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Abstract 
Self-organization is discussed in terms of distributed computational methods and algorithms 
for resource allocation in cellular networks. In order to develop algorithms for different self-
organization problems pertinent to small cell networks (SCN), a number of concepts from 
discrete and continuous optimization theory are employed. Self-organized resource allocation 
problems such as physical cell identifier (PCI) assignment and primary component carrier 
selection are formulated as discrete optimization problems. Distributed graph coloring and 
constraint satisfaction algorithms are used to solve these problems. The PCI assignment is also 
discussed for multi-operator heterogeneous networks. Furthermore, different variants of 
simulated annealing are proposed for solving a graph coloring formulation of the orthogonal 
resource allocation problem. 

In the continuous optimization domain, a network utility maximization approach is 
considered for solving different resource allocation problems. Network synchronization is 
addressed using greedy and gradient search algorithms. Primal and dual decomposition are 
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are also optimized, for a generic alpha-fair utility function. Optimization of network resources 
over multiple degrees of freedom is particularly effective in reducing mutual interference, 
leading to significant gains in network utility. Finally, an alternate formulation of transmit 
power allocation is considered, in which the network transmit power is minimized subject to 
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1. Introduction

1.1 Motivation

The proliferation of wireless devices along with a plethora of popular mo-

bile applications and services has led to an unrelenting demand for high

data rates, seamless coverage, and ubiquitous connectivity. Recently, 5G

cellular networks have been envisaged to meet these demands, not merely

by an evolution of state-of-the-art, but by employing a host of potentially

disruptive technologies, in conjunction with an evolved 4G [116]. To this

end, vision for enabling 1000× more mobile data capacity by the year

2020 involves three key components: addition of more frequency bands,

increased spectral efficiency, and dense deployments of small cell net-

works (SCNs) and heterogeneous networks (HetNets) [17]. These com-

ponents individually involve a multitude of existing and upcoming tech-

niques, which include cognitive radio networking, massive multiple-input

multiple-output (MIMO), device-to-device (D2D) communication, green

communications, and millimeter-wave (mmW) networking [30,75,147]. In

order to provide higher aggregate data rates, these techniques primarily

rely on an efficient utilization of resources across four main dimensions

or degrees of freedom namely: frequency, space, time, and network topol-

ogy. Optimization across these degrees of freedom is thus imperative to

a system design aimed at achieving 5G objectives. For the automation

and optimization of ultra-dense networks, self-organizing network (SON)

paradigm is of paramount importance [29]. In fact, SON based techniques

are considered to be one of the cornerstones in the success of contempo-

rary cellular networks such as Long Term Evolution (LTE)/LTE-Advanced

(LTE-A) [64], and will pave the way for seamlessly connecting billions of

devices in future 5G cellular networks [112].
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Apart from SCN and HetNet deployments, solutions based on the con-

cept of cloud radio access networks (CRANs) have tremendous potential

for 5G networks [129]. The CRAN comprises of a large number of low-

cost radio remote heads, deployed randomly and connected to a base band

unit through fronthaul links. As the underlying architecture is central-

ized, the operational efficiency can be enhanced by application of central-

ized SON [122]. Software defined networking (SDN) and network func-

tion virtualization (NFV) paradigms may further enhance the benefits of

SON, through creation of suitable logical abstractions and application of

SDN principles [59, 122, 125]. The key motivation for SON is the need

to optimize the network resources, and automate the service provision-

ing. To this end, a number of alternatives have been proposed regarding

the distribution of control, data, and computation among network ele-

ments [37, 61]. Centralized radio access network architectures, though

becoming increasingly popular, are usually constrained to limited geo-

graphic areas. Multiple CRAN entities will be required to coexist and

coordinate their actions in a distributed manner, through self-organizing

mechanisms. Hybrid architecture is also considered as an option for 5G

networks [37].

In general, the need for SON based resource allocation arises due to

massive deployments of low-power nodes, which makes the configuration,

optimization, and maintenance of the network difficult [18, 56]. For ex-

ample, unplanned deployment of small cells, along with the disparity in

transmit power of cells belonging to different layers in a HetNet may re-

sult in very high cross-layer interference to some users [16]. An effective

mitigation of this interference is an important SON issue pertaining to

HetNet deployments [97]. In future 5G networks, apart from throughput

centric small cells deployments, novel scenarios such as massive machine

communications, internet of things (IoT), and mission critical communica-

tions may also benefit from self-organization mechanisms, in maintaining

quality of service (QoS) and connectivity in the network [67, 111]. More-

over, self-organization has always been an important component in the

design of sensor and actor networks [50]. This is likely to continue in

the 5G era as well, paving the way for IoT [22]. Other potential applica-

tions of SON include emerging scenarios such as multi-operator spectrum

sharing, which involves resource allocation among non-cooperative net-

works. SON based approaches hinging on measurement based coordina-

tion are viable in such cases. Similar problems requiring non-cooperative

2
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solutions may arise in unlicensed spectrum sharing scenarios, which are

currently under consideration for both LTE/LTE-A and future 5G cellular

networks [74].

Most importantly, SON is of key significance in reducing capital ex-

penditure (CAPEX) and operational expenditure (OPEX) of cellular net-

works [47]. Automated networks possessing SON features do not require

large workforce for ensuring seamless operation. Hence, SON can en-

able automated commissioning, installation, performance evaluation, and

monitoring of large-scale networks, thereby reducing the expenditure in-

volved in carrying out these processes manually [64]. Another major de-

sign consideration for future cellular networks with relevance to SON is

energy efficiency. SON features are important for reducing the power ex-

penditure as well as for minimizing environmental footprint. Enabling it

at a network level may require the use of self-organizing energy manage-

ment techniques [32,46].

Motivated by the potential of SON in enhancing network performance

by efficient resource allocation across multiple degrees of freedom [18,70];

this thesis presents a network optimization approach towards the design

of SON algorithms for resource allocation problems relevant to different

SON use-cases of current LTE/LTE-A cellular networks, as well as the

future 5G paradigm.

1.2 Scope of the thesis

This thesis focuses on the application of discrete and continuous optimiza-

tion methods towards the design of SON algorithms, for different resource

allocation problems pertinent to SCNs. We use the term SON in a broader

context: it refers to engineering of self-organizing dynamics for resource

allocation aimed at improving the performance of SCNs, by achieving a

network level objective through simple local interactions among individ-

ual network nodes. Thus, SON algorithms discussed here are network

optimization methods which adhere to the rudimentary self-organization

principles. This summarizes the underlying philosophy we employ to de-

sign various SON algorithms for SCNs. Accordingly, the algorithms dis-

cussed here involve local or limited interactions between the cells, aimed

at achieving a given network level goal (e.g. network sum-rate maximiza-

tion or guaranteeing a target data rate to each user in the network). The

local interactions between the cells may be non-cooperative (e.g. merely

3
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based on user measurements in a cell) or fully cooperative (through dedi-

cated message-passing between cells). The algorithms pertaining to these

two cases can also be classified as fully distributed and distributed, re-

spectively. The mathematical models and computational methods that we

discuss under the rubric of SON algorithms, are general and applicable to

wide variety of network optimization problems relevant to large-scale dis-

tributed networks, in which complete network state information is either

infeasible or impossible to obtain at every network node. Consequently,

nodes are forced to make local decisions with limited or even without co-

operation with the neighboring nodes, which motivates the engineering of

SON functionalities.

1.3 Contributions

The main contribution of this thesis is that it develops a mathematical

approach for designing SON algorithms in a principled way. Both dis-

crete and continuous optimization methods are considered for solving re-

source allocation problems related to SCNs. Discrete optimization meth-

ods are used for two well-known SON problems namely: physical cell

identifier (PCI) assignment [7], and primary component carrier (PCC) se-

lection [115]. Graph coloring models are used to solve these problems

in a self-organized manner. The proposed algorithms are based on non-

cooperative greedy local search heuristics, and cooperative constraint sat-

isfaction algorithms including asynchronous backtracking (ABT) and asyn-

chronous weak commitment search (AWC) [157]. Greedy local search al-

gorithms are fast, and fully distributed in the sense that they do not in-

volve any message-passing between the cells. This results in slight loss

in performance in terms of convergence probability, when compared to

constraint satisfaction algorithms which are complete, and rely on dis-

tributed message-passing to search for the optimal solution. The simula-

tion scenario used for performance analysis consists of a dynamic pico-cell

network deployed in a multi-story building, which is modeled using the

Wireless World Initiative New Radio (WINNER) path-loss model [117].

Results indicate that algorithms based on greedy local search are highly

effective in coloring interference graphs, thereby enabling self-organized

PCI assignment and PCC configuration. PCI assignment problem is then

considered in a multi-operator HetNet. In this case, multiple operators

share the spectrum in the small cell layer. The underlying conflict-graph
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is directed, as the interference couplings cannot be symmetrized through

message-passing due to the lack of cooperation between operators. Ac-

cordingly, we employ local search SON algorithms based on a focused

search metaheuristic [131], which do not involve any message-passing be-

tween the operators. The focused search principle allows local moves only

to the cells with conflicts. For performance analysis, a dense HetNet with

two operators having orthogonal spectrum for the macro-layer and shared

spectrum for small cell layer is considered. The simulation results show

that the proposed algorithms enable fast and efficient PCI assignment

jointly across both operator networks. Furthermore, we develop a host of

simulated annealing variants for generic orthogonal resource allocation

problems, where a planar graph is used to model the SCN.

Next, we discuss SON algorithms for different resource allocation prob-

lems pertinent to third generation partnership project (3GPP) SON use-

cases, which can be addressed through continuous network optimization

methods such as network utility maximization (NUM). The NUM frame-

work provides an impetus for a systematic design of self-organized re-

source allocation in SCNs, and it can enable both distributed and fully

distributed SON algorithms. Distributed algorithms are cooperative in

nature and involve an exchange of dedicated messages between the cells.

Messages may simply communicate the transmission parameters of a given

cell, or some more sophisticated parameter related to a NUM framework

e.g. a price — a quantity defined to compute the loss in utility of a given

cell, resulting from a change in another cell’s transmission parameters.

The prices can be exchanged through dedicated message-passing between

the cells over a backhaul link. Fully distributed algorithms can be ob-

tained by simply setting the price terms equal to zero. An alternative

approach towards fully distributed SON is motivated by ad hoc network-

ing applications, where each cell broadcasts a network-level price over the

air.

Starting with an introduction to the decomposition methods pertinent to

distributed NUM, we discuss SON algorithms for network synchroniza-

tion — an important self-organization problem for SCNs [14, 15]. Next,

we develop SON algorithms for inter-cell interference coordination (ICIC)

[97], which can be formalized as a resource allocation problem consist-

ing of multiple degrees of freedom. The considered problem entails a

cognitive radio setting, where a network constraint exists on the total

transmit power a secondary network is allowed to distribute among the
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base stations. The aim is the joint optimization over transmit powers

and multi-user scheduling decisions (weights) in a single-carrier network.

The scheduling weights represent the intra-cell orthogonal resource allo-

cation, and can be understood as a special case of user priority weights

considered in [76]. In addition, fairness considerations are incorporated

through a proportional fair rate (PF-Rate) utility function. To solve the

resulting NUM, primal and dual decomposition methods are used [118],

which lead to an optimal solution. In this case, the information exchange

parameter depends on the decomposition method used. In primal decom-

position the prices are exchanged whereas dual decomposition involves

an exchange of local primal variables as well. Next, we discuss a decom-

position approach based on direct solution of Karush-Kuhn-Tucker (KKT)

conditions [72], and apply it for joint optimization over transmit powers

and multi-user scheduling weights in a multi-carrier SCN. Both Shannon

rate (Max-Rate) and PF-Rate utility functions lead to an improvement in

network sum data rate. The gains are less pronounced in the case of PF-

Rate due to its fairness characteristics. This model is extended for MIMO

SCNs, where apart from transmit powers and scheduling weights, trans-

mit precoders are also optimized over multiple carriers in each cell. An α-

fair utility is considered, which incorporates both Max-Rate and PF-Rate

utility functions [80, 108]. Existing work related to precoder optimiza-

tion in MIMO networks includes [134], which considers a pricing based

approach for two user MIMO channel. Moreover, a convex approxima-

tion based precoder design is proposed in [163], and a global optimization

method is discussed in [95]. The maximization of mutual information over

covariance matrices in the network is addressed in [154]. Power loading

for multi-carrier MIMO networks is discussed in [124]. A joint transmit-

ter receiver design for precoding and power loading is proposed in [45].

In [143], the focus is on joint bit and power loading for MIMO systems.

