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ABSTRACT 
 

Service Oriented Computing (SOC) provides a framework for the realization 

of loosely couple service oriented applications (SOA). Web services are 

central to the concept of SOC. They possess several benefits which are useful 

to SOA e.g. encapsulation, loose coupling and reusability. Using web 

services, an application can embed its functionalities within the business 

process of other applications. This is made possible through web service 

composition. Web services are composed to provide more complex functions 

for a service consumer in the form of a value added composite service.  

Currently, research into how web services can be composed to yield QoS 

(Quality of Service) optimal composite service has gathered significant 

attention. However, the number and services has risen thereby increasing the 

number of possible service combinations and also amplifying the impact of 

network on composite service performance. QoS-based service composition 

in the cloud addresses two important sub-problems; Prediction of network 

performance between web service nodes in the cloud, and QoS-based web 

service composition. We model the former problem as a prediction problem 

while the later problem is modelled as an NP-Hard optimization problem due 

to its complex, constrained and multi-objective nature.  

This thesis contributed to the prediction problem by presenting a novel 

learning automata-based non-negative matrix factorization algorithm 

(LANMF) for estimating end-to-end network latency of a composition in the 

cloud. LANMF encodes each web service node as an automaton which allows 
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it to estimate its network coordinate in such a way that prediction error is 

minimized. Experiments indicate that LANMF is more accurate than current 

approaches. 

The thesis also contributed to the QoS-based service composition problem by 

proposing four evolutionary algorithms; a network-aware genetic algorithm 

(INSGA), a K-mean based genetic algorithm (KNSGA), a multi-population 

particle swarm optimization algorithm (NMPSO), and a non-dominated sort 

fruit fly algorithm (NFOA). The algorithms adopt different evolutionary 

strategies coupled with LANMF method to search for low latency and QoS-

optimal solutions. They also employ a unique constraint handling method 

used to penalize solutions that violate user specified QoS constraints. 

Experiments demonstrate the efficiency and scalability of the algorithms in a 

large scale environment. Also the algorithms outperform other evolutionary 

algorithms in terms of optimality and scalability. 

In addition, the thesis contributed to QoS-based web service composition in a 

dynamic environment. This is motivated by the ineffectiveness of the four 

proposed algorithms in a dynamically changing QoS environment such as a 

real world scenario. Hence, we propose a new cellular automata-based genetic 

algorithm (CellGA) to address the issue. Experimental results show the 

effectiveness of CellGA in solving QoS-based service composition in dynamic 

QoS environment. 
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CHAPTER 1 
Introduction 

The objective of this thesis is the study of evolutionary algorithms for QoS-

based web service composition in the cloud. QoS-based web service 

composition raises several challenges which have been transformed into 

optimization problems. We studied, elaborated, and experimentally validated 

algorithms towards QoS-based web service composition in the cloud. This 

research focuses on the application of evolutionary algorithms in tackling the 

web service composition problem. Specifically, this research develops 

efficient evolutionary algorithms to facilitate the delivery of composite 

services that provide the level of quality required by service consumers. The 

next section discusses the motivation, research challenges and contributions of 

this research. 

1.1 Research Motivation 

Web service provides a platform for transforming the Internet into a vast 

library of service-oriented applications (SOA) [32]. They enable Internet 

applications to become interoperable, reusable and decoupled. They also 

enhance the communication between Internet applications in order to realize 

more complex functionalities. This is made possible by aggregating services 

from different applications into a composite service that represents the 

business process aimed at satisfying of a consumer’s request. The benefit of 

web service composition comes from its ability to deliver added value to 

services provided to the consumer. Because of this ability, web service 

composition is of considerable interest to both industry and academic 

research. 

In order for QoS-based web service composition to be successful in the cloud, 

several critical challenges need to be addressed.  
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1.1.1 QoS Optimization of Composite Service 

One of the challenges is how the Quality of service (QoS) of composite 

services can meet both functional and non-functional requirements of 

consumers in such a way that added value is generated. This challenge has 

lead the research community to investigate how the QoS of composite services 

is optimized. As such there has been considerable amount of research work 

dedicated to this issue. The research works span across several aspects of web 

service composition such as QoS modelling [1, 2], architectures for 

discovering and registering restful web services [3, 4], and QoS-based web 

service composition methods [5, 6]. Techniques proposed in each of these 

aspects play a crucial role in ensuring that composite service QoS is 

optimized. QoS-based web service composition has become important 

because it will ensure that a composite service presented to the consumer has 

optimal QoS. In real life situations, it is not uncommon for the consumer to 

have a certain expectation of a composition’s QoS. For example, a consumer 

may require that a composite service has minimal cost. Alternatively, 

consumers may require that the solution has a minimal value for multiple QoS 

attributes such as cost, response time and availability simultaneously. QoS-

based web service composition aims to address these expectations so that the 

consumer’s value is maximized and a service provider can maximize return on 

investment. Henceforth, restful web services will simply be referred to as web 

services for the sake of simplicity. 

Over the years, QoS-based web service composition problem has been 

transformed into different classes of optimization problems. One type of 

problem solves composite service optimization by using techniques that adjust 

web services that are part of the composite service until optimisation is 

achieved. Examples of this type of optimization problem include QoS-aware 

service selection problem [7] and QoS-aware service scheduling problem [8]. 

In the former problem, a composite service is represented as a workflow [30] 
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where each web service is assigned to a task that is part of the workflow. The 

end-to-end QoS of a workflow is obtained by aggregating individual QoS 

scores of each web service that is part of it. Techniques developed for the 

service selection problem attempt to find the workflow with best end-to-end 

QoS. The QoS-aware scheduling problem extends the service selection 

problem with additional time constraints which dictate the execution order for 

each web service within a workflow. Both problems have been mainly applied 

to solving QoS optimization of composite service in cloud and grid 

environments [10].  

Another kind of optimization problem tackles web service composition by 

altering the paths that interconnect web services the within the workflow. This 

problem is referred to as QoS-aware service partitioning problem [9]. It 

searches for workflow pattern that leads to optimal QoS. The problem has 

been applied to a wide range of environments including but not limited to 

cloud and grid environments. 

Due to their challenging nature, the QoS-optimization problem has been 

known to be NP-Hard [11]. Several reasons have contributed to this: 

i. Due to the rise in number of web service offerings on the cloud, web 

service composition has become a large scale problem where selecting 

a single web service for each workflow task from a large number of 

possible alternatives is a time consuming process. For instance, 

assuming 15 tasks are part of a workflow and each task a set of 20 

possible web services to execute it. Therefore the total number of 

service combinations will be 2015 or 32.7 quintillion combinations. It is 

impossible for any technique to make an optimal service selection in 

reasonable time. 

ii. The nature of consumer requests are taking a more complex form that 

may require multiple conflicting QoS attributes to be considered 
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simultaneously. This further compounds the difficulty of the problem 

because it will be hard to find a composite service that has all QoS 

values optimal at the same time. In many situations, the optimal 

solution may have one QoS attribute optimal but the others 

suboptimal. This is because in trying to optimize one QoS attribute, 

other attributes become less optimal. For example, an optimal 

composite service can have minimum cost but sub-optimal response 

time or minimum response time but sub-optimal cost. The difficulty 

stems from trying to select which of the two situations will be 

acceptable to a consumer who expects both optimal cost and optimal 

response time simultaneously.  

iii. In addition to multiple QoS requirements, consumers usually specify 

constraint requirements in a composition request. Constraints represent 

further goals that need to be satisfied by the optimal composition in 

order to fully meet the consumer’s expectations. This can add to the 

difficulty of the QoS optimization problem because constraints can 

further reduce the likelihood of finding a solution in reasonable time 

given that the best solution may not completely satisfy a constraint 

requirement.  

Due to the NP-Hardness of the QoS optimization problem, it has become 

necessary to develop efficient evolutionary algorithms (EA) that will be able 

to find near optimal compositions in reasonable time. This research 

investigates how EA can be used to tackle the problem. EAs are population-

based algorithms that operate on the concepts of natural evolution [12]. They 

have shown great promise in dealing with NP-Hard optimization problems. In 

situations where they don’t find optimal solutions, they are capable of finding 

near-optimal ones. Some EAs go further in finding pareto-optimal set in 

situations where multiple QoS attributes are conflicting. EAs have been 

successful applied to large scale optimization problems in domains such as 



Introduction 

5 

 

 

aerospace sciences [13], electrical circuits [14], microbiology [15], overlay 

networks [17], etc. They have also been known to be very good in handling 

constraint requirements [16]. An objective of this research is to develop 

evolutionary algorithms for QoS-based web service composition with the aim 

of optimising QoS of composite services in large scale environment. 

1.1.2 QoS of the Network 

Another challenge of web service composition is the impact of QoS of the 

network [18] on composite service selection. The past few years has witnessed 

a rapid rise in number and spread of modern web services deployed on the 

Internet. The rapid development of modern web services can no longer be 

supported by traditional client-server architectures because of increase in 

traffic congestions and network instability caused by high demand of these 

services. To address this issue, decentralised architectures such as p2p [18, 

23], content delivery networks [19, 22] and decentralised cloud networks [20, 

21] have been developed. These architectures provide more effective QoS 

delivery by making better use of network resources. Amongst the 

architectures, the cloud has become the most popular destination for deploying 

web services [33]. Instead of deploying web services on several physical 

servers or nodes that are distributed across different geographical areas, 

service providers are increasingly deploying web services as platform-as-a-

service (PaaS), infrastructure-as-a-service (IaaS), or software-as-a-service 

(SaaS). Usually, web services are deployed on a Virtual Machine (VM) node 

which houses the CPU and memory resources necessary to run the service on 

the cloud. Examples of Internet clouds which offer web services include 

Amazon EC2 [37], Microsoft Azure platform [38] etc. In this research, we 

focus on QoS-based service composition of web services offered on the cloud. 

Also, we refer to “web service VM node” as “web service node” for the sake 

of simplicity. 
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In order to facilitate the composition of modern web services on the cloud, the 

knowledge of QoS of the network is essential. The QoS of network for a 

composite service represents its end-to-end network performance. This 

constitutes the network paths between each web service node in a 

composition’s workflow. Different metrics [39, 44] have been used to measure 

the performance of network paths between web service nodes. Some examples 

include network latency, Perceived QoS, network bandwidth, packet loss, 

jitter, etc., although network latency and bandwidth are the most popular 

network performance metrics used in web service architectures. Network 

latency represents the forward and return path round-trip time (RTT) while 

network bandwidth indicates the transfer rate of a given network path.  

Usually, network latency is advertised as part of response time attribute in the 

service provider’s Service Level Agreement (SLA) [51]. As such, the 

advertised network latency only represents the theoretical RTT that is 

expected to be experienced on a composition’s network path. In the real 

world, this representation largely differs from the actual RTT experienced by 

the physical network because network conditions change constantly. It is 

therefore important to segregate QoS of the network from web service QoS 

advertised in the SLA. This entails separating a network performance metric 

such as network latency from the SLA’s response time so that the RTT of a 

composition becomes a real representation of the physical condition of the 

network path rather than a theoretical representation. Few research efforts 

have tackled this issue. The traditional approach [33, 35, 44] is to measure 

network latency by physically sending packet probes across all network paths 

and then measure their RTTs. This approach allows for accurate measurement 

of RTTs of a composition’s network paths, however it is time consuming and 

expensive to implement. Another approach that is gaining popularity is the use 

of prediction algorithms which measure RTT for a small subset of network 

paths and then predict the RTT for the other un-measured paths. This 
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approach is less time and resource consuming, although it is slightly less 

accurate than the tradition approach. For this reason, the network performance 

prediction algorithms have attracted significant attention in the research 

community.  

Generally, an issue with prediction techniques is their accuracy in estimating a 

network metric. Different prediction techniques usually have different 

estimation accuracies. Hence, choosing the right technique will determine how 

close predicted values are to the actual representation of a composite service’s 

network performance.  

Motivated by this issue, another objective of this research is the development 

of an accurate prediction technique which aids our proposed evolutionary 

algorithms to efficiently estimate the end-to-end network performance for a 

composite service in an accurate way. This will give the algorithms the ability 

to search for compositions with optimal QoS without compromising QoS of 

the network. Due to availability of data, this research studies the prediction of 

network latency between web service nodes on the cloud. 

1.2 Research Problem 

QoS-based service composition problem arises when composing web services 

deployed on the cloud. In such an environment, several factors can affect the 

performance and quality of composite services. One is the selection of web 

services that lead to optimal QoS. The other is impact of QoS of the network 

(or network performance) on the quality of a composite service. Thus the 

problem considers the impact of web service QoS attributes such as cost, 

response time, execution time, and a network performance metric such as 

network latency on web service composition in the cloud.  

QoS-based web service composition problem is described as a problem of 

selecting individual web services from the cloud that will be part of a QoS-

optimal composite service. The problem occurs when developing composite 
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services from a set of service providers who deploy their services on the 

cloud. The composition process is performed as follows: 

i. Once a consumer request is made, it is broken down into several sub 

requests or tasks linked to one another to form a workflow. For 

example, a trip planning request could be broken down into tasks such 

as online booking, hotel booking and payment processing which are 

connected to each other within a workflow. The link between each task 

dictates the direction of data flow and execution order of tasks in the 

workflow. 

ii. After the workflow has been built, then a search is made for different 

web services available for each task. Examples of web services that 

could be used for payment processing include PayPal, Master card, 

Visa card, etc. Each of these services are otherwise known as a 

candidate service. 

iii. Once all the candidate services for each task has been discovered, a 

web service composition algorithm is used to find a combination of 

services that lead to optimal QoS. 

Based on the specifications above, QoS-based web service composition in the 

cloud can be formally stated as follows: 

Given a workflow consisting of a set of interconnected tasks and candidate 

services per task, how can we find a combination of services such that the QoS 

and end-to-end network performance of the composite service is optimal? 

The QoS-based web service composition problem is defined as a 

combinatorial optimization problem [24, 25] where the number of possible 

combinations increases as the number of workflow tasks and candidate 

services increase. This also exponentially rises the computation time for 

solving the problem. When additional QoS constraints such as optimal end-to-
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end network performance need to be satisfied, then it becomes further difficult 

to find an optimal solution in reasonable time.  

It has become crucial to develop service composition algorithms that will be 

able to find near optimal solutions in reasonable time. This research examines 

the QoS-based web service composition problem by tackling the following 

aspects: 

 QoS model: Current works [29, 30, 31] adopt a similar QoS model to 

tackle the research problem. The traditional QoS model only considers 

web service QoS attributes such as response time, availability, 

reliability, cost etc. However it does not have a separate representation 

for QoS of the network. When applied to the cloud-based web 

services, the traditional QoS model will not be able to optimize 

network performance for a composite service. This thesis extends the 

traditional QoS model with network performance metric which 

represents the QoS of the network. In doing so, the model will take 

into account both web service QoS and QoS of the network for a 

composite service during optimization. 

 Web service composition algorithm: Web service composition 

algorithms are tasked with the work of finding near optimal 

compositions in reasonable time. Recent web service composition 

algorithms [26, 27, 28] have succeeded in optimizing web service 

QoS. However they are not meant to solve service composition in an 

environments where web services are spread across different cloud 

data centres whose network latencies can impact network performance 

of composite services. This is because they don’t have the ability to 

search for compositions that have near optimal network performance. 

This thesis addresses how to utilize evolutionary algorithms to search 
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for compositions that are near optimal with respect to both QoS and 

network performance. 

 Algorithm evaluation: In order to evaluate the behaviour of the 

proposed algorithms in solving the problem, the thesis simulates a test 

workflow consisting of several candidate services and tasks. The 

evaluation process investigates the impact of simulation parameters on 

the performance and optimality of the proposed evolutionary 

algorithms. This will give us an idea of both the strengths and 

weaknesses of the proposed algorithms in solving the research 

problem. 

1.3 Major Contributions 

This research advances established knowledge of QoS optimization in web 

services. In general, this research addresses key challenges of QoS 

optimization in the area of web service composition in the cloud. More 

specifically, this study tackles QoS optimization of composite services by 

developing efficient evolutionary algorithms for network-aware and QoS-

based web service composition in the cloud. The algorithms proposed could 

be utilized by applications built upon SOA applications in facilitating the 

delivery of more responsive and efficient composite services to consumers. It 

will also aid service providers in better meeting the quality requirements 

expected by their consumers as outlined by the SLA. Apart from contributing 

to research into QoS optimization of web services, this work also contributes 

to body of knowledge for evolutionary algorithms. The contributions of this 

thesis are detailed as follows: 

1. Network performance prediction 

This work adds to the research on estimating network performance 

between web services nodes on the cloud. Existing works [33, 34] for 

measuring the performance of network paths between cloud services are 
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expensive, inaccurate and computationally inefficient. When applied to 

modern web service composition, they could cause poor application 

response times.  

This work proposes a network coordinate system to estimate the end-to-

end network performance of composite service, using network latency as 

the network performance metric. The network coordinate system is based 

on a novel learning automata-based matrix factorization algorithm called 

LANMF which measures the RTT between a small subset of services and 

then predicts the network positions of the other services in the cloud. To 

the best of our knowledge, this is the first time a learning-based matrix 

factorization algorithm has been used to tackle network performance 

estimation of web services nodes. Experimental results indicate that the 

proposed algorithm is efficient and has low prediction error. Because of its 

decentralised nature, LADMF can be applied to other modern 

decentralised architectures besides the cloud to efficiently estimate 

network latency of network paths. 

2. Network-aware Evolutionary Algorithms 

This work contributes to the research on QoS-based web service 

composition by considering the impact of network performance on QoS 

optimization. Although several works have been developed over the years 

to tackle the problem, they do not consider the impact of QoS of the 

network on composite service selection especially in large-scale web 

service environment such as the cloud. The inability of current techniques 

to consider QoS of the network will cause them to search to compositions 

that have sub-optimal network performance.  

This work proposes several evolutionary algorithms to tackle the problem 

in a large scale environment. They include a network-aware genetic 

algorithm (INSGA), a multi-population particle swarm optimization 
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algorithm (NMPSO), a Kmean-based genetic algorithm (KNSGA) and a 

non-dominated sort fruit fly optimization algorithm (NFOA). 

Experimental results show that these algorithms are efficient in finding 

low latency and QoS optimal composite services in a static QoS 

environment. However, they do not fare well in a dynamic QoS 

environment. Thus, an additional evolutionary algorithm called cellular 

automata-based genetic algorithm (CellGA) is presented to tackle QoS 

optimization in a dynamic QoS environment. Results show that CellGA 

performs better than the other algorithms in coping with constant changes 

in QoS while performing optimization.  

1.4 Thesis Outline 

The remainder of this thesis is organized as follows;  

Chapter 2 introduces the basic concepts of web services, service composition, 

QoS and network performance prediction. Also, the basic concepts of some of 

the most common evolutionary algorithms are introduced. Then a review of 

recent works which address QoS-based web service composition are 

presented. A review is also made of recent techniques which address service 

composition on the cloud. The Chapter then ends with an introduction to 

network coordinate systems. 

Chapter 3 presents a new method for predicting end-to-end network latency of 

a composite service. The significance of estimating RTT between web service 

nodes in the cloud is discussed. Then the prediction problem is defined, 

followed by a brief description of methods already designed to address the 

problem. It then introduces a new learning automata-based non-negative 

matrix factorization (LANMF) technique which accurately predicts end-to-end 

network performance between web services nodes in the cloud. The chapter 

ends by presenting an experimental evaluation of LANMF to demonstrate its 

effectiveness in solving the problem. 
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Chapter 4 presents new evolutionary algorithms that utilize RTT estimates 

from LANMF to perform service composition in the cloud. Firstly, the chapter 

formulates the QoS-based web service composition problem as a 

combinatorial optimization problem. The chapter also presents four new 

evolutionary algorithms. Each of the proposed algorithms handles network 

latency differently. The first algorithm is a genetic algorithm (INSGA) which 

adopt network-aware ND-Crossover and ND-Mutation operators that adjust 

population individuals according to the RTTs between their genes and their 

crowding distances. The second algorithm is multi-population particle swarm 

optimization algorithms (NMPSO) that separates individuals into two 

populations and searches for a Pareto set of solutions. The third algorithm is a 

genetic algorithm (KNSGA) with Kmean-based K-Mutation operator to search 

for web service nodes that are close (in terms of network proximity) and 

contribute to optimal QoS. Then the last algorithm is non-dominated sort fruit 

fly optimization algorithm (NFOA) which translates RTTs into network 

positions that are used to search for services close to certain network locations 

without compromising QoS. The chapter rounds up by presenting experiments 

that compare the optimality, performance and scalability of the algorithms.  

Chapter 5 investigates QoS-based web service composition problem in a 

dynamic QoS environment. The chapter first evaluates how quantitative RTT 

values can impact the performance and optimality of the four previous 

algorithms in a dynamic QoS setting. The chapter then focuses on adopting 

qualitative RTT estimates to tackle the problem. Thus, LANMF is slightly 

altered to classify network paths as either “good” or “bad” paths. Then a new 

evolutionary algorithm called cellular automata-based genetic algorithm 

(CellGA) is introduced to find “good” network paths that have near-optimal 

QoS. CellGA uses cellular automata rules in its Cell-Crossover and Cell-

Mutation operators to perform dynamic QoS optimization. Experimental 
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results are presented to compare performance of CellGA against other 

algorithms in the previous chapter to demonstrate its efficiency. 

Chapter 6 concludes the thesis by first summarizing the work done in each of 

the previous chapters. Major contributions of the thesis were then laid out 

followed by recommendations for future work. 
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CHAPTER 2 

Background and Literature Review 

In this chapter, the background and review of QoS-based web service 

composition techniques are presented. An introduction to web services, QoS, and 

web service composition is first presented followed by a general description of 

QoS-based service composition procedure. Then a review of recent works in web 

service composition is presented with special focus on techniques for general 

service composition and service composition in the cloud. Finally network 

coordinate systems are discussed. This will give us an idea of their importance 

and the research efforts that have been carried out to solve network performance 

prediction problem. 

2.1 Background 

2.1.1 Web Service 

Web services are central to the realization of SOA applications. They make it 

possible for application functionalities to be encapsulated into independent units 

running on different machines. A web service is defined as a network-accessible 

object that is self-governing and provides some functionality [40]. It enables the 

development of distributed applications that can be aggregated through service 

composition to meet consumer needs. Web services are characterized by their 

ability to be provisioned, discovered and composed. Based on these properties, a 

web service model [42] has been built to guide the development of SOA 

applications. In the model, several key elements have been defined; service 

consumer, service entity and service provider. The service consumer is the entity 

that invokes the service’s functionality to satisfy a given request. The service 

entity defines a set of capabilities that can be performed by the service. The 

service provider is responsible for provisioning the service and its functionalities.  
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Once a service is provisioned by its service provider, it is placed in a repository or 

service registry where it is accessed by service consumers. The communication 

and data exchange between each of the entities are handled using web service 

standards such as XML [43], SOAP [46], WSDL [45], and UDDI [47]. These 

standards are required for a successful development of SOA applications using 

web services. 

Several web services have been created to deal with different kinds of consumer 

requests. Examples of services and their respective consumer requests include: 

 Web services meant for business transactions can deal with requests such 

as credit card validation, bank credit or debit requests, hotel reservation 

requests, etc. 

 Web services which provide access to large datasets or data logs e.g. a Big 

data-as-a-service (BDaaS) that allows access to very large datasets stored 

on cloud-based data centres. 

 Web services that expose computing resources such as CPU, network, 

memory and storage as metered services [49] e.g. Dropbox [48], Amazon 

EC2, Windows Azure, etc. 

Applying web services to the development of SOA applications has several 

benefits when compared to traditional applications: 

 Encapsulation: Web services give service providers the ability to hide the 

implementation logic of their applications from service consumers or 

other services that invoke them. If a service consumer or an external 

service wants to execute a service, they are only presented with the 

service’s interface and capabilities. This guarantees that they are not 

aware of how a service performs its function. 
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 Loose-coupling: SOA applications built on web services can restrict the 

degree of dependency between its individual components or functional 

units. This way, each unit operates independently of other units, thereby 

enhancing the adaptability and interoperability of the SOA application far 

beyond that of traditional applications. 

