103 research outputs found

    On the optimal operation of wireless networks

    Get PDF
    With the ever increasing mobile traffic in wireless networks, radio frequency spectrum is becoming limited and overcrowded. To address the radio frequency spectrum scarcity problem, researchers proposed advanced radio technology-Cognitive Radio to make use of the uncommonly used and under-utilized licensed bands to improve overall spectrum efficiency. Mobile service providers also deploy small base stations on the streets, into shopping center and users\u27 households in order to improve spectrum efficiency per area. In this thesis, we study cooperation schemes in cognitive radio networks as well as heterogeneous networks to reuse the existing radio frequency spectrum intelligently and improve network throughput and spectrum efficiency, reduce network power consumption and provide network failure protection capability. In the first work of the thesis, we study a multicast routing problem in Cognitive Ratio Networks (CRNs). In this work, all Secondary Users (SUs) are assumed not self interested and they are willing to provide relay service for source SUs. We propose a new network modeling method, where we model CRNs using a Multi-rate Multilayer Hyper-Graph (MMHG). Given a multicast session of the MMHG, our goal is to find the multicast routing trees that minimize the worst case end-to-end delay, maximize the multicast rate and minimize the number of transmission links used in the multicast tree. We apply two metaheuristic algorithms (Multi-Objective Ant Colony System optimization algorithm (MOACS) and Archived Multi-Objective Simulated Annealing Optimization Algorithm (AMOSA)) in solving the problem. We also study the scheduling problem of multicast routing trees obtained from the MMHG model. In the second work of the thesis, we study the cell outage compensation function of the self-healing mechanism using network cooperation scheme. In a heterogeneous network environment with densely deployed Femto Base Stations (FBSs), we propose a network cooperation scheme for FBSs using Coordinated Multi-Point (CoMP) transmission and reception with joint processing technique. Different clustering methods are studied to improve the performance of the network cooperation scheme. In the final work of the thesis, we study the user cooperative multi-path routing solution for wireless Users Equipment (UEs)\u27 streaming application using auction theory. We assume that UEs use multi-path transport layer service, and establish two paths for streaming events, one path goes through its cellular link, another path is established using a Wi-Fi connection with a neighbor UE. We study user coordinated multi-path routing solution with two different energy cost functions (LCF and EAC) and design user cooperative real-time optimization and failure protection operations for the streaming application. To stimulate UEs to participate into the user cooperation operation, we design a credit system enabled with auction mechanism. Simulation results in this thesis show that optimal cooperation operations among network devices to reuse the existing spectrum wisely are able to improve network performance considerably. Our proposed network modeling approach in CRN helps reduce the complicated multicast routing problem to a simple graph problem, and the proposed algorithms can find most of the optimal multicast routing trees in a short amount of time. In the second and third works, our proposed network cooperation and user cooperation approaches are shown to provide better UEs\u27 throughput compared to non-cooperation schemes. The network cooperation approach using CoMP provides failure compensation capability by preventing the system sum rate loss from having the same speed of radio resource loss, and this is done without using additional radio resources and will not have a significant adverse effect on the performance of other UEs. The user cooperation approach shows great advantage in improving service rate, improving streaming event success rate and reducing energy consumption compared to non-cooperation solution

    Self-Organizing Networks use cases in commercial deployments

    Get PDF
    These measurements can be obtained from different sources, but these sources are either expensive or not applicable to any network. To solve this problem, this thesis proposes a method that uses information available in any network so that the calibration of predictive maps is converted into universal without losing accuracy with respect to current methods. Furthermore, the complexity of today's networks makes them prone to failure. To save costs, operators employ network self-healing techniques so that networks are able to self-diagnose and even self-fix when possible. Among the various failures that can occur in mobile communication networks, a common case is the existence of sectors whose radiated signal has been exchanged. This issue appears during the network roll-out when engineers accidentally cross feeders of several antennas. Currently, manual methodology is used to identify this problem. Therefore, this thesis presents an automatic system to detect these cases. Finally, special attention has been paid to the computational efficiency of the algorithms developed in this thesis since they have finally been integrated into commercial tools.Ince their origins, mobile communication networks have undergone major changes imposed by the need for networks to adapt to user demand. To do this, networks have had to increase in complexity. In turn, complexity has made networks increasingly difficult to design and maintain. To mitigate the impact of network complexity, the concept of self-organizing networks (SON) emerged. Self-organized networks aim at reducing the complexity in the design and maintenance of mobile communication networks by automating processes. Thus, three major blocks in the automation of networks are identified: self-configuration, self-optimization and self-healing. This thesis contributes to the state of the art of self-organized networks through the identification and subsequent resolution of a problem in each of the three blocks into which they are divided. With the advent of 5G networks and the speeds they promise to deliver to users, new use cases have emerged. One of these use cases is known as Fixed Wireless Access. In this type of network, the last mile of fiber is replaced by broadband radio access of mobile technologies. Until now, regarding self-configuration, greenfield design methodologies for wireless networks based on mobile communication technologies are based on the premise that users have mobility characteristics. However, in fixed wireless access networks, the antennas of the users are in fixed locations. Therefore, this thesis proposes a novel methodology for finding the optimal locations were to deploy network equipment as well as the configuration of their radio parameters in Fixed Wireless Access networks. Regarding self-optimization of networks, current algorithms make use of signal maps of the cells in the network so that the changes that these maps would experience after modifying any network parameter can be estimated. In order to obtain these maps, operators use predictive models calibrated through real network measurements

    Performance analysis of biological resource allocation algorithms for next generation networks.