Finally, an alternate formulation of the multi-carrier transmit power al-

location problem is considered, where the sum of transmit powers of all

base stations is minimized subject to a rate constraint per user. This addi-

tional constraint ensures that all the users in each cell attain a given rate,

while the expended transmit power in the whole network is minimized.

The simulation results show a significant gain over the non-cooperative

fixed-margin iterative water-filling (FM-IWF) approach [119].

We conclude that discrete and continuous optimization methods are vi-

able for enabling self-organized solutions to resource allocation problems,
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which often involve joint optimization over multiple degrees of freedom.

Depending on the application, different types of utility functions and con-

straints can easily be incorporated in the NUM framework.

1.4 Summary of the publications

This thesis consists of an overview and eight original publications. The

first three publications discuss discrete optimization methods for the de-

sign of self-organizing algorithms. Publication I consists of graph col-

oring algorithms for self-organized resource allocation in LTE networks.

Two well-known SON problems are discussed in this work — PCI assign-

ment and PCC selection. Algorithms based on distributed local search

and distributed constraint satisfaction are proposed for coloring the un-

derlying conflict-graph, which models interference couplings between the

cells. This work is extended in Publication II, where the PCI assignment

problem is considered for a multi-operator HetNet with partially shared

spectrum between the networks. There is no cooperation between the op-

erators, thus the interference couplings are not symmetric, which leads to

a directed conflict-graph. Publication III focuses on the problem in both

static and dynamic scenarios, where self-organized orthogonal resource

allocation is addressed using different variants of simulated annealing

metaheuristic.

From Publication IV onwards, the focus is on continuous network opti-

mization methods based on NUM framework for resource allocation in a

SCN. Self-organizing algorithms for network synchronization are consid-

ered in Publication IV, where we consider two different types of updates

namely best-response and gradient descent. In Publication V, transmit

powers and scheduling weights are jointly optimized to maximize the net-

work utility, under a network-wide total transmit power constraint. This

formulation is motivated by cognitive radio networks, where the aim is to

control the total interference emanating from the network. A PF-Rate

utility function is considered in this case. Publication VI involves op-

timization over transmit powers as well as user scheduling weights in

a multi-carrier SCN, for both Max-Rate and PF-Rate utilities. Publica-

tion VII extends this formulation in the MIMO direction, where the net-

work utility is maximized over transmit powers, transmit precoders, and

scheduling weights. Finally, Publication VIII focuses on a different for-

mulation of the multi-carrier power allocation problem, where strict fair-
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ness is incorporated as a separate constraint. Network transmit power is

minimized over transmit power allocations of cells subject to a data rate

constraint per user.
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2. Self-Organizing Small Cell Networks

2.1 Self-organizing systems

Self-organization seem to have existed and evolved in nature since the

very beginning. In early 1960’s, Cameron and Yovits published the first

collection of papers on the subject [35]. This was followed by a volume

edited by Von Foerester and Zopf [164]. It included the original ver-

sion of the famous paper by Ashby [21], which builds on the earlier con-

tributions e.g. [19, 20], and generalizes the main principles that govern

self-organizing systems. A number of notable works in different scien-

tific and technical areas have led to the popularization of the term “self-

organization" [34,51,62,78,82,113].

A main feature of self-organizing systems is the lack of central control

for coordinating the actions of agents in the system [34, 62]. The sys-

tem is often distributed in the sense that agents acts as peers, and each

agent in the system interacts only with a limited number of neighbors.

These interactions collectively drive the system to an ordered state. Self-

organizing systems are inherently scalable and the underlying principles

are well-suited to highly complex and large-scale dynamic systems. This

motivates the engineering of self-organizing mechanisms in practical sys-

tems [132]. Principles of self-organization have been successfully applied

for solving complex problems in electrical engineering and computer sci-

ence, especially in areas such as multi-agent systems [133, 139], complex

systems [62], and emergent computation [44, 57]. Its popularity stems

from the fact that it enables distributed solutions with limited commu-

nication, computation, and energy requirements for the system compo-

nents. Self-organizing systems should involve local and limited coordina-

tion among system components. Another key feature that self-organizing
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systems often exhibit is an emergent behavior [34, 152]. Emergence is

defined as the system level (global) behavior pattern which arises as a

result of meaningful local interactions between system components, and

shows the capabilities of system beyond the capability of individual com-

ponents [50]. A prime example of emergence in agent-based networks is

the convergence of the firefly synchronization algorithm to a global op-

timum [106]. The system level or global behavior pattern refers to the

structure and functionality at a higher level, which system components

in a self-organizing system strive to achieve. Fully distributed systems

which involve local interactions without dedicated message-passing be-

tween components may be termed as ideal self-organizing systems, espe-

cially if they exhibit emergent behavior. Emergence is not always consid-

ered as a necessary condition for self-organization, but rather an indepen-

dent phenomenon [148]. It is particularly promising to combine both in

the context of complex adaptive systems.

From a perspective of computer networks, a hierarchy of networking ap-

proaches can be identified, ranging from centralized to fully distributed

self-organizing systems [25]. In Figure 2.1, the level of coordination and

system scalability are illustrated along this axis of centralization, empha-

sizing that engineering of self-organization enhances the scalability of a

network. Figure 2.2 shows pictorial representations of networks along

Figure 2.1. Local interactions and limited coordination leads to high scalability in self-
organizing systems.

this axis. A decentralized network consists of a network of multiple cen-

ters, whereas in a distributed network, the nodes are peers, and local in-
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teractions may be based on bilateral message-passing. Fully distributed

networks with emergent behavior can be considered as an example of

ideal self-organization, because there is no dedicated message-passing.

In this case, local information exchange is based on the passive observa-

tion of changes in environment caused by the actions of neighbors, or on

reception of generic multicast or broadcast signals from other nodes.

Figure 2.2. Classification of networks based on the level and type of coordination be-
tween the nodes.

The main characteristics of self-organizing systems that motivate the

engineering of self-organization across a number of problems in different

types of networks can be summarized as follows [50,126,146]:

2.1.1 Scalability

One of the foremost aspects of self-organizing systems is scalability, and it

is of utmost importance in large-scale networks. Scalability ensures that

the system can be scaled-up with manageable complexity. Thus, the sys-

tem can be expanded without an unbounded increase in complexity. Scala-

bility emanates from the self-organization principle itself. Due to the local

nature of interactions between the system components, addition of new

components results in limited additional complexity. This is especially

important for dynamic systems, which evolve over time in terms of size

and number of components. A design principle based on local interactions

yields scalable solutions for a wide range of problems. Local interaction

between system components can be formulated in many different ways,

depending on the problem at hand. For ideal self-organization, the local

interaction should be entirely passive, and based on mere observations of

the local neighborhood. Ideal self-organization with entirely passive local

interactions is common in nature, e.g. in bird flocking. However, when

dealing with engineering of self-organization, e.g. in wireless networks,

the local interactions may also be active and involve an exchange of infor-

mation, or cooperation in the form of message-passing. In such cases, it
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is desirable to keep the information exchange local, and at a minimum, to

reduce the overhead resulting from the addition of new components. The

interactions among the system components may be based on cooperation,

but they should preferably be local. Long-ranged cooperation among com-

ponents jeopardizes the scalability, as it may lead to an unmanageable

increase in overhead information as the system grows. It is worth not-

ing that in wireless networks, path-loss often maintains the scalability in

that it is sufficient to exchange information only with the adjacent nodes.

2.1.2 Adaptability

Due to a high degree of adaptability, self-organizing systems can effec-

tively respond to changes in the environment and adjust operation pa-

rameters accordingly to reach equilibrium. This means that a system can

re-organize in order to adapt to changes such as addition/removal of com-

ponents in the system, or loss in system performance resulting from both

external and internal factors. In this regard, agility is also important as

the system should be able to react to the changes in a timely manner to

ensure that the performance remains unaffected. Thus, adaptability and

agility play an important role in guaranteeing rapid convergence to a de-

sirable state.

2.1.3 Emergence

A key property of self-organizing systems is that they possess emergent

properties, i.e., the local interactions among system components lead to

an emergence of desirable properties at the global level. All the system

components contribute towards the desirable global behavior and are not

capable of achieving it individually. Thus, the collective intelligence leads

to an emergence of global behavior that transcends the capabilities of the

individual components.

2.1.4 Robustness

Self-organizing systems are adaptable and decentralized, which makes

them particularly robust against failures. This is due to the fact that the

system can adapt to changes in environment, and has the capability to

reconfigure itself in the case of failure. The decentralized architecture is

intrinsically robust, and leads to properties such as stability and graceful

degradation. In order to enhance the robustness, the self-organizing sys-
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tems are often designed with self-healing mechanisms to tackle failures

in a systematic manner.

It should be noted that the formal definition of self-organization dis-

cussed here, and in most of the scientific literature is partially in a dif-

ferent context than the SON paradigm discussed for the mobile cellu-

lar networks by 3GPP and other standardization bodies. 3GPP stan-

dardization activities related to SON focus on the automation of network

functions, using methods which may be fully self-organizing adhering to

the above discussed definition, or based on more or less centralized ap-

proaches [64, 130]. This point is further elaborated in the following sec-

tions.

2.2 From self-organization to SON in mobile cellular networks

In wireless networks, the term “self-organization" has been used with dif-

ferent meanings in literature, and the concept has been applied to dif-

ferent types of networks in recent years: it has been used in the con-

text of mobile ad hoc networks [73], peer-to-peer networks [63], multi-hop

networks [107], wireless local area networks (WLANs) [79], and in wire-

less sensor networks (WSNs) [136]. Self-organizing methods have been

studied extensively for networks that do not involve any central plan-

ning or coordination. Most popular examples include WSNs and ad hoc

networks [50]. The key benefit of self-organization is that it leads to a

distributed and scalable architecture [126, 146]. On the other hand, the

design of cellular networks has traditionally been based on centralized

planning. For example, 2G networks such as Global System for Mobile

Communications (GSM) require central frequency planning and network

dimensioning. However, the recent increase in popularity of high data

rate wireless connectivity has led to a paradigm shift in the design of

cellular networks. Among the emerging technologies, self-organized net-

working functionalities known as SON, have proven to be extremely use-

ful, and are expected to play a key role in meeting demands of the future

cellular networks [64,70].

The research on self-organization in wireless networks covers a number

of areas, which include complex systems [99], multi-agent systems [144],

machine learning [27], distributed networks [43], and game theory [100].

Most practical applications of self-organization are related to advanced

networks that are large-scale, diverse and highly connected, and thus
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can be modeled as complex systems [50]. Self-organization can enhance

the network performance by adding artificial intelligence and adaptabil-

ity to network nodes, allowing them to react to the changes in the net-

work topology and the state of the environment. The adaptive nature of

such networks enables the utilization of the situational and local knowl-

edge for achieving an optimal end-to-end performance. In particular, en-

abling the network nodes to do intelligent adaptations at an individual

level, based on local information, guarantees a significant performance

improvement over traditional networking technologies. It provides the

ultimate solution to the problem of managing a large number of band-

width intensive network nodes competing for scarce resources. Future

generations of wireless networks are predicted to be much more complex

than the present ones, comprising of billions of nodes. Different problems

pertaining to such large-scale networks can be effectively handled by en-

gineering the system using self-organizing principles.

Thus, self-organization is a broad research interest in the area of wire-

less networking. It spans not only the well-established areas of distributed

and ad hoc networking, but also the SON in contemporary and future

mobile cellular networks [13]. SON features can address the challenges

of ensuring high data rates, improved coverage, scalability, efficient ra-

dio resource management, energy efficiency, reduced CAPEX/OPEX, fault

tolerance, and quick recovery. The overall objective is network automa-

tion through approaches that are capable of adapting to varying channel

conditions and QoS requirements of the users, which leads to better net-

work performance, higher scalability, and improved robustness. Conse-

quently, a number of SON use-cases have been considered by 3GPP in

the standardization of LTE and LTE-A. These use-cases have been identi-

fied in different research projects and standardization activities. Notable

examples include the use-cases proposed by Next Generation of Mobile

Communications (NGMN) [54], Self-Optimization and Self-Configuration

in Wireless Networks (SOCRATES) project [53], and 3GPP [1–9]. The

SON use-cases related to network deployment and operation are usually

classified into three main categories: self-configuration, self-optimization,

and self-healing. In 3GPP Release 8, the following SON use-cases for self-

configuration were introduced [1,2,53,54]:

• Automatic inventory
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• Automatic software download

• Automatic neighbor relation (ANR)

• Automatic PCI assignment

This was followed by an addition of the following self-optimization use-

cases in 3GPP Release 9 [5,7]:

• Mobility robustness/handover optimization (MRO/MHO)

• Random access channel (RACH) optimization

• Mobility load balancing (MLB) optimization

• Energy saving (ES)

• ICIC

The 3GPP Release 10 focused on enhancements of the existing use-cases

such as enhanced ICIC (eICIC) and energy saving management (ESM),

along with the addition of new self-healing functionalities [3,4,8,9]:

• Coverage and capacity optimization (CCO)

• eICIC

• ESM

• Cell outage detection and compensation

• Minimization of drive testing (MDT)

In addition to CCO, MHO, ES, and MDT, in 3GPP Release 11 the following

enhancement was considered [6]:

• Coordination between various SON functions
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Similar concepts have been discussed in the further releases. Due to sub-

stantial overlap, it is possible to identify the main categories, as given

in [13].