 Reusability: Web services allow service providers to easily build more 

sophisticated applications by reusing the logic of existing SOA 

applications. This will consequently reduce the time between software 

development and implementation phases. 

These benefits make web service a popular technology for building heterogeneous 

systems that can effectively address rapidly changing application requirements of 

today’s Internet consumers and organisations. 

2.1.2 Quality of Service (QoS) 

Currently, there exists many organizations that provide services to consumers on 

the Internet. Some of the services have similar capabilities while others have 

disparate capabilities. As a result, web services are characterized by functional 

and non-functional attributes [41]. The functional attribute dictates what kind of 

task a web service is meant to perform e.g. credit card validation. While the non-

functional attribute, also known as Quality of Service (QoS), indicates a service’s 

level of quality. QoS is mainly used to differentiate services having similar 

functional attributes. Its significance stems from the fact that a web service may 

be functionally capable of performing a given task, but might not be reliable in 

performing the task up to the service consumer’s satisfaction. Service providers 

normally advertise services together with their QoS values as part of a Service 

Level Agreement (SLA). For instance, a web service may be advertised as having 

cost and response time as $10 and 10ms respectively. Here, cost and response 



Background and Literature Review 

18 

 

time are regarded as the QoS attributes of the service while $10 and 10ms are 

their respective QoS values. QoS attributes define how well services meet 

consumer’s quality expectations. As such, it is crucial for SOA applications to 

consider QoS aspects of web services in addition to their functional aspects when 

addressing consumer needs. 

There are several QoS attributes that have been used to represent the quality 

aspects of a web service. They are classified into different groups. QoS attributes 

have been classified as user dependent and user independent [52]. User dependent 

attributes are those attributes whose values vary depending on the consumer e.g. 

throughput and response time. In contrast, user independent attributes have a 

constant value irrespective of the consumer e.g. cost and popularity. Another 

categorization distinguished QoS attributes as either measurable or immeasurable 

[60]. Measurable QoS attributes are quantifiable e.g. execution time, while 

immeasurable QoS attributes are naturally qualitative e.g. flexibility and 

reputation. QoS attributes have also been categorized as application and network 

attributes [56]. The former are application-level attributes e.g. availability, 

reliability, cost, etc., while the latter are network-level attributes that impact the 

performance of web service network paths e.g. network latency, packet loss, 

delay variation, etc. In Table 2.1, we classify QoS attributes as either “lower is 

better” or “higher is better” depending on how they define quality of a web 

service. “Lower is better” QoS attributes represent attributes who’s lower values 

signify better quality while higher values signify poorer quality e.g. cost, response 

time, execution time, etc. On the other hand, “higher is better” defines attributes 

who’s higher values represent better quality while lower values represent poorer 

quality e.g. reputation, availability etc. Table 2.1 summarizes major QoS 

attributes cost, response time, execution time, reputation and availability [50] 

including their classifications. 
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Table 2.1: Summary of major QoS attributes. 

QoS 

Attribute 

Description Classification 

Cost Amount payable in monetary value for the 
execution of service. 

Lower is better 

Reputation Consumers’ average rank of a service based 
on their experiences 

Higher is better 

Response 
time 

Time it takes to process a consumer request 
from the point it is made up till the point it 
is received. 

Lower is better 

Execution 
time 

Time required for the web service to process 
the task. 

Lower is better 

Availability Chances that a service will be accessible 
within a given time frame 

Higher is better 

 

Ideally, QoS values advertised in the SLA are values the consumer is expected to 

experience. However, there is no guarantee that they will remain consistent all the 

time. For example the response time attribute defines the expected processing 

time for a given service. This time also includes the round-trip-time or network 

latency [53]. If the advertised response time is applied to a latency-sensitive SOA 

application [54] deployed on the cloud, it will not be able to guarantee that the 

consumer experiences the same level of latency that is advertised as part of 

response time. Therefore it has become necessary to define network latency as a 

separate QoS attribute independent of response time attribute. This thesis deals 

with network latency as a standalone QoS attribute whose values are not 

determined by what is specified by the service provider, rather they are 

determined using a network coordinate system which provides a realistic estimate 

of the physical round-trip time the consumer is expected to experience. In 

addition, this thesis also considers major QoS attributes such as cost, response 
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time and execution time, although any other web service QoS attribute can be 

considered. 

2.1.3 QoS-aware Web Service Composition 

In many situations a single service may not satisfy a consumer’s request. During 

such situations services from different service providers would need to be 

combined in order to meet the consumer’s requirements. This is where web 

service composition comes into play. It is the process of aggregating web services 

having disparate functionalities into a composite service. Composition of services 

is achieved via their functional and QoS attributes. The QoS attributes are used 

for composition only when the services involved have comparable functionalities. 

The goal of service composition is to search for a combination of services that 

leads to optimal QoS levels. The composition process is akin to the integration 

process of workflow management systems [30]. A Workflow management system 

consists of a workflow model and a set of tasks and transitions [55]. The 

workflow management system processes data by passing it through a set of tasks 

and transitions until its objective is achieved. In the area of service composition, a 

similar workflow model is used to aggregate QoS values of web services 

participating in the composition process. This is achieved by creating abstract 

descriptions that compose existing services to form workflows [30]. The 

workflow represents flow of data between tasks in order to achieve a set goal 

which is usually the satisfaction of a consumer’s request. Some of the major types 

of workflows, also known as workflow patterns, include; 

 Sequence: used to represent a set of tasks that are connected in sequential 

manner e.g. in Figure 2.1 (a) 

 Parallel: used to define a set of tasks that connected in parallel manner and 

are executed simultaneously such as in Figure 2.1 (b). 
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 Loop: represents a set of tasks connected in a repetitive closed loop e.g. in 

Figure 2.1 (c). 

 

g1 g2 g3

 

g2

g3
 

g1

g4

g2 g3

 

(a) Sequence workflow  (b)   Parallel workflow       (c)   Loop workflow 
 

 
Figure 2.1: Examples of workflows consisting of tasks g1 to g4 

QoS-based web service composition process involves a number of steps [57, 58] 

as shown in Figure 2.2. After the consumer’s request is issued, the request is 

broken down into a set of interconnected tasks organized in the form of a 

workflow. Then candidate services meant for each task are discovered and 

classified into service classes, where every service class representing a group of 

candidate services with similar capabilities. They are mapped as one service class 

per workflow task. Once the classification is achieved, a candidate service is 

selected from each service class and then bound to a composite service. In 

situations where the number of web services participating in service composition 

is large, a lot of composite services can be generated. Thus, the last stage of a 

service composition process involves the selection of composite service among a 

large set of possible compositions that has optimal QoS. 

QoS-aware service composition problem is describe as an NP-hard optimization 

problem [49]. Its NP-hardness stems from the large number of candidate services 
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participating in service composition process which can lead to an exponential 

increase in the number of possible composite services.  

Also, another factor that contributes to the NP-hardness is the frequently 

occurring likelihood performing web service composition process under multiple 

QoS constraints and performance requirements such as end-to-end cost, response 

time, availability etc. 

1 2
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Composite Service
Satisfying QoS 
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Sub Task 
Workflow

Service 
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Composition 
based on QoS

Task1
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Booking

Travel Booking 
Request

3

4

5

 

Figure 2.2: QoS-aware service composition process. 

Therefore the search for a solution or composite service with optimal QoS that 

meets consumer’s QoS constraints can be very challenging and time consuming.  

2.2 Literature Review 

Several techniques have been developed to tackle QoS-based web service 

composition problem. Some works have dealt with the problem under static QoS 

environment while others have tried to solve the problem in dynamic QoS 
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environment. Hence, recent works are categorized based on whether QoS 

environment is either static or dynamic. 

2.2.1 Static Service Composition 

These service composition methods perform QoS optimization of composite 

services using prior knowledge of web services QoS values. Also, the QoS values 

do not change during the composition process. Under the static service 

composition, recent studies can be further classified into four sub-categories: (1) 

Intra-task composition approaches; (2) Inter-task composition approaches; (3) 

Approximation approaches; (4) Pareto-optimization approaches. 

2.2.1.1 Intra-Task Composition Approaches 

One of the reasons why there is difficulty in dealing with a QoS service 

composition problem is due to the presence of constraints at both the task level 

(local constraints) and workflow level (global constraints). Ideally, an optimal 

solution would have to satisfy both of these constraints. However, it is almost 

impossible for such solutions to be found in short time. Hence some techniques 

have tried to reduce this difficulty by considering only local QoS constraint. 

These techniques select a single web service for each task within the workflow 

that meets the consumer’s local constraint. An example of a local constraint could 

be a requirement to select one candidate service within each task which has 

minimum response time. Once a service has been selected for each task, they are 

then aggregated into a composite service. The process is known as intra-task 

service composition (IrTSC). In some other works it is known as local 

optimization. Using this method, an optimal solution can be reached in very short 

time. A popular IrTSC method is Dynamic Programming [59, 61]. Dynamic 

programming breaks down a workflow into different divisible and indivisible 

parts. It solves for optimal solution for each divisible part and uses recursive 
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branch-and-bound algorithm in solving the indivisible parts. Another IrTSC 

technique uses a learning-based depth-first search (LDFS) [62, 63] algorithm that 

combines bound depth first searches with learning iteratively. Other IrTSC 

techniques are based on Simple Additive Weighing (SAW) [64, 65]. This method 

scores each candidate service per task by multiplying their QoS scores with a 

consumer-defined weight value. The weight value defines local constraint’s level 

of importance. The method then selects the candidate service with the best score 

for each task. 

An advantage of IrTSC techniques is that their computation times scale well with 

increase in number of services per task. However, they suffer from high 

inaccuracy as a result of the pre-selection process involved.  

2.2.1.2 Inter-Task Composition Approaches 

Rather than considering local constraints, inter-task service composition methods 

(IeTSC) consider only global QoS constraints. Global constraints are defined for 

the composite service (workflow) as a whole e.g. a constraint such as minimum 

end-to-end response time for a composition. IeTSC refine the NP-hard problem 

by transforming it into a linear objective function which can be optimized, where 

the objective function is a measure of the overall QoS level of a composite service 

or workflow. It is determined by combining QoS attributes of all the web services 

contained within the composite service into a single aggregate value. A popular 

IeTSC technique is Linear Integer Programming (LIP) [67, 70] which finds a 

composite service that meets global QoS constraint (i.e. a globally best composite 

service) without necessarily considering all possible composition paths. It also 

supports both functional and QoS attributes into the composition process. LIP is 

usually applied to small service environments where number of candidate services 

per task is small. Although because they consider global constraints rather than 
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local constraints, LIP techniques take a long time to search for the best global 

composition.  

2.2.1.3 Approximation Approaches 

These approaches search for near-optimal solutions since they are easier and 

faster to find than optimal ones. They are also heuristic in nature. Heuristics 

achieve optimization of service composition problems by performing various 

iterations to search for high quality solutions. Heuristics are capable of arriving at 

solutions while making little or no assumptions about the problem. They are also 

able rigorously cover vast search spaces in relatively short time. Several 

approximation approaches have been introduced. One popular heuristic approach 

is Particle Swarm Optimization (PSO) technique which utilizes the concept of 

particle movement to search for optimal compositions. PSO was first applied to 

solve QoS optimization of composite services in [68]. In their study, a discrete 

PSO called DPSO was introduced to find near-optimal solutions. Improved 

versions of DPSO have also been developed to deal with multiple QoS 

requirements [66] and local optima trapping [69] during service orchestration. In 

[69], an adaptive mutation operator is integrated to prevent particles from being 

trapped in the local maxima by letting them hop out during early stages of 

computation.  

Another popular approximation technique is based on Genetic Algorithms (GA). 

GA is an evolutionary optimization technique based on Charles Darwin's theory 

of evolution. GAs are capable of evolving members of a generation according to a 

set of rules up to a point where fitness value is optimized. Canfora et al. [71] 

studied how GA can be used in searching for QoS-optimal compositions under 

consumer constraints. In their approach they encode web services as genes inside 

a genome. The author’s technique finds a combination of genes that achieve the 
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best fitness values while meeting QoS constraints. In mathematical terms, the 

research problem solved by the Author’s GA is expressed as follows; 

Given a set of consumer-defined constraints for a given genome g; 

niwheregci ,....,1,0)(    (2.1) 

The constraint satisfaction distance ( )C g  is expressed as; 
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Therefore fitness value for genome g after normalization in the interval [0, 1] can 

be expressed as: 
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 (2.3) 

The goal of GA in web service composition is to find g such that )(gF is 

optimized. 

Where  

 iy is the parameter that indicates whether a candidate service is bound to 

its service class. 

 n is the number of web services that are bound in the genome. 
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 1w , 2w , 3w and 4w  are service weights signifying importance of a particular 

QoS attribute, while w5 represents weight of penalty factor. 

 Cost(g), Response Time(g), Availability(g) and Reliability(g) represent 

cost, response time, availability and reliability QoS values for the genome 

respectively. 

Their approach finds good quality solutions most of the time, however it often 

traps into local optima. Other works such as [72, 73] investigate how to GA can 

multi-objectively optimize QoS of compositions without trapping into local 

optimum. The general idea is that when multiple QoS requirements are specified, 

QoS optimization of composite services can be achieved using improved genetic 

operators such as multi-point crossover and probability-based mutation operators. 

When these operators are applied to the individuals in a population they reduce 

likelihood of trapping individuals into local optimum.  

When QoS constraints are specified, GA handles the constraints using one of 

several techniques such as penalty-based methods [29], repair-based methods 

[139] and hybrid methods [138]. Penalty-based methods penalize the fitness of a 

solution depending on the extent at which it violates constraints. Repair-based 

methods adopt local search to wipe out any constraint violation within the 

solution, while hybrid methods combine evolutionary search with repair-based 

methods to enhance their effectiveness. Among these techniques, penalty based 

methods are the most commonly used due to their ease of implementation. 

Going by the literature indicators, approximation approaches have been known to 

be more efficient than other approaches because they can rapidly eliminate large 

numbers of possible execution plans in a relatively short time. Also, they are 
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better equipped in handling large scale service composition than IeTSC and 

IrTSC methods. However, they lack the ability to find truly optimal solutions. 

2.2.1.4 Pareto-Optimization Approaches 

These techniques model the service composition problem as a multi-dimensional, 

multi-object, multi-choice knapsack problem (MMMKP) [74]. MMMKP problem 

defines a set of classes, each having a set of items, where each item is defined by 

profit and weight dimensions. When applied to a service composition process, 

classes represent service classes, items are mapped to candidate services, profit 

dimensions are mapped to QoS attributes, and weight dimensions represent QoS 

constraints. Pareto-optimization approaches (POA) work by searching for a 

Pareto front [75] of composite services that have one or more optimal profit 

dimensions and do not compromise the weight dimensions. POA technique has 

become the most preferred multi-objective QoS optimization method used by 

research and industry experts because sometimes searching for a single truly 

optimal solution in all profit and weight dimensions can be a slow and daunting 

task. This stems from the fact that it is very difficult to use a one size fits all 

approach towards finding the best solution with respect to all profit and weight 

dimensions. POA solves this problem by obtaining a Pareto front which contains 

a set of individuals that have optimal fitness in some of the profit dimensions and 

satisfy all the weight dimensions. In other words, the Pareto front of POA consists 

of trade-off solutions that are optimal with respect to one or more QoS attributes, 

but not all. Also, the solutions satisfy all the consumer defined constraints.  

One recently proposed POA method is a strength Pareto evolutionary algorithm 

(SPEA2) [76] which uses mutation operation together with non-dominated sort 

ability. The mutation operation combines individuals in the population to form 

new children while the non-dominated sort process ranks and categorizes newly 
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formed children into different fronts depending on the optimality of their profit 

and weigh dimensions. A similar work [78] presents an NSGA-II genetic 

algorithm which enhances SPEA2 with an additional crossover operator to 

improve diversity of new children in the population. Another work [80] proposed 

a more efficient kind of POA that relies on Recursive Assembly of Discretized 

Optima (RADO) algorithm. RADO transforms composition workflows into 

binary trees. It also uses join and filter operations to bind pairs of compositions 

together within a population, then filter out bindings that are not dominating other 

bindings. [79] Employs a different approach based on differential evolution 

algorithm (DE) together with binary quality indicators to analyze pareto-optimal 

solution sets.  

It has been deduced from literature that POA tend to provide better performance 

and good quality solutions when compared with other approaches. Also POA 

gives the consumer access to more alternative non-dominant solutions so that they 

can choose their most preferred composition from the options available. 

This thesis proposes four meta-heuristic techniques (Chapter 4) that can search 

for QoS-optimal solutions in a large scale cloud environment where QoS values 

are static. Different from the techniques presented above which do not consider 

network performance in their QoS models, the proposed algorithms consider 

network performance in their QoS models. This gives them the ability to optimize 

both QoS and network performance of a composite service simultaneously. 

2.2.2 Dynamic Service Composition 

In the previous section, we covered techniques that focus on finding optimal 

solutions to the NP-Hard problem in static environments i.e. environments where 

QoS values of web services are already known prior to generating the task 

workflow. Some current studies have extended the service composition problem 
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to finding optimal solution in situations where web service QoS values are not 

known prior to generating the workflow. Such examples reflect a real life 

scenario where actual web service QoS values vary from values advertised by 

service providers. In order to solve such a problem, approaches would have to be 

able to adapt to changes in QoS values or the service environment as a whole. 

Dynamic service composition is a very active area of research that has attracted 

much attention in recent years. It is divided into two types [99]: Internal 

composition adaptation and External composition adaptation methods. Internal 

composition adaptation approaches react to environmental changes by rebuilding 

a composition either from ground up or from the point of fault within the 

composite service. External composition adaptation approaches, on the other 

hand, use adjustable adapters that bridge the gap between the service workflow 

and the dynamically changing service environment. There are several internally 

adaptable service composition approaches, most of which have focused on small 

service environments. Amongst these approaches are AI Planning-based 

techniques (AIP). One kind of AIP technique is proposed in [100], it relies on 

Case Based Reasoning (CBR) to build service compositions on-the-fly. In the 

technique, CBR is used to obtain solutions from a set of composition cases 

gathered from past experiences. If such solutions do not exist, then AIP builds 

composition solutions from ground up. Another study [99] present a self-adaptive 

service composition method based on AIP graphs called Graph plan repair. Their 

approach aims to reconfigure compositions during runtime. This is achieved with 

the aid of a greedy search algorithm used to explore the planning graph for 

possible service combinations that can achieve the consumer's goal. Greedy 

search algorithm scouts through the planning graph to find and repair services that 

don't meet user goal due to their unexpected change. If such services do exist, 

then new services are added into the graph to satisfy user goals. Afterwards, the 
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whole process starts all over until all services satisfy user goals. The method 

presented in [101] uses AIP to dynamically map user requirements to service 

workflows. In this case, their approach is goal-oriented; hence any changes to 

user requirements at run time will ultimately be applied to the workflow structure. 

Several other internal adaptation solutions focus on using Reinforced learning 

(RL) techniques to solve adaptive service composition problem. [102] Proposes 

an adaptive RL method based on Markov Decision Process (MDP) that finds 

optimal solution at runtime without having any previous web service QoS 

knowledge. MDP builds a model for obtaining compositions consisting of 

multiple aggregated workflows. RL method takes over in finding optimal solution 

(or pareto-optimal solutions) by acquiring MDP policy with the best QoS. Any 

change in service environment will prompt a change of MDP policy for the sake 

of continuing the learning process. In [103] an extended MDP method called 

Semi Markov Process (SMP) has been given to forecast QoS and network 

efficiency of web service environment during to composition.  The output from 

SMP will then determine which web services need to be replaced as a result of 

poor QoS. In [85] the authors propose a method that re-plans composition once it 

predicts a difference between estimated QoS and runtime QoS values. In their 

approach, the authors utilize a proxy-based model to achieve runtime binding of 

web services. [104] Proposes an improved RL approach that utilizes Reuse 

Strategy to enhance performance and stability of RL. Another author [105] 

introduces a randomized RL technique which considers multiple QoS and non-

QoS criteria like cost, reputation, deadline and user preferences to obtain optimal 

solutions while adjusting to runtime changes in availability of service 

environment. The author's approach extends RL-based service composition with 

multi-agent exploration and exploitation capabilities, making the system more 

reactive to environmental changes. Some studies [106] have modelled the 
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dynamic service composition problem as a shortest path problem. Here, a shortest 

path algorithm (CSP) is used to ascertain a faulty web service and come up with 

an alternative path to a backup web service.  

Other studies like [107] have focused on using heuristic approach to tackling 

dynamic service composition. Their approach makes use of a K-means algorithm 

to finding pareto-optimal solutions. It works by firstly normalizing QoS 

constraints using the following criteria; 

max
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Where, 

 'q  is the normalized QoS value of an attribute. 

 maxq  and 
minq  is the maximum and minimum QoS scores for a given 

attribute. 

 q  is the initial QoS value of an attribute. 

A local classification is then made to group candidate services into clusters with 

respect to their QoS levels. Upon which a heuristic algorithm performs global 

optimal selection. Adaptation is performed by using a utility threshold 
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 responsible that tunes selection of clusters based on environmental constraints 

such as time or service density.  

The benefit of internal adaptation techniques is that they are more efficient since 

only a small part of a composite service is adjusted to reflect any fluctuation in 

QoS of the environment. However, this slight adjustment may lead to the 

generation of a sub-optimal workflow. 

Some external composition adaptation techniques have been proposed in recent 

studies. Studies like [108] propose a technique that uses composition policies and 

protocols to continually regenerate and update optimal service workflows 

according to changes in environment. Social network analysis techniques have 

been recently introduced to tackle adaptation in service composition. They are 

methods used to map and measure the relationship between web services in a 

social network. An example is proposed in [109] which models service 

composition problem as a service ranking problem. The authors applied link 

analysis and page ranking to rank services based on their success and failure 

popularity. In order to obtain such information, snapshots of the whole service 

registry are taken at regular intervals so that popularity changes can be reflected 

upon service workflows accessible to the user at runtime. A modified page rank 

approach namely service rank is presented in [110]. In this approach, web 

services were ranked based on connectivity and invocation history. The technique 

combines ranking score with QoS score for composition ranking. External 

adaptation approaches have slower execution times that internal adaptation 

techniques. However since they adapt all aspects of the composite service, the 

QoS optimality of the resulting composition retains is maintained. 

Like [99-107], this thesis proposes a technique (Chapter 5) that can perform 

dynamic service composition in the cloud. In comparison to these works, the 



Background and Literature Review 

34 

 

proposed approach employs an internal adaptation technique based on qualitative 

RTT values to efficiently alter composition workflows such that the resulting 

composition maintains its QoS optimality whenever there is a change in QoS of 

web service. 

2.2.3 Web Service Composition in the Cloud 

Cloud computing provides a platform for enterprises (service providers) to deploy 

web services on cloud data centres so that internet users can access their 

functionalities. This new mechanism of delivering web services to consumers has 

several benefits to service providers such as reducing deployment costs, and 

improving scalability and efficiency of service delivery. 

Several web services exist on the cloud. For example companies like Amazon and 

Microsoft provide public IaaS services via Amazon Web Services (AWS) and 

Windows Azure platforms respectively. These services are usually deployed on 

cloud data centres via virtual machines (VM) where consumers can access them 

as Software-as-a-service (SaaS) from literally any part of the world. VMs provide 

the computing resources such as CPU, storage and network resources required by 

cloud-based web service (SaaS) to function properly. Usually, service providers 

have the option of borrowing VMs from one or more cloud data centres that will 

be used to host their web services. However, some service providers such as EC2 

[33] are able to provision their own data centres and VMs in separate 

geographical areas around the world to give consumers access to web services. 