    Get PDF
    Masters Degree. University of KwaZulu-Natal, Durban.Abstract available in PDF.Publications listed on page iii

    Discrete and Continuous Optimization Methods for Self-Organization in Small Cell Networks - Models and Algorithms

    Get PDF
    Self-organization is discussed in terms of distributed computational methods and algorithms for resource allocation in cellular networks. In order to develop algorithms for different self-organization problems pertinent to small cell networks (SCN), a number of concepts from discrete and continuous optimization theory are employed. Self-organized resource allocation problems such as physical cell identifier (PCI) assignment and primary component carrier selection are formulated as discrete optimization problems. Distributed graph coloring and constraint satisfaction algorithms are used to solve these problems. The PCI assignment is also discussed for multi-operator heterogeneous networks. Furthermore, different variants of simulated annealing are proposed for solving a graph coloring formulation of the orthogonal resource allocation problem. In the continuous optimization domain, a network utility maximization approach is considered for solving different resource allocation problems. Network synchronization is addressed using greedy and gradient search algorithms. Primal and dual decomposition are discussed for transmit power and scheduling weight optimizations, under a network-wide power constraint. Joint optimization over transmit powers and multi-user scheduling weights is considered in a multi-carrier SCN, for both maximum rate and proportional-fair rate utilities. This formulation is extended for multiple-input multiple-output (MIMO) SCNs, where apart from transmit powers and multi-user scheduling weights, the transmit precoders are also optimized, for a generic alpha-fair utility function. Optimization of network resources over multiple degrees of freedom is particularly effective in reducing mutual interference, leading to significant gains in network utility. Finally, an alternate formulation of transmit power allocation is considered, in which the network transmit power is minimized subject to the data rate constraints of users. Thus, network resource allocation algorithms inspired by optimization theory constitute an effective approach for self-organization in contemporary as well as future cellular networks

    Optimización de problemas de varios objetivos desde un enfoque de eficiencia energética aplicado a redes celulares heterogéneas 5G usando un marco de conmutación de celdas pequeñas