The aforementioned SON use-cases can be tackled using a variety of

approaches, each having different requirements on computation and com-

munication between cells. Distributed approaches may involve direct co-

operation among the nodes through dedicated message-passing. On the

other hand, fully distributed approaches that do not involve message-

passing are also possible in some cases, and are more attractive from a

practical standpoint. Such approaches are closer to the classical defini-

tion of ideal self-organization discussed earlier.

In 3GPP standardization activities of cellular networks, SON algorithms

may be fully distributed that do not involve message-passing, distributed

approaches with message-passing, or even centralized mechanisms of net-

work operation [64]. Centralized SON means that all SON algorithms

and functions are located in operations and management system, at a

high hierarchical level. In distributed SON, all algorithms and functions

are located at a relatively lower level, i.e., at evolved Node B level. Ar-

chitecture comprising of combination of a set of SON functions located

at different hierarchical levels is called hybrid SON [128]. Distributed

algorithms with message-passing are important due to the fact that in

3GPP LTE/LTE-A radio access network architecture, message-passing be-

tween base stations is possible via the X2 interface. The main advan-

tages of message-passing algorithms over the fully distributed ones are

the improved network performance and the better convergence proper-

ties. Thus, according to the 3GPP standardization terminology, central-

ized, distributed, and fully distributed approaches come under the rubric

of SON in mobile cellular networks.

2.3 Optimization models for self-organization in SCNs

In SCNs, scalability is a key requirement, and is the main motivation for

applying self-organization principles. Network parameters are uncertain

due to random and unplanned deployment of large number of small cells.

Moreover, users may have different QoS requirements. As a result, man-

ual network control and maintenance becomes increasingly complex and

costly, which paves the way for application of SON algorithms [18,70].

The first step towards developing effective SON algorithms is to iden-

16



Self-Organizing Small Cell Networks

tify the SON problems from the SON use-cases, and classify them accord-

ingly. A use-case may involve multiple problems, and it is also possible

that the same or closely related problems are part of different use-cases.

The problems may be modeled as static or dynamic, and the requirements

on inter-cell coordination may vary accordingly. For example, in multi-

vendor and multi-operator networks, complete coordination among all the

cells may not be possible. The most popular classification of SON use-

cases is according to their respective role in the network life cycle, i.e.,

self-configuration, self-optimization, and self-healing. Self-configuration

entails configuring different network parameters. Therefore, the iden-

tification of configurable parameters in a mobile cellular network yields

a partial classification of SON problems [130]. Problems related to self-

optimization are numerous and more complicated in nature.

SON problems in mobile cellular networks can be modeled using an op-

timization framework, where the aim is to achieve a network level ob-

jective under various constraints. This approach has been considered for

a number of SON problems including capacity enhancement [11], cover-

age optimization [69], dynamic frequency allocation [42], spectrum as-

signment [149], resource allocation for self-healing [88], and interference

mitigation [26, 56, 90, 94, 96, 140, 161]. In most cases, distributed opti-

mization methods are employed to design self-organizing algorithms for

SCNs. Moreover, the time-scales involved depend on the nature of the

problem. Time-scales for CCO and ESM use-cases may be in a range of

few minutes to hours, whereas for MRO, channel-aware scheduling and

interference mitigation, it would be milliseconds to seconds [55, 56]. A

classification of SON based on time-scales is given in [13, 70]. In SCNs,

different SON parameters may change at very different time-scales rang-

ing from milliseconds/seconds to days/months [70].

In the following chapters, we discuss optimization algorithms for SON

problems relevant to SCNs. In 3GPP standardization activities, both cen-

tralized and distributed SON have been considered. For the sake of clar-

ity, we reserve the term SON for self-organization in the context of wire-

less 3GPP networks, with a more relaxed definition, including any au-

tomated network functionalities, even the centralized ones. However, our

main aim is to strive for SON approaches that are close to the wider scien-

tific meaning of “self-organization", than centralized algorithms. Broadly

speaking, the focus is on SON use-cases defined by NGMN, SOCRATES,

and 3GPP. In particular, optimization algorithms for PCI and PCC selec-
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tion, network synchronization, and ICIC are considered. The algorithms

are distributed in nature, but may involve an exchange of information (in

the form of message-passing) between the cells. Fully distributed algo-

rithms that do not involve any dedicated message-passing are also dis-

cussed. These are much closer to the original concept of self-organization,

but do not perform well in some cases.

The discussion in the following chapters focuses on how to formulate

different use-cases as optimization problems, and what computational

methods can be employed to solve them. To this end, concepts from both

discrete and continuous optimization theory are used to develop a sys-

tematic approach towards the design of efficient SON algorithms. In the

discrete or combinatorial optimization model, graph coloring formulation

is discussed along with different coloring algorithms with self-organizing

properties. For the continuous optimization case, NUM approach is con-

sidered, which focuses on the maximization of some performance metric

of the network, with/without dedicated message-passing.
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3. Discrete Optimization Methods for
SON

A number of problems in the area of wireless networking can be modeled

as discrete or combinatorial optimization problems. The system model

comprises of a network cost function, formulated in terms of logical net-

work variables, which may be optimized. Examples include topology con-

trol, routing optimization, QoS provisioning, and general resource alloca-

tion problems [38]. Most of the existing literature focuses on these prob-

lems in the context of ad hoc networks, satellite networks, and WSNs.

Recently, the benefits of SON in cellular networks have paved the way for

an application of both continuous and discrete optimization methods to

resource allocation problems related to SON use-cases. To address these

problems, different approaches have been considered in the literature; see

e.g. [66]. A number of problems such as conflict-free channel selection

(or frequency assignment), PCI assignment, PCC selection, optimal user

association with base stations, and power allocation can be solved by dis-

crete network optimization methods. Some SON problems that are impor-

tant for SCNs have not been addressed before in other types of networks,

and have not been discussed extensively using systematic optimization

methods. These include PCI assignment, RACH optimization, and MLB

optimization, to name a few. Among the methods that can be used for

solving discrete network optimization problems pertinent to cellular net-

works, distributed constraint satisfaction [157] and graph coloring [145]

are of notable importance.

A constraint satisfaction problem (CSP) arises when multiple autonomous

agents controlling logical variables coexist in a system with constraints

among their possible actions. In a CSP, values are assigned to a set of

variables under a given set of constraints. The aim is to obtain a consis-

tent assignment of values to variables, so that the constraints are met.

A common example of such problems is the N-queens problem, where the
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problem is to place N queens on a chess board in a way that they do not

threaten each other. A wide range of problems in artificial intelligence

can be formalized as CSPs, with applications in a diverse range of areas

such as machine vision, belief maintenance, scheduling, and belief prop-

agation, among others [86]. A subclass of CSPs can be reduced to graph

coloring problems. In graph coloring problems, the aim is to assign col-

ors to the vertices of a graph in non-conflicting manner, so that no two

vertices connected by an edge have the same color. Graph coloring has

an old and rich history in wireless systems, which dates back to the de-

sign of the first generation of cellular networks [24]. It has been studied

extensively for the frequency assignment problem (FAP) in wireless net-

works. Recent applications of significant importance are in the area of

WLANs [89,101]. Graph coloring usually entails a conflict-graph model of

the network, where vertices represent the cells and the edges represent

the interference couplings. The aim is to color the graph using a fixed

number of colors, where each color represents a frequency. To construct

a conflict-graph, the interference statistics from the interfering base sta-

tions are required, which can be used to create edges between the vertices.

In order to color the graph for FAP, a number of approaches have been

discussed in the literature [52]. However, to benefit from graph coloring

based solutions for SON, distributed algorithms are required [83,121].

Existing work on distributed graph coloring algorithms mainly focuses

on finding colorings with Δ+1 or O(Δ) colors, where Δ is the largest num-

ber of neighbors of any node. For these cases, fast converging distributed

algorithms exist, and the convergence characteristics can usually be ana-

lyzed in closed form [85]. When the number of colors is smaller than Δ,

constraint satisfaction algorithms may be used. The constraint satisfac-

tion algorithms such as ABT and AWC are complete algorithms, and are

able to converge if a solution exists. Distributed stochastic algorithms,

which fall under the category of local search, are not complete [162].

Algorithms based on local search metaheuristics can be used to solve

CSPs and graph coloring instances [58]. In Publication I and Publica-

tion II, distributed versions of these algorithms are considered, as well as

message-passing based distributed constraint satisfaction algorithms [157].

In both categories, the SON design principles are followed and the pro-

posed algorithms are distributed in nature. In local search algorithms,

the local interactions by the cells involve only the observation of the col-

ors of neighboring cells. These local interactions among the cells guide the
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actions taken by the individual cells. Thus, the local interactions between

the cells result in a colored graph in a self-organized way, provided that

the algorithm converges. The constraint satisfaction algorithms also in-

volve local interactions, albeit with message-passing. Nevertheless, both

local search and constraint satisfaction algorithms have self-organization

properties, which make them suitable for application in self-organizing

cellular networks. Publication III focuses on the orthogonal resource allo-

cation problem in static and dynamic networks. Different variants of sim-

ulated annealing metaheuristic are proposed for graph coloring in static

and dynamic self-organizing SCNs. Next, we provide an overview of key

algorithms and results from Publication I, Publication II, and Publication

III.

3.1 Local search algorithms

The local search principle involves local changes by individual agents to

move in the configuration space from one point to another, satisfying con-

straints or avoiding conflicts locally. The search space is explored by mak-

ing perturbations to the existing configuration, known as local moves. For

graph coloring, a local move is the change of color by one vertex. Two

states that are connected by a local move are neighbors in the configu-

ration space. The configuration space is searched by a sequence of local

moves taken by vertices. To this end, a cost function is defined, e.g. in

terms of the number of conflicts. A local move that decreases the cost

is known as a downhill move. For graph coloring, a local move that re-

duces the number of conflicts of a given vertex is a downhill move. One

of the key features of the configuration space of colorings on undirected

graphs is the existence of plateaus, i.e., neighboring states with the same

number of conflicts. A greedy local search in which each vertex picks the

best move gets trapped in the local minima, which are often located at

plateaus. A main feature of local search algorithms is that they can move

on the plateaus and avoid entrapment in local minima. In this context,

a plateau move is a local move that keeps the number of conflicts un-

changed. These moves are important for escaping from local minima on

plateaus, and reaching a conflict-free state. Another effective strategy is

to use simulated annealing, which involves occasional uphill moves, i.e.,

accepting local moves that increase the number of conflicts.
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3.2 Complete distributed algorithms

From the perspective of SON, complete algorithms for distributed CSPs

are of interest. Local search algorithms are not complete, in that they do

not guarantee convergence. More involved message-passing algorithms

can be created to guarantee completeness, i.e. returning a solution if

it exists. Such algorithms have been discussed for generic distributed

CSPs [157], and for distributed graph coloring [121]. A distributed CSP

comprises of multiple variables and constraints distributed among nodes.

Such problems are common in the areas of multi-agent systems and dis-

tributed networks. Applications of the concept include problems such as

distributed resource allocation, distributed scheduling, and truth man-

agement systems [156]. The underlying principles are generic and can be

applied to solve a broad range of problems related to self-organized re-

source allocation in wireless networks. This makes them important from

a practical standpoint of designing SON algorithms for SCNs. Graph col-

oring is a typical example of CSP. Therefore, complete distributed algo-

rithms provide an attractive alternative for distributed graph coloring,

and can be considered for several SON use-cases. Each vertex of the graph

can be considered as a variable, whereas the colors represent the values

to be assigned under the constraints dictated by the adjacency matrix of

the graph. A number of complete distributed algorithms can be applied

for self-organized graph coloring. These include backtracking algorithms

and iterative improvement algorithms. In what follows, two constraint

satisfaction algorithms from [157], used for PCI selection in Publication I

are briefly discussed.