Hence, each web service-hosted VM will experience different network 

performance depending on the geographical area it is located in. The network 

performance can obviously affect application level performance of web services 

hosted on the VMs. Also, there currently exists a large number of cloud-based 

data centres and VMs located across the globe. This can exponentially increase 
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the number of geographically dispersed web services that will participate in 

service composition process. Thus QoS of the network, otherwise known as 

network performance, cannot be ignored. In a situation where the number of 

dispersed web services participating in a composition process are small, QoS of 

the network may not significantly affect the performance of a composite service 

at the application level. This is not the case when composition is taking place 

between large numbers of dispersed services. QoS of the network is measured as 

the network latency or round-trip time (RTT) between one service’s VM node and 

others. Ideally network latency is accounted for in the service provider’s service 

level agreement (SLA) [51, 81] as part of response time QoS attribute. However, 

this representation can greatly differ from the true network latency that services 

are physically experiencing. As such, this may lead to sub optimal performance of 

a composite service from the consumer’s perspective even if it has been 

advertised in the SLA as having optimal response time. Therefore network 

latency is important in determining the realistic network performance of a 

composite service in the cloud. In order to further illustrate this point, [77] claims 

that a network latency of 20ms can lead to a 15 percent decrease in Google cloud 

service response times. Similarly 500ms latency can negatively impact the 

performance of Amazon web services.  

Another important issue in the cloud is the need for composite services to meet 

the QoS guarantees specified in the SLA between services providers and 

consumers. This will allow service providers to maximize their earnings while 

ensuring that consumer experiences of their services is optimized. Therefore QoS-

based web service composition is critical to the delivery of quality composite 

services on the Cloud to customers. 
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Few studies have investigated impact QoS of the network on performance of 

composite services in the cloud. One such study is proposed in [85] where the 

authors develop a genetic algorithm that automatically optimizes compositions in 

the cloud. In their work they make use of a locality-sensitive hashing scheme 

coupled with a generic network coordinate system to find services that are close 

to certain network locations on the cloud. A similar approach in [82] presents a 

genetic algorithm that tackles service composition in a cloud-based geo-

distributed network. In [84] an Ant colony optimization approach to service 

composition in cloud is proposed. Their approach makes use of greedy search 

coupled with ant colony algorithm to find minimum number of clouds that will 

partake in successful service composition. Another study [64] employs a 

technique for cloud-based service composition using finite state machines (FSM) 

coupled with tree pruning and SAW to find optimal compositions. The authors 

use FSM to define the execution order of a composition workflow which is 

encoded in form of a composition tree. Then SAW is used to search for optimal 

composition trees. A comparable study in [83] also encode workflow as a tree of 

multiple cloud services, although an Hierarchical Task Network (HTN) algorithm 

is instead adopted to find the cloud combination that yields minimal 

communication cost and service QoS. The work in [86] then extended QoS-based 

web service composition in the cloud by developing composition techniques that 

first predict RTT between web service VM nodes, and then minimize RTT of 

composition paths in addition to optimizing web service QoS. When compared to 

other works, the ability to predict RTT without making use of additional 

infrastructure or computational resources is novel and interesting. Furthermore, 

the development of composition algorithms that minimize RTT between web 

services without compromising QoS is not only new but of significant interest in 

both research and industry because such algorithms can aid service providers to 
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facilitate delivery of quality and reliable web services to their consumers. Hence, 

this thesis presents a network coordinate system for estimating end-to-end 

network performance for a composite service in the cloud.  

2.2.4 Network Coordinate Systems 

Network coordinate systems (NCS) are used to estimate network latency between 

nodes in a network [85]. Their significance stems from the impracticability and 

high computation cost experienced from performing direct performance 

measurements or packet probing [93] especially on large networks. The purpose 

of NCS is to reduce the overhead observed from sending round trip time (RTT) 

packets between nodes across a network by predicting RTT measurements for a 

fraction of nodes. NCS has been applied to different traditional overlay networks 

to support a range of internet applications such as IPTV, file sharing and VoIP. 

The performance of these applications are heavily dependent on network 

performance which is usually represented as network latency or network 

proximity [87]. NCS has the ability to find neighbouring nodes close to a given 

node which have minimal RTT within a network. It functions by allowing each 

node on a network to compute its own network coordinate in d-dimensional 

geometric space such that the network distance between each node coordinate is a 

representation of their RTT apart. Once the coordinates of any two nodes are 

known, NCS uses a distance function to compute the network distance and 

coordinates of other nodes. 

NCS can been used to estimate other network performance metrics such as 

network bandwidth [89] and hop count [88]. However, RTT information is quite 

easier to estimate than the other metrics [90]. NCS normally performs its 

estimation process in the background so that internet applications can get on-

demand access to RTT estimates.  
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Several NCS models have been developed. They include Euclidean distance 

models (EDM) [91, 92, 95] and matrix factorization approaches (NMF) [36, 89, 

94]. EDM embeds network distances between nodes as metric spaces where 

known network distances or RTTs are translated into positional coordinates that 

further predict unknown network distances on the Internet. EDM employs a 

centralized approach towards RTT estimation. It employs central nodes called 

landmarks which use Euclidean metric spaces to map network distances of other 

Internet nodes into positional coordinates where each coordinate represents the 

virtual location of a node. 
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Figure 2.3: Mapping between network distances (RTTs) and Euclidean metric 

spaces between web service nodes n1 and n3. 
Once mapped, the positional coordinates are then stored in the landmark node 

which subsequently uses them to estimate unknown network distances. EDM has 

been known to be compatible with only network latency metric [89]. A major 

drawback of EDMs is their susceptibility to triangle inequality [96] which leads to 

inaccurate estimates. For instance in Figure 2.4, in order to avoid triangle 

inequality; 

1 3 1 2 2 3DC DC DC DC DC DC    (2.6) 
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Instead, 1 3 1 2 2 3DC DC DC DC DC DC   since summing up 30 and 66 

gives 82 instead of 96. This shows that the coordinates of the data centres are 

suffer from triangle inequality. 

82

Euclidean 
Metric space

DC1(x1,y1)  DC3 (x3,y3)

DC2 (x2,y2)

 

Figure 2.4: Triangle inequality problem 

Hence this triangle inequality leads to errors in RTT estimates. Also, due to their 

use of central landmarks, performance of EDM is are easily affected by single 

point of failures and overload [119]. These reasons make EDM not very 

compatible with modern Internet environment which is heavily distributed in 

nature and mostly operates using decentralized processes. 

NMF, on the other hand, estimates unmeasured network distances by using matrix 

completion. NMF collects incomplete network distance measurements within a 

distance matrix (D) and represents each node coordinate as d-dimensional vectors 

in a row and column matrix, where the row matrix (Xi) represents outgoing 

vectors of all nodes while the column vector (Yj) defines incoming vectors. Both 

matrices are then transformed into a new distance matrix using concepts such as 

non-negative matrix factorization [121] and gradient descent [97] to predict 

unmeasured network distances. The new distance matrix (Dnew) consists of both 

previously measured and newly predicted network distances for all the web 

service nodes. Basically NMF finds estimates of row matrix Xi and transposed 
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column matrix Yj that minimizes the difference ( ) between measured network 

distances in D and computed network distances in Dnew. Where the latency 

prediction error is defined as  . Also Dnew is expressed as; 

T
newD X Y  (2.7) 

Figure 2.5 shows an example of NMF-based distance estimation. 
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Figure 2.5: Network distance estimation between nodes n1, n2 and n3 using NMF. 

NMF does not use metric spaces and so is resistant to triangle inequality and thus 

produces more accurate RTT estimates than EDM. Also, while EDM is built on a 

centralized architecture consisting of landmarks, NMF employs a decentralized 

estimation process which is more compatible with modern Internet environments 

than EDM. Our work in [97] introduces a NMF model that further enhances 

decentralization of the estimation process. To the best of our knowledge, NMF 

models have not yet been applied in the context of web services nodes in the 

cloud. Although [126] applied an EDM model to predict end-to-end network 
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performance of cloud-based servers with the aim of identifying low latency 

servers for end users. This thesis proposes a learning-automata based NMF 

(LANMF) model for predicting end-to-end RTT of composite services in the 

cloud. The estimated RTTs are used by the proposed web service composition 

algorithms to aid their search for low latency and QoS-optimal composite 

services. 

2.3 Summary 

This chapter introduces background and literature review on QoS-based web 

service composition in the cloud. Firstly, the chapter presents the concepts of web 

services, QoS and service composition process. Then it analyses the current 

techniques for QoS-based web service composition focusing on both static and 

dynamic composition approaches. An introduction to service composition in the 

cloud is then presented with focus on the impact QoS of the network on the 

performance of composite services in the cloud. Current works on for service 

composition in the cloud are then review followed by an introduction to basic 

concepts of network coordinate systems and its respective models.  
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CHAPTER 3 
A New Method for Predicting End-to-End Network Performance 

of Composite Services 

Web services provide a platform where organizations can dynamically share 

business processes with each other. This is achieved by the composition of 

different web services to meet increasingly complex consumer needs that cannot 

be otherwise satisfied by a single web service. Usually separate business 

processes are exposed as web services interconnected within a workflow. In the 

past few years has witnessed an unprecedented growth in volume of data 

transmitted between web services that are part of a composite service. This rise 

can be attributed to recent trend of exposing cloud data centres as web services. 

That being said, traditional client-server architectures are inefficient in supporting 

modern web service applications because they are susceptible to network 

congestion due to packet collisions especially when large numbers of web 

services are involved. This chapter investigates the problem of predicting end-to-

end network performance of web service network paths in the cloud. It also 

proposes an enhanced learning automata-based matrix factorization algorithm to 

tackle the problem. 

3.1 Introduction 

Several decentralized architectures such as P2P, CDN and cloud networks have 

been developed to provide better QoS delivery to consumers of modern web 

services. In these architectures, end-to-end network performance, otherwise 

known as QoS of the network, plays a crucial factor in determining the overall 

performance of service-oriented applications built upon them [89]. End-to-end 

network performance is described as quality of the network path between any two 

web service nodes. In cloud-based architectures, web service nodes are often seen 
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as VM nodes which provision the resources necessary for the normal operation of 

the web service. The quality of network paths can be represented mainly as either 

network latency or bandwidth. Network latency is associated with round-trip 

times between web service nodes, while bandwidth metric represents the 

transmission rate of a given network path. 

Through end-to-end network performance, modern web service applications are 

able to determine which web service nodes are responsive or unresponsive. For 

instance, this information is used in realizing network paths that can perform low 

latency data transfer between data-intensive web services e.g. Big-data-as-a-

service (BDaaS), data-as-a-service (DaaS) etc. Also, end-to-end network 

performance is also used in determining the proximity between web service nodes 

on the cloud. This is especially useful in service-oriented multimedia applications 

that require replication of media content on cloud-based content delivery 

networks closest to service consumers. 

Driven by the performance expectations of service-oriented applications and 

service consumers, an extensive amount of research has been dedicated to 

determine end-to-end network performance between web service nodes. Some 

studies in this research field have considered end-to-end network performance 

using metrics like network latency [97] or a combination of network latency and 

bandwidth [89]. Although other related metrics such as packet loss [116], jitter 

[117] and hop count [88] have been used to represent end-to-end network 

performance, their occurrences are relatively rare on the cloud. In this study, 

network latency is solely used to represent end-to-end network performance. This 

is because it is easier to obtain network latency data from the cloud than other 

metrics.  
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Network latency or round-trip time (RTT) is the time it takes a data packet to 

move from a source node to a destination node and then back to the source node. 

The RTT from source node to destination node can be different from the RTT 

from the destination node to the source node because two or more network paths 

may exist between both nodes. That being said, RTT is often treated as symmetric 

[118, 122]. Traditionally, network latencies are observed by sending packets 

across the network and then measuring RTT to their destinations. This can be a 

very tedious and time consuming task especially in a large network where there 

exists O (n2) network paths as seen in Figure 3.1. It is also costly to implement 

because a large amount of computing resources are necessary to determine RTT 

measurements.  
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Figure 3.1: Network of n web service nodes and O (n2) paths for a sequence of T 

tasks in a workflow and services a to f. 

Several research studies have been conducted to find more efficient methods for 

estimating end-to-end network latency between a set of Internet nodes. This 

problem has been described as a prediction problem. Generally, the problem is 

described as follows;  
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Given a network of n Internet nodes which are interconnected via O(n2) paths 

consisting of IP router links, how can we measure a subset of paths such that the 

network latency of all other un-measured paths are predicted? 

Recently, techniques based on network coordinate systems (NCS) have been used 

by research community in tackling the prediction problem. As previously 

discussed in Chapter 2, two common NCS are employed; Euclidian distance 

model (EDM) [91, 92] and matrix factorization model (NMF) [89, 94]. EDM 

conducts estimation of RTT with the aid of landmarks which collect RTT 

measurements from all the Internet nodes. In contrast, NMF models use concepts 

such as non-negative matrix factorization to predict RTTs between Internet nodes. 

Generally, these methods predict RTT between a small subset of Internet nodes 

while performing direct measurements on the other nodes. Note that [126] is the 

first work that applied NCS for predicting end-to-end network performance of 

cloud-based servers with the aim of identifying servers with low RTT for end 

user. 

Literature indicators suggest that both EDM and NMF consume less computing 

resources than the traditional methods and therefore are more efficient. However, 

EDM suffers from centralized estimation process and poor accuracy of RTT 

estimates due to triangle inequality violations [96]. NMF, on the other hand, 

employs decentralized estimation process to produce more accurate RTT 

estimates than EDM. Between the two, NMF seems more suitable for modern 

cloud environments which are naturally distributed and usually require 

decentralized processes.  

A major problem with NMF is that it uses the same general update strategy for all 

node coordinates on the network until the latency prediction error is minimized. 

This implies that, while the general update strategy might lead to accurate RTT 
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estimates for a fraction of web service nodes, it may also lead to inaccurate 

estimates for other nodes. Hence, more accurate and decentralized estimation 

techniques are necessary to effectively determine end-to-end network latency of 

modern composite services.  

To this end, an enhanced matrix factorization algorithm is proposed to solve the 

problem. Unlike current NMF models, we present a learning automata-based 

NMF technique, abbreviated as LANMF (Learning Automata-based Non-

negative Matrix Factorization). LANMF uses different update strategies for each 

of the web service node coordinates throughout the estimation process. This 

behavior is achieved by adding learning automata structures to each web service 

node to allow them employ individual update strategies that will lead to minimum 

latency prediction error. From this point onwards, latency prediction error will 

simply be referred to as prediction error. 

Generally, the problem of minimizing the prediction error is solved using 

techniques such as non-negative matrix factorization [120] and singular value 

decomposition [121], although the former has been known to be more efficient in 

most cases. Thus LANMF models the prediction problem for composite services 

as a matrix completion problem with the aim of using non-negative matrix 

factorization to solve the problem. The problem is formulated in the next section. 

3.2 Problem Formulation 

Given n number of web service nodes participating in a web service composition 

in the cloud. For this study, n is expected to be a very large value since we are 

focusing on a large network of web service nodes. 

Also, given an n n  partially completed distance matrix D consisting of both 

known and unknown network distances (ND), non-negative matrix factorization 
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aims to find estimates of row matrix U and transposed column matrix V which 

minimize the difference ( ) between values in D and values in new matrix Dnew;  

 min   (3.1) 

Where Dnew represents fully completed version of D.  

  represents the latency prediction error; 

2.*( ) (3.2)newW D D  
 

W defines a weight matrix having elements (
i j

w ) set to either 0 (for unmeasured 

ND) or 1(for measured ND). “.*” refers to the element-wise multiplication 

operator. 

Also Dnew is expressed as; 

T
newD U V  (3.3) 

Dnew contains both measured ND ( ijd ) and predicted ND ( ij ).  

The predicted ND from node i to j is defined as; 

. (3.4)ij i ju v 
 

Where iu  is departing vector from i-th node to j-th node while jv is the arriving 

vector to the i-th node from the j-th node, 

u U  , v V   
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“.” represents the scalar product. If prediction error is minimized, then ij will 

closely approximate ijd . Also, ij  is not always equal to ji . 

U  and V  matrices represent u and v positional coordinates of all the web service 

nodes respectively. U and V matrices are of sizes g n  and 

n g respectively. g denotes the dimension of the positional coordinates.  

Typically when dealing with non-negative matrix factorization, values of U and V 

are expected to be non-negative. This is necessary because non-negative matrix 

factorization is only solved using gradient descent [97] which is a stepwise 

optimization process that can only operate on non-negative values. 

3.3 A Learning Automata-based Matrix Factorization Method for 
Predicting End-to-End Network Latency of Composite Services 

3.3.1 Basic concept of NMF 

Currently, NMF models based on non-negative matrix factorization solve the 

formulated problem by allowing each web service node to measure ND with a 

subset of neighbours. These measurements are then used to predict ND values for 

other nodes via gradient descent. In non-negative matrix factorization, a node i 

stochastically selects a subset of h neighbours with a goal of finding positional 

coordinates
1 2
, ,...,

hi i i iU u u u    , 
1 2
, ,...,

hi i i iV v v v     (departing and 

arriving vectors) that lead to minimum latency prediction error. Where 
hi

u and 

hi
v  denote departing and arriving vectors to and from h-th neighbour 

respectively. The goal is achieved by an iterative process which starts by 

randomly initializing the values iU  and iV . Then forward and reverse ND vectors 

between i and its neighbours are extracted from distance matrix D. The forward 
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ND vector represents the RTT from node i to h neighbours and is denoted 

as ,1 ,2 ,, ,...,i
f i i i hd d d d    , while reverse ND vector defines the RTT from h 

neighbours to node i and is denoted as 1, 2, ,, ,...,i
r i i h id d d d    . In the next step, 

the coordinates of i are updated using expressions for solving regularized least 

square problems [119] thus; 

1
( ) = ( )i T

i new f i i iU d V V V I   (3.5) 

1
( ) = ( )i T

i new r i i iV d U U U I   (3.6) 

Where  represents regularization coefficient which controls the speed of 

convergence towards minimum prediction error. It also controls over fitting. 

Once all Internet nodes have computed new coordinates with respect to all 

neighbours, then both newD  and  are computed using (3.3) and (3.2) 

respectively.  

The Process is repeated again until either  is minimized or the maximum 

number of iterations is reached as the case may be. 

From (3.5) and (3.6), it is observed that same update strategy is used between 

node i and h neighbours to compute new coordinates during each iteration. Also, 

the regularization parameter is always set at a fixed value. The effect is that every 

node update is performed with the same speed towards convergence. While some 

web service nodes may be successful in minimizing prediction error of their 

coordinates, other nodes may have erroneous coordinates.  
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3.3.2 LANMF Algorithm 

In order to improve the accuracy of ND predictions between web service nodes, 

we propose an enhanced NMF model called LANMF. LANMF is derived from 

[97] by adding learning automata structures in order to further improve prediction 

accuracy of the estimation process. Instead of using a fixed value for 

regularization parameter throughout the estimation process, LANMF allows each 

node to use its own regularization value which will most likely lead it towards 

error minimization. Based on previous experiences, each web service node will 

choose its preferred update strategy towards minimizing prediction error. This is 

achieved by encoding each web service node as a learning automaton (LA). 

LA [111] is an entity that uses past experience to improve its ability to achieve an 

ultimate goal. LA obtains its concepts from the learning process a living organism 

goes through in adapting their actions so that it can cope with its environment. LA 

has been applied to fields in Medicine, Electrical engineering and Computer 

science to solve a variety of problem domains such as pattern recognition [114], 

parameter tuning [115], DNA sequencing [113], and power systems design [112]. 

However to the best of our knowledge, this is the first time that LA has been used 

to tackle prediction problem. 

LA starts at an initial state and then applies a set of actions to transform the state. 

Each action will lead to a specific response from the environment. LA then 

identifies an action that leads to the most favourable environmental response. This 

action will be used to update subsequent states until environmental response 

becomes unfavourable. At that time, LA switches to a different action and the 

process is repeated again.  

Generally, LA is characterized by several properties like states, actions, feedback 

and goal. Where the state defines the current configuration of LA; actions define a 
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number of alternative paths that can be taken in order to reach the goal; feedback 

represents the response from environment about a specific action taken; and 

finally the goal defines the final objective LA is trying to achieve. 

In this study, LA structures are applied to state of the art NMF model to develop 

the LANMF algorithm. The procedure for LANMF is described below;  

Step.1. Initialization of Population. 

In LANMF, parameters for the environment are initialized. They include 

maximum number of iterations (max_iter), regularization value ( ), dimension 

(g), number of neighbours (h), number of states (no_states), current state (state), 

action probabilities (actions_prob), environment response (rp_env), current state, 

and ( iu , iv ) positional coordinates for each node. 

LANMF encodes each node’s iu  and iv  with additional LA parameters as seen in 

Figure 3.2. 
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Figure 3.2: Encoding of node coordinates with LA parameters where k ranges 

from 1 to g  
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Where 

 α represents a set of two alternative update strategies ( 1 and 2 ) 

employed in updating position coordinates in iu  and iv : 

-1
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Also 

 J1 and J2 are constants 

 I - Identity matrix 

 β represents feedback for an a given action in α. β = {
1

 , 
2

 } 

 Pα is action probability which is determined from feedback of estimation 

error. 

If feedback for action 1  is good (
1

  = 0 and.   is improved) then 

action probability 
1

P  is rewarded while 
2

P  is penalized; 
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Else if feedback is bad (βα1 = 1 or   is not improved) then reverse is the 

case; 
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In other words, each web service node evaluates its LA actions and assign action 

probabilities based on environmental response which in this case is whether or not 

the action leads to minimum prediction error. The action with the highest 

probability of reaching minimum error is selected as the next action and its action 

probability is rewarded, while other action probabilities with lower likelihood of 

reaching minimum error are penalized. 

The process is then repeated until the maximum number of iterations is reached. 

The LANMF algorithm is outlined in Algorithm 3.1.  

Algorithm 3.1 LANMF Algorithm 
Input: D, g, n, , h, max_iter, no_states, state, actions_prob, rp_env, 
w, J1, J2 
Ouput: Dnew 
1:  Dnew = function LANMF(Input) 
2:  { for(i =1: max_iter) { 
3:                 for(j =1: n) { 
4:                          Select h random number of neighbors and  
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5:                          initialize action, actions_prob 
6:                          Uj  rand(x) 
7:                          Vj  rand(y) 
8:                          Check action of Uj  

9:                          If action 1 Then  
10:                          Update Uj(new) according to equation (3.7) 
11:                        If action 2 Then 
12:                          Update Uj(new) according to equation (3.8) 
13:                        Check action of Vj 
14:                        If action 1 Then 
15:                           Update Vj(new) according to equation (3.7) 
16:                        If action 2 Then 
17:                           Update Vj(new) according to equation (3.8) 
18:               Endfor } 
19:                        Dnew  U * VT 
20:                        error  w (D - Dnew) 2 
21:                        rp_env  Get response from environment 
22:                        if (error is minimised) { 
23:                            Reward actions_prob for Uj and Vj 

24:                            Update state of Uj and Vj 

25                         Else 
26:                            Penalize actions_prob for Uj and Vj 
27:                        EndIf} 
28:                        return Dnew 
29:      EndFor} 

30:  } 
 

 

3.4 Experimental Setup and Evaluation 

In this section, we evaluate the performance of LANMF and compare it against 

state of the art ND prediction techniques such as EDM and NMF. 

We simulate a cloud network (as seen in Figure 3.3) of real measurements 

between internet nodes using data from Harvard dataset [124]. We opted for this 

dataset because implementing a physically large cloud environment of VM nodes 
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is very expensive. Also, the dataset contains the most up-to-date RTT 

measurements when compared to older datasets such as p2psim [125] and 

Meridian [136]. The Harvard dataset contains actual RTT measurements between 

1895 geographically dispersed Planet-Lab nodes. Note that Planet-Lab nodes can 

be used to easily host VM nodes because they share similar characteristics as a 

typical cloud computing host [123]. We assume each Planet-Lab node (PL1 to 

PLn) hosts a single web service node for the sake of simplicity. 

