectures, and show
how each architecture maps well to a di↵erent design scenario. The paper [61]
compares and contrasts the e↵ectiveness of FPGAs, GP-GPUs, and multi-
core CPUs for accelerating classification using models generated by compact
random forest machine learning classifiers and shows that FPGAs provide the
highest performance solution, but require a multi-chip / multi-board system
to execute even modest sized forests, while GP-GPUs o↵er a more flexible
solution with reasonably high performance that scales with forest size.

6. Conclusion and Future work

In this paper, we addressed the problem of data analysis in e-health do-
main with a semantic approach. We presented DAMEH, a classification
system based on multi-classifier schema which combines lexical (Terms), syn-
tactical (Lemmas) and semantic (Synonyms) modules using Random Forest
method. We demonstrated that the classification results obtained with the
combination of three classifiers (based on respectively Terms, Lemmas and
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Synonyms) increase the performance of each one of them (in terms of ARC).
As discussed in the experimental results, the use of all synonyms related to
the single lemma does not contribute to the improvement of the classifica-
tion performance. To solve this problem in future works, we will consider
using a Word Disambiguation approach. We will also deal with to select, in
synonymous extraction module, only the synonyms of a synset belonging to
a healthcare/medical domain.

Furthermore, as we can observe analyzing the ARC of the combination of
Terms and Lemmas in experimental assessment, the accuracy at 100% has
been reached with a rejection rate of 14.32%. In general, it means that our
proposed classification system is enough reliable because of the low number
of rejected medical records with the highest accuracy. Finally, we studied the
impact of other feature reduction methods within our classification frame-
work.

As for the semantic, medical records are complex technical semi-structured
text documents that need a pre-processing phase. We coped this issue im-
plementing an automatic semantic structuring flow that overcomes the com-
plexity of the documents. The heterogeneous data are transformed into a
standard schema, and the only relevant information from the medical records
are extracted. In particular, we adopted a sequence of operations for features
extraction and selection.

After selecting relevant features for classification, we used a random forest
algorithm.

We have shown the validity of our methodology by explaining the suit-
ability and benefits of the introduced techniques.

As for the semantic, we provided results for several techniques in the
feature extraction to maximizes accuracy with a minimum cardinality of the
set feature to configure parameters of the classifier. A case study on a real
medical records set puts in evidence the trade-o↵ between accuracy reached
by the data extraction phase and throughput of the hardware accelerator.

As future work, we aim at working to both aspects addressed in this paper
to evaluate di↵erent classification algorithms and their hardware implemen-
tations and to provide a more complex refinement process for pre-processing
of data at the user level, in order to fasten IoT data management directly on
devices and on the Edge.
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