3.2.1 Asynchronous backtracking

The asynchronous backtracking (ABT) algorithm is based on the back-

tracking principle, which entails the construction of a partial solution by

an assignment of values to a subset of variables, such that all the con-

straints are met. The partial solution is then expanded to a full solution

by adding more variables, one by one. When no value satisfies all the

constraints of a given variable, the value of the last added variable to the

partial solution is changed. This procedure is known as backtracking, and

is a key principle of many constraint satisfaction algorithms. The ABT al-

gorithm is a distributed and asynchronous version of the backtracking

algorithm, in which agents interact via message-passing. In ABT, agents
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communicate their current values using ok messages and new constraints

using nogood messages. Each agent maintains a view of the values of

other agents, which is known as agentview. There is a priority order of the

agents which is determined by an alphabetical order of agent identifiers.

An agent changes its value if it is not consistent with the assignments of

agents having higher priorities. If there is no value that can be used to

achieve consistency with the higher priority agents, a nogood message is

generated and sent to the higher priority agents, which then change their

value.

3.2.2 Asynchronous weak-commitment search

A downside of ABT is the fixed priority of agents, set by an alphabetical

order. Thus, if the value selection of a high priority agent is bad, execution

time increases notably because the lower priority agents have to perform

an exhaustive search to reverse the bad decision. To tackle this issue,

the asynchronous weak-commitment search (AWC) algorithm introduces

the min-conflict heuristic to change the priorities leading to an avoidance

of bad decisions. Thus, AWC dynamics enable reversal of a bad decision

without resorting to an exhaustive search. To reflect the agent priorities, a

parameter priorityvalue is used, which is communicated via ok messages.

3.3 PCI assignment and PCC selection in SCNs

The PCI configuration problem is an important self-configuration SON

use-case for LTE/LTE-A, and has been discussed extensively from both

technical and standardization perspectives [64]. Its potential is under-

scored by the fact that ultra-dense deployment scenarios are currently be-

ing considered for enabling high capacity in future networks. In such net-

works, self-organized assignment of cell identifiers will be of paramount

importance for ensuring seamless handovers and efficient operation [141].

In Publication I, we have considered four distributed local search algo-

rithms to color a conflict-graph. These algorithms can be classified ac-

cording to two characteristics. The first classification is related to the

type of price or interference coupling between cells. When real valued

interference couplings are used, a real valued price may be considered be-

tween neighbors using the same PCI. In contrast, when binary conflicts

are considered, the decisions are made on the basis of only the number
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of conflicting neighbors, and not on the strength of the conflicts. In ad-

dition, algorithms are classified according to the number of alternatives

tried by a cell, when it is its turn to update the PCI. One alternative is to

select the PCI randomly. On the other hand, in multiple-try algorithms,

a cell calculates the price for all PCIs, and randomly selects one of the

PCIs with the lowest price. It is worth noting that the algorithms with

binary price have an absorption feature, i.e., the cell does not escape a

conflict-free state [12, 162]. In a global optimum or a colored state of a

graph coloring problem, each cell sees a local optimum, i.e., there are no

conflicts between any given pair of cells. Moreover, plateau moves are al-

lowed to a given cell if it is in conflict, which means that if the price of

the tested PCI (or with multiple-try, the lowest price of all PCIs) is the

same as the price of the PCI being used, the cell changes the PCI. This

enables the algorithm to breakout from a local optimum in search of a

global optimum. The four local search algorithms can be summarized as

follows:

• Bin: binary price, random selection.

• Real: real price, random selection.

• Bin-multi: binary price, all candidates considered, random selection

among the best candidates.

• Real-multi: real price, all candidates considered, random selection among

the best candidates.

The real price algorithms with random and best candidate selection were

discussed in [110] and [23], respectively. The binary multiple-try algo-

rithm is an asynchronous version of distributed stochastic algorithm-D,

which was proposed in [162]. For comparison, constraint satisfaction al-

gorithms ABT and AWC are also considered.

The performance of these algorithms is analyzed in a pico-cell network

deployed in four multi-story office buildings in a Manhattan grid, with

propagation characteristics modeled according to the WINNER path-loss

model [117]. The total number of base stations is 96, with 24 in each

building (4 per floor). A dynamically growing network is considered where

86 base stations are initially switched-on before the algorithms are run.
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The rest of the base stations are then added one-by-one, and the algo-

rithms are re-run after each addition. Measurement capabilities of users

are modeled through a synchronization threshold, which is a signal-to-

interference-plus-noise power ratio (SINR) threshold under which a user

is not able to synchronize to a base station. A base station considers

the worst interference to any of its served users as the interference cost

caused by that interferer. The interference caused by an interfering base

station to a user is measured in terms of carrier-to-interference (C/I) power

ratio measured when the user is synchronized to that base station. Sim-

ulation results are illustrated in Figure 3.1, in which all the algorithms

are compared in terms of convergence probability for 500 random network

instances, where the maximum iterations is 1000. It is clear from the re-

sults that binary price algorithms have a higher convergence probability

compared to real price ones. This is due to the reason that binary algo-

rithms can escape from local optima via plateau moves, and thus have

a higher probability of finding a global optimum. Overall, the AWC out-

performs all other algorithms in terms of convergence properties, as it is

able to color the conflict-graph with 9 colors only. On the other hand, the

performance of ABT is constrained by the limit on the maximum itera-

tions. In ABT, the agents have fixed order and the solution is found by an

exhaustive search through the backtracking principle, which makes the

process inefficient in terms of convergence speed. AWC handles this prob-

lem through a dynamic change of priorities along with minimum-conflict

heuristics. Nevertheless, ABT still has a higher convergence probability

than the real price local search algorithms.

A closely related self-configuration problem, which can be mapped to

a graph coloring problem, is PCC selection. In this problem, the inter-

fering cells are configured with different component carriers to mitigate

the mutual interference [115]. The aim is to configure the network effi-

ciently using a small number of component carriers. For simplicity, it is

assumed that there is no secondary usage of resources. Graph coloring

enables an efficient selection of component carriers, and thus yields an

improvement in SINRs experienced by the users. For simulations, single-

try and multiple-try variants of the binary and real price algorithms are

considered. The total number of component carriers to be distributed

in the network is 5. Each base station randomly selects a PCC during

the initialization phase and starts serving its users while acquiring han-

dover measurements. This is followed by an execution of the distributed
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Figure 3.1. Comparison of graph coloring algorithms for PCI assignment.

graph coloring algorithm until convergence is reached, where the maxi-

mum number of iterations is fixed to 1000. Finally, the statistics related to

the C/I ratios experienced by the users in the system are collected. A com-

parison of the resulting cumulative distribution functions (CDFs) is given

in the Figure 3.2, which illustrates that binary price algorithms result in

higher C/I ratios compared to their real price counterparts. The gain is

especially more pronounced for the users in the low C/I region. It is worth

noting that the local search algorithms discussed here do not involve any

dedicated message-passing, except for the symmetrization of interference

graph. The decisions by individual nodes are based on passive observa-

tion of the values of interfering cells. On the other hand, constraint sat-

isfaction algorithms involve message-passing among the cells. However,

the cooperative self-organizing framework employed by constraint satis-

faction algorithms is more systematic, and is applicable to a vast variety

of problems. The main advantage of distributed constraint satisfaction

algorithms is completeness (i.e., the solution is found if it exists, or the

algorithm terminates otherwise).

3.4 PCI assignment in multi-operator HetNets

In Publication II, the PCI assignment problem is considered for densely

deployed HetNets, consisting of a multi-operator scenario with shared
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Figure 3.2. Comparison of graph coloring algorithms for PCC selection.

spectrum in the small cell layer. The aim is to achieve a valid PCI as-

signment, jointly for multiple operators. Each operator has a macro-layer

and a small cell layer. The macro-layer spectrum allocation is orthogonal

among the operators, whereas the small cell layers use dedicated spec-

trum, with inter-operator spectrum sharing enabled. Thus, the PCI re-

source is shared among small cells belonging to different operators. These

PCIs are primarily used in handover signaling between the small cell and

macro-cell layers. It is therefore important for an operator network to

know which neighbors belong to the own-operator network. Moreover,

conflict-freeness and confusion-freeness of PCIs must hold for all the cells

sharing the spectrum.

It is assumed that there is no message-passing between the cells be-

longing to different operators. A direct implication of this assumption is

that for different operators, the resulting interference couplings among

base stations are not necessarily symmetric, which complicates the col-

oring problem and differentiates the problem addressed here from the

single network case. This is illustrated in the interference graph shown

in Figure 3.3 which delineates directed edges that arise when nodes be-

longing to the red and blue operators interact to create an interference

graph. Here, the arrow points from the interferers to a given cell which

is an interference victim. In Figure 3.3(a) cell V belonging to operator

blue adds directed edges, based on measurements, from its own operator

neighbors X1, X2 as well as other-operator neighbors Y1 and Y2. Then as
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shown in Figure 3.3(b), it requests its own operator neighbors to add di-

rected edges from its own operator and other-operator cells. Hence, there

is no inter-operator message-passing.

Figure 3.3. Asymmetric edges in a multi-operator graph. © 2015 IEEE

The following local search algorithms are considered for coloring the

resulting directed-graph.

• Stochastic local search with focused plateau moves (SLS-FP): If vertex

v using color c is in conflict, it randomly selects a color c′ ∈ C\c, where

C is the full range of colors. It evaluates the number of conflicts F(c′)

resulting from color c′, and starts using it if doing so either reduces the

number of conflicts, or keeps them unchanged F(c′) ≤ F(c).

• Steepest descent local search with focused plateau moves (SDLS-FP): If

vertex v using color c is in conflict, it selects at random one of the best

colors c′ = argminc∈C F(c) among all possible alternatives in the first

step.

In both cases, asynchronous and periodic updates are considered, where

each vertex in the conflict-graph updates its color on its turn in every it-

eration. The principle of allowing the local moves only to the unsatisfied

variables is known as focused search [12, 131]. Accordingly, these update

rules involve focused plateau moves. This is an important step towards

avoiding unnecessary reconfigurations of PCIs by the cells. Each cell de-

cides its PCI by observing the PCIs of its neighbors which include its own

network cells as well as the cells that belong to the other operators, but

share the same spectrum.

For simulations, a HetNet comprising of two operators with overlap-

ping coverage area and shared spectrum in the pico-layer is considered.

The macro-layer of each operator entails a 10× 10 grid of hexagonal cells,

where the grids of the operators are overlapping but not aligned. In each

hexagonal cell, 10 small cells are dropped randomly and the number of

users per cell is also fixed to 10. Thus, the total number of base stations in
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the whole network is 2200, with 1100 base stations belonging to each op-

erator. Each user is associated to either of the two operators, with equal

probability. Both algorithms can successfully reach the fully colored state

with a reasonable number of PCIs. The convergence with probability close

to one is possible with 120 PCIs in the fairly dense HetNet scenario con-

sidered here. Moreover, due to the steepest descent principle, SDLS-FP

outperforms SLS-FP in terms of the number of iterations required for con-

vergence, as shown in Figure 3.4.
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Figure 3.4. Comparison of graph coloring algorithms for PCI assignment in a multi-
operator HetNet. © 2015 IEEE

3.5 Simulated annealing for self-organized orthogonal resource
allocation

A graph coloring formulation of generic orthogonal resource allocation

problem is considered in Publication III, where the network is modeled

as a planar graph. The focus is on simulated annealing metaheuristic,

which is essentially based on balancing exploration and exploitation, to

search the configuration space effectively. Simulated annealing based

methods have been applied to resource allocation and network optimiza-

tion problems in a multitude of wireless networking scenarios such as

WLANs [36], LTE-A [31], and cognitive radio networks [103]. Apart from

plateau moves, a key feature of simulated annealing is uphill moves,

which enables it to escape local minima in search of an optimal solu-
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tion. Moreover, in simulated annealing, the probability of uphill moves is

controlled by a noise parameter (temperature). A cooling schedule is de-

fined (e.g. exponential, logarithmic), according to which the temperature

is lowered. The main principle of simulated annealing can be understood

by considering a vertex v using color c, with current number of conflicts

given by F(c). The vertex may or may not be in conflict with neighbors

while using resource c. On its turn to update, it picks a resource c′ ∈ C\c
randomly and evaluates its cost in terms of conflicts, given by the cost

function F(c′). If Δ = F(c′)− F(c) ≤ 0, vertex v selects resource c′, other-

wise it selects c′ with the probability e−Δ/T . Thus, the higher is the cost

of taking the uphill move, the lower is the probability of it being accepted.

The temperature parameter T is reduced according to some cooling sched-

ule such as T (n) = T0/ log2(2 + n), where n is the update time (iteration)

and T0 is the initial temperature. The concept of focused search [12,131],

is employed to develop variants of simulated annealing, such as simulated

annealing with focused uphill moves (SAFU), which is based on allowing

uphill moves only to the cells that are in conflict.