PL1

PL2

PLn

PL3
WS1

WS2

WSn

WS3

Cloud network

 

Figure 3.3: Experimental Cloud network showing web service nodes ws1 to wsn 

deployed on Planet-Lab nodes CSP1 to CSPn  

The experiments are executed on an Intel Core i7 CPU with 3.8GHz speed and 

8GB memory. Both LANMF and cloud network are simulated on MATLAB 

2013a. In this experiment, two state of the art RTT prediction models are 

compared against LANMF; 

 DMF: This algorithm represents a state of the art decentralized non-

negative matrix factorization method that uses a constant regularization 

parameter. It also uses gradient descent for error minimization. The 

algorithm is based on work by [119]. 
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 EDM: This is a state of the art Euclidean distance model which uses 

virtual coordinate system and landmark nodes to compute virtual 

coordinates of Internet nodes. The EDM implemented in this study is 

based on [95]. 

Initial parameter settings for our test environment and algorithms are specified in 

Table 3.1. 

Table 3.1: Parameter settings 

PARAMETER DESCRIPTION LANMF EDM DMF 
g Dimension 10 10 10 
n Total number of nodes 1895 1895 1895 
  Regularization 

parameter 
50 - 50 

h Number of neighbors 32 - 32 
maxIter Maximum number of 

iterations 
50 50 50 

no_states Maximum number of 
states 

50 - - 

state Current state 1 - - 
actions_prob Current action 

probability 
0.5 - - 

rp_env Environment response 0 - - 
J1 Constant +1 - - 
J2 Constant -1 - - 

 

3.5 Results and Discussion  

To evaluate the efficiency of LANMF, we compare its prediction accuracy 

against EDM and DMF using initial parameter settings and classic evaluation 

metrics such as mean prediction error (MPE), median absolute prediction error 

(MAPE) and computation time.  

MPE is computed as 
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1

[ ]
(3.11)

maxiter

i
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While MAPE is obtained using 

 (3.12)iMAPE median   

We also analyse the effects of changing parameter settings for number of 

neighbours, dimensions, J1 and J2 on the performance and accuracy of the 

algorithms. 

3.5.1 Analysis of Prediction Error  

We compare the convergence and standard deviation of the each algorithm’s 

prediction error over 50 iterations. The standard deviation defines the spread node 

prediction errors around either MPE or MAPE as the case may be.  

It can be observed that from the results shown in Figure 3.4 (a) and (b) that 

LANMF converges to the lowest prediction error after 10 iterations in both MPE 

and MAPE cases. The next best result was demonstrated by DMF, followed by 

EDM which showed the worst accuracy. The result proves that due to the LA-

based update strategy, LANMF’s algorithm estimates slightly more accurate 

network distances than DMF but significantly more accurate values than EDM. 
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(a) Graph showing convergence of MPE 

 

(b) Graph showing convergence of MAPE 
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(c) Graph comparing MPE standard deviation for test algorithms 

 
(d) Graph comparing MAPE standard deviation for test algorithms 

Figure 3.4: Plot of MPE and MAPE convergence. 
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Figure 3.4 (c) and (d) show that DMF’s MPE values are closest to each other as 

indicated by its low standard deviation. LANMF on the other hand shows similar 

standard deviation to DMF, with EDM having the highest standard deviation. 

This means that ND estimations for DMF and LANMF tend to move towards 

regions in the MPE/MAPE space that are closest to the optimum MPE and MAPE 

while error estimates of EDM are further away from the optimum MPE and 

MAPE. Note that EDM’s poor prediction accuracy is due to its use of landmarks 

which are not present in both DMF and LANMF. 
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Figure 3.5: Paths of LANMF’s actions vs. paths of DMF’s action. 

Figure 3.5 compares LANMF’s action path against DMF’s action path. In the 

Figure, DMF follows a constant action path (i.e. constant value for the 

regularization parameter) throughout the iteration process. In comparison, 

LANMF toggles its action paths starting at α2 in the first iteration and then 

switches to α1 in the second iteration and then back to α2 from the third to sixth 

iteration and then back to α1 etc. This demonstrates that, while DMF adopts a 

constant action path throughout the estimation process, LANMF toggles its 
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actions between two different paths with each path leading the estimation error to 

a lower value until minimization is reached. 

Table 3.2: Average computation times (in seconds) of test algorithms  

LANMF. DMF EDM 
31.15 33.41 32.58 

 

Table 3.2 shows that the three algorithms have similar computation times. This 

result demonstrates that enhancing LANMF with LA structures and parameters 

did not induce any additional computational overhead on the estimation process. 

3.5.2 Impact of Number of Neighbours h 

In this experiment we vary h to evaluate how its value affects MAPE and MPE 

for LANMF. Figure 3.6 shows that increasing the number of neighbours for each 

node has the effect of increasing the accuracy of ND prediction. The reason for 

this behaviour is that when h is increased, the number of direct ND measurements 

rises while the number of ND predictions reduces. This will ultimately lessen the 

prediction error. With respect to computational complexity, we notice that there is 

little or no difference in computation times when h is increased from 20 to 100. 

After 100, computation times start rising slightly with h. Thus, we recommend h 

to be set as 60 which represents a good balance between accuracy and 

computational complexity. This implies that 60/1895 (3.17%) direct 

measurements are made by each web service node.  
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(a) Graph showing h vs. MPE 

 

(b) Graph showing h vs. MAPE 

Figure 3.6: Impact of h on MPE and MAPE 

3.5.3 Impact of Constants J1 and J2 

Constants J1 and J2 influence the numerical difference between the regularization 

parameter’s previous and subsequent values. In this experiment, we assign 

different values within the range [-50, +50] to J1 and J2 and assess how they 
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impact LANMF’s prediction accuracy. In Figure 3.7 (a) and (b), it is observed 

that setting J1 and J2 at (-1, -2) respectively will yield the lowest MPE but slightly 

higher MAPE. If numbers below those values are assigned to J1 and J2 e.g. (-2, -

3), then MPE increases slightly while MAPE slightly decreases. The same 

situation will happen if J1 and J2 are set to numbers above (-1, -2) e.g. (-1, +2) or 

(+30, -40) respectively. 

Figure 3.7 (c) and (d) shows how variations of J1 and J2 affect the standard 

deviation of prediction error. The graphs indicate that the setting J1 and J2 to 

either of the two extremes i.e. (+30, -40) and (-2, -3) yield slightly higher spreads 

of MPE and MAPE among the nodes, while settings of (-1, -2) show lower 

MPE/MAPE spread among the nodes. The lower MPE/MAPE spread is because 

the prediction error for most nodes tend to move closer to the optimal MPE. This 

results proves that setting J1 to -1 and J2 to -2 will result in near optimum 

prediction error.

 

(a) Graph showing J1 and J2 vs. MPE 
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(b) Graph showing J1 and J2 vs. MAPE 

 
(c) Graph showing J1 and J2 vs. Standard deviation of MPE 
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(d) Graph showing J1 and J2 vs. Standard deviation of MAPE 

Figure 3.7: Impact of J1 and J2 on MPE and MAPE 

3.5.4 Impact of Dimension g 

In this experiment, we vary dimensionality of LANMF’s positional coordinates 

and determine how it impacts prediction error. Figure 3.8 demonstrates that 

prediction error reduces when dimensionality is increased. The figure also 

indicates that MPE and MAPE may converge into local optimum when g is 

extremely low. Setting g to a higher value will ensure that it reaches a globally 

optimum prediction error. However, this could increase the computation time of 

the algorithm. So we set g at 25 to ensure a reasonable balance between 

convergence of prediction error and computation time.
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(a) Graph showing variations of g against MPE. 

 

(b) Graph showing variations of g against MAPE. 
Figure 3.8: Impact of g on MPE and MAPE 
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3.5.5 Prediction of End-to-End Network Distance of Composite Service 

In this experiment, we evaluate LANMF’s ability to accurately estimate the end-
to-end network distance of a given composite service. We create a composite 
service workflow consisting of 20 web service nodes connected sequentially for 
the sake of simplicity. Each web service node consists of neighbouring web 
service nodes a1 to th which are not part of the workflow but whose measurements 
will aid in predicting the network distances of paths within the workflow. Here, 
we randomly select about 400 Planet-Lab nodes from the Harvard dataset as the 
web service nodes depicted in Figure 3.9. 

WS1 ws2 ws3 WS20

ah

a1

bh

b1

ch

c1

th

t1

Measured ND

Predicted  ND

NDe-to-e

p1 p2 p3 p19

 

Figure 3.9: Test composite service 

In terms of parameter settings, we vary the parameter settings to see how they 
affect the difference (Diff) between actual ND (NDA) and predicted end-to-end 
network distance (NDe-to-e) of the composite service. We also pass the test 
composite service to LANMF, DMF and EDM in an attempt to estimate the path-
wise network distances (pi) and composition’s end-to-end network distance (NDe-

to-e). Table 3.3 to Table 3.6 show the results of the experiment where all their 
values are in milliseconds (ms). 
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Table 3.3: Comparison of test algorithms’ end-to-end network distances (ms) 

NDA NDe-to-e 
973.7 LANMF DMF EDM 

971.34 953 1041.5
 

Table 3.4: Comparison between h and Diff (ms) 

h NDe-to-

e 
NDA Diff g 

2 512.65 973.70 461.05 3 
10 1032.4  58.70  
30 995.30  21.60  
60 982.40  8.70  

 

Table 3.5: Comparison between g and Diff (ms) 

g NDe-to-

e 
NDA Diff h 

3 982.4 973.7 8.70 60 
10 1001.1  27.4  
25 953.2  20.5  
50 947.4  26.0  

 

 

Table 3.6: Comparison between J1, J2 and Diff (ms) 

J1 ,J2 NDe-to-e NDA Diff g 
(+30,-40) 990.45 973.7 16.75 25 

(+1,-1) 981.40  7.70  
(-1,-2) 969.09  4.61  
(-2,-3) 950.18  23.52  

 

Table 3.3 shows that LANMF can estimate NDe-to-e close to the actual end-to-end 
network distance of the composite service. Tables 3.4 to 3.6 further demonstrate 
that parameter settings of LANMF can influence its accuracy as indicated by the 
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difference (Diff) between NDe-to-e and NDA. Also the boldly highlighted values 
show that the recommended parameter settings yield the smallest difference 
between predicted and actual ND. 

3.6 Conclusion 

This chapter introduced an enhanced LANMF algorithm for predicting end-to-end 

network distances between of web service nodes in a large cloud network. State 

of the art techniques poorly predict network distance either due to their use of 

central landmarks to obtain network distance measurements as in the case of 

EDM, or due to their use of constant regularization parameter as in the case of 

NMF. LANMF uses learning automata concepts to allow each web service node 

to predict its own network distance to a set of neighbours using variable 

regularization parameter values. Simulations where carried out and the results 

demonstrate that LANMF is superior to other methods in terms of accuracy. This 

claim is further strengthened by the result comparing LANMF’s MPE/MAPE 

standard deviation against NMF (DMF) and EDM models. The results also 

evaluate the impact of LANMF’s parameter settings on its performance and 

optimality. Some recommendations where made as to which parameter settings 

would lead to best results.  

3.7 Summary 

In this chapter we introduced the problem of end-to-end network performance 

prediction as a prediction problem. Firstly we presented a brief background on the 

issues associated with predicting network performance of Internet nodes. Then 

the chapter described the major techniques used to tackle the problem. Our 

enhanced approach called LANMF was then presented followed by an 

experimental comparison between the approach and state of the art techniques in 

different contexts. The chapter then analysis how parameter settings of our 
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technique can affect its performance, quality and also composition’s predicted 

network distance. Finally, the chapter concludes.  

In the next chapter, we present new service composition algorithms which utilize 

LANMF to search for composite services having low end-to-end network latency 

without compromising their QoS levels.
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CHAPTER 4 

New Methods for Network-aware Web Service Composition in 

the Cloud 

The goal of web service composition is to aggregate both functional and QoS 

attributes of web services into a composite service. But before service 

composition process can proceed, it is necessary to determine how QoS of web 

services should be modelled and then aggregated into the compositions end-to-

end QoS value. Once this is achieved, then the next issue involves how to choose 

a service for each workflow task so that the end-to-end QoS of composite service 

is optimal. The latter issue has been described as an NP-Hard problem. In real 

world situations, QoS-based web service composition is also subject to several 

additional requirements such as: 

 Multiple conflicting QoS attributes e.g. response time, cost and execution 

time should be optimized simultaneously. 

 Multiple QoS constraints e.g. cost and response time should be less than 

some threshold value specified by the consumer.  

 Scalability i.e. service composition algorithms should be able to compose 

a large numbers of web services in reasonable time. 

These requirements have been mainly tackled by recent research works. However 

network performance has not been considered by current works. Network 

performance should be considered alongside other QoS attributes when 

optimizing the QoS of composite services. This is because it has direct impact on 

user satisfaction [111].  
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In the previous chapter, we presented a technique for estimating end-to-end 

network distance (network latency) of a composite service. This chapter focuses 

on tackling QoS-based web service composition under multiple QoS and network 

latency constraints. In this chapter, four novel evolutionary algorithms are 

introduced. Each of the proposed evolutionary algorithms utilizes a different 

strategy for optimizing QoS and network latency attributes without compromising 

constraints. 

4.1 Introduction 

As previously covered in Chapter 2, QoS-based web service composition process 

involves a series of steps starting from decomposition of a consumer request into 

sub-tasks, through discovery of candidate services, and then finally the generation 

of workflow or composite service. The workflow consists of a set of 

interconnected web services which have been bound to each sub-task. It is 

typically modelled in different patterns such as sequence, choice, parallel split 

and loop. These patterns are collectively known as workflow patterns or 

workflow structures [30]. Each pattern determines how QoS of the composite 

service is modelled. The QoS value of a composite service is calculated by 

aggregating QoS of candidate services based on the type of workflow pattern 

involved. For instance, considering the workflow for the travel booking example 

shown in Figure 4.1, assuming the user requires minimization of cost and 

response time. Also assuming that web services A1, C2 and D1 have been 

selected as part of a sequence workflow (A1-C2-D1).  
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Figure 4.1: Workflow for Travel booking application with four tasks and their 

respective web services 

Then the end-to-end total response time e to eRT    of this composite service will be 

the sum of all response times of A1 (multiplied by probability of choosing A1), 

C2 and D1. 

 1 1 2 1(4.1)e to e A A C DRT p RT RT RT       

Where pA1 is the probability of choosing A1 in the exclusive choice workflow 

structure. RTA1, RTC2, and RTD1 are response time QoS values for A1, C2 and D1 

respectively. A similar formula can be applied in computing end-to-end cost of 

the composite service;  

 1 1 2 1(4.2)e to e A A C DC p C C C       

Where CA1, CC2, and CD1 represent execution cost for A1, C2 and D1 respectively. 

Table 4.1 shows the QoS aggregation formulas for sequence, parallel, and loop 
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workflow patterns while Table 4.2 provides a description of each workflow 

pattern. 

Table 4.1: Aggregation formulas for QoS computation of some major workflow 

patterns. 

QoS attribute Sequence 
pattern 

Parallel pattern Loop pattern 
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Table 4.2: Types of workflow structures 

Workflow 
pattern 

Synonym Description 

Sequence Sequential 
routing 

Executes a set of services sequentially 

Parallel AND-split Executes a set of services simultaneously 

Loop Cycle Executes a specific path continuously 
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The main aim of QoS-based web service composition is to search for a set of 

interconnected web services within a workflow pattern that lead to optimum end-

to-end QoS. This problem has been regarded as an NP-Hard combinatorial 

optimization problem. However, in practice several challenges have further 

complicated the problem. Some of the major challenges have already been tackled 

by recent works introduced in Chapter 2, although these works fail to consider a 

pertinent issue such as the impact of network performance on composite service 

QoS optimization. This issue is brought about by the increasing use of cloud 

computing platform in deploying web services. Recently, service providers are 

offering their web applications as services running on the Cloud. These services 

currently span across different geographical locations around the world. The 

spread can affect network performance of composite services especially since it 

involves aggregation of services distributed on different cloud data centres. The 

effect is further felt when dealing with a large scale composition of web services. 

In this case, current studies may produce compositions that have optimal QoS but 

sub-optimal network performance. An example is illustrated in Figure 4.2. The 

example shows several web service deployed on different cloud data centres. 

Assuming each data centre consists of two or more web service nodes and is 

separated from other data centres by different round trip times (RTT). Also 

assuming a user request consists of a sequence pattern of three tasks (t1, t2, and t3) 

with each task having a set of candidate services and their respective QoS scores 

for cost (P), response time (RT) and execution time (ET). Figure 4.3 shows an 

instance of a sequence workflow pattern consisting of tasks (t1 to t3) and web 

services (SA1 to SC3).  Each web service is represented by a triangle with its 

respective QoS values shown at the side of the triangle. Current approaches will 

ordinarily pick the QoS optimal composite service (highlighted using bold boxes 

in Figure 4.3) consisting of services (|SA1-SB1-SC2|) with respect to cost, execution 
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time and response time. In doing so, users may experience different levels of 

performance for this optimal solution depending on the RTT between VMs of 

participating services. VMs having shorter RTT will incur lower RTT than those 

further away from each other. 
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Figure 4.2: Web service deployment locations. 
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Figure 4.3: Sequence workflow pattern with services and their QoS scores 

For instance user A may experience low network latency for composite service 

|SA1-SB1-SC2| (i.e. end-to-end network latency for |SA1-SB1-SC2| is 400ms + 100ms 

+ 54ms + 500ms = 1054ms, end-to-end cost, response time and execution time 
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are [£15 26s 34s] respectively), while user B experiences high end-to-end network 

latency because of larger RTT to |SA1-SB1-SC2| (i.e. 500ms + 100ms + 54ms + 

3000ms = 3654ms). Perhaps similar composite services such as |SA2-SB1-SC2| 

(3087ms, [£19 34s 47s]) or |SA2-SB1-SC3| (311ms, [£17 44s 41s]) may be better 

suited for user B since they have lower network latency but are sub-optimal in 

terms of cost, response time and execution time i.e. [£15 26s 34s] of |SA1-SB1-SC2| 

is better than [£19 34s 47s] of |SA2-SB1-SC2| and [£17 44s 41s] of |SA2-SB1-SC3|. 

Several techniques have been proposed to tackle the QoS-based service 

composition problem such as Dynamic programming [59, 61], AI planning [99, 

100] and evolutionary algorithms [69, 71]. A major issue with the problem is how 

to handle multi-objective optimization under conflicting QoS attributes and 

constraints. Amongst, the approaches reviewed, evolutionary algorithms have 

shown to be most suited to tackling the issue. This is because they employ 

different naturally inspired methods which can be used to seamlessly handle 

multiple QoS attributes and constraints during optimization process. Hence, this 

research focuses on applying evolutionary algorithms to solve the problem. The 

techniques proposed in this research differ from current approaches in that they 

separate QoS of network from web service QoS. Having a separate representation 

for QoS of the network allows the proposed techniques to find a composite 

service who’s QoS in not only optimal, but also has near-optimal network latency. 

This work presents four novel evolutionary algorithms for QoS-based web service 

composition under quantitative QoS and network latency constraints. The 

proposed algorithms leverage LANMF method presented in Chapter 3 to build a 

network model for computing end-to-end network latency of a composite service. 

Specifically, the network model estimates network distance between web service 

VM nodes in the cloud. Estimation is necessary as traditional latency 

measurement methods which involve distribution of RTT pings to directly 



New Methods for Network-aware Web Service Composition in the Cloud 

78 

measure RTT between services nodes are generally slow and computationally 

expensive. Via the network model, the proposed algorithms attempt to find a 

composition that connects its constituent web service nodes through an end-to-

end network path that has near optimal QoS and low latency. Such kind of 

composition methods presents several benefits to the Industry. Firstly, it will 

enable service providers to facilitate delivery of better quality service to their 

consumers. It will also serve to maximize the consumer’s experience of the 

offered services. 

In addition to network latency, the proposed algorithms consider three major QoS 

attributes namely end-to-end cost, end-to-end response time and end-to-end 

execution time in their QoS model, although any other set of QoS attributes could 

be considered as this will not affect the operation or performance of the 

algorithms. The next section presents the QoS model and formulates the problem. 

4.2 Problem Formulation 

The problem can be described as follows: 

Given a user request T composed of a set of tasks 1t  to nt ,  

 ntttT ,,, 21  , 

Where n is the number of tasks to complete user request. 

Each task is assigned a service class ( iS ) where each service class represents a set 

of functionally similar web services or candidate services ( ijs ) that can perform 

the associated task as seen in Figure. 4.4, 

 
iikiii sssS ,,, 21  ,  ni ..1 ,  1.. ij k   
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Where ik  is the number of candidate services in the i-th service class. 

For each task, only one candidate service within its service class can be bound to 

the task it to form a composite service C. 

 

s11

s12

s13

s21

s22

s23

sn1

sn2

sn3

t1 t2 tn

S1 S2 Sn

s1k1 s2k2 snkn
 

Figure 4.4: Classification of candidate services into service class and tasks. 

A composite service can be formed from the aggregation of web services per 

service class; 

 njjj sssC ,,, 21  ,  kj ..1 ,  ni ..1  

Where ijs is the web service of service class Si. 

Also, given a set of QoS objectives; Cost, response time, execution time and 

network latency, their end-to-end QoS value for a composite service ( )(CQ ) is 

calculated by combining individual QoS values of its services based on the 

following expressions.  

To compute end-to-end cost of composite service, web service costs )( ijsP  are 

aggregated; 
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Similarly, both end-to-end response time ( )( ijsRT ) and end-to-end execution 

time ( )( ijsET ) are computed thus; 
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(4.4), 





n

i
ijET sETCQ

1

)()(  (4.5) 

 As for end-to-end network latency, network distances for constituent network 

paths within the composite service are combined using; 

, 1,
1

( ) ( , )
n

L i j i j
i

Q C L s s 


   (4.6) 

Where , 1,( , )i j i jL s s   represents the round trip time of both forward and reverse 

network paths within a composite service. ). Note that network latency is defined 

as RTT from one source service node to another and then back to the source node. 

In the case of a composite service, network latency is defined as end-to-end RTT 

from the first service’s node in a given composite service to the last service’s 

node then back to the first service node. 

QP, QRT, QET and QL represent end-to-end cost, response time and execution time 

of a composite service respectively. 

Given weights Pw , RTw , ETw  and Lw which represent relative importance of QoS 

objectives from the user's perspective. Where, 
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(4.7) 

QoS objectives are normalized into fitness values using the expressions in (4.8) 

and (4.9). Cost, response time and execution time are computed using; 
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 (4.8),  kj ..1  

Fitness value for network latency ( Lf ) is determined by (4.9) which normalizes 

the end-to-end network latency QoS ( LQ ); 

( )
( ) L

L L

Q C
f C w

H
   
 

 (4.9) 

Where H is a constant which normalizes value of ( )LQ C  in the range of [0 1]. 

Given that several QoS objectives need to be optimized, multiple trade-off 

solutions can be found. Hence, the research problem is defined as a constrained 

multi-objective optimization problem where the aim is to find a set of composite 

services with near-optimal fitness value with respect to cost, response time, 

execution time and RTT, 

   , ,( ) , m P RT ET Lbest mC Min f C    
 

Subject to: 

 Selection constraint: Only one candidate service can be selected per 

service class. 
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 QoS constraints 1 2 3 4, , ,c c c c , where 1 2 3 4, , ,c c c c  are user specified QoS 

constraints for cost, response time, execution time and network latency 

respectively. 

4.3 Evolutionary algorithms for Network-aware Service Composition in 

the Cloud 

In this chapter, novel evolutionary algorithms are proposed to search for low 

latency compositions with near-optimal QoS. The algorithms presented in this 

section include a network-aware GA, Kmean-based GA, multi population-based 

PSO, and a network-aware fruit fly optimization algorithm. In the next sub 

sections, the algorithms are described in detail. 

