1,850 research outputs found

    Cell Selection in Wireless Two-Tier Networks: A Context-Aware Matching Game

    Full text link
    The deployment of small cell networks is seen as a major feature of the next generation of wireless networks. In this paper, a novel approach for cell association in small cell networks is proposed. The proposed approach exploits new types of information extracted from the users' devices and environment to improve the way in which users are assigned to their serving base stations. Examples of such context information include the devices' screen size and the users' trajectory. The problem is formulated as a matching game with externalities and a new, distributed algorithm is proposed to solve this game. The proposed algorithm is shown to reach a stable matching whose properties are studied. Simulation results show that the proposed context-aware matching approach yields significant performance gains, in terms of the average utility per user, when compared with a classical max-SINR approach.Comment: 11 pages, 11 figures, Journal article in ICST Wireless Spectrum, 201

    Symbiotic and sensitivity-aware architecture for globally-optimal benefit in self-adaptive cloud

    Get PDF
    Due to the uncertain and dynamic demand for Quality of Service (QoS) in cloud-based systems, engineering self-adaptivity in cloud architectures require novel approaches to support on-demand elasticity. The architecture should dynamically select an elastic strategy, which optimizes the global benefit for QoS and cost objectives for all cloud-based services. The architecture shall also provide mechanisms for reaching the strategy with minimal overhead. However, the challenge in the cloud is that the nature of objectives (e.g., throughput and the required cost) and QoS interference could cause overlapping sensitivity amongst intra-and inter-services objectives, which leads to objective-dependency (i.e., conflicted or harmonic) during optimization. In this paper, we propose a symbiotic and sensitivity-aware architecture for optimizing global-benefit with reduced overhead in the cloud. The architecture dynamically partitions QoS and cost objectives into sensitivity independent regions, where the local optimums are achieved. In addition, the architecture realizes the concept of symbiotic feedback loop, which is a bio-directional self-adaptive action that not only allows to dynamically monitor and adapt the managed services by scaling to their demand, but also to adaptively consolidate the managing system by re-partitioning the regions based on symptoms. We implement the architecture as a prototype extending on decentralized MAPE loop by introducing an Adaptor component. We then experimentally analyze and evaluate our architecture using hypothetical scenarios. The results reveal that our symbiotic and sensitivity-aware architecture is able to produce even better global benefit and smaller overhead in contrast to other non sensitivity-aware architectures

    Middleware Technologies for Cloud of Things - a survey

    Get PDF
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    Middleware Technologies for Cloud of Things - a survey

    Full text link
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    An optimal data service providing framework in cloud radio access network

    Get PDF
    Much work has been conducted to design effective and efficient algorithms for quality of service (QoS)-aware service computing in the past several years. The wireless mobile computing and cloud computing environments have brought many challenges to QoS-aware service providing. Mobile cloud computing (MCC) and cloud radio accessing networks (C-RANs) are the new paradigms arising in recent years. This work proposes a wireless data service providing framework in C-RAN aiming to provide data service in C-RAN by a more efficient way. The efficiency is measured by cost with time constraint. An abstract formal model is built on the proposed framework, and the corresponding optimal solution is deduced theoretically using queuing theory and convex optimization. The simulation results show that the proposed optimal strategy on the optimal solution works well and has a better performance than compared one

    Dynamic QoS optimization architecture for cloud-based DDDAS

    Get PDF
    Cloud computing urges the need for novel on-demand approaches, where the Quality of Service (QoS) requirements of cloud-based services can dynamically and adaptively evolve at runtime as Service Level Agreement (SLA) and environment changes. Given the unpredictable, dynamic and on-demand nature of the cloud, it would be unrealistic to assume that optimal QoS can be achieved at design time. As a result, there is an increasing need for dynamic and self- adaptive QoS optimization solutions to respond to dynamic changes in SLA and the environment. In this context, we posit that the challenge of self-adaptive QoS optimization encompasses two dynamics, which are related to QoS sensitivity and conflicting objectives at runtime. We propose novel design of a dynamic data-driven architecture for optimizing QoS influenced by those dynamics. The architecture leverages on DDDAS primitives by employing distributed simulations and symbiotic feedback loops, to dynamically adapt decision making metaheuristics, which optimizes for QoS tradeoffs in cloud-based systems. We use a scenario to exemplify and evaluate the approach

    Novel optimization schemes for service composition in the cloud using learning automata-based matrix factorization

    Get PDF
    A thesis submitted to the University of Bedfordshire, in partial fulfilment of the requirements for the degree of Doctor of PhilosophyService Oriented Computing (SOC) provides a framework for the realization of loosely couple service oriented applications (SOA). Web services are central to the concept of SOC. They possess several benefits which are useful to SOA e.g. encapsulation, loose coupling and reusability. Using web services, an application can embed its functionalities within the business process of other applications. This is made possible through web service composition. Web services are composed to provide more complex functions for a service consumer in the form of a value added composite service. Currently, research into how web services can be composed to yield QoS (Quality of Service) optimal composite service has gathered significant attention. However, the number and services has risen thereby increasing the number of possible service combinations and also amplifying the impact of network on composite service performance. QoS-based service composition in the cloud addresses two important sub-problems; Prediction of network performance between web service nodes in the cloud, and QoS-based web service composition. We model the former problem as a prediction problem while the later problem is modelled as an NP-Hard optimization problem due to its complex, constrained and multi-objective nature. This thesis contributed to the prediction problem by presenting a novel learning automata-based non-negative matrix factorization algorithm (LANMF) for estimating end-to-end network latency of a composition in the cloud. LANMF encodes each web service node as an automaton which allows v it to estimate its network coordinate in such a way that prediction error is minimized. Experiments indicate that LANMF is more accurate than current approaches. The thesis also contributed to the QoS-based service composition problem by proposing four evolutionary algorithms; a network-aware genetic algorithm (INSGA), a K-mean based genetic algorithm (KNSGA), a multi-population particle swarm optimization algorithm (NMPSO), and a non-dominated sort fruit fly algorithm (NFOA). The algorithms adopt different evolutionary strategies coupled with LANMF method to search for low latency and QoSoptimal solutions. They also employ a unique constraint handling method used to penalize solutions that violate user specified QoS constraints. Experiments demonstrate the efficiency and scalability of the algorithms in a large scale environment. Also the algorithms outperform other evolutionary algorithms in terms of optimality and calability. In addition, the thesis contributed to QoS-based web service composition in a dynamic environment. This is motivated by the ineffectiveness of the four proposed algorithms in a dynamically hanging QoS environment such as a real world scenario. Hence, we propose a new cellular automata-based genetic algorithm (CellGA) to address the issue. Experimental results show the effectiveness of CellGA in solving QoS-based service composition in dynamic QoS environment
    • …
    corecore