It is known that the performance of simulated annealing depends strongly

on the initial value chosen for the temperature, and the cooling sched-

ule. The optimal values are influenced by the characteristics of problem

instances, and search strategy. Thus, we focus on the optimal temper-

atures, and analyze the performance of proposed methods in static and

dynamic topologies. For static topologies, dedicated message-passing is

not required between the cells, except for the symmetrization of conflict-

graph. On the other hand, for dynamic topologies, a distributed tem-

perature control protocol based on message-passing is developed. The

simulated annealing algorithms that involve cooling are inherently com-

plicated to implement in dynamic settings, especially in the distributed

networks. In principle, all cells in the network must have the same tem-

perature at all times. However, in a dynamic network, when a cell joins

or leaves the network, the graph changes, and recoloring will be required

to resolve the conflicts that might appear. Recoloring in this case should

involve re-run of the algorithms in a distributed way, with limited or no co-

operation between the cells. For enabling distributed temperature control

in the network, we discuss the following cooperative and non-cooperative

approaches.

• Cooperative global reset message-passing (CMP): When a new cell joins
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the network, it starts with the initial temperature of T0, regardless of

the current network temperature. Any cell that detects a change in

its neighbor relations, re-initializes its temperature to T0, and sends a

temperature reset message to all its neighbors. When a cell receives a

temperature reset message from another cell, it resets its temperature

to the current temperature of that cell, and sends a temperature reset

message to its neighbors. This eventually leads to a network-wide con-

sensus on a temperature.

• Non-cooperative local reset (NCR): There is no explicit cooperation be-

tween the cells in NCR, and no messages are generated. However, cells

are capable of discovering new neighbors through measurements. A cell

re-initializes its temperature to T0 only if it detects a change in its neigh-

borhood. The underlying idea is to recolor only those parts of the graph

which have changed. Because of the colored initial state, most of the

graph would still be conflict-free. Therefore, the propagation of mes-

sages in the network to achieve a common temperature does not occur

in this case, and cells may have different temperatures.

For simulations, a planar graph model of a SCN comprising of 100 cells is
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Figure 3.5. Comparison of simulated annealing variants for coloring dynamic graphs.
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considered. The maximum iterations is set to 1000, and the statistics are

collected over 250 randomly generated network instances. A comparison

of simulated annealing with cooling (SA-cool) and SAFU-cool is given in

Figure 3.5. Here, ψ is the rate at which network changes, where ψ = 0.1

corresponds to fast changes in network topology compared to ψ = 0.01,

and therefore, results in an overall higher number of conflicts. It can

be seen that CMP results in performance deterioration, when compared

to NCR, as the temperature rise throughout the network leads to higher

probability of uphill moves. A direct consequence of this is that cells with

conflicts allow uphill moves with higher probability, whenever network

topology changes. This is counter-productive, as the graph is mostly in a

colored state already, and raising temperature leads to unnecessary uphill

moves. Temperature control by NCR provides an effective alternative,

where a limited number of cells raise their temperature (i.e., reset to T0)

to enable uphill moves, and this happens in the region where a change

in network occurs. The main idea here is to recolor only the sub-graph

that has changed, due to the appearance or vanishing of a cell. Thus, in

the colored parts of the graph, the temperature is zero, and there are no

uphill moves.

3.6 Summary

The SON problems such as PCI assignment and PCC selection can be ef-

fectively modeled as graph coloring problems, which paves the way for ap-

plication of different local search and constraint satisfaction algorithms.

It should be noted that the performance of coloring algorithms as well

as the structure of the underlying graph depends on the level of coop-

eration that exists among cells. Complete constraint satisfaction algo-

rithms involving dedicated message-passing can avoid local minima, and

outperform local search, provided that the number of iterations are suffi-

cient. The same problem is considered in multi-operator networks, where

a key requirement is that inter-operator message-passing is not possible.

Consequently, the graph is asymmetric with directed edges between cells

belonging to different operators, thereby complicating the coloring prob-

lem. The focused variants of distributed local search perform well in such

cases. Moreover, metaheuristics that entail uphill moves such as simu-

lated annealing and its different variants can be applied for coloring both

static and dynamic graphs.
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4. Continuous Optimization Methods
for SON

Utility maximization is a popular approach used for solving network op-

timization problems in a number of areas such as operations research,

economics, and finance. In communication networks, it was popularized

by Kelly’s work [80], and has since been applied for generic distributed

resource allocation problems in different types of networks including ad

hoc networks [40,72], WSNs [33], and orthogonal frequency-division mul-

tiplexing (OFDM) based broadband networks [138]. Its popularity stems

from the fact that it leads to algorithms that are simple, efficient, and dis-

tributed in nature. Thus, it is a model of choice for a systematic design

of SON algorithms for current and future cellular systems, which com-

prise of a large number of small cells deployed randomly [105]. The NUM

framework can be considered an invaluable tool for creating a clean-slate

design of novel protocols, involving features such as on-the-fly optimiza-

tion of network resources [68]. This sort of design approach will allow

provisioning of elastic service for users with diverse QoS requirements,

defined in terms of data rates and service availability [150]. This makes

NUM highly relevant from the perspective of 5G protocol design, espe-

cially for enabling softwarization and NFV [39].

Different approaches from optimization theory can be applied to con-

struct algorithms for distributed NUM [118]. In order to apply the NUM

framework, each user in the network is assigned a utility function, which

reflects its QoS or degree of satisfaction. The sum of utilities of individual

users is often referred to as the network utility, which is maximized un-

der a set of constraints. Examples of utility functions with applications in

wireless networks include functions of the expected data rate, like the α-

fair rate utility function [80, 108]. A complicating factor that often arises

in such problems is the existence of coupling among the utility functions

of users, which leads to non-convexity of the resulting NUM problem. For
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example, in the case of interference-limited wireless networks, the SINRs

of the users are coupled due to mutual interference, which makes the

problem challenging, especially in distributed settings.

Nevertheless, to enable an effective self-organization, the algorithm must

not only be distributed but also involve limited communication overhead

among the cells. Assuming that a communication interface like X2 ex-

ists between adjacent cells, we discuss self-organizing algorithms which

involve an exchange of prices between the cells. Thus, the interactions

among cells constitute an active exchange of information in the form of

dedicated messages, which leads to the solution of NUM problem in a

distributed manner. This systematic approach leads to (at-least) locally

optimal SON algorithms, and enables higher gains compared to other ap-

proaches in which cells make decisions based solely on passive observa-

tions of broadcast messages made by other cells [10]. Typical SON use-

cases that can be addressed using a NUM framework include ICIC, MLB,

CCO, and ES. However, most of the existing work is focused on different

NUM formulations of ICIC problems, such as self-organized fractional fre-

quency reuse through distributed interference coordination [140], power

control and scheduling for interference minimization [77], and heuristic

fractional frequency reuse methods for interference avoidance and coordi-

nation [127]. Furthermore, interference mitigation aimed at distributed

network power minimization and network capacity maximization is con-

sidered in [87]. The MLB and user-association problems are discussed

in [137, 153], and the use of transmit beamforming for interference coor-

dination is covered in [49]. A NUM based joint optimization of resources

over multiple degrees of freedom for interference mitigation in multi-

cell systems is considered in a number of publications including [160],

Publication V, Publication VI, and Publication VII. The existing ICIC

techniques are often categorized as time domain, frequency domain, and

power control techniques [65, 71]. Therefore, an effective way to miti-

gate inter-cell interference is to optimize the allocated resources across

all available degrees of freedom. To this end, we consider NUM problems

involving joint optimization over multiple resources or degrees of free-

dom, where cells choose non-interfering modes of transmission via the

allocation of resources in multiple dimensions (e.g. transmit powers over

frequency carriers and multi-user scheduling weights). This reduces the

mutual interference and leads to an increase in the network utility.

In order to solve the NUM problem in a distributed manner, a dis-
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tributed version of the problem is formalized by decomposing the origi-

nal problem into a number of subproblems, one per cell. The distributed

version of the problem is then solved by a pricing exchange mechanism,

where each cell solves its subproblem while taking into account the prices

received from neighboring cells. Consequently, the individual cells are

able to make intelligent decisions regarding the allocation of resources,

which mitigates the mutual interference. The exact nature of the decom-

position method depends on the structure of the problem, nature of the

utility function, and the constraints. This is elaborated in the following

discussion, which reflects on different approaches that can be used for

designing NUM algorithms that are distributed in nature. The computa-

tional methods discussed here are general, and can be applied to different

distributed resource allocation problems in wireless networks.

The first step towards the design of self-organizing algorithms using

distributed NUM involves reformulation of the original NUM problem as

a distributed problem. This can be achieved by decomposing the original

problem into a number of subproblems, one per cell, which are then solved

iteratively in a synchronous or asynchronous manner. In Publication IV,

network synchronization problem is addressed, in which the NUM can be

readily decomposed, and there are no constraints. Best-response and gra-

dient algorithms are used to solve the resulting NUM. In Publication V

there is a global constraint, and primal/dual decomposition with gradient

search is used to decouple the global constraint. In Publication V, Pub-

lication VI, Publication VII, there are multiple optimization variables.

In Publication VIII there are coupled constraints, whereas in Publication

VI and Publication VII the constraints are local. These are addressed by

distributed methods aiming to find KKT solutions based on greedy and

gradient search.

4.1 Consensus and synchronization problems

Network synchronization is a fundamental issue in cellular systems, which

has ramifications across a number of related radio resource management

problems of prime importance for future wireless networks, e.g., flexi-

ble time division duplexing, coordinated multi-point transmission, and

ICIC [14, 92, 165]. Hot spots comprising of dense deployment of SCNs

are predominantly indoors, where the satellite signals are weak due to

high penetration losses which makes satellite synchronization difficult.
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Thus, distributed run-time network synchronization with minimum net-

work overhead is perceived as a key enabler for indoor 5G small cell con-

nectivity [109]. Frame synchronization in wireless networks is a proto-

typical self-organization problem. In a centralized realization, there are

problems related to conveying timing messages from a central node to

leaf nodes. However, on the algorithmic level, centralized network syn-

chronization is trivial. Complexity in self-organizing solutions is there-

fore, strictly due to the requirement of engineered self-organization. Self-

organizing algorithms for network synchronization are usually based on

neighborhood interactions, in which each cell synchronizes to its neigh-

bors by listening to their transmissions.

Network synchronization problem is considered in Publication IV, where

the main aim of the base stations i ∈ I is to agree on the value of the syn-

chronization variable xi = x̂. For frame/event synchronization, the indi-

vidual synchronization variables can be understood as points on a circle,

represented as phases Φ = [φi . . . φ|I|], where φi ∈ [0, 2π]. In order to apply

NUM approach to the network synchronization problem, the first step is

to define a utility function for each base station (or cell) as follows

Ui(φi,Φj) =
∑
j∈Ni

||φi − φj ||pG, (4.1)

where Ni is the set of base stations in the neighborhood of base station i,

with corresponding phases given by vector Φj . Here p determines the size

of the agreements that are taken into account among the synchronization

variables, and || • ||G is the geodesic distance given by

||φ1 − φ2||G = min (|φ1 − φ2|, 2π − |φ1 − φ2|) . (4.2)

The role of different norms in such utility functions was stressed in [158].

The geodesic norm is the timing difference, or the measure of frame asyn-

chrony between a pair of base stations. The network utility is given by

Usum(Φ) =
∑
i

Ui(φi,Φj). (4.3)

Let us consider a greedy self-organizing approach for maximizing net-

work utility, in which base stations update their phases at discrete time

instants with the following best-response update

φ∗
i = argmin

φ
Ui(φ,Φj). (4.4)

Both synchronous and asynchronous updates are possible with this up-

date rule. However, the synchronous rule may not converge due to oscilla-

tory behaviors induced by the best-response dynamic, in which each point
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on the circle representing a phase jumps to the other side as shown in Fig-

ure 4.1. In contrast to best-response, the following update rule is based

on gradient descent principle, and will result in a small step ε towards the

solution

φ∗
i = [φi + ε∇φi

Usum (Φ)]S , (4.5)

where [•]S represents the projection of the result on the feasible set S �
[0, 2π], and ∇φi

Usum (Φ) is the gradient with respect to φi. It can be seen

that both best-response and gradient descent updates are simple to im-

plement and can enable fully distributed self-organized synchronization

in SCNs. However, depending on the initial state of the network, both of

these methods can get trapped in a local optimum, where although the

network is not synchronized, no local moves can improve synchronicity.

This phenomenon is a fundamental consequence of the interaction of the

topology of the configuration space (a collection of circles in this case), and

the topology of the communication graph of the network.