4.3.1 Network-aware Genetic Algorithm 

Genetic algorithm (GA) is an evolutionary optimization method that uses 

concepts based on Charles Darwin's theory of evolution. GAs are characterized by 

their ability to evolve individuals of a generation (genomes) in accordance with a 

predefined set of rules up to a point where fitness value is optimized. Several GAs 

[29, 128, 129, 130] have been developed to tackle service composition problem 

using single QoS objective. However, they don’t work in situations where there 

are multiple conflicting QoS objectives. A special type of GA called non-

dominated sort genetic algorithms (NSGA-II) has been applied to optimize 

conflicting QoS objectives in the service composition context. NSGA-II is one of 

the most often used optimization methods when dealing with conflicting QoS 

objectives [127]. This is attributed to its ability to search for a set of non-

dominated best solutions also known as Pareto front. In this work, we employ an 

enhanced NSGA-II algorithm to tackle the research problem.  
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Generally, NSGA-II encodes each solution as a genome and then initiates the 

optimization process by initializing a generation of genomes. It then places the 

best individuals are into a mating pool where they are sorted using non-dominated 

sort technique. At this stage, elitism is used to sort each individual into a Pareto 

front with individuals having better fitness being placed in higher ranks. Solutions 

are then altered by crossover and mutation operators in order to improve their 

quality and produce children for the next generation. The whole process is 

repeated until either the optimal Pareto front is found or the maximum number of 

generations is reached.  

Several issues have been identified which affect the optimality of NSGA-II when 

applied to our research problem. Firstly, NSGA-II employs a uniform distribution 

index during mutation operation. This can decrease the diversity of individuals in 

the population. Secondly, NSGA-II makes use of the same cut points during 

crossover operation i.e. the points where one parent’s genes are interchanged with 

genes of other parents. This can affect the quality and population diversity of 

NSGA-II’s Pareto front as our experimental results will show. Thirdly, NSGA-

II’s crossover and mutation operators cannot search for latency-optimal solutions. 

This is because they have no facility capable of handling optimization of 

composite service network latency. They are only capable of searching for QoS 

optimal solutions. Lastly, NSGA-II commonly adopts penalty based constraint 

handling methods [29, 129]. However these methods are mainly suited to 

constraints of either “higher is better” QoS attributes such as reputation, 

availability, throughput etc. or a mixture of both “higher is better” and “lower is 

better” QoS attributes. They are not very effective in situations where all the QoS 

constraints specified are for “lower is better” QoS attributes. Obviously, cost, 

response time, execution time and network latency are all classified as lower is 
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better QoS attributes i.e. attributes whose lower numeric values are better than the 

higher values.  

Motivated by these limitations. We develop an enhanced NSGA-II algorithm 

called INSGA to tackle these issues. INSGA employs network-aware ND-

Crossover and ND-Mutation operators to search for low latency and QoS optimal 

solutions. In addition, INGA adopts a unique penalty function for handling 

multiple end-to-end QoS constraints for negative QoS attributes which are 

considered in this study. 

When applying INSGA to service composition problem, each genome represents 

a possible composite service and is encoded in form of array of numbers or genes. 

Each gene represents a task is assigned to any one of candidate services within its 

service class as seen in Figure 4.5. The procedure for INSGA is described below; 

GENOME(Composite service)

{Task 1}
Gene 1

{Task 2}
Gene 2

{Task 3}
Gene 3

{Task n}
Gene n

S11

S12

S1i

S13

S21

S22

S2i

S23

S31

S32

S3i

S33

Sn1

Sn2

Sni

Sn3

S11

Figure 4.5: Structure of Genome in INSGA 

 

Initialization of population 

INSGA starts by randomly generating an initial population of composite services. 

In order for this to be achieved, we first encode every service as a two digit 

integer value. For example, as shown in Figure 4.6, a web service encoded as 
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"33" is the 3rd candidate service capable of executing task 3. In the next step only 

one candidate service is arbitrarily selected per task. 

12 21 33

S21

S22

S23

S31

S33

S32

S11

S13

S12

 

Figure 4.6: Example of a composite service encoded as integer array. 

Web service QoS scores are then randomly initialized. With the aid of LANMF 

algorithm, the QoS scores are normalized and aggregated into values 

representative of composite service’s end-to-end cost, response time, execution 

time and network distance respectively. After normalization of QoS scores, 

fitness for each solution is computed based on number of constraint violations 

thus; 
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0 (C) 0;

( ) (4.12)

( ) .
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m
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m

m
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pen C

c Q C otherwise

c Q C

 



    

 

Where ( )mpen C  represents the penalty function that computes the magnitude at 

which a composite services violates QoS constraints. (C)mcv  is a binary number 

that specifies whether or not a solution has violated a given constraint. 0 is 

assigned to (C)mcv  if there is no constraint violation otherwise 1 is 

assigned.
mubc and 

mlbc  define the constraint upper and lower bounds 

respectively, while ( )mQ C  represents end-to-end QoS of composite service. 

Note that upper bound is the value at which end-to-end QoS score of a solution 

should not exceed. Also, the lower bound is usually assigned as 0. For example 

when a consumer specifies that response time of a solution should not exceed 

200ms, the upper bound is assigned 200ms while the lower bound is assigned 0. 

So if a solution has end-to-end response time of 250ms then (C)RTcv is assigned 1 

because the constraint of 200ms has been violated and the solution is labeled 

infeasible. Therefore the penalty function for the solution is computed as; 

200 250 50
( ) 0.2

0 250 250RTpen C
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Hence response time fitness ( )RTf C  of the solution is penalized (increased) by 

0.2;  

1

(S ) -  250
( ) 0.2

(S ) (S )

n
RT i

RT RT
i RT i RT i

Max
f C w

Max Min

 
    
  

On the other hand, if a solution has end-to-end response time of 150ms then 

(C)RTcv is assigned 0 because the constraint has not been violated and the solution 

is labeled feasible. Therefore the solution’s penalty function is; 

200 150 50
( ) 0.2

0 250 250RTpen C


   
   

Hence, ( )RTf C  is not penalized but is reduced by -0.2 to improve its value.  

Using this technique solutions having constraint violations are given higher 

fitness values while those that do not violate constraints are given lower fitness 

values. This has the effect of pushing constraint-violating solutions into lower 

ranks in the Pareto set while non-constraint violating solutions are placed into 

higher ranks during ranking and sorting operation. 

Ranking and Sorting 

INSGA uses a non-dominated sorting technique that ranks individuals into 

different fronts according to the degree that they dominate other individuals in the 

population. A composite service Ci perfectly dominates another composite service 

jC  if all the fitness values of iC  are lower than the fitness values of jC . 

Therefore iC  will be placed in a higher front (rank) than jC . For each front, 

individuals are sorted in ascending order according to the magnitude of their 
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fitness. This is used to establish the crowding distance (CD) which indicates the 

Euclidean distance between individuals in the fitness value space. CD for a given 

composite service iC  is expressed as; 

1 1

max min

( ) ( )
( ) i i

i

f C f C
CD C

f f
 


  (4.13) 

Where 

 )( iCCD is the crowding distance for the i-th individual. 

 1( )if C   represents the fitness value of individual succeeding i-th 

individual. 

 1( )if C   represents the fitness value of individual preceding i-th individual 

 maxf  and minf  represent the maximum and minimum fitness values in 

population 

When the fitness value of a composite is far away from fitness of other solutions 

then its CD will be larger than solutions that have fitness values very close 

together.  

 

 

Tournament selection 

A tournament selection of the best individuals is achieved to determine parents 

who will take part in crossover operation. The selection process only the 

individual with lower fitness and higher crowding distance is selected for 

crossover operation. 
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Crossover operation 

Crossover operation combines any two parents into offspring (children) that are 

slightly different from their parents and can have superior properties of both 

parents. Traditional crossover operation selects arbitrary cut points where genes 

around cut points of one parent are replaced with genes of another parent to 

construct an offspring. INSGA employs a network-aware two-point crossover 

operator called ND-Crossover which cuts parents at two non-random cut points. 

The two cut points (one per parent) are chosen from areas on each parent where 

average RTT is high. In order to determine which point on a parent constitutes 

high average RTT, every web service node is assigned an average latency score 

( LA ) which is the arithmetic sum of RTT values over all outgoing and incoming 

paths divided by the number of outgoing and incoming paths from a given service 

node, 

( ) 1/ ( ) (4.14)L L
g G

A s G Q g
 

   

Where AL (s) represents average latency score in milliseconds (ms) for service s, 

G is number of outgoing and incoming paths from s, and QL (g) is RTT value for 

a given network path. 

Once average latency scores are known, ND-crossover operator selects a cut point 

from each parent where AL is maximum. After the cut points are determined then 

the genes around those points are interchanged between both parents. This 

ensures that network paths of genes with highest LA  are interchanged with genes 

with lower LA network paths. Figure 4.7 depicts how ND-crossover operator 

functions. One might argue that, in the process of interchanging high LA network 
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paths with low LA network paths at one cut point, other cut points having low 

LA paths are replaced with genes having high LA network paths. However, results 

prove that this is not the case. 

          

(a) Before crossover operation 

       

Child 1
{5 3} {6 4}{1 6} {2 4}

Child 2
{5 5} {6 1}{1 1} {2 6}

{3 6} {4 3}

{3 1} {4 4}

 

(b) After crossover operation 

Figure 4.7: Operation of ND-crossover operator. 

When cut points 1 and 2 are the same for both parents then the crossover 

operation performed translates to a single-point crossover otherwise a three-point 

crossover operation is performed. The impact of ND-crossover operator is that 

children produced have lower end-to-end network distances than their parents as 

demonstrated by our results. 

 

Mutation operation 

The function of mutation operation is to adjust a parent into new offspring that 

closely resemble its parent with the aim of further improving parent fitness values 
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and discourage trapping into local optima. The standard mutation operator adjusts 

parents by using a uniform distribution index (DI) [23]. DI controls degree of 

similarity between parents and their children. The value for DI influences the 

diversity of offsprings in the population. We propose a unique mutation operator 

called ND-mutation which uses a dynamic DI whose value depends on the ratio 

between a parent's crowding distance and its end-to-end network distance.  

Each parent is going to be mutated according to the value of its distribution index 

which is computed using the following expression: 

( ) (4.15)
( ) (1 ( ))ipar i

L i i

H
DI CD par

f par CD par

 
      

Where 

 
iparDI
 
is the distribution index for the parent. 

 ( )L if par  represents the parent's fitness value for network distance. 

 )( iparCD  indicates the parent's crowding distance. 

 H is a constant. 

The expression in Equation (4.15) used by ND-mutation operator will force a 

strong mutation for poor quality parents (Fig. 4.8 (b)) and a weak mutation for 

good quality parents (Fig. 4.8 (a)). For instance, a parent with a low end-to-end 

network distance and high crowding distance will have a low DI which allows its 

child to be slightly mutated to closely resemble the parent (e.g. in Fig. 4.8 (a)). On 

the other hand, our mutation operator heavily mutates a parent with high DI (i.e. a 
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parent having high end-to-end network distance and low crowding distance) into 

a child that has little resemblance to the parent (e.g. in Figure. 4.8 (b)). 

Parent
{5 3} {6 4}{1 6} {2 4}

Child
{5 3} {6 4}{1 6} {2 6}

{3 6} {4 3}

{3 5} {4 3}

Parent
{5 3} {6 4}{2 4}

Child
{5 3} {6 6}{2 4}

{3 6} {4 3}

{3 0} {4 8}

{1 6}

{1 1}

 

(a) Low DI    (b) High DI 

Figure 4.8: Operation of ND-Mutation operator 

A large value for 
iparDI indicates that a parent has good fitness and crowding 

distance therefore offspring’s genes will closely resemble the parent (i.e. weak 

mutation), while a small value for 
iparDI  indicates parent has poor fitness and 

crowding distance hence genes of offspring will differ greatly with the parent (i.e. 

strong mutation) 

ND-Mutation operator aims to improve the quality and population diversity of 

new offsprings. This will ultimately increase the likelihood of finding a globally 

optimal Pareto front.  

After mutation operation is performed, parents are replaced by newly formed off 

springs and the whole process is repeated until maximum number of generation is 

reached. INSGA algorithm is outlined in Algorithm 4.1 while ND-Crossover and 

ND-Mutation operators are outlined in Algorithm 4.2 and 4.3 respectively. 
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Algorithm 4.1 INSGA Algorithm 
Input: D, g, n, , h, max_iter, no_states, state, actions_prob, rp_env, w, J1, 
J2, 
Ouput: pop 
1:   Set environment parameters 
2:   pop  Randomly generate population  
3:  P   Randomly generate QoS values of solutions 
4:  pop[Q , f ]  Determine end-to-end QoS and fitness of solutions  

5:  pop  Perform non-dominated sort (pop)  
6:  pop  LANMF (Input) 
7:  While (gen  max_iter) 
8:      { 
9:        pop  tournament selection (pop) 
10:        pop  ND-Crossover (pop) 
11:        pop  Perform non-dominated sort (pop) 

12:        child_pop  ND-Mutation (pop) 
13:        combination_pop  pop + child_pop 
14:        combination_pop Perform non dominated sort (combination_pop) 
15:        pop  replacement (combination_pop) 
16:   endWhile 
17:   } 

 
Algorithm 4.2 ND-Crossover operation 
Input: pop 
Ouput: Child 
1:  For(i = 1 to popsize) 
2:     { 
3:     Randomly pick Parent1 and Parent 2 from pop 
4:     Compute Average latency LA  of Parent 1 and Parent 2 

5:     index1  Find cut point of Parent 1 with poorest latency 
6:      index2  Find cut point of Parent 2 with poorest latency 

7:      [Child 1, Child 2]  Crossover genes for each parent around index 1 and 
index 2  
8:      [Child 1, Child 2]  Determine end-to-end QoS and fitness of children 
9:      Child Add Child 1 and Child 2 in the child population. 
10:   endFor 
11:   } 
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Algorithm 4.3 ND-Mutation 
Input: pop 
Ouput: Child 
1:  For(i = 1 to popsize) 
2:     { 
3:     Compute DI of pop(i) according to Equation (4.15) 
4:      Child(i)  Mutate genes of pop(i) according to DI 
5:      Child(i)  Determine end-to-end QoS and fitness of child 
6:   endFor 
7:   } 

 

4.3.2 K-Genetic Algorithm 

In our second approach, we develop another enhanced NSGA-II algorithm called 

K-Genetic algorithm or KNSGA to solve our research problem. Compared to 

INSGA which consists of ND-Crossover and ND-Mutation operators, KNSGA 

employs traditional crossover operation coupled with a unique K-mean based 

mutation operator called K-Mutation. As its name implies, K-Mutation uses the 

concept of K-mean clustering [131] to mutate genes of parents into offsprings.  

K-means is an unsupervised machine learning technique used to group items into 

clusters based on their feature similarities. Typically, items having closely similar 

features are placed into the same cluster while dissimilar items are placed into 

different clusters. Basically, K-means operates by first determining the number of 

clusters and centroids for each cluster. Then the distance between each item and a 

set of centroids is estimated to determine which cluster the item belongs to. 

K-means algorithm alongside supervised learning algorithms such as KNN 

algorithm are popularly used to solve the nearest neighbor search problem which 

aims to find a set of points p that are nearest to a point of interest q. This problem 

is strikingly similar to the part of our research problem involving minimizing end-

to-end network distance of a composite service. Studies have attempted to apply 
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nearest neighbor search techniques to minimize the end-to-end network distance 

of a composite service. One such study presented in [132] applied KD-trees 

coupled with a standard two dimensional network coordinate system and unique 

genetic algorithm to optimize end-to-end latency of a composition. A similar 

study in [85] used locality sensitive hashing scheme instead of KD-trees to 

perform search for composite service network paths constituting optimal latency. 

However both KD-trees and locality sensitive hashing are only effective under 

low dimensional network coordinates. Hence we do not use them in this study 

because our problem considers mainly high dimensional network coordinates. K-

means has been known to be more efficient than KD-trees in handling high 

dimensionality [140]. We enhance KNSGA’s mutation operator with K-mean 

clustering in order to solve our research problem. KNSGA is described below. 

Encoding 

Similar to INSGA, KNSGA encodes composite service as a genome of genes. A 

gene represents an integer-encoded web service attached to a given task.  

Population Initialization 

Also similar to INSGA, KNSGA starts its optimization process by generating an 

initial population of compositions sorted via Non-dominated sort operation and 

placed into a mating pool.  

Tournament Selection  

A tournament selection process which finds the best parents that will perform 

crossover and mutation operations.  
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Crossover Operation 

Different from INSGA, KNSGA employs traditional one point crossover 

operation on each pair of parents. In this case each parent uses same cut point. 

Mutation Operation 

In comparison to ND-mutation operator in INSGA which uses extra computation 

time to determine distribution index of genes, we improve computation time of 

mutation operation by integrating K-means algorithm into our K-mutation 

operator, the algorithm clusters each web service node into r separate groups 

according to their network distances from r centroid nodes. Services nodes that 

are closer together in RTT are placed in the same cluster, while nodes that are 

further away are placed in different clusters. K-Mutation operator then arbitrarily 

selects a small number of genes as reference genes. A Gene before or after each 

reference gene is replaced by another gene that is contained in the reference 

gene’s cluster. For example, in Figure 4.9, S13 and S63 are chosen as reference 

genes while S26 and S56 are randomly selected for mutation. S26 can be mutated to 

either S20, S28 or S22 from Cluster 1 since they are in same cluster with S13. S56 can 

be mutated to either S53, S59 or S51 which are neighbors to S63 in Cluster 2. 

KNSGA algorithm is described in Algorithm 4.4 while K-Mutation operation is 

shown in Algorithm 4.5. 



New Methods for Network-aware Web Service Composition in the Cloud 

97 

s13 s26 s33

s20 s28 s22

Composite Service 
(Parent)

Cluster 2

s59 s51 s63

Cluster 1

Mutation candidates for s56

Mutation candidates for s26

s41 s56 s63

Non mutated 
gene

Mutated gene

Reference gene

s13

s53

 
Figure 4.9: Mutation Operation of KNSGA 

Algorithm 4.4 KNSGA Algorithm 
Input: T, C, O, pop_size,  max_iter, D 
Output: pop 
1:  pop  Randomly generate population 
2:  pop [Q , f ]  Determine end-to-end QoS and fitness of solutions 

3:  pop  LANMF (pop, D) 
4:  while (gen  max_iter) 
5:      { 
6:           pop  Tournament Selection (pop) 
7:           child_pop  Single Crossover Operator (pop) 
8:           child_pop  Non-dominated Sort (child_pop) 

9:           pop  K-Mutation Operator (child_pop) 
10:           combination_pop  pop + child_pop 
11:         combination_pop  Non-dominated Sort (combination_pop) 
12.         pop Replacement (combination_pop) 
13:         endwhile 
14:      } 
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Algorithm 4.5 K-Mutation operation 
Input: pop 
Ouput: Child 
1:  For(i = 1 to popsize) 
2:     { 
3:     For (each pop(i)),  
4:          [R1,.., Rj]  Randomly pick small number of Reference genes 
5:          [Cl1,.., Clj]  Find nearest neighbor clusters for each Reference gene 
6:          Child(i)  Replace gene after/before Rj with any gene in Clj. 
7:   endFor 
8:   } 

 

4.3.3 Multi population Particle Swarm Optimization Algorithm  

Particle Swarm Optimization (PSO) is a meta-heuristic algorithm based on the 

concept of particle movement. It is iterative algorithm that applies social 

behaviour to a swarm of particles with the aim of guiding their search towards 

optimal positions. In the past, various classical PSO techniques had been 

developed to tackle single objective optimization problems. In recent years, PSO 

has become a popular alternative to NSGA-II in tackling multi-objective 

optimization problems. This is because they enable simultaneous exploration of 

different search spaces to discover near optimal Pareto front. In fact PSO has been 

demonstrated [98] to be competitive against NSGA-II and other evolutionary 

algorithms in searching for near optimal Pareto fronts for various multi-objective 

problems. Although its Pareto front may not necessarily be the true optimal one, 

PSO has shown great promise in efficiently tackling complex optimization 

problems involving conflicting objectives. The true strength of PSO resides in its 

ability to allow particles in a swarm to share information during the optimization 

process. The information includes the global best particle position (gbest) which 

is the particle position having the best fitness in the swarm. During each iteration, 

gbest is communicated to each particle to guide explorative search around the 
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global best position. This ability aids PSO to easily skip past local optimum 

positions in the search space and drive towards a globally optimum position. 

Traditionally, PSO algorithm carries out optimization by encoding each solution 

as a particle with each particle characterized by velocity (v); current position (d); 

local best position (lbest) i.e. the particle’s personal best position; and global best 

position (gbest) in the swarm. At each iteration, each particle’s velocity, current 

position, and sometimes local best position (especially when d is better than lbest) 

are updated according to equations (4.16) and (4.17); 

( ) 1 1 2 2( ) ( )newv wv c r lbest d c r gbest d       (4.16) 

( ) ( )new newd d v    (4.17) 

Where  

 w, also known as inertia weight, represents the kind of search strategy to 

be performed. w is used to control balance between exploration and 

exploitative search. 

 1c  and 2c are positive constants 

 1r  and 2r are random numbers between [0, 1] 

 ( )newv  and v represent current and old particle velocities respectively 

 ( )newd  and d  represent current and old particle positions respectively 

Despite showing promising results in solving multi objective problem, PSO is 

hampered by its inability to allow particles to share their lbest positions with other 
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particles in the swarm. Hence, information is only partially shared between 

swarm particles i.e. the gbest. In a single objective optimization problem, this 

shortcoming has little impact on PSO’s ability to avoid local optima. However in 

a multi objective optimization problem which consists of multiple local optima, 

partial information sharing could increase PSO’s chances of converging in one or 

more local optima located across the different search dimensions. Thus, we 

believe that improving information sharing between particles is essential in 

increasing PSO’s chances of arriving at the true Pareto front. 

In this study, we enhance the classic PSO to improve sharing of information 

between particles in a swarm. To achieve this, we apply evolutionary concept like 

non-dominated sorting and multiple populations to enhance PSO. Our resultant 

algorithm is called Multi-population Particle Swarm or NMPSO. In NMPSO, 

Non-dominated sorting is used to rank solutions according to different dimensions 

which in this case are QoS attributes cost, response time and execution time. The 

multi-population feature allows NMPSO to segregate the particles into two 

populations. The first population provides a search space for finding particle 

positions with best end-to-end network distance while the other population allows 

particles to search for positions with best end-to-end to cost, response time and 

execution time. Allowing two different populations to conduct their own 

independent search will enable NMPSO to find two global best particles which 

are shared with all the particles in both population. This social behavior is clearly 

different from current PSO approaches which utilize only one population and 

shares only one global best particle position. 

NMPSO aims to search for a Pareto set of composite services that has optimal 

QoS and near optimal network distances. The operation of NMPSO is described 

as follows.  
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Encoding 

The algorithm encodes each composite service as a particle array where each 

array element (m1, m2…mn) represents a task that can be completed by any web 

service. Figure 4.10 shows how a particle is encoded in NMPSO. 

mnm2m1

Array elements

Candidate
 services

Particle

s12

s11

s13

s1k1

s22

s21

s23

s2k2

sn2

sn1

sn3

snkn  

Figure 4.10: Encoding of a particle 

Population initialization 

NMPSO proceeds optimization process by initializing a population of particles 

referred to as Pareto Set (PS). This is achieved by randomly choosing one 

candidate service for each task until all array elements are allocated. NMPSO 

leverages LANMF to estimate end-to-end network distances of each particle. 

Other QoS values are randomly generated and assigned to every particle. Also, 

the fitness for each particle is computed and penalized (according to equation 

4.12) depending on whether or not they violate QoS constraints. 