    Get PDF
    This Ph.D. dissertation addresses the Many-Objective Optimization Problem (MaOP) study to reduce the inter-cell interference and the power consumption for realistic Centralized, Collaborative, Cloud, and Clean Radio Access Networks (C-RANs). It uses the Cell Switch-Off (CSO) scheme to switch-off/on Remote Radio Units (RRUs) and the Coordinated Scheduling (CS) technique to allocate resource blocks smartly. The EF1-NSGA-III (It is a variation of the NSGA-III algorithm that uses the front 1 to find extreme points at the normalization procedure extended in this thesis) algorithm is employed to solve a proposed Many-Objective Optimization Problem (MaOP). It is composed of four objective functions, four constraints, and two decision variables. However, the above problem is redefined to have three objective functions to see the performance comparison between the NSGA-II and EF1-NSGA-III algorithms. The OpenAirInterface (OAI) platform is used to evaluate and validate the performance of an indoor coverage system because most of the user-end equipment of next-generation cellular networks will be in an indoor environment. It constitutes the fastest growing 5G open-source platform that implements 3GPP technology on general-purpose computers, fast Ethernet transport ports, and Commercial-Off-The-Shelf (COTS) software-defined radio hardware. This document is composed of five contributions. The first one is a survey about testbed, emulators, and simulators for 4G/5G cellular networks. The second one is the extension of the KanGAL's NSGA-II code to implement the EF1-NSGA-III, adaptive EF1-NSGA-III (A-EF1-NSGA-III), and efficient adaptive EF1-NSGA-III (A2^2-EF1-NSGA-III). They support up to 10 objective functions, manage real, integer, and binary decision variables, and many constraints. The above algorithms outperform other works in terms of the Inverted Generational Distance (IGD) metric. The third contribution is the implementation of real-time emulation methodologies for C-RANs using a frequency domain representation in OAI. It improves the average computation time 10-fold compared to the time domain without using Radio Frequency hardware and avoids their uncertainties. The fourth one is the implementation of the Coordination Scheduling (CS) technique as a proof-of-concept to validate the advantages of frequency domain methodologies and to allocate resource blocks dynamically among RRUs. Finally, a many-objective optimization problem is defined and solved with evolutionary algorithms where diversity is managed based on crowded-distance and reference points to reduce the power consumption for C-RANs. The solutions obtained are considered to control the scheduling task at the Radio Cloud Center (RCC) and to switch RRUs.Este disertación aborda el estudio del problema de optimización de varios objetivos (MaOP) para reducir la interferencia entre células y el consumo de energía para redes de acceso de radio en tiempo real, colaborativas, en la nube y limpias (C-RAN). Utiliza el esquema de conmutacion de celdas (CSO) para apagar / encender unidades de radio remotas (RRU) y la técnica de programación coordinada (CS) para asignar bloques de recursos de manera inteligente. El algoritmo EF1-NSGA-III (es una variación del algoritmo NSGA-III que usa el primer frente de pareto para encontrar puntos extremos en el procedimiento de normalización extendido en esta tesis) se utiliza para resolver un problema de optimización de varios objetivos (MaOP) propuesto. Se compone de cuatro funciones objetivos, cuatro restricciones y dos variables de decisión. Sin embargo, el problema anterior se redefine para tener tres funciones objetivas para ver la comparación de rendimiento entre los algoritmos NSGA-II y EF1-NSGA-III. La plataforma OpenAirInterface (OAI) se utiliza para evaluar y validar el rendimiento de un sistema de cobertura en interiores porque la mayoría del equipos móviles de las redes celulares de próxima generación estarán en un entorno interior. Ella constituye la plataforma de código abierto 5G de más rápido crecimiento que implementa la tecnología 3GPP en computadoras de uso general, puertos de transporte Ethernet rápidos y hardware de radio definido por software comercial (COTS). Este documento se compone de cinco contribuciones. La primera es una estudio sobre banco de pruebas, emuladores y simuladores para redes celulares 4G / 5G. El segundo es la extensión del código NSGA-II de KanGAL para implementar EF1-NSGA-III, EF1-NSGA-III adaptativo (A-EF1-NSGA-III) y EF1-NSGA-III adaptativo eficiente (A 2 ^ 2 -EF1-NSGA-III). Admiten hasta 10 funciones objetivas, gestionan variables de decisión reales, enteras y binarias, y muchas restricciones. Los algoritmos anteriores superan a otros trabajos en términos de la métrica de distancia generacional invertida (IGD). La tercera contribución es la implementación de metodologías de emulación en tiempo real para C-RAN utilizando una representación de dominio de frecuencia en OAI. Mejora el tiempo de cálculo promedio 10 veces en comparación con el dominio del tiempo sin usar hardware de radiofrecuencia y evita sus incertidumbres. El cuarto es la implementación de la técnica de Programación de Coordinación (CS) como prueba de concepto para validar las ventajas de las metodologías de dominio de frecuencia y asignar bloques de recursos dinámicamente entre las RRU. Finalmente, un problema de optimización de muchos objetivos se define y resuelve con algoritmos evolutivos en los que la diversidad se gestiona en función de la distancia de crouding y los puntos de referencia para reducir el consumo de energía de las C-RAN. Las soluciones obtenidas controlan la tarea de programación en Radio Cloud Center (RCC) y conmutan las RRU.Proyecto personal: Redes celulares de próxima generaciónDoctorad

    Networks, Communication, and Computing Vol. 2

    Get PDF
    Networks, communications, and computing have become ubiquitous and inseparable parts of everyday life. This book is based on a Special Issue of the Algorithms journal, and it is devoted to the exploration of the many-faceted relationship of networks, communications, and computing. The included papers explore the current state-of-the-art research in these areas, with a particular interest in the interactions among the fields

    A novel design approach for 5G massive MIMO and NB-IoT green networks using a hybrid Jaya-differential evolution algorithm

    Get PDF
    Our main objective is to reduce power consumption by responding to the instantaneous bit rate demand by the user for 4th Generation (4G) and 5th Generation (5G) Massive MIMO network configurations. Moreover, we present and address the problem of designing green LTE networks with the Internet of Things (IoT) nodes. We consider the new NarrowBand-IoT (NB-IoT) wireless technology that will emerge in current and future access networks. In this context, we apply emerging evolutionary algorithms in the context of green network design. We investigate three different cases to show the performance of the new proposed algorithm, namely the 4G, 5G Massive MIMO, and the NB-IoT technologies. More specifically, we investigate the Teaching-Learning-Optimization (TLBO), the Jaya algorithm, the self-adaptive differential evolution jDE algorithm, and other hybrid algorithms. We introduce a new hybrid algorithm named Jaya-jDE that uses concepts from both Jaya and jDE algorithms in an effective way. The results show that 5G Massive MIMO networks require about 50% less power consumption than the 4G ones, and the NB-IoT in-band deployment requires about 10% less power than guard-band deployment. Moreover, Jaya-jDE emerges as the best algorithm based on the results
    corecore