Figure 4.1. Different update rules for NUM based network synchronization. © 2014
IEEE

Due to the simplicity of the consensus problem, convergence proper-

ties can be investigated in general cases, where the configuration space

is a more generic compact manifold than a circle. Interesting topologi-

cal properties related to the mapping of the communication graph to the

configuration space can be identified. In short, the homotopy classes of

such mappings characterize the possible local minima. For example, if the

communication graph is planar, and the configuration space is a sphere, a

distributed algorithm can find global consensus, if the objective function

is based on minimizing a 2-geodesic norm distance, or a higher geodesic

norm.
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4.2 Primal and dual decomposition

Primal and dual decompositions constitute an important class of decom-

position methods that can enable distributed approaches for network op-

timization, and are applicable to a vast range of problems [118]. For con-

vex problems, both methods perform well and achieve an optimal solu-

tion [142]. Selecting the appropriate decomposition method is an impor-

tant step in the algorithm design procedure and depends on the problem

structure [40]. In Publication V, an application of primal and dual decom-

position for ICIC in a cognitive radio network setting is discussed.

4.2.1 Proportional fair-rate maximization in multi-user
cognitive radio SCNs

Cognitive radio networking techniques are envisaged to play an impor-

tant role in providing high capacity for 5G networks by enabling an effi-

cient use of spectrum. Cognitive radio based technologies have applica-

tions in many paradigms related to future 5G networks, such as HetNets,

D2D communication, and coexistence with other networks [93]. To un-

lock underutilized spectrum to be used for mobile broadband communica-

tion, a number of spectrum sharing scenarios based on primary, licensed,

and unlicensed spectrum sharing models are currently under considera-

tion. Among the licensed modes, the licensed shared access and autho-

rized shared access approaches are highly promising for increasing the

available spectrum under incumbent protection guarantees and regula-

tory control [74]. Incumbent protection comprises mechanisms involving

geographical constraints on the usage of spectrum through a geo-location

database. Thus, efficient use of radio resources to maximize the usage

of the unlocked spectrum within incumbent protection constraints is im-

portant for SCNs. Moreover, the optimization of network-wide resources

should be enabled in a self-organizing manner, without compromising the

potential gains.

In Publication V, the focus is the maximization of network utility in

SCNs, under a network-wide constraint on transmit powers. The maxi-

mization here involves optimization over two degrees of freedom — trans-

mit powers and multi-user scheduling weights. Local and network level

constraints in such NUM problems can be handled effectively by using

primal and dual decomposition methods from optimization theory. The

system model consists of a secondary user SCN comprising of a set of cells
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(or base stations) I. Each user l ∈ Li is assigned a utility function ul,

where Li is the set of users served by base station i.

The secondary user aspect is emphasized through a network level con-

straint
∑

i∈I pi ≤ Pnet, where pi denotes the transmit power of base sta-

tion i and Pnet is the maximum sum transmit power that the network is

allowed to use. For base station i, the local constraint set for the feasible

transmit power is

Pi =
{
pi ∈ R+ : Pmin ≤ pi ≤ Pmax

}
. (4.6)

Intra-cell scheduling of users served by base station i is reflected by the

scheduling weights wi = {wl}l∈Li
, where wl is the fraction of orthogonal

resources that base station i allocates to user l ∈ Li. It is assumed that

each base station distributes all its resources among its users, thus the

local constraint set for scheduling weight allocation can be expressed as

Wi =

⎧⎨⎩wi ∈ R
|Li|
+ :

∑
l∈Li

wl = 1

wl ≥ 0 , l ∈ Li

⎫⎬⎭ . (4.7)

Here, we apply a PF-Rate utility function [80,108], which leads to network-

wide fairness among all the users. The PF-Rate is the logarithm of the

normalized Shannon rate

ul=log (wl log (1+γl)) , (4.8)

where γl =
pi hi,l

Il+N0
is the SINR that user l (served by base station i) ex-

periences in downlink, and hi,l is the channel power gain between base

station i and user l, which is assumed to be frequency-flat. The interfer-

ence power and the additive white Gaussian noise power experienced by

user l are given by Il =
∑

j �= i pj hj,l and N0, respectively. The utility of

base station i is given by

Ui (p,wi)=
∑
l∈Li

ul. (4.9)

The aim is to find the transmit power and multi-user scheduling weight

allocations of all base stations that maximizes the network utility under

the total network power constraint Pnet. To this end, the network level

optimization problem can be formulated as

maximize
∑

i∈I Ui (p,wi)

p,W

subject to
∑

i∈I pi ≤ Pnet,

pi ∈ Pi, wi ∈ Wi, i ∈ I,

(4.10)
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where W = [w1 . . .w|I|] comprises of scheduling weights of all the users in

the SCN. This is a non-convex problem for generic Ui, as the SINRs of the

receivers are coupled. However, it is convex for the PF-Rate utility con-

sidered here [98]. Note that in frequency-selective channels, this model

would naturally generalize to the multi-channel version of the power al-

location problem, which is non-convex [72]. Next, we apply the decompo-

sition procedure to formulate a pricing algorithm for finding an optimal

solution to (4.10) in a distributed way. We consider primal decomposi-

tion [118], for solving the optimization over p. The |I| scheduling weight

optimization subproblems, one per base station, can be solved indepen-

dently of p. Thus, the optimization problem (4.10) can be solved using

a two level optimization procedure. At a lower level, with p fixed, the

scheduling weight optimization subproblem in all cells i ∈ I, becomes

maximize Ui (wi)

wi

subject to wi ∈ Wi,

(4.11)

which is convex and can be solved at each base station by assigning equal

values to all wl. For updating the variable p, we have a master problem

for all i ∈ I, given by

maximize Ui (p)

p

subject to
∑

i∈I pi ≤ Pnet, pi ∈ Pi.

(4.12)

The power vector p is the complicating variable that couples the cells both

via the utility functions and the constraints. There is a network level con-

straint on the powers, which makes the problem more challenging than

the conventional distributed power control problem [72]. In Publication V,

it is erroneously stated that p and W are decoupled by using the decom-

position. However, for a more generic utilty function, the decomposition

would indeed decompose W from the master problem as well. In that

case, the overall problem would not be convex [98].

We devise a pricing algorithm to solve the optimization over p by an it-

erative descent method. To this end, the network utility can be expressed

as

Usum(p,W) = Ui (p,wi) +
∑

j �= i Uj (p,wj) . (4.13)

Differentiating with respect to pi we have

Di =
∂Usum(p,W)

∂pi
=

∂Ui (p,wi)

∂pi
+
∑
j �= i

∂Uj (p,wj)

∂pi
. (4.14)
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Let us define the following terms as power benefit and power price, re-

spectively
πi,i = ∂Ui(p,wi)

∂pi
i ∈ I,

πj,i =
∂Uj(p,wj)

∂pi
i, j ∈ I, i �= j.

(4.15)

Note that the power price indicates the negative effect that an increase

in transmit power of base station in cell i has on utility of cell j. By ex-

changing power prices, the cells know how much interference they are

causing to each other, and can cooperatively maximize the total utility of

the network over their respective transmit powers. In absence of tempo-

ral changes in the channels, the optimal scheduling weight allocation is

the Round Robin allocation, in which all the users get an equal share of

the resources. The optimization over p is carried out using a distributed

coordinate descent method, with asynchronous and periodic updates. In

a given iteration n, each base station i performs the updates at a unique

time instant ti[n]. It receives power prices and Dj from the base sta-

tions j �= i, and calculates its Di. In the next step, it selects a base sta-

tion j∗ which can increase the network utility most. If D∗
j > Di, it sends a

power increase message to base station j∗, while reducing its own power

so that the network power constraint is not violated.

It is also possible to apply the dual decomposition principle in this case,

which leads to the same solution. However, the dual decomposition al-

gorithm requires an extremely small stepsize, and therefore takes a sub-

stantially large number of iterations to converge. For performance analy-

sis, a SCN network comprising of 12 base stations and 12 users deployed

inside a multi-story WINNER office building is simulated [117]. A com-

parison of both algorithms in terms of user data rates is shown in the

Figure 4.2. Here, the baseline case is the fixed power allocation, in which

all the base stations have the same transmit power. The primal and dual

decomposition algorithms reach the same solution, which is significantly

better than the baseline solution. Moreover, the primal decomposition

algorithm is also simulated without pricing (only with benefits), which

results in a moderate reduction in performance gains.

In the cognitive radio literature, a total interference constraint has been

widely considered [60,81,84,120]. The power constraint as such, is similar

to a total interference constraint, and the same algorithms would apply

for the power distribution problem, with suitable modifications. In [60],

Max-Rate utility function is considered with power optimization. When
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Figure 4.2. Comparison of primal and dual decomposition based algorithms in a cognitive
radio SCN. © 2014 IEEE

addressing total interference, one needs additional channel state infor-

mation between the secondary transmitters and primary receivers. On

the algorithmic level, our approach differs from [81], in that we present

a completely distributed solution to the primal problem under network-

wide constraint on total transmit power. Moreover, we consider coupled

utility functions, as well as coupled constraints, whereas in [84] only the

(interference) constraints are coupled. A game theoretical approach is

employed in [120], for a Max-Rate utility function.

4.3 Decomposition based on KKT conditions

A common method for solving constrained optimization problems is through

the direct solution of so-called KKT conditions, which essentially are equa-

tions guaranteeing the vanishing of the gradient of the network utility. In

the context of SON, we are interested in distributed solutions. The first

step is to formulate the KKT conditions of the original NUM problem,

followed by the formulation of distributed problem with the same KKT

conditions. With the distributed formulation, the original problem is de-

composed into a set of subproblems which are then solved in an iterative

manner. The details are explained next, in the context of ICIC problems

considered in Publication VI, Publication VII, and Publication VIII.
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4.3.1 Rate and proportional fair-rate maximization in
multi-user multi-carrier SCNs

Publication VI extends the previously discussed system model to a multi-

carrier SCN model with multiple users per cell. The system bandwidth

B is divided into |K| equal-size carriers. It is assumed that the maxi-

mum transmit power Pmax of all base stations is the same, and can be

distributed over K carriers such that
∑

k∈K pki ≤ Pmax for i ∈ I, where

0 ≤ pki ≤ Pmax is the power that base station i uses on carrier k. Likewise,

intra-cell scheduling decisions are per carrier k ∈ K, and are reflected by

the scheduling weights wk
l that base station i allocates to each associated

user l ∈ Li. It is assumed that each base station i distributes its resources

of K carriers among its active users, fulfilling
∑

l∈Li
wk
l = 1 for k ∈ K. The

aim is to maximize the system utility which is the sum

Usum (P,W) =
∑
i∈I

Ui (P,Wi) , (4.16)

of individual cell utilities. Here P and W comprise of the transmit powers,

and scheduling weights of all base stations in the system, respectively,

while

Ui (P,Wi)=
∑
l∈Li

ul (4.17)

is the utility of cell i, which is the sum of the individual utilities of the

users l ∈ Li served by base station i. Moreover, Wi consists of scheduling

weights of base station i. We consider the generic α-fair rate utility

ul (rl) =

⎧⎪⎨⎪⎩
1

1−α (rl)
1−α α �= 1

log (rl) α = 1
, (4.18)

where the user rate rl is simply taken as the sum of the Shannon rates of

the user over K carriers, with interference treated as Gaussian noise

rl =
∑
k∈K

B

|K|w
k
l log

(
1 + γkl

)
. (4.19)

Here γkl denotes the SINR that user l experiences on carrier k. It can

be seen that with an α-fair formulation, α = 0 gives the rate maximiz-

ing (Max-Rate) utility function and α = 1 corresponds to the PF-Rate

utility function. The idea is to maximize the network utility over trans-

mit powers and scheduling weights of all the users in the network. To this
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end, the NUM problem is given by:

maximize
∑

i∈I Ui (P,Wi)

P,W

subject to
∑

k∈K pki ≤ Pmax, pki ≥ 0,∑
l∈Li

wk
l = 1, wk

l ≥ 0.

(4.20)

Let us define the term πk
j,i = −∂Uj(P,Wj)

∂pki
as the power price on carrier k

that cell j reports to cell i. Then, it can be seen that the KKT conditions

of (4.20) are the same as the KKT conditions of the following distributed

problem, which comprises of |I| subproblems, one for each cell:

maximize Ui (pi,Wi)−
∑

k∈K pki

{∑
j �=i π

k
j,i

}
pi,Wi

subject to
∑

k∈K pki ≤ Pmax, pki ≥ 0,∑
l∈Li

wk
l = 1, wk

l ≥ 0.

(4.21)

Each cell solves its subproblem and reports the updated prices to other

cells. The updates are done in an asynchronous and periodic way, where

a base station of a cell updates once in a given iteration at a unique time

instant. In an iteration n, each base station i performs the updates at a

unique time instant ti[n]. First, a base station solves its own subproblem

and calculates the power and scheduling weights. This is followed by a

price update step, in which new prices are reported to other cells. Results

shown in Figure 4.3, correspond to a SCN comprising of 4 base stations

deployed indoors in a building with WINNER office characteristics [117].