Non-dominated Sorting and Multi-population creation 

In the next step, non-dominated sort operation similar to INSGA algorithm is 

applied on the initialized PS. The operation sorts each particle based on their 

fitness values. The operation then ranks particles into their respective fronts in PS 

according to degree of domination over other particles. The most dominant 



New Methods for Network-aware Web Service Composition in the Cloud 

102 

solutions are placed in front 1, the next most dominant solutions are placed in 

front 2, the third most dominant solutions are placed in front 3 etc. This process is 

slightly different from the one implemented in INSGA. INSGA sort particles 

according to how well they dominate other solutions with respect to cost, 

response time, execution time and network latency. NMPSO, on the other hand, 

sort particles with respect to only cost, response time and execution time. This 

will allow PS particles to search for global Pareto front in those three dimensions 

only. The crowding distance (CD) for each particle in PS is then computed. This 

value determines the Euclidean distance between a particle and its neighbors. CD 

is an important value because it helps the algorithm to determine diversity or 

spread between individuals in PS.  

Once PS has been sorted and ranked, the top 25% of its particles are placed into 

another population called O population. The 25% value is determined from 

experimental evaluation as the percentage which gives the best balance between 

optimality and performance. It is realized that any value above 25% of PS would 

decrease the diversity of particles in the next Pareto set. This in turn will lead 

NMPSO to trap in local optimum. For instance, if 50% of particles is retained 

then about 50% of solutions in the next PS will be similar thereby causing lack of 

diversity in the population but better performance of the algorithm. The O 

population particles, or simply O particles, constitute the globally best particles 

from the Pareto set with respect to cost, response time and execution time. For 

example, if PS contains 200 particles, O population will consist of the top 50 

dominant particles.  

The next step involves sorting particles in the O population according to their 

end-to-end network distances. The sorted particles are placed in a separate 

population called the N population consisting of particles from O population with 
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the best end-to-end network distances. The N particles constitute solutions 

searching for the global solution with respect to end-to-end network latency.  

 

Mutate N-Particles 

After N population has been constituted, its population diversity is observed to be 

moderate. In a bid to improve diversity of N particles, they are mutated by ND-

Mutation operator which was first presented as part of INSGA. The operator 

mutates elements of each N-particle that contributes to poor crowding distance 

and network latency. 

In the next stage, both O and N particles are used to update PS’s particle positions 

to drive their search towards both globally best positions. 

 

Updating Particle Velocity and Position 

Information is shared between particles of O, N and Pareto set (PS) to update 

velocity and position of each particle in PS. During each particle velocity update, 

an O particle is randomly selected to represent its gbest position, while a random 

N particle represents its lbest position. Thus, particle velocities and positions 

computed using (4.11) and (4.12) respectively, 

( ) 1 1 2 2( ) ( )i new i i i i iV wV c r N PS c r O PS        (4.11) 

( ) ( )i new i newPS PS V   (4.12) 
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Where iV is i-th particle velocity; w is inertia weight, 1c  and 2c  represent 

constants; 1r  and 2r  are random numbers in range [0, 1]; iN  is global best N 

particle i.e. N particle with best fitness in terms of cost, response time and 

execution time; iO  denotes global best O particle i.e. O particle with best fitness 

with respect to end-to-end network distance; iPS  represents the i-th particle 

position. Equations (4.11) and (4.12) force each particle towards global Pareto 

front in both N and O search spaces simultaneously, where a particle’s velocity is 

directly proportional to both the distance between the particle and its N particle 

and the distance between the particle and O particle. Typically particles with 

lower velocities are particles closer to N and O’s particle while particles with 

higher velocity are further away from the particles. Also, particles with low 

velocity will move slower than particles with higher velocities in the search 

space, where a slow movement signifies exploitation and a fast movement 

represents exploration of the search space. This way, particles with low velocities 

are retained to participate in subsequent iterations, while bad particles (with high 

velocity) are rapidly changed to new positions. The effectiveness of equations 

(4.11) and (4.12) are demonstrated by result of experiment in the next section.  

After particle velocity and position has been updated, NMPSO determines if the 

new particle’s fitness dominates the N particle fitness. If it the case, then the new 

particle position is retained, else it is replaced by the N particle’s position. This 

ensures that only the best particle positions are retained for the next iteration. 

NMPSO algorithm is summarized in Algorithm 4.6. 

Algorithm 4.6 NMPSO Algorithm 
Input: T, C, O, pop_size,  max_iter, D, c1, c2, w 
Output: PS
1:  PS  Generate Population (T, C, O, pop_size)  
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2:  PS  LANMF (PS, D) 
3:  While (gen  max_iter) 
4:      { 
5:           PS  Non-dominated Sort (PS) 
6:           O_pop Top 25% of PS
7:           N_pop  Sort O_pop according to network distance 
8:           N_pop  ND-Mutation (N_pop ) 
9:           For i = 1 to pop_size 
10:                     ( )i newV  Update Velocity according to Equation 4.11  

11:                   ( )i newPS  Update particle position according to Equation 4.12  

12:                   ( )i newPS  Compute QoS ( ( )i newPS ) 

13:                    IF ( )i newPS  dominates iN  

14:                          Keep ( )i newPS  

15:                    Else  

16:                          Replace ( )i newPS  with iN  

17:         endFor 
18:         Clear N_pop 

19:         endWhile 
20:      } 

 

4.3.4 Fruit Fly Optimization Algorithm for Service Composition 

The previous sub sections introduced three distinct meta-heuristic algorithms that 

employed different strategies in solving our research problem. The first one is an 

INSGA (4.3.1) algorithm that uses ND-Crossover and ND-Mutation operators to 

guide search towards low latency and QoS optimal solutions. The second 

algorithm is a KNSGA (4.3.2) algorithm which applies K-mean based search in 

its K-Mutation operator to find near optimal compositions. The third algorithm 

known as NMPSO (4.3.3) is a non-dominated sort particle swarm algorithm 

which applies globally best particles from two populations to all population 

particles for the purpose of exploring areas around the Pareto front to find near 

optimal solutions.  
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All three algorithms leveraged LANMF network coordinate system to facilitate 

their search for near optimal solutions. LANMF decomposes known RTT 

measurements into network coordinates prior to estimation process. It then has to 

convert the coordinates back to RTT values after estimation process so that the 

algorithms can perform optimization. This inadvertently creates additional 

processes that complicates our algorithm implementations. The computation 

times of our algorithms are also increased due to the two stage conversion process 

employed. It is therefore necessary to discover an algorithm that can easily be 

integrated with LANMF without increasing its complexity, implementation, and 

computation time. To this end, we present an enhanced fruit fly algorithm known 

as Network-aware fruit fly algorithm (NFOA) to search for low latency 

compositions with near optimal QoS.  

As a new meta-heuristic optimization algorithm, fruit fly optimization algorithm 

(FOA) is inspired by the behavior of fruit flies in searching for food. FOA is easy 

to implement and consists of few adjustable parameters. Due to these merits, FOA 

has been successfully used in solving several NP-Hard optimization problems 

such as neural network optimization [133], financial distress [134] and more 

recently in scheduling problems [135]. A core characteristic of FOA that makes it 

suitable in solving our problem is its ability to work with network coordinates. 

This property sets FOA apart from our previously proposed algorithms because it 

allows FOA to seamlessly work with network QoS metrics that are correlated to 

network coordinates such as network latency. The network coordinates employed 

by the proposed NFOA are directly obtained from LANMF which doesn’t need to 

convert them back to RTT in the QoS model (as seen in equation 4.9) as was done 

in our previous approaches.  

In the next sub-section we present the basic concepts of FOA.  
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4.3.4.1 Basic Concept of Fruit Fly Optimization Algorithm 

FOA is a new type of evolutionary algorithm proposed in 2011 which is based 

on the behavior of a fruit fly during its search for food as shown in Figure 4.11. 

A fruit fly is characterized by its acute sensing and perception abilities. This is 

said to be as a result of its osphresis organs [134]. Via the organs, a fruit fly is 

able to perceive food particles from several kilometers away. Once a fruit fly 

smells the presence of food, it closes in on the direction of the food in a hoping 

fashion. Each time the fly hops to a possible location, it tries to determine the 

next hoping direction that will take it to closer to the food source. Based on the 

behavior exhibited by the fruit fly, we describe the steps required by the FOA. 

Y
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x
is

X-axisOrigin (0,0)

Smell area

Hop direction(X1,Y1)

(X2,Y2) Fly position

Fly distance 
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Food

Fruit Fly

Figure: 4.11: Food searching pattern of fruit fly 

Initialize population 

X and Y axes ( x , y ) for a fruit fly swarm are first initialized; 
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( )
(4.13)

( )

axis
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x Init X

y Init Y




 

Then individual positional coordinates of each fruit fly is initialized. For a fruit 

fly i, 

()
(4.14)

()

i

i

x x rand

y y rand

 

 
 

Estimate Distance and Smell concentration judgment value 

Given that the exact position of the food is initially unknown, each fruit fly 

computes its distance (g) from origin (0, 0) using equation (4.15), then the smell 

concentration judgment value (v) for every fruit fly is computed as the inverse of 

distance. 

2 2 (4.15)i i ig x y 
 

1
i

i

v
g

 (4.16) 

Determine fitness value  

The fitness value, also known as Smell concentration judgment function, is 

calculated as a function of smell concentration value (g); 

)17.4()( ii vfF   
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Determine best fruit fly  

Compare fitness values of all fruit flies in swarm and determine fruit fly with the 

best fitness value; 

[ ] max( ) (4.18)F indexbest best F  

Store attributes of best fruit fly 

In order to compare fitness of best fruit fly against other fitness values subsequent 

iterations, the best fitness is stored in memory, 

(4.19)best FFit best  

Then the positions of the best fruit fly are stored as new X and Y axes for the fruit 

fly swarm, 

( )
(4.20)

( )

index

index

x X best

y Y best




 

Best positions are used to update each fruit fly in the swarm according to equation 

(4.14).  

The whole process is repeated until either the maximum number of iterations is 

reached or optimization is achieved. 

4.3.4.2 Network-aware Fruit Fly Algorithm (NFOA) 

We propose an enhanced fruit fly optimization algorithm called NFOA that has 

the capability to find services whose network positions are closer to each other 

and to the users while ensuring QoS is optimized. Consequently these services 
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will result in low latency compositions. Traditionally FOA is designed to solve 

single objective optimization problems so it will not be able to solve our research 

problem which involves multiple conflicting QoS attributes and constraints. Thus, 

we enhance FOA with non-dominated sort operation and constraint handling to 

enable it solve our research problem.  

When NFOA is applied to our problem, instead of computing the end-to-end 

network latency for a composite service such as in our previous approaches, 

NFOA defines as a vector of network coordinates ( )E  for each composite 

service. 

 1 1 2 2( ) , , , , , ,j j j j nj njE C x y x y x y             kj ..1  

Where  ,x y is the network coordinate of the j-th web service.  

The values of  ,x y  coordinates are obtained from LANMF. Each service that 

is part of a composite service is represented by two dimensional network 

positions as seen in Figure 4.12. Where ijx  and ijy  are x-axis and y-axis 

coordinates of a service ijs . 
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Figure 4.12: Services and their network positions 

As previously stated, our service composition problem is to find a composite 

service that has optimal cost, response time, execution time and near optimal 

network latency between constituent service network paths in terms of their 

network positions. Using NFOA, the best composite service will have selected a 

set of services with network positions that have near optimal E without 

compromising QoS. Note that, because NFOA is dealing directly with network 

coordinate representation of services, it is no longer necessary to have a 

quantitative representation (fitness value) for end-to-end network latency of a 

composite service in our QoS model (equation 4.9) or during the optimization 

process. Thus, the dimensionality of our problem has been reduced. Results 

demonstrate that this will in-turn improve computation time when compared to 

our previous approaches. It will also reduce complexity of the research problem. 

NFOA is described below. 

Initialize population 
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Firstly, each fruit fly in the NFOA swarm is initialized as a possible composite 

service. In this case, a fruit fly is encoded as a set of service coordinates where 

each coordinate represents the network position of service within the cloud as 

seen in Figure 4.13. 
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Candidate services per  
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Fruit fly representation of a 
composite service with n = 3

x11,y11 s11

s23

s31

x23,y23

x31,y31

Fruit fly
Composite

Service

Figure 4.13: Encoding a composite service as a fruit fly using NFOA 

Determine Vector of network coordinates and end-to-end QoS 

Instead of randomly assigning coordinates to each service as seen in basic FOA, 

NFOA uses LANMF to determine network coordinates of each service. These 

coordinates will be a representation of the RTT between service datacentres in the 

cloud. Hence, 

(4.21)
i

i

x X

y Y
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Where X and Y represent network coordinates for a service.  

Using this procedure, a vector of network positions ( )E  is obtained for a fruit fly 

by aggregating the network positions of each service within the fruit fly. Then 

each fruit fly computes its end-to-end smell concentration value (G) by 

combining individual smell concentration values (g) for all n services within. 

1

(4.22)
n

i
i

G g


  

The next task involves determination of end-to-end QoS values ( Pf , RTf , and 

ETf ) by aggregating QoS levels and then penalizing them according to equations 

(4.10) and (4.11). 

 

Estimation of end-to-end smell concentration judgment value 

Smell concentration judgment value is estimated for each service in a fruit fly 

(according to (4.16)) and then combined into end-to-end smell concentration 

judgment value for the composite service; 

1

(4.23)
n

i
i

V v


  

Computation of Smell Concentration Judgment function 

Both end-to-end smell concentration judgment value and end-to-end QoS values 

are used to compute the smell concentration judgment function (F) for each fruit 

fly; 
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Non-dominated sort operation 

Different from FOA, NFOA performs non-dominated sort of fruit flies into their 

various fronts with respect to fitness values for cost, response time and execution 

time. Note that, since NFOA is dealing directly with coordinates, non-dominated 

sorting is not performed with respect to network latency as is the case with 

INSGA and KNSGA.  

 

Determine best fruit flies and update population 

Fruit flies in the highest front (i.e. Rank 1) representative of individuals with best 

smell concentration judgment function are then stored and subsequently used to 

update coordinates of each fruit fly in the population. The process is repeated 

until maximum number of generations is achieved. Algorithm 4.7 outlines the 

NFOA algorithm. 

Algorithm 4.7 NFOA Algorithm 
Input: T, C, O, max_iter, pop_size, D 
Ouput: bestFly 
1:  pop  Randomly generate fruit fly positions  
2:  P   Randomly generate QoS values of positions 
3:  Q   Determine end-to-end QoS of positions  

4:  pop  LANMF (D) 
5:  While (gen  max_iter) 
6:      { 
7:          G  Determine distance of  pop from origin (0,0) 
8:          V  Compute Smell Conc. Value (pop) 
9:          [fP, fRT, fET] Compute Normalized QoS ( Q ) 

10:        [FP, FRT, FET]  Compute Smell Conc. Function (V , Pf , RTf , ETf ) 
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11:        pop  Perform Non Dominated Sort (pop) 
12:        bestFly  pop[Rank 1] 
13:        pop bestFly + rand() 
14:        Compute newQ for each position in pop 

15:      endWhile 
16:     } 

 

4.4 Evaluation 

This section presents an evaluation of the performance of our proposed 

algorithms.  

4.4.1 Setup 

Evaluations were conducted on a PC with Intel Core i7 processor with 2.8 GHz 

CPU and 8GB RAM. Our algorithms and simulations were conducted on 

MATLAB 2014 environment. To simulate our network environment, we make 

use of Harvard dataset [124] which is a collection large scale RTT measurements 

between 1890 Planet-Lab nodes. Each node has a unique IP address and is 

assumed to be a data centre located in the cloud. We also assume each node 

contains only one web service node. For the sake of simplicity, a large sequence 

workflow of 13 tasks and 20 candidate services per task is considered (as shown 

in Figure 4.14).  

Datacenter1j

S1j

Datacenter2j

S2j

Datacenter3j

S3j

Datacenter13j

S13j

 

Figure 4.14: Test sequence workflow where  1.. nj k   and nk  is number of 

candidate services in the n-th service class 
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This means that there exists about 2013 or 82 quadrillion possible service 

combinations in our test workflow. The service numbers considered are meant to 

simulate a realistically large service environment. Also, a single user location is 

considered in our cloud network. In our simulation, we considered cost, response 

time and execution time as web service QoS attributes, although any other QoS 

attribute such as reputation, reliability, availability, etc. could be considered as 

this will not affect our results. QoS values for services are generated randomly 

within a realistic Gaussian distribution presented in Table 4.3. 

Table 4.3. Range of QoS values 

QoS Attribute Maximum value Minimum value 

Response time 40 1 
Cost 40 5 

Execution time 40 5 
 

4.4.2 Algorithms 

We compare our proposed algorithms with previous meta-heuristic algorithms for 

multi-objective optimization of composite service QoS. The previous works 

considered are described below: 

 NSGA-IIb: NSGA-II algorithm based on previous work in [137]. It is fed 

by LANMF and has uniform distribution index set at 20. Also, the 

algorithm uses a standard penalty-based constraint handling strategy 

which will be compared to our unique penalty-based constraint strategy to 

determine which one is superior. 

 NSGA-IIc: Similar to NSGA-IIb, but having distribution index of 80. Note 

that having two versions of NSGA-II with different distribution index 

settings is important in evaluating the performance of INSGA’s ND-
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Mutation operator which employs a variable distribution index for each 

mutated gene. This will give us an idea of which distribution index 

strategy is more effective in searching for near optimal compositions. 

 INSGA: Our novel network-aware NSGA-II algorithm with unique ND-

Crossover and ND-Mutation operators. 

 KNSGA: Our unique Kmean-based NSGA-II algorithm. 

 INSGA-E: Similar to INSGA but fed by traditional Euclidean distance 

network coordinate system (EDM). This variation of INSGA will be 

compared against original INSGA to evaluate the impact of choice of 

network coordinate system on accuracy of optimal compositions. 

 PSO: Population-based particle swarm optimization algorithm based on 

previous work in [133] and fed by LANMF. 

 NMPSO: Our unique non-dominated sort PSO algorithm. 

 NFOA: Our non-dominated sort based fruit fly optimization algorithm 

 LIP: Linear Integer Programming algorithm for service composition based 

on [70]. 

Table 4.4 presents the parameter settings for our test algorithms. These settings 

are the optimal performance settings which were determined after performing 

testing different parameter values for each algorithm. 

Table 4.4. Algorithm settings 

Paramete
rs 

NSG
A- 
IIb 

NSG
A- 
IIc 

INSG
A 

KNS
GA 

INSG
A-E 

PSO NMP
SO 

NFO
A 

LIP 

Populatio 200 200 200 200 200 200 200 200 200 
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n size 
Number 

of 
generatio

n 

200 200 200 200 200 200 200 200 200 

Crossove
r 

probabilit
y 

0.9 0.9 - 0.9 - - - - - 

Mutation 
probabilit

y 

0.5 0.5 - - - - - - - 

Tour size 2 2 2 2 2 - - - - 
Network 
model 

LAN
MF 

LA
NM
F 

LAN
MF 

LAN
MF 

EDM LA
NM
F 

LAN
MF 

LA
NM
F 

LA
NM
F 

Distributi
on index 

20 80 - - - - - - - 

Crossove
r operator 

Singl
e 
cross
over 

Sing
le 
cros
sove
r 

ND-
Cross
over 

Single 
crosso
ver 

ND-
Cross
over 

- - - - 

Mutation 
operator 

Stan
dard 
muta
tion 

Stan
dard 
muta
tion 

ND-
Mutat
ion 

K-
Mutat
iion 

ND-
Mutat
ion 

ND-
Mut
ation 
- 

- - - 

Number 
of Tasks 

13 13 13 13 13 13 13 13 13 

Number 
of 

Candidat
e services 

20 20 20 20 20 20 20 20 20 

Number 
of 

neighbors 
(h) 

32 32 32 32 - 32 32 32 32 

Inertia 
Weight 

(w) 

- - - - - 0.39 0.39 - - 
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c1/c2 - -    2/2 2/2  - 
Number 

of 
Clusters 

- - - 30 - - - - -- 

 

 

4.4.3  Results and Discussion  

To demonstrate the efficiency of our algorithms we compare their optimality and 

performance in terms of fitness, network latency, population diversity and in 

some cases distribution index (DI) (especially for NSGA variants). We also 

compare them against other service composition algorithms in different 

environmental contexts such as variations in number of tasks, candidate services, 

and computation times. Given the probabilistic nature of our proposed algorithms, 

each one is run 50 times to obtain average values for fitness, latency and standard 

deviation which is often used to measure diversity of population. 

4.4.3.1 Optimality 

We evaluate the optimality of our test algorithms. Figure 4.15 (a) shows that 

INSGA leads with the best average fitness value, followed closely by NFOA, 

KSGA and NMPSO. The other algorithms LIP, NSGA-IIb and PSO show 

significantly poorer average fitness with PSO indicating the worst value due to its 

inability to escape local optimum. The reason for our algorithms’ superiority in 

fitness compared to PSO, NSGA-IIb and LIP is because of their unique 

population update strategies which maintain population diversity (as seen in 

Figure 4.15(c)) and ensure that only good individuals are retained throughout the 

optimization process. This ability is absent in NSGA-IIb, LIP and PSO which is 

why they often generate bad individuals using update strategies that lead to poor 

fitness. Figure 4.15 (b) shows a similar trend to Figure 4.15 (a) with INSGA still 

leading the pack in searching for best latency compositions. This confirms that 
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overall INSGA finds best solutions among the proposed algorithms. Although its 

optimality is not significantly different from the other proposed algorithm. 

Overall, the proposed algorithms have been shown to have significantly better 

optimality than other service composition techniques. Table 4.5 shows the best 

fitness values for each algorithm. The result demonstrates that INSGA finds best 

fitness in eight runs out of ten as highlighted in bold. LIP and NFOA discover 

best fitness in one run each. 

 
(a) Average fitness vs Generation 
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(b) Average network latency vs Generation 

 
(c) Standard deviation vs Generation 

Figure 4.15: Plot of optimality against average fitness, network latency and 
standard deviation 
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Table 4.5: Comparison of best fitness for test algorithms for ten runs 

Runs INSGA KNSGA NMPSO LIP NFOA PSO NSGA-
IIb 

1 0.32983 1.09161 1.34691 1.56965 1.30416 2.32433 1.52083 
2 0.69713 1.21045 1.35127 1.24363 1.14710 2.58169 1.90261 
3 0.29126 1.08312 1.18954 1.34473 1.37780 2.57142 1.58883 
4 0.30682 1.13163 1.20425 1.21476 1.06168 2.33337 1.71169 
5 0.73668 1.04919 1.40902 0.53175 1.23786 2.35396 1.75778 
6 0.85042 1.03462 1.34800 1.43420 0.84480 2.37883 1.38422 
7 0.20264 1.16006 1.45805 1.17998 1.2663 2.27811 1.75865 
8 0.56565 1.05863 1.28388 1.44654 1.20992 2.34233 1.64492 
9 0.65728 1.13630 1.17596 1.02549 1.38819 2.28622 1.96125 

10 0.55980 1.01643 1.19119 1.42480 1.17973 2.47504 1.86472 
 

4.4.3.2  Impact of Distribution Index (DI)  

In this experiment, we evaluate the impact of DI on optimality and population 

diversity the test NSGA-II algorithms. Here, we compare; (i) NSGA-IIb which 

adopts uniform DI of 20, (ii) NSGA-IIc which adopts uniform DI of 80, and (iii) 

INSGA which uses dynamic DI in its ND-Mutation operator. In Figures 4.16 (a) 

(b) and (c), we notice that INSGA’s dynamic DI strategy resulted in solutions 

with better fitness, network latency and population diversity (i.e. standard 

deviation) than NSGA-IIb and NSGA-IIc. In addition, the strategy also helped 

INSGA to avoid trapping in local optima while converging after 140 generations. 

The reason for improved results is attributed to ND-Mutation operator which uses 

our DI strategy to significantly mutate individuals that have poor optimality and 

crowding distance. 
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(a) Graph indicating effect of distribution index on fitness 

 

(b) Graph showing effect of distribution index on latency 
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(c) Graph showing effect of distribution index on diversity of population 

Figure 4.16: Plot of Distribution index against fitness and latency 

4.4.3.3 Size of Candidate services per task  

In this experiment, we increase the number of candidate services per task from 20 

to 50 and evaluate the impact on network latency, fitness, computation time and 

diversity of population. In Figures 4.17(a) and (b), it is noticed that an increase in 

size of candidate services drives our proposed algorithms closer to globally 

optimal Pareto set. PSO shows the worst optimality of fitness and network latency 

with increasing number of candidate services, this is because it easily traps into 

local optimum due to its poor population diversity of particles. NSGA-IIb and 

LIP follow closely ahead PSO’s poor optimality. It is noteworthy to state that LIP 

has been known to be generally slower than meta-heuristic algorithms in reaching 

a global solution. INSGA finds the globally optimal Pareto set amongst our 

proposed algorithms, followed by KNSGA, NFOA and NMPSO. INSGA’s 

superior optimality is largely because of the application of ND-Crossover and 
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ND-Mutation operators which exploit crowding distance and network latency 

information in their operations. This ability is not present in the other approaches.  

 
(a) Graph showing impact of number of candidate services on fitness 

 
(b) Effect of number of candidate services on network latency 

Figure 4.17: Plot of candidate service number against fitness and latency 
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4.4.3.4 Size of Tasks 

In this experiment we vary the number of tasks from 13 to 40 and evaluate the 

impact of fitness, network latency, computation time and standard deviation of 

our algorithms. In Figures 4.18 (a) and (b), it is observed that the average fitness, 

network latency and computation time increase almost linearly when the number 

of tasks rises for all test algorithms. Here also, INSGA is seen to produce the best 

quality solutions, with PSO showing the worst quality. However, Figure 4.18 (c) 

demonstrates that INSGA shows second to the worst computation time, only 

ahead of LIP which is the slowest among the test algorithms. The reason for 

INSGA’s high computation time is due to the additional computations performed 

by ND-Crossover and ND-Mutation operators. PSO shows the best computation 

time followed closely by NFOA, NMPSO, KNSGA and NSGA-IIb. A likely 

reason for their improved computation times is because they don’t use time 

consuming computations such as ND-Crossover or ND-Mutation operators during 

optimization process. LIP has already been known to be generally slower than 

meta-heuristic algorithms so its behaviour is quite expected. The figure also 

shows that there is considerable difference between computation times of 

PSO/NMPSO/NFOA and INSGA/LIP which is about 50 seconds after 20 Tasks, 

and then rises to 100 seconds after 35 tasks. Despite its poor computation time, 

INSGA’s performance is still acceptable because it more than makes up for the 

poor computation time by finding better quality solutions when compared to other 

techniques. In terms of balance between performance and optimality, NFOA, 

NMPSO and KNSGA show a better balance between performance and optimality 

when compared to INSGA, PSO, LIP and NSGA-IIb. In terms of performance, 

NMPSO shows the best performance in a large scale environment thus it is most 

preferred when the number of tasks is large. 
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(e) Graph showing impact of number of tasks on fitness 

 

(f) Graph showing impact of number of tasks on network latency 
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(g) Effect of number of tasks on computation time 

Figure 4.18: Plot of size of task against average fitness, network latency and 
computation time  

4.4.3.5 Number and strictness of constraints 

In this experiment we vary the strictness and number of global constraints for the 

QoS attributes and then evaluate their impact on standard deviation of Pareto sets 

and computation times of the algorithms. Here, we specify an end-to-end (global) 

constraints for each attribute. For example, the first row in Table 4.6 specifies 

end-to-end constraint values for cost, response time, execution time and network 

latency as 150ms, 150ms, 150ms and 800ms respectively. The constraint values 

in the table were carefully chosen to reflect realistic global constraints. The table 

also shows how the standard deviation of the algorithms’ Pareto sets varies with 

the strictness of the global constraints. It can be seen from the table that the higher 

the constraint strictness the lower the standard deviation of solutions in each 

algorithm’s Pareto set. In fact when the strictness of the global constraints is 

increased by half (e.g. from 150ms in row one to 80ms in row three) then the 
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standard deviation for each algorithm declines to less than a third of their initial 

values. This result shows that when constraints are too strict, then the number of 

solutions in the Pareto set will be less. The result also shows that the standard 

deviation of proposed algorithms are always higher than that of NSGA-IIb. This 

is due to the proposed penalty factor which seems to be better suited to situations 

where all the QoS attributes considered are “lower is better”. 

Table 4.6: Effect of constraint strictness on standard deviation of algorithms’ 

Pareto sets 

GLOBAL 
CONSTRAINTS (ms) 

IN
SG

A
 

K
N

S
G

A
 

N
M

P
S

O
 

 

N
FO

A
 

 

N
S

G
A

-
IIb

C RT ET NL 
150 150 150 800 

 

1.6011 1.1256 1.0963 1.0769 0.9722 

C RT ET NL 
100 100 100 600 

 

0.8499 0.7785 0.7381 0.6905 0.6258 

C RT ET NL 
80 80 80 400 

 

0.4152 0.3678 0.2917 0.2401 0.2242 
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Figure 4.19: Plot of computation time against number of constraints 

Figure 4.19 shows the computation times obtained by the algorithms for each 

number of constraints. It is observed that the computation time rises only slightly 

when the number of constraints is increased for each algorithm except for LIP and 

INSGA. The reason for INSGA’s and LIP’s high computation time may be 

attributed to their large amount of processing during each iteration.  

 

4.5 Summary  

In this Chapter we presented four novel approaches to network-aware and QoS 

based web service composition in the cloud. Contrary to current works, the 

approaches separate QoS of network from web service QoS. They leverage 
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LADMF proposed in the previous Chapter to estimate end-to-end network 

distance of a composite service. The four algorithms use different strategies for 

handling QoS and network distance information during optimization. The first 

approach is an enhanced NSGA-II algorithm called INSGA which uses unique 

ND-Crossover and ND-Mutation operators to alter genes with poor fitness and 

crowding distance into genes having good fitness and crowding distance. The 

second approach is a Kmean-based NSGA-II algorithm called KNSGA which 

uses Kmean clustering in its K-Mutation operator to alter poor latency genes with 

good latency genes that are in the same Kmean cluster as their reference genes. 

The third approach is a multi-population based non-dominated sort PSO 

algorithm known as NMPSO. NMPSO uses information from two populations; 

one population which searches for good latency solutions, and the other 

population that searches for a Pareto set with optimal QoS. NMPSO uses best 

solutions from both populations to update particle positions and guide search 

towards optimal Pareto set with low latency and QoS optimal compositions. The 

last approach is a Non-dominated Sort Fruit fly optimization algorithm called 

NFOA which uses its strength of working with network coordinates coupled with 

non-dominated sorting to search for network positions of composite services with 

optimal QoS. The four algorithms were compared and their performance and 

optimality were evaluated against other techniques such as linear integer 

programming (LIP), traditional PSO and NSGA-II algorithms. Experimental 

results show that INSGA finds best quality solutions among the algorithms, 

although at the cost of performance. This is due to its unique ND-Crossover and 

ND-Mutation operators which retain genes with good fitness and crowding 

distance and significantly alters genes with bad fitness and crowding distance. 

Results also show that NMPSO, KNSGA and NFOA have a better balance 

between performance and optimality. This is because they utilize less 
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computations and resources than INSGA. NMPSO demonstrated the best 

performance in a large scale environment. This is due to its number of 

computations which is less when compared to the other proposed algorithms. 

Finally, our proposed penalty-based constraint handling strategy outperformed the 

standard constraint handling strategy of NSGA-II in maintaining better population 

diversity of Pareto set under strict global constraints. 
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CHAPTER 5 
A New Method for Network-aware Service Composition in 

Dynamic Environment  

In the previous chapter, we introduced for unique evolutionary algorithms for 

Network-aware and QoS based web service composition. The techniques 

proposed focus on solving our research problem under static environment i.e. 

environment where QoS values remain unchanged during the optimization 

process. However they may not be able to perform effectively in a dynamic 

environment i.e. environment where QoS values fluctuate constantly such as a 

real world environment. To further emphasize this point, we evaluate the four 

proposed algorithms in Chapter 4 using rapidly changing QoS scores to simulate a 

real world environment. From Figure 5.1, it is observed that the ability for each of 

the presented algorithms to find a globally optimal Pareto front has been 

negatively affected due to fluctuations in the QoS values. In the figure, each 

algorithm converged in local optimum when compared to their results in static 

environment (i.e. Figure 4.15a). This result shows that the presented algorithms 

do not fare well in real world service composition scenario.  
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Figure 5.1: Variation in average fitness using dynamic QoS values 

Part of the reason for their ineffectiveness is due to the use of exact values for 

RTT which impacts their overall optimality and performance in dynamic 

environment. We believe that if the network latency metric was used in 

qualitative form, it would have been easier for the algorithms to cope in dynamic 

setting. Another reason why RTT of a path should be represented as a qualitative 

metric rather than a quantitative one is because consumers in the real world are 

hardly interested in whether or not the end-to-end RTT of a composition is 

optimal, instead they may be more interested in knowing if it is high enough to 

provide satisfactory network performance. Therefore, it is important to develop 

other evolutionary techniques that perform better than the previous algorithms in 

a dynamic environment. Motivated by this necessity, we propose a novel 

technique to search for low latency and QoS-optimal compositions in a dynamic 

cloud environment. 
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As previously covered in Chapter 2, QoS-based service composition in dynamic 

environment has been tackled using techniques classified as either internal [99-

107] or external [108-110] adaptation methods. Generally, internal adaptation 

techniques are known to be efficient in solving the problem however they have 

poor optimality. External adaptation techniques on the other hand are capable of 

producing better solutions, however they are very slow when compared to the 

former. In this study we propose an enhanced internal adaptation technique based 

on cellular automaton-based NSGA-II algorithm or CellGA for short. One might 

argue that an external adaptation technique is more suitable for a dynamic 

environment than an internal adaptation technique. However due to their poor 

computation times, external adaptation techniques are inefficient in large dynamic 

service environments. Also, because we are dealing with real time changes in 

QoS, it is important for the composition algorithm to be able to quickly find a 

near-optimal solution. Any slight delay in operation due to QoS fluctuation will 

lead to poor consumer experience. Thus, CellGA aims to quickly find a near-

optimal Pareto set immediately after it has observed a change in QoS values. In 

real world this change usually implies that one or more web services that are part 

of the composition process have become unavailable or have been affected by 

network or server conditions.  

5.1 Qualitative Representation of Network Latency 

This study considers the qualitative representation of composition network paths. 

Ordinarily, RTT values are measured in quantitative form by projecting network 

packets across the network and measuring transmission time to their destination 

and then back to the source. However, this approach is computationally expensive 

and inefficient. Also, quantitative RTT measurements do not reflect perceived 

QoS experience from the user’s perspective. This chapter adapts the LANMF 

algorithm to classify network paths as binary classes of either “good” or “bad” 
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once they have been estimated. Where “good” represents 1 and “bad” represents 

0. Such representations have several benefits over quantitative representation of 

RTT. 

 Qualitative values consume far less resources than quantitative values. For 

example binary numbers like 1010011101 consume less memory and 

transmission cost when compared to a large sequence of integer numbers 

like 984,400,483,720,383… etc. 

 Qualitative RTT values are easier to obtain than quantitative values. For 

instance, it is easier to determine if a network path is either 1 or 0 than if it 

is either 819ms or 1250ms. 

 Qualitative RTT values better reflect stable representations of network 

paths. For example, a network path has a more stable value if it is assigned 

1 or “good” for having RTT between 1ms and 30ms than if it is assigned 

an exact value which could change over time and render the path unstable. 

 Qualitative RTT values can be easily integrated with a service 

composition technique without making much modifications. 

In order to obtain qualitative RTT values, the LANMF algorithm is slightly 

modified to use a threshold value in transforming exact values into binary 

numbers. The threshold value is denoted as   and is chosen purely for 

experimental usage. For instance, in a delay-tolerant application, LANMF may 

classify a path as “good” or 1 if its RTT is lower than an arbitrary threshold value 

of 20ms for the sake of experimentation. Other network paths above this 

threshold will be classified as “bad” or 0. A less delay-sensitive application may 

decide a higher threshold value of say 200ms since its network performance needs 

are much less relaxed. Obviously the choice of   can impact the result of the 

composition technique. This will be analysed in the results presented later. 
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A transformation operation between paths of services s11, s22, s23, s31, and s32, with 

the predicted binary value highlighted in bold are illustrated in Figure 5.2. The 

Figure shows the binary value assigned to the unmeasured network path between 

s23 and s31 data centres is 1 using   as 20ms. 

Once RTT measurements are transformed into qualitative values, they are fed to 

CellGA algorithm to search for “good” latency composite services with near-

optimal QoS. Algorithm 5.1 outlines the modified LANMF algorithm with the 

additional adjustments highlighted in bold. 

s12 s23 s31

80ms 66ms1 0

Composite service

RTT < RTT > 

Transformed RTT  values

0s11

s23

s31s12

1  

s22

0

s32

0 1 1

1 1  0

= 70ms

 

Measured 
RTT

Predicted 
RTT

 

Figure 5.2: Transformation of RTT measurements into qualitative values 

Algorithm 5.1 Modified LANMF Algorithm 

Input: D, g, n, , h, maxIter, no_states, state, actions_prob, rp_env, w, 
J1, J2 
Ouput: Dnew 
1:  Dnew = function LANMF(Input) 
2:  { for(i =1: maxIter) { 
3:                 for(j =1: n) { 
4:                          Select h random number of neighbours and  
5:                          initialize action, actions_prob 
6:                          Uj  rand(x) 
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7:                          Vj  rand(y) 
8:                          Check action of Uj  

9:                          If action 1 Then  
10:                          Update Uj(new) according to equation (3.13) 
11:                        If action 2 Then 
12:                          Update Uj(new) according to equation (3.14) 
13:                        Check action of Vj 
14:                        If action 1 Then 
15:                           Update Vj(new) according to equation (3.13) 
16:                        If action 2 Then 
17:                           Update Vj(new) according to equation (3.14) 
18:               Endfor } 
19:                        Dnew  U * VT 
20:                        error  w (D - Dnew) 2 
21:                        rp_env  Get response from environment 
22:                        if (error is minimised) { 
23:                            Reward actions_prob for Uj and Vj 

24:                            Update state of Uj and Vj 

25                         Else 
26:                            Penalize actions_prob for Uj and Vj 
27:                        EndIf} 
28:                        return Dnew 
29:      EndFor} 

30:  For each Dnew  
31:   { 
32:      If (Dnew (i, j) < Threshold value) 
33:           Then assign 1 to Network path 
34:      Else assign 0 to Network path 
35:    }  
36:  } 

5.2 Cellular Automaton-Based NSGA-II Algorithm 

In this technique, we enhance the traditional crossover and mutation operation of 

NSGA-II with cellular automata [141] update strategy to facilitate Network-aware 

and QoS based service composition in dynamic environment. Our unique 

algorithm is known as CellGA. Compared to the previously introduced 
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approaches, CellGA uses cellular automata rules to update its crossover and 

mutation operators otherwise known as Cell-Crossover and Cell-Mutation 

operators respectively. 

Cellular automata (CA) are constantly-changing discrete systems that are mainly 

used for large-scale parallel computations. In the field of science, CA has been 

adopted in simulating many processes such as fluid dynamics [143], medical 

image processing [144], traffic modelling [145] and chemical kinetics [142]. 

Common to all these processes is the idea that CA can identify and mimic distinct 

features of a dynamic physical system which contains a large number of small 

interconnect components. Due to its ability to handle large scale dynamic 

systems, CA has been used in this study to enhance our approach to tackle the 

service composition in dynamic setting.  

A CA is described as a network or neighbourhood of interconnected cells, each of 

which is in one of several local states at any given time. Each cell within a 

neighbourhood adopts a general rule for updating its local state at time 1tm  . The 

general rule depends on the cell’s own local state and the local states of other 

cells in the neighbourhood at time tm . Apart from each cell’s local state, the 

neighbourhood is also characterized by a global state whose value is determined 

by the local states of constituent cells. In this study, each i-th cell’s local state is 

denoted as bi while a neighbourhood’s global state is denoted as B. 

Once defined, a CA proceeds with an initial configuration of local states in the 

neighbourhood. At each time step, the local states of all the cells in the 

neighbourhood are updated simultaneously. Each cell’s state is only allowed to 

have a binary value of either 0 or 1. Hence, the CA’s global state B is determined 

by a vote between the cells in the neighbourhood which constitutes a CA rule. 

The rule is used to update the global state of CA given its local states. Several 
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rules can be defined for a CA. One of the major CA rules is the majority rule 

which states that the global state for a CA is given as the state of majority of the 

cells in the CA. For example assuming the local states of cells within a CA is 

configured as seen in Figure. 5.3, cell 1 and cell 3 have the majority state of 1 

while cell 2 has minority state of 0, therefore the CA’s global state is assigned 1. 

CA 
(Neighborhood)

B

b1 b3b2
Cell 1 Cell 2 Cell 3

1

1 10

Global state

Local states
 

Figure 5.3: CA Majority rule 

Other CA rules [146] have been developed for different applications such as 

minority rule, rule 30, rule 54, rule 62, etc. In this study, we adopt two novel CA 

rules in CellGA’s Cell-Crossover and Cell-Mutation operators tasked with 

eliminating “bad” network paths within a Pareto set while ensuring near-optimal 

QoS. CellGA’s procedure is described below: 

 

Encoding 

Similar to our previously introduced algorithms, CellGA encodes composite 

service as a genome of integer numbers, where each integer represents the value 

of a gene within the genome. A gene represents specific sub-task while integers 
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represent the candidate service numbers assigned to a particular sub-task. In 

addition to encoding each composite service, CellGA creates two CAs for each 

gene. One CA will be used to apply the Cell-Crossover rule while the other CA 

will be used to apply the Cell-Mutation rule for the gene. Each CA will contain  

 A global state which decides whether or not the associated gene will 

participate in crossover and mutation. 1 indicates that the gene will be 

crossed over or mutated while 0 indicates otherwise. 

 Local cell states which represent the qualitative RTTs of paths between 

the associated gene and all neighbouring genes. 

For example, assuming a sequence of three tasks are part of a workflow and only 

two candidate services exist for each task as seen in Figure 5.4. B decides if a 

service e.g. s11 should be candidate for crossover or mutation while b1 and b2 

represent the RTT binary values of network paths s11 - s21, and s11 - s22 

respectively. Binary values of b1 and b2 signify whether a path RTT is below or 

above threshold value . 

 

s11

s12

t3t2t1

s21

s22

s31

s32

CA for Crossover/Mutation

operation for gene s11

B

b1 b2

s21 s22  

Figure 5.4: Encoding of gene CAs 
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Population Initialization 

CellGA starts optimization process by generating a random population of 

composite services and their QoS scores. Then CellGA calls LANMF to estimate 

the qualitative RTTs of all network paths for each individual in the population. 

The output of LANMF’s computation is a binary matrix which is used to populate 

the CA’s for each gene. For example, some services from Figure 5.4 could be 

populated using binary values shown in Figure 5.5. 

b11

1 11

b12

1 01
S21 S22 S23 S21 S22 S23

Gene S11 Gene S12

 

Figure 5.5: Structure of a gene’s cellular automaton 

Non-dominated Sort 

In the next stage, CellGA performs non-dominated sort operation on the 

population to search for individuals with the best fitness irrespective of whether 

they constitute “good” or “bad” path latencies. This is to ensure that the best 

infeasible solutions are retained for the next stages of the optimization process. 

 

Tournament Selection  

This process involves choosing a pair of strong parents that will be used to 

produce high quality children and then placing the parents in a mating pool. 
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Crossover Operation  

Individuals in the population are subjected to Cell-Crossover operation. The 

operation starts by cutting each parent in the mating pool into small number of 

fragments and then interchanging one parent’s fragment with another parent to 

produce children. Specifically, Cell-Crossover operator chooses a cut point for 

each parent based on our proposed CA crossover rule which states that for each 

gene’s CA, its global state is 1 if any of its neighbourhood cells is in local state 0 

(i.e. gene is crossed over if any of its network path RTT to neighbourhood cells is 

above threshold value  ). The value of 1 for the gene’s global state tells the 

operator to crossover the gene. But, if there exists no cell having local state 0 then 

the gene’s global state becomes 0 and the gene remains un-changed (i.e. gene 

remains unchanged if all of its network path RTT to neighbourhood cells are 

below threshold value  ). The crossover operator ensures that only the genes 

whose global state is 1 are altered. The operator also ensures that only a 

maximum of 
2
nT

cut points can be established for any parent. Where n is number 

of sub-tasks within a workflow. This is to ensure that population diversity is 

maintained throughout the optimization process. Figure 5.6 shows the global cell 

state of a gene given certain combinations of local states. 

0 1  1S11 1
Neighborhood cellsGene

S21 S22 S23 S24

B11 = 1  (YES)
Crossover gene?

1 1  1S32 1 B32 = 0  (NO)

 

Figure 5.6: Cell-Crossover operator’s CA rule 
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Mutation Operation 

The mutation operation, also known as Cell-Mutation alters a few genes for each 

parent into children that closely resemble their parents. The standard behaviour of 

a mutation operator is to alter genes based on their randomly generated mutation 

probabilities. CellGA’s mutation operator adopts a different strategy to alter 

genes of parents. It uses a mutation CA rule which states that if majority of 

neighbourhood cells of a gene have local state of 1 (i.e. if majority of network 

paths from gene are below threshold value  ) then the gene should not be altered. 

But if majority have local state 0 (i.e. if majority of network paths from gene are 

above threshold value  ) then the gene should be altered. If the cells having local 

state 1 are equal in number to those having local state 0 then the gene is also 

altered. Figure 5.7 shows how Cell-Mutation operator assigns binary values to 

each gene’s global state. 

0 1  1S11 1
Neighborhood cellsGene

S21 S22 S23 S24

B11 = 0  (NO)
Mutate gene?

1 0 0S32 0 B32 = 1  (YES)
1 1 0S12 0 B12 = 1  (YES)

 

Figure 5.7: Cell-Mutation operator’s CA rule 

Children produced from the crossover and mutation operations are then re-

integrated back into the population and the process is repeated until total number 

of generations is reached. CellGA algorithm is outlined in Algorithm 5.2 while 
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Cell-Crossover and Cell-Mutation operators are outlined in Algorithms 5.3 and 

5.4 respectively. 

Algorithm 5.2 CellGA Algorithm 

Input: D, max_iter 
Ouput: pop 
1:pop  Randomly generate population 
2:pop  LANMF(D) 
3:While (gen  max_iter)  
4:{  
5:  pop  Tournament Selection (pop) 
6:  pop  Cell-Crossover (pop, NP) 
7:  pop  Non Dominated Sort (pop) 
8:  child_pop  Cell-Mutation (pop, NP)  
9:  combination_pop  pop + child_pop) 
10: combination_pop Non Dominated Sort (combination_pop) 
11:  pop  replacement(combination_pop) 
12:  EndWhile 
13:} 

 

Algorithm 5.3 Cell-Crossover Algorithm 

Input: pop, Neighbor_Cells 
Ouput: pop 
1:  totzero Total number of zeros 
2:  For Each (pop)  
3:  {  
4:          For Each (gene in pop) 
5:       {  
6:       totzero  Count number of cells in Neighbor_Cells in NP with 0 
7:              If (totzero > 0) 
8:              Then crossover gene  
9:              Else do not crossover gene 
10:       } 
11:  } 
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Algorithm 5.4 Cell-Mutation Algorithm 

Input: pop, Neighbor_Cells
Ouput: pop 
1:  totone  Number of ones 
2:  totzero Number of zeros 
3:  For Each (pop)  
4:  {  
5:          For Each (gene in pop) 
6:        {  
7:          totone  Count number of cells in Neighbor_Cells with 1 
8:         totzero  Count number of cells in Neighbor_Cells with 0 
9:              If (totone < totzero) 
10:              Then mutate gene  
11:              Else do not mutate gene 
12:        } 
13:  } 

5.3 Evaluation  

Several experiments were performed to evaluate the effectiveness and efficiency 

of CellGA algorithm. In order to perform the evaluation, the algorithm was 

implemented in MATLAB 2014. All experiments were simulated on a 2.8 GHz 

PC with 8GB RAM. The parameter settings for the algorithm are shown in Table 

5.1. Parameters for the other algorithms are already shown in Table 4.4. The 

results of those algorithms in a dynamic environment will be compared against 

CellGA in this experiment. The dynamic environment is simulated by randomly 

changing a quarter of population’s individuals in each iteration. This is meant to 

simulate a situation where the QoS scores and availability of web services are 

constantly changing throughout the optimization process. 
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Table 5.1: Cell-GA Algorithm settings 

P
opulation 

size 

N
um

ber of 
generations 

T
our size 

N
etw

ork 
m

odel 

C
rossover 

operator 

M
utation 

operator 

N
um

ber of 
tasks 

N
um

ber of 
candidate 
services

N
um

ber of 
neighbours 

L
atency 

T
hreshold 

value 

200 200 2 LANM
F 

Cell-
Cross
over 

Cell-
Mut
ation

13 20 32 40ms 

 

The same sequence workflow and Cloud network of 1890 Planet-Lab nodes 

specified in previous experiment were used in this experiment. RTTs for the 

Cloud network were generated using Harvard dataset similar to the previous 

experiment.  