Each base station is configured with a closed subscriber groups in its cor-

responding coverage area. In the coverage area of a base station, the

probability of having a visiting user belonging to a different closed sub-

scriber group is 20%. Four different cases related to power and schedul-

ing weight optimization are compared for the PF-Rate utility. The CDFs

of the experienced user data rates are plotted for different algorithms.

In the baseline case, both power allocation (PA) and scheduling weights

(SCH) are fixed, i.e. (F-PA + F-SCH). This is followed by adaptive power

allocation combined with fixed scheduling weights (A-PA + F-SCH). A-PA

yields a higher mean data rate per user, and especially improves the sit-

uation of the users in low SINR region. The CDFs for other combinations

namely fixed power and adaptive scheduling (F-PA + A-SCH), and adap-

tive power and adaptive scheduling (A-PA + A-SCH) are also shown. It

is worth noting that (F-PA + A-SCH) is the baseline solution provided by
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LTE/LTE-A network in absence of ICIC functionality. Joint allocation of

power and scheduling weights results in a substantial improvements in

the data rates of users in low SINR regime. This is due to the fact that the

PF-Rate utility enables network-wide fairness among the users in terms

of data rates.
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Figure 4.3. Comparison of KKT-based algorithms in terms of user data rates in a multi-
user multi-carrier SCN. © 2012 IEEE

The stepsizes used to update the optimization variables power and schedul-

ing weights are denoted by βP and βW , respectively. The impact of step-

sizes on the probability of convergence is shown in Figure 4.4, for both

Max-Rate and PF-Rate utility functions. In the case of Max-Rate util-

ity, the algorithm converges with very high probability for all four step-

sizes (0.25, 0.5, 0.75, 1), with βP = βW . It can be seen that the PF-Rate

utility is more sensitive to the stepsize, with large stepsizes essentially

leading to problems in convergence. The complementary curve in Fig-

ure 4.5 shows the average number of iterations (over converged network

instances) against the stepsizes. Here, Max-Rate benefits from larger

stepsizes in that iterations required for convergence are reduced, with no

significant impact on convergence probability. However, this trend can-

not be observed for the PF-Rate utility, where (on average) the iterations

required for convergence do not differ significantly.
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Figure 4.4. Impact of stepsize on the convergence probability.

4.3.2 Rate and proportional fair-rate maximization in
multi-user multi-carrier MIMO SCNs

Publication VII extends the developed multi-user multi-carrier SCN model

for MIMO systems, and aims for joint optimization over multiple resources

in the downlink. This involves a joint solution of the following three re-

lated subproblems: 1) transmit power allocation, 2) transmit precoder al-

location, and 3) multi-user scheduling weights allocation. To the best of

our knowledge, the joint optimization over these three parameters has not

been addressed in the literature before.

In order to incorporate transmit precoders in NUM problem formula-

tion, the transmit covariance matrix of base station i on carrier k is split

as pkiQ
k
i , where pki is the transmit power on carrier k, and Qk

i is the nor-

malized covariance matrix which is positive semi-definite Qk
i � 0, with

Tr
(
Qk

i

)
= 1. The carrier specific covariance matrices of base station i can

be stacked to a matrix Qi =
[
Q1

i . . .Q
k
i . . .Q

|K|
i

]
, and all covariance ma-

trices in the network are stacked to a larger matrix Q. The optimization

over Q is considered as a network-wide precoder design problem, which

has to be solved jointly with optimizations over P and W. Thus, the utili-

ties of cells are coupled through both P and Q. This means that the utility

of cell i will be affected by any change in the power or the precoder alloca-

tion of a neighboring base station j �= i. The utility of cell i, which is the

46



Continuous Optimization Methods for SON

0.25 0.5 0.75 1
Stepsize

0

10

20

30

40

50

60

70

80

90

100

Ite
ra

tio
ns

 fo
r c

on
ve

rg
en

ce

Max-Rate utility
PF-Rate utility

Figure 4.5. Impact of stepsize on the iterations required for convergence.

sum of utilities of the users served by base station i, can be expressed as

Ui (P,Q,Wi)=
∑
l∈Li

ul, (4.22)

where ul is the utility of user l chosen as α-fair rate utility. The achievable

rate of user l in cell i is given by

rl =
∑
k∈K

B

|K|w
k
l log

(
det

(
I+ Zk

i,l

(
Xk

i,l

)−1
))

, (4.23)

where Zk
i,l is defined as

Zk
i,l = pkiH

k
i,lQ

k
i

(
Hk

i,l

)H
. (4.24)

The noise-plus-interference covariance matrix is

Xk
i,l =

(
Rni,l

+
∑

j �=i p
k
jH

k
j,lQ

k
j

(
Hk

j,l

)H
)
, (4.25)

where Rni,l
is the noise covariance, and Hk

j,l is the channel matrix from

base station j to user l on carrier k. For ease of presentation, we define

Mk
i,l = I+ Zk

i,l

(
Xk

i,l

)−1
. (4.26)
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The NUM problem that we aim to solve is then given by

maximize
∑

i∈I Ui (P,Q,Wi)

P Q W

subject to Tr
(
Qk

i

)
= 1, i ∈ I, k ∈ K,

Qk
i � 0, i ∈ I, k ∈ K,∑

l∈Li
wk
l = 1, i ∈ I, k ∈ K,∑

k∈K pki ≤ Pmax, i ∈ I,∑
k∈K pki ≥ Pmin, i ∈ I,

pki ≥ 0, i ∈ I, k ∈ K,

wk
l ≥ 0, i ∈ I, k ∈ K, l ∈ Li.

(4.27)

The objective function is the sum of the individual utilities of all users

served by the base stations in the network, and the optimization is carried

out over transmit powers, transmit precoders, and scheduling weights.

The sum of scheduling weights on each carrier equals 1, and the sum of

base station power over carriers is constrained by a maximum and min-

imum transmit power limit, given by Pmax and Pmin, respectively. Also,

there are non-negativity constraints on powers and scheduling weights.

It is well-known that this is a non-convex problem in both transmit power

and covariance matrices, and therefore difficult to solve, even in a central-

ized setting [72] [154]. Following the decomposition procedure detailed

in [72], we formulate a distributed problem which has same KKT condi-

tions as the network level optimization problem (4.27)

maximize si

pi,Qi,Wi

subject to Tr
(
Qk

i

)
= 1, k ∈ K,

Qk
i � 0, k ∈ K,∑

l∈Li
wk
l = 1, k ∈ K,∑

k∈K pki ≤ Pmax,∑
k∈K pki ≥ Pmin,

pki ≥ 0, k ∈ K,

wk
l ≥ 0, k ∈ K, l ∈ Li,

(4.28)

where si is a surplus function defined as

si = Ui −
∑

k∈K pki

(∑
j �=i π

k
j,i

)
−∑

k∈K Tr
(
Qk

i

∑
j �=iΠ

k
j,i

)
. (4.29)

Note that πk
j,i and Πk

j,i are the prices related to the transmit power

and transmit precoder optimization subproblems, respectively. The power
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price πk
j,i takes the following form

πk
j,i = −∂Uj

∂pki

=
∑

l∈Lj
rl

−αwk
l Tr

((
Mk

j,l

)−1
Zk
j,lV

k
j,l

)
, j �= i,

(4.30)

where Vk
j,l =

(
Xk

j,l

)−1
Hk

i,lQ
k
i

(
Hk

i,l

)H (
Xk

j,l

)−1
. Similarly, the precoder

price Πk
j,i is defined as

Πk
j,i = − ∂Uj

∂Qk
i

=
∑

l∈Lj
rl

−αwk
l Ṽ

k
j,l, j �= i,

(4.31)

where Ṽk
j,l =

(
Hk

i,l

)H(
Xk

j,l + Zk
j,l

)−1
Zk
j,l

(
Xk

j,l

)−1
Hk

i,l. These terms can be

explicitly calculated for Max-Rate (α = 0) and PF-Rate (α = 1) utilities

under consideration. The power allocation and precoder allocation prob-

lems couple the decisions between cells, whereas the multi-user schedul-

ing does not directly affect the interference experienced in neighboring

cells, but it does affect the price of interference reported to the adjacent

cells. Each base station i ∈ I solves its individual subproblem, which

involves joint optimization over pi, Qi, and Wi. Following the approach

presented in [41], it is possible to separate the joint optimization for each

base station i ∈ I, so that the optimizations over pi, Qi, and Wi are car-

ried out separately.

Different update rules can be used to solve individual subproblems at

each base station. For example, the gradient of the total utility of the net-

work can be calculated using the power and precoder prices that each base

station receives from the rest of the base stations. Therefore, it is possi-

ble to formulate a Gauss-Seidel gradient projection (GSGP) algorithm for

optimization of both transmit powers and precoders. In this section, we

consider Non-Linear Gauss-Seidel (NLGS) algorithm, which is another

generic approach used for solving the non-linear optimization problems

in an iterative manner. It involves each base station taking a fixed step

towards the solution of its individual optimization subproblems in every

iteration, where the effect on other cells is taken into account by gradient

based prices. For details on the background of concept see, e.g. [28], which

discusses algorithms that are based on full non-linear information. We

consider price exchange, where in a given iteration round, each base sta-

tion updates its powers, precoders, and scheduling weights while taking

into account the prices from other base stations. This is followed by an

update of power and precoder prices.
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For simulations, we consider a high interference scenario comprising of

|I| = 4 small cell base stations and |L| = 12 users, uniformly distribu-

ted on the surface of a circular region with radius R = 15 m. Further-

more, the base stations are distributed randomly for each network in-

stance with a minimum inter-base station separation of dmin (bs−bs) = 5 m.

Similarly, the users are also deployed randomly with a minimum distance

to the closest base station dmin (ms−bs) = 5 m. The cell association of each

user is based on received signal power from base station in the down-

link. Under the assumption that all base stations have the same trans-

mit power, each user is served by the base station from which it sees the

lowest path-loss attenuation. The system bandwidth is B = 10 MHz,

and is divided equally into |K| = 2 non-contiguous carriers with center

frequency 3.5 GHz. The antenna heights at base stations and users are

hbs = 10 m and hms = 1.5 m, respectively, and the number of transmit and

receive antennas is NT = NR = 2. The distance dependent path-loss and

shadow fading parameters are according to the urban micro-cell scenario

specified in [102].

To analyze the performance, we consider NLGS over different combina-

tions of inter-cell and intra-cell resource allocation strategies. The statis-

tics are gathered over 100 network instances. For a given instance, each

algorithm is run until convergence is achieved or a maximum number

of iterations is reached. The stopping condition for convergence is that

the change in total network utility is less than 0.1% in successive itera-

tions. The maximum number of iterations is 250. However, with a proper

stepsize for each resource, convergence can be easily observed in a much

smaller number of iterations in all cases. The stepsizes for updating the

optimization variables are set as βP = βQ = 0.7, and βW = 1. This step-

size is chosen to obtain a balance between obtained convergence probabil-

ity, and the number of iterations required for convergence.

A comparison of Max-Rate and PF-Rate utilities in terms of network

data rate for the NLGS is given in Figure 4.6. The baseline case (Self)

is the fully non-cooperative or selfish scheme in which no prices are ex-

changed, where Self-MR and Self-PF are the variants for Max-Rate (MR)

and PF-Rate (PF) utilities, respectively. It can be seen that Self-MR signif-

icantly outperforms Self-PF in terms of network data rate. This is because

Max-Rate utility function aims at maximizing the network data rate di-

rectly over all resources. On the other hand, PF-Rate maximizes the log-

arithmic function of rate to ensure fairness among the users at a network
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Figure 4.6. Comparison of KKT-based algorithms in terms of network data rate in a
multi-user multi-carrier MIMO SCN.

level, taking into account all allocations across all resources. Note that in

Self-MR and Self-PF, no pricing information is exchanged; therefore, sur-

plus maximization steps in NLGS algorithms are done with power and

precoder prices set to zero. This enables us to quantify the gain achiev-

able by the use of pricing for powers (P) and precoders (Q). First, partially

cooperative pricing alternatives like P(MR) and Q(MR) are considered, in

which the pricing is exchanged over one degree of freedom only. Thus,

P(MR) means pricing is used for surplus maximization in the power allo-

cation step of NLGS, while the surplus maximization for precoder alloca-

tion step is done without prices. Similarly, the converse case is Q(MR), in

which cooperation or pricing exchange takes place over the precoder only,

where the power allocation step is carried out without pricing. The fully

cooperative case happens when the resources are optimized jointly (Joint),

with prices exchanged over both power and precoders. All four variants

are considered for both utility functions. Note that in all these cases, the

scheduling allocation is always carried out without cooperation, as it is an

intra-cell resource allocation problem and does not require any pricing ex-

change. In all cases, the MR variants outperform their PF counterparts.

The net gain in terms of network data rate of the pricing (Joint) over the

selfish case (Self) is around 40% for both utility functions. A complemen-

tary plot of user data rates is illustrated in Figure 4.7, where a significant

gain can be observed for low-percentile users (highlighted in the inset) in
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Figure 4.7. Comparison of KKT-based algorithms in terms of user data rates in a multi-
user multi-carrier MIMO SCN.

the case of PF. Thus, the main advantage of PF is a high degree of fairness

in terms of data rates of individual users. The difference is especially pro-

nounced towards the lower end of the CDF, where MR variants exhibit a

large outage.

4.3.3 Power minimization in multi-carrier SCNs

Publication VIII considers application of KKT based decomposition to an

alternative formulation of the multi-carrier power allocation problem for

ICIC. The aim is to minimize the total transmit power subject to a rate

constraint per user. The authors of [119] address this problem using non-

cooperative game theory, and in [114] a generalized approach is presented,

where each transmitter minimizes its sum power over carriers, weighted

by a fixed power price function that is different for each spectral portion

of the transmit signal bandwidth and does not depend on the power allo-

cation on other links. In [123], successive convex approximation is used

for handling the constraints, and a primal decomposition method is em-

ployed to decouple the optimization among base stations in a multi-cell

multi-user MIMO system.

The method we discuss here leads to a dynamic pricing algorithm for

power minimization in the network, subject to a rate constraint for each

user. For simplicity, it is assumed that there is a single user per cell.

Thus, |Li| = 1 and wk
l = 1, for l ∈ Li. The aim is to find the power
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allocation of all base stations over all carriers P = [p1 · · ·pi · · ·p|I|] with

pi = [p1i . . . p
k
i . . . p

|K|
i ], such that each user is able to achieve the target rate

Ri, while the sum power over all base stations is minimized. To this end,

the NUM problem can be formulated as follows

minimize
∑

i∈I
∑

k∈K pki

P

subject to rl≥ Ri,

pki ≥0, k ∈ K, l ∈ Li.

(4.32)

This is a non-convex problem, thus finding a global optimum is prohibitively

complex in practice, as it would require a centralized control and complete

information regarding power allocations and channel power gains of all

base station to user links.

We proceed with a distributed formulation, and define πk
j,i as the power

price from cell j to cell i on carrier k as

πk
j,i = −λj

∂rkl
∂pki

= λj

pkj

(
γkj

)2
hki,j

(1 + pkj γ
k
j )h

k
j,j

l ∈ Lj , (4.33)

where λj is a Lagrange multiplier, and rkl denotes the fraction of the data

rate that user j gets from carrier k. In this case, the SINR γkj is normalized

by pkj for notational convenience. The prices πk
j,i reflect the marginal loss

in data rate that cell j experiences as a result of increase in power on

carrier k by base station i. Application of the decomposition procedure

yields the following distributed problem with the same KKT conditions

as (4.32)
minimize

∑
k∈K ρki p

k
i

pi

subject to rl =
∑

k∈K log
(
1 + pki γ

k
i

) ≥ Ri,

pki ≥ 0, k ∈ K, l ∈ Li,

(4.34)

where

ρki = 1 +
∑
j �=i

πk
j,i (4.35)

is a weighting coefficient comprising of power prices on carrier k.

In each cell, the base station tries to minimize the weighted sum of its

powers, where the weights comprise of the prices reported by interfer-

ing cells. The weights reflect the strength of interference coupling among

cells on different carriers. Thus, the larger the weight coefficient in a

given carrier, the smaller the power that the base station should allocate

to it, to minimize its impact on the achievable data rate of neighboring
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Figure 4.8. Comparison of KKT-based power minimization algorithms in a multi-carrier
SCN. © 2013 IEEE

cells. Note that if we set ρki = 1 for all k ∈ K, the optimization prob-

lem in (4.34) reduces to non-cooperative optimization of power per trans-

mitter, which can be solved in a distributed way with the Fixed Margin

IWF (FM-IWF) algorithm [119,159], without any exchange of prices. The

optimal response of cell i when the rest of the cells keep their power profile

constant is similar to the well-known water-filling power allocation, but

in this case it includes the weighting coefficients ρki that depend on the

prices that neighboring cells report. Each base station updates its powers

and prices on a unique time ti[n], where n is the iteration index. For the

power update, each base station i takes into account the prices reported

by neighboring cells first, constructing the power weighting coefficients

per carrier and solving its individual optimization problem (4.34). This is

followed by a price update step, where base station i computes the prices

that corresponds to the updated power allocation profile pi, and sends this

information to the base stations j �= i.

For simulations, we consider a SCN scenario with |I| = 4 closed-access

base stations, each serving a single user, deployed in a single-story build-

ing. The system bandwidth is equally divided into |K| = 4 carriers. Each

base station is serving a primary coverage area, which consists of the

section of the building that is closest to that base station. The users

belonging to the closed subscriber groups are served by the correspond-
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ing base station irrespective of their location. The location of the users

is uniformly distributed on the primary coverage area of their own cell

with probability 1 − pc, and uniformly distributed on the primary cover-

age area of the other cells with probability pc. Note that by increasing pc,

the probability of high co-channel interference grows as well. Each cell

in the system attempts to reach a given target data rate with minimum

transmit power. The network pole capacity for a given network instance is

defined as the maximum rate that an algorithm can provide to all users

simultaneously [135]. In Figure 4.8, the CDFs of network pole capacities

of the proposed algorithm and FM-IWF are compared for three different

values of visiting probability pc. The statistics are gathered over 1000 ran-

dom network instances. For each instance, both algorithms are run with

the given set of target rates and the largest feasible target rate is consid-

ered as the pole capacity for that instance (which may depend on initial

conditions). The criteria for convergence is that in successive iterations,

relative change in powers is less than 1% for all carriers in all cells, and

the maximum difference between rates of individual users and the target

rate is less than 1%. A rate is considered infeasible if the convergence

conditions are not met within 500 iterations. The considered convergence

criteria has an impact on the numerical results related to convergence. To

reduce the number of iterations for convergence, these numbers may be

relaxed. The comparison of CDFs given in Figure 4.8 clearly shows that

the proposed pricing algorithm can attain higher target rate than FM-

IWF. For instance, when pc = 5%, the median network pole capacity is of

the order of 5.5 bps/Hz, as compared to 4.1 bps/Hz for FM-IWF. A similar

trend ensues when pc is set to higher values, but the network pole capacity

drops as expected, because of higher cross-interference among cells.

4.4 Summary

In this chapter, the focus is on continuous optimization methods that can

be employed to solve a number of SON problems such as network syn-

chronization and ICIC. Network utility maximization framework is used

to design distributed pricing algorithms for these problems. The utility is

a function of optimization variable, which reflects the satisfaction level or

QoS of a user, and is chosen according to the network level objective. The

core idea is to formulate a distributed version of the NUM problem, by

decomposing the original problem into a number of subproblems, one per
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base station, which are then solved distributively, in an iterative manner.

When the utility functions are coupled, prices from other cells are taken

into account, for solving the subproblems. A price reflects the effect of

change in the resource allocation of a given cell, on the other-cell utility.

Resource allocation algorithms based on price exchange mechanism lead

to significant gains over selfish and non-cooperative schemes.

The concept of decomposition is introduced using network synchroniza-

tion problem, in which there is no coupling among the utility functions. In

such cases, exchange of prices is not required. In more complicated NUM

problems, e.g. downlink resource allocation, the utility functions are cou-

pled, and an exchange of prices results in significant gains over selfish and

non-cooperative schemes. It is worth noting that NUM framework allows

joint optimization over multiple resources. Exchange of prices over these

multiple degrees of freedom results in further performance improvement.

Furthermore, the selection of decomposition procedure, and the algorithm

design often depends on the structure of the NUM problem.
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5.1 Conclusions

An efficient utilization of network resources is pivotal for meeting the

ever-increasing and diverse QoS demands of users, while minimizing the

CAPEX/OPEX, in current as well as future mobile cellular networks. En-

abling it in ultra-dense small cell and HetNet deployment scenarios ne-

cessitates the use of SON algorithms, which have proven highly success-

ful in contemporary cellular networks such as LTE/LTE-A. In this thesis,

the core idea is to develop a network optimization approach towards al-

gorithm design for enabling self-organization in SCNs. Different math-

ematical models from discrete and continuous optimization theory have

been studied to develop distributed algorithms for different SON prob-

lems, identified by industry and standardization bodies. In discrete op-

timization models, graph coloring algorithms based on local search and

complete algorithms with message-passing can be effectively used to solve

SON problems with constraints on logical degrees of freedom. Next, the

focus is on the SON problems which can be modeled as continuous net-

work optimization problems. For such problems, a NUM framework can

be applied in conjunction with different decomposition methods which

lead to distributed pricing algorithms. The pricing algorithms involving

joint optimization over all available degrees of freedom in the network

are not only useful for optimization of existing networks, but can enable

design of new, flexible and optimizable protocols for future cellular net-

works. Exchange of dedicated information among cells results in substan-

tially better performance and faster convergence, as compared to fully

distributed solutions. When the constraints on the variables are local, di-

rect distributed solution of KKT equations can be obtained, with limited
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message-passing. When there are global constraints, more involved de-

composition methods such as primal and dual decompositions have to be

used.

We conclude that discrete network optimization models based on col-

oring undirected and directed conflict-graphs, and the continuous mod-

els such as NUM emerge as useful mathematical tools pertinent to self-

organization problems in SCNs. The discussed approaches are effective

in designing SON algorithms for a wide range of SON problems relevant

to future mobile networks.

5.2 Future work

The proposed methods entails a generic framework that can be used to de-

sign network capable of meeting highly diverse requirements of 5G use-

cases which includes massive broadband, massive machine communica-

tions, and mission critical communications. In this work, the main focus

is on massive broadband, i.e. maximizing throughput or utility of the net-

work through resource allocation over multiple degrees of freedom. The

proposed NUM framework can also be extended to machine-type commu-

nications. Mission critical communications involves constraints related to

network reliability, availability, and latency, and massive machine com-

munications require a very high number of devices with stringent con-

straints in terms of cost and power. The developed first-principles ap-

proach based on NUM can easily be extended to incorporate such con-

straints. Thus, network can be designed as an elastic service optimizing

overall resources jointly, and meeting the requirements of users. Some

work in this direction has been presented in [150], for a generic network

model. From a 5G perspective, the NUM framework is also useful for op-

timizing resource allocation in the context of NFV [39,77], and SDN [91].

The core issue is how the continuous NUM problems or discrete net-

work optimization problems are solved for enabling self-organization, es-

pecially for mission critical and massive machine 5G networks. In this

regard, an interesting research direction is to generalize towards network

gossiping which focuses on distributed communication and computation

through network diffusion, subject to the cost of communication and the

network connectivity constraints. Gossiping algorithms are a powerful

tool for realizing emergent behavior, even with simple computation and

limited communication overhead between nodes [48]. Minimizing the
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data and information to be exchanged, and formulating the dissemination

mechanism among energy-constrained nodes is also a relevant problem.

Graph theory proves to be an invaluable tool in this case for modeling the

communication and connectivity constraints among the nodes.

Another exciting and challenging avenue for future research is to char-

acterize the convergence properties of self-organizing algorithms, espe-

cially when each network node has limited information regarding the

complete network state.

Investigating the issues discussed above in dynamic network topologies

is another prolific direction for future work. The idea would be to inves-

tigate the impact of random changes in the network topology (i.e. nodes

joining and leaving the network), through the application of a stochastic

NUM framework [155]. Distributed stochastic and robust optimization

theory is of due importance in this regard, as many parameters in real

networks are time-varying, unknown, or based on inaccurate measure-

ments and estimates [151]. Furthermore, understanding trade-offs be-

tween the level of information exchange and performance metrics, such as

robustness, speed of convergence, network throughput, reliability, avail-

ability and latency, is also of great significance from the perspective of an

overall efficient network architecture [68,104].

Finally, there are SON problems that can be modeled through both

discrete and continuous network optimization models. Identifying these

problems and analyzing the interplay between discrete and continuous

optimization models, as well as associated theoretical and algorithmic is-

sues is also of notable interest.
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Errata

Publication V

It is erroneously stated that p and W are decoupled by using the decom-

position. However, for a more generic utility function, the decomposition

would indeed decompose W from the master problem as well. In that

case, the overall problem would not be convex [98].
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