5.3.1  Optimality 

We evaluate the optimality of CellGA algorithm and compare it against our other 

proposed algorithms. Figure 5.8 shows how average fitness of CellGA and other 

algorithms vary over generations. The Figure demonstrates that CellGA avoids 

local optimum and converges to a global Pareto front much later than other 

algorithms. CellGA converged to the best average fitness precisely at the 190th 

iteration while our previously best algorithm (in terms of optimality) INSGA 

converged at the 120th iteration. The other algorithms converged much earlier to 

average fitness values which are significantly higher than CellGA’s fitness. The 

result demonstrates that CellGA is capable of finding better quality solutions than 

other algorithms in a dynamic environment. The reason for CellGA’s superiority 

is due to its ability to deal with qualitative RTTs instead of exact values which is 

used by other algorithms. This qualitative representation allows CellGA’s Cell-

Crossover and Cell-Mutation to focus on finding QoS-optimal solutions whose 
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RTTs are within the threshold value rather than solutions that have both optimal 

QoS and optimal latency.  

 

Figure 5.8: Average fitness versus Generation 

 

Table 5.2: Comparison of Algorithms’ Average finesses 

Run
s 

CellG
A 

INSG
A 

KNSG
A 

NMPS
O 

LIP NFO
A 

PSO NSGA
-11b 

1 2.7839 3.1466 3.1019 3.3831 3.805
3 

3.376
0 

3.6657
4 

3.6266 

2 2.7720 3.0890 3.1823 3.3931 3.683
3 

3.354
9 

3.7293
1 

3.6300 
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3 2.7984 3.1029 2.9677 3.5216 3.698
9 

3.371
4 

3.8032
3 

3.6267 

4 2.7789 3.0821 3.1167 3.3069 3.705
2 

3.369
7 

3.7196
6 

3.4108 

5 2.7627 3.2359 3.1230 3.3154 3.761
2 

3.364
7 

3.8215
3 

3.5243 

6 2.6664 3.1384 2.9783 3.3448 3.743
4 

3.288
6 

3.8672
8 

3.3989 

7 2.7780 3.2015 3.0225 3.3476 3.717
5 

3.267
4 

3.7569
5 

3.3747 

8 2.7307 3.0728 3.0557 3.2634 3.772
5 

3.259
9 

3.6283
7 

3.3617 

9 2.9473 3.1614 3.1404 3.4562 3.780
6 

3.422
0 

3.7327
2 

3.4287 

10 2.6456 2.9385 3.1241 3.4106 3.164
5 

3.293
9 

3.9159
2 

3.4558 

 

Table 5.2 shows the best fitness values over ten runs. The table demonstrates that 

CellGA finds the best solution in all ten runs as highlighted in bold. 
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Figure 5.9: Average network latency versus Generation 

In Figure 5.9, CellGA also tends to find lower latency solutions compared to 

other algorithms despite using qualitative RTTs. This is because, with qualitative 

RTTs, CellGA can consistently search for low latency solutions in a dynamic 

environment whereas other algorithms tend to be inconsistent in their search for 

low latency compositions. Table 5.3 shows the best RTTs obtained by the 

algorithms over ten runs where CellGA shows best results in all runs. 

..Table 5.3: Comparison of Algorithms’ Average RTTs (in ms) 

Run
s 

CellG
A 

INSG
A 

KNSG
A 

NMPS
O 

LIP NFO
A 

PSO NSGA-
IIb 

1 799.08 807.51 805.73 839.08 837.8
8 

811.3
7 

873.0
1 

816.45 
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2 751.11 848.14 825.35 840.69 806.2
7 

820.3
1 

863.6
4 

814.79 

3 771.51 819.25 842.96 824.34 827.7
6 

821.2
4 

861.8
1 

818.09 

4 784.63 808.81 837.23 841.11 809.3
9 

859.4
7 

878.8
2 

812.15 

5 738.94 792.64 816.92 853.59 820.6
2 

822.0
4 

865.6
7 

784.23 

6 759.87 827.17 824.05 828.73 819.6
8 

829.6
8 

860.1
5 

810.01 

7 773.75 798.43 812.35 827.01 821.5
2 

813.1
0 

865.2
0 

815.53 

8 772.73 829.80 819.53 825.97 857.3
9 

824.2
5 

873.3
5 

834.39 

9 774.38 816.32 837.51 821.26 815.9
8 

845.6
2 

868.6
3 

803.93 

10 748.28 827.21 829.15 850.64 831.0
9 

842.9
4 

853.2
6 

823.38 

 

We also evaluated how dynamic QoS fluctuations affected the population 

diversity (standard deviation) of algorithms. Figure 5.10 shows that the level of 

diversity of individuals for all algorithms was reduced due to dynamism of the 

QoS attributes. For example in static environment, the standard deviation for 

INSGA, KNSGA, NMPSO and NFOA averaged at around 1.2, 1.1, 0.9, and 0.8 

respectively. However in dynamic setting, their average values fell to between the  
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Figure 5.10 Standard deviation versus Generation 

The difference between this value and the standard deviations is quite considerate. 

Despite this, CellGA’s ability to find better solutions than the other algorithms 

was not hampered by its poor population diversity. This could be because 

dynamic changes in QoS or availability of web services slightly contributes to 

diversity of individuals which in turn aids CellGA to facilitate search for the best 

individuals. Note that each time CellGA’s standard deviation plummets, it 

immediately rises due to changes in web services so that average standard 

deviation is maintained throughout the optimization process.  

5.3.2  Computation time 

In this experiment, we increase the number of tasks from 20 to 50 to evaluate its 

impact of computation times of the algorithms. This will give us an idea of the 
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ability of each algorithm to cope in a large scale dynamic environment. Figure 

5.11 demonstrates that there is a partially linear correlation between number of 

tasks and computation time. Unsurprisingly, NMPSO shows the best computation 

time while INSGA shows the worst computation time among the algorithms. 

CellGA seems to sit in between these two extremes at between 165 and 180 

seconds. That is about a difference of 15 seconds which is a significantly small 

value when compared to other algorithms. In fact, CellGA shows the smallest 

difference between computation time at 20 tasks and computation time at 50 tasks 

as seen in Table 5.4. The graph shows that CellGA’s computation time hardly 

changes proportionately with increase in number of tasks when compared to other 

algorithms. This is because qualitative RTT values adopted by CellGA hardly 

affected the number of resources and computations necessary to carry out 

optimization. This makes CellGA the most scalable among the algorithms in a 

dynamic environment. 

 

Figure 5.11: Effect of number of tasks on computation times of algorithms 
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Table 5.4: Comparison of Algorithms’ Computation time differences 
Algorithm Difference between computation times 

at Task no. T = 20 and T = 50 

(Seconds) 

CellGA 15 

INSGA 51 

KNSGA 34 

NMPSO 21 

NFOA 24 

5.3.3  Comparison of CellGA against other dynamic approaches 

In this section, we aim to generally compare CellGA against other major dynamic 

service composition algorithms such as reinforced learning (RL) and AI Planning 

(AIP). RL and AIP are internal adaptation methods that use previous experiences 

to alter parts of their solutions as the QoS values fluctuate. Both methods depend 

solely on quantitative QoS values during their optimization process which causes 

the process to be very slow and complex to implement. CellGA, on the other 

hand, relies on the use of qualitative RTT estimates to drive optimization process. 

This has the effect of minimizing the computational overhead and reducing 

complexity of implementation. Hence, it is expected that CellGA will outperform 

both RL and AIP in terms of computation time and ease of implementation due to 

its use of qualitative QoS values. However, RL and AIP may find slightly better 

quality solutions than CellGA due to their use of past experiences. In order to 

confirm that this is the case, it is necessary to implement a common framework 

for the comparison of CellGA against other dynamic approaches. This may prove 

to be a very difficult task because it will require other dynamic approaches to 

adapt their optimization processes so that they can work with qualitative QoS 

values just like CellGA. As part of future work, this research will investigate how 
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to implement a common framework for carrying out an appropriate comparison 

between CellGA and other dynamic approaches to service composition. 

5.4 Summary  

In this Chapter we first investigate how rapidly changing QoS values can impact 

the performance of proposed approaches in the previous Chapter which employed 

quantitative RTTs during optimization. It is observed that a dynamic environment 

would limit the effectiveness of our previous approaches. Thus, we present an 

enhanced NSGA-II algorithm called CellGA to searches for low latency 

compositions having optimal QoS in a dynamic environment. But first, the RTT 

estimation method, LANMF, was modified to transform estimated RTT 

measurements into qualitative form with the aid of a latency threshold value. Any 

path having RTT less than the threshold value is allocated a binary value of 1 or 

“good”, while a path with RTT more than threshold value is allocated a binary 

value of 0 or “bad”. LANMF uses this strategy to build a binary matrix of binary 

path RTTs which is passed to CellGA for use during optimization process. 

CellGA creates a cellular automaton (CA) for each gene (service node). Every 

CA consists of one global state and several local states. The global state 

represents a binary value which decides whether a gene should be altered while 

each local state represents the qualitative path RTT between the gene and another 

service node. It then employs Cell-Crossover and Cell-Mutation operators that 

adopt different CA rules to decide which genes will be altered based on their 

CA’s global state. For instance the Cell-Crossover operator alters a gene if any of 

the path RTTs to its neighbouring service nodes is above the latency threshold 

value. Cell-Mutation operator mutates a gene if majority of path RTTs to 

neighbouring service nodes is above the threshold value. Experimental evaluation 

of CellGA was conducted and its performance was compared against algorithms 

presented in Chapter 4. Results show that even though CellGA doesn’t have the 
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best computation time, it outperforms other algorithms in finding better quality 

solutions in a dynamic environment. Also CellGA demonstrated the best 

scalability when the number of composition tasks is large. 
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CHAPTER 6 

Conclusion and Future Work 

This chapter presents a summary of the contributions and research findings 

that have materialized from our research. Also, the chapter presents some 

future research directions. 

6.1 Summary  

This thesis studied the QoS-based web service composition problem in the 

cloud. The main objective of this research was to develop effective 

evolutionary algorithms to perform network-aware and QoS-based web 

service composition in a large scale environment. The problem is described as 

a constrained multi-objective optimization problem. This objective was 

successfully solved via a set of novel evolutionary algorithms which have 

been presented in this thesis.  

Specifically, three major issues of QoS-based web service composition in the 

cloud were tackled. The first issue is how to accurately and efficiently 

estimate the end-to-end network distance (or network latency) of a composite 

service in the cloud. We defined this issue as a prediction problem where the 

aim is to estimate the unknown RTTs of a set of network paths given a subset 

of already known path RTTs. The issue was successfully addressed in Chapter 

3 where a new RTT estimation algorithm was presented. The second issue is 

how to search for low latency and QoS optimal solutions in a large scale cloud 

environment. This issue was tackled in Chapter 4 via four new evolutionary 

algorithms. The third issue dealt involved how to find QoS and latency 

optimal solutions in a dynamic environment where QoS values are constantly 

changing. The issue was solved in Chapter 5 using a new genetic algorithm. 

The proposed algorithms were evaluated in a simulated environment to test 

their optimality, efficiency and scalability in different instances. Results 
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obtained from the evaluation demonstrated the competitiveness of the 

algorithms when compared to previous approaches. 

Starting from Chapter 1, the thesis introduced the research objectives where 

we discussed the research motivation, challenges and research problem. At 

this point, the problem was defined as a NP-Hard combinatorial optimization 

problem. The chapter outlined crucial challenges to be addressed in the thesis 

such as type of QoS model, service composition algorithms and evaluation. 

Major contributions of this research were also presented such as a novel 

method for prediction end-to-end network latency, and a new set of 

evolutionary algorithms for performing network-aware service composition in 

the cloud. After the contributions were discussed, the outline of the thesis was 

then presented to close the chapter. 

In Chapter 2, a comprehensive background and analysis on QoS-based web 

service composition techniques was presented. The chapter started by 

describing web services, their benefits and web service model. The chapter 

also described QoS and classified major QoS attributes such as cost, 

reputation, response time, reliability and availability. Concepts of QoS-based 

service composition were then introduced. The concepts discussed include 

workflows, service composition steps and factors that justify the NP-Hardness 

of the QoS-based service composition problem. The chapter then analysed the 

recent techniques developed to tackle the problem. Techniques were first 

classified into four categories; Intra-task approaches, inter-task approaches, 

approximation approaches and pareto-optimization approaches. Each category 

was explained in great detail including associated works, strengths and 

weaknesses. For instance, intra-task approaches such as dynamic 

programming, simple additive weighting are very efficient in large scale 

environment however they have poor optimality. Inter task approaches like 

linear integer programming have high optimality but are computationally 

inefficient in large scale scenarios. Approximation approaches e.g. particle 
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swarm and genetic algorithms are more efficient than other approaches in 

large environments but they mostly find sub-optimal solutions. Pareto-optimal 

approaches are similar to approximate methods except that they offer the 

service consumer with an alternative solution in the form of a Pareto set. The 

chapter then discusses techniques that perform service composition in 

dynamic environment. These techniques normally don’t have prior knowledge 

of QoS scores before the optimization process is performed. The techniques 

discussed include; Internal composition techniques that rebuild compositions 

from ground up or from point of failure e.g. AI planning and reinforced 

learning; External adaptation techniques that use adapters to bridge between 

composition and dynamic environment. From the analysis, it is observed that 

external adaptation methods are slower than internal adaptation methods, 

although they are able to find better quality solutions in a dynamic 

environment. The chapter then reviewed recent works that focused on solving 

QoS-based web service composition in the cloud. The techniques discussed 

adopt mainly evolutionary algorithms to find QoS-optimal compositions with 

minimal network cost to the cloud. Examples of methods discussed include 

ant colony algorithm, genetic algorithm, hierarchical task networks and finite 

state machines. Finally the chapter introduced network coordinate systems 

(NCS) due to their significance in aiding the proposed algorithms to solve the 

research problem. The operational procedure and benefits of NCS were 

discussed including an analysis of its main works. 

In Chapter 3, a new method for predicting end-to-end network performance of 

a composite service is presented. The chapter first introduced end-to-end 

network performance with special focus on network latency due to the ease at 

which it can be obtained from the Internet. The importance of estimating 

network latency in the cloud discussed. Then the prediction problem was 

defined, followed by a brief description of current techniques used to solve the 

problem. Here, Euclidean distance (EDM) and non-negative matrix 
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factorization (NMF) methods were discussed. It was deduced that NMF 

provided more accurate RTT estimates than EDM. Thus an Enhanced NMF 

method known as LANMF was proposed to further improve the accuracy of 

NMF. LANMF uses learning automata concepts to enhance the general update 

strategy of NMF such that each web service node can employ its own 

coordinate update towards minimal prediction error. Finally, the LANMF 

algorithm is evaluated in a simulated large scale cloud environment of web 

service nodes. It was observed from the results that LANMF obtains more 

accurate RTT estimates than recent techniques based on NMF (DMF) and 

EDM. This is thanks to its unique automata-based update strategy which 

learns what path to take in updating a web service node’s coordinate to ensure 

minimum prediction error. 

Chapter 4 studied the QoS-based web service composition in the cloud. 

Firstly, the chapter identified the challenges posed by QoS-based service 

composition problem. They include multiple conflicting QoS attributes, 

multiple QoS constraints and impact of network performance on composite 

service selection. A detailed description of our QoS model is then presented. 

The model consists of QoS attributes considered in this thesis e.g. cost, 

response time, execution time, and network latency. The chapter also 

discusses the significance of network latency during QoS optimization process 

in the cloud.. The research problem is then formulated as a constrained multi-

objective optimization problem. To address the problem, we presented four 

new algorithm namely network-aware NSGA-II algorithm (INSGA), K-mean 

based NSGA-II (KNSGA) algorithm, multi-population PSO (NMPSO) 

algorithm and non-dominated sort-based fruit fly optimization algorithm 

(NFOA). INSGA employed unique ND-Crossover and ND-Mutation operators 

which retains compositions having good crowding distances and RTTs and 

alters solutions with poor RTTs and crowding distances into new children. 

KNSGA searches for QoS-optimal and low latency solutions with the aid of 



Conclusion and Future Work 

161 

 

K-mean based K-Mutation operator. NMPSO separates solutions into two 

populations; the latency optimal population and QoS optimal population. It 

also uses non-dominated sorting to guide search towards near optimal Pareto 

set. Lastly, NFOA is a fruit fly optimization algorithm that looks for network 

positions of a composite service with optimal QoS. We compared the 

optimality and performance of the four algorithms against each other and 

against other previous algorithm such as linear integer programming (LIP), 

particle swarm algorithm and NSGA-II algorithm. The results proved that 

INSGA outperformed other algorithms in terms of optimality while NFOA, 

NMPSO and KNSGA had better balance between performance and optimality 

than other algorithms in a large scale cloud environment. 

Chapter 5 investigated QoS-based web service composition in a dynamic 

cloud environment which entails an environment where web service QoS 

scores fluctuate constantly. The previous approaches in Chapter 4 were first 

tested in a dynamic environment. Preliminary results showed that they were 

incapable of sustaining search for near optimal solutions. This motivated the 

development of a technique called cellular automata-based NSGA-II 

algorithm (CellGA) to addresses the problem. The main idea behind CellGA is 

the development of cellular automata rules that decide which gene needs to be 

altered to guide the search towards the global Pareto set. The chapter then 

presented a comparison of CellGA against previous algorithms. Results of the 

evaluation demonstrated its superiority in maintaining search for near-optimal 

solutions despite QoS fluctuations. 

6.2 Key Contributions 

Several major contributions were made by this thesis towards research into 

QoS-based web service composition in the cloud. It addressed three important 

challenges of the problem which is described as an NP-Hard problem. They 

include multiple-conflicting QoS objectives, multiple constraints and network 

performance. The thesis also made contributions to the research into network 
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performance prediction with emphasis on how to accurately estimating end-to-

end network latency. In addition, the thesis also made several contributions 

towards evolutionary algorithm research by introducing new evolutionary 

algorithms to address the problem. A detailed discussion of the contributions 

is presented below in the next subsections. 

6.2.1 Prediction problem (Chapter 3) 

The prediction problem has been extensively studied by previous works 

leading to the development of several network performance prediction 

algorithms. However, the algorithms had difficulty in making accurate 

estimates due to several reasons such as centralized architecture (in the case of 

EDM) or adoption of a general coordinate update strategy (in the case of 

NMF) which caused erroneous estimates. Hence, they are not suitable in a 

cloud environment which usually requires accurate representations of RTTs 

between web service nodes. This work contributed to the study of prediction 

algorithms by developing a learning-based non-negative matrix factorization 

algorithm (LANMF) to improve accuracy of estimating RTTs. LANMF 

encodes each web service node coordinate as an automaton where each 

automaton consists of its coordinate update strategy, set of actions and action 

probabilities. At each iteration, LANMF selects the update strategy with the 

best probability of leading to minimum prediction error. This is a clearly 

different strategy from pervious works which generally use the same update 

strategy for all node coordinates. An extensive comparison of LANMF against 

other prediction algorithms demonstrated that it had better prediction accuracy 

than them. 

6.2.2 New Methods for Network-aware Web Service Composition in the 
Cloud (Chapter 4) 

This problem has been studied by recent research targeted at development of 

web service composition algorithms that search for QoS optimal solutions in 

the cloud. However these algorithms lacked the ability to address real-world 
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issues in the cloud. The first issue is that recent works ignore the impact of 

network performance on composite service selection. In practice, network 

performance metric such as network latency plays a crucial role in 

determining overall performance of a composition in the cloud. The second 

issue is that the poor optimality of current techniques makes them unsuitable 

in dealing with the problem. The third issue is that, due to the large scale 

nature of our cloud environment, current techniques have poor scalability 

which makes them a bad choice for tackling the problem. Lastly, current 

constraint handling strategies are incapable of dealing with a situation where 

all QoS attributes considered during optimization process are “lower is 

better”. This work enriched the study of QoS-based web service composition 

in the cloud by developing evolutionary algorithms that successfully address 

the issues. This work also contributes to evolutionary algorithm research by 

presenting for new algorithms; INSGA, KNSGA, NMPSO and NFOA. 

INSGA provided novel ND-Crossover and ND-Mutation operators which 

search for low latency and QoS-optimal solutions. KNSGA introduced a new 

K-mean based K-Mutation operator for searching for web service nodes in the 

same cluster (in term of network proximity) to certain reference web service 

nodes. NMPSO uses best particles form different populations to guide search 

for near-optimal Pareto set. Lastly, NFOA uses non-dominated sort fruit fly 

search to find network positions of composite services with low latency and 

optimal QoS. All four algorithms adopted a unique constraint penalty function 

that rewarded solutions which satisfy QoS constraints and penalized those 

ones that didn’t satisfy constraints. The penalty function was developed to 

suite “lower is -better” QoS attributes which were considered in this thesis. An 

extensive evaluation of the algorithms shows that they have good optimality 

and scalability when compared to previous works. Among the four algorithms, 

INSGA shows the best optimality albeit at the cost of scalability. Still, 

INSGA’s scalability was better than linear integer programming (LIP) and 

only slightly worse than the other algorithms. NMPSO, KNSGA and NFOA 
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demonstrated better balance between optimality and scalability than INSGA, 

Particle swarm optimization, NSGA-II, and LIP. 

6.2.3 A New Method for Network-aware Service Composition in 
Dynamic Environment (Chapter 5) 

In contrast with the previous contribution, this work focused on addressing 

QoS optimization in a dynamic environment where there are constant changes 

in QoS of web services in the cloud. It is motivated by the discovery that 

previously proposed techniques were only effective in QoS optimization if 

QoS of web services remain unchanged. This work proposed a technique 

known as cellular automata-based NSGA-II algorithm (CellGA) to tackle the 

problem in a dynamic environment. CellGA adopts new Cell-Crossover and 

Cell-Mutation operators. The novelty in the operators lies in their ability to 

use different cellular automata (CA) rules to decide which genes need be 

altered to arrive at superior children. The rules depend on the global state of a 

gene which in turn rely on local states of gene’s CA neighbourhood. 

Experiments conducted confirmed that CellGA has better optimality when 

compared to the algorithms presented in Chapter 4. It also showed good 

scalability due to the use of qualitative RTT values which were obtained from 

LANMF. 

6.3 Future Work 

In Chapter 3, LANMF was not compared against tree-based prediction 

techniques for estimating network latency e.g. Steiner trees. Therefore, the 

next step of this study will involve a comparison of LANMF against 

prediction techniques to determine which method is efficient. 

In Chapter 4, only sequential workflow was considered in evaluating the 

algorithms. It will be interesting to consider other more complex workflows 

such as an aggregate workflow consisting of multiple connected sequence and 

parallel workflows. 
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In Chapter 5, only two unique CA rules were considered by the Cell-

Crossover and Cell-Mutation operators of CellGA. It will be useful to discover 

other rules and compare their effectiveness against the two rules.
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