

Novel Optimization Schemes for Service Composition in

the Cloud using Learning Automata-Based Matrix

Factorization

Umar Galadima Shehu

This is a digitised version of a dissertation submitted to the University of

Bedfordshire.

It is available to view only.

This item is subject to copyright.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bedfordshire Repository

https://core.ac.uk/display/43758142?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

October 2015

NOVEL OPTIMIZATION SCHEMES FOR SERVICE
COMPOSITION IN THE CLOUD USING LEARNING
AUTOMATA-BASED MATRIX FACTORIZATION

By

Umar Galadima Shehu

A thesis submitted to the University of Bedfordshire, in
partial fulfilment of the requirements for the degree of

Doctor of Philosophy

ii

KEYWORDS

Quality of service, web service, evolutionary algorithms, optimisation, cloud

iii

iv

ABSTRACT

Service Oriented Computing (SOC) provides a framework for the realization

of loosely couple service oriented applications (SOA). Web services are

central to the concept of SOC. They possess several benefits which are useful

to SOA e.g. encapsulation, loose coupling and reusability. Using web

services, an application can embed its functionalities within the business

process of other applications. This is made possible through web service

composition. Web services are composed to provide more complex functions

for a service consumer in the form of a value added composite service.

Currently, research into how web services can be composed to yield QoS

(Quality of Service) optimal composite service has gathered significant

attention. However, the number and services has risen thereby increasing the

number of possible service combinations and also amplifying the impact of

network on composite service performance. QoS-based service composition

in the cloud addresses two important sub-problems; Prediction of network

performance between web service nodes in the cloud, and QoS-based web

service composition. We model the former problem as a prediction problem

while the later problem is modelled as an NP-Hard optimization problem due

to its complex, constrained and multi-objective nature.

This thesis contributed to the prediction problem by presenting a novel

learning automata-based non-negative matrix factorization algorithm

(LANMF) for estimating end-to-end network latency of a composition in the

cloud. LANMF encodes each web service node as an automaton which allows

v

it to estimate its network coordinate in such a way that prediction error is

minimized. Experiments indicate that LANMF is more accurate than current

approaches.

The thesis also contributed to the QoS-based service composition problem by

proposing four evolutionary algorithms; a network-aware genetic algorithm

(INSGA), a K-mean based genetic algorithm (KNSGA), a multi-population

particle swarm optimization algorithm (NMPSO), and a non-dominated sort

fruit fly algorithm (NFOA). The algorithms adopt different evolutionary

strategies coupled with LANMF method to search for low latency and QoS-

optimal solutions. They also employ a unique constraint handling method

used to penalize solutions that violate user specified QoS constraints.

Experiments demonstrate the efficiency and scalability of the algorithms in a

large scale environment. Also the algorithms outperform other evolutionary

algorithms in terms of optimality and scalability.

In addition, the thesis contributed to QoS-based web service composition in a

dynamic environment. This is motivated by the ineffectiveness of the four

proposed algorithms in a dynamically changing QoS environment such as a

real world scenario. Hence, we propose a new cellular automata-based genetic

algorithm (CellGA) to address the issue. Experimental results show the

effectiveness of CellGA in solving QoS-based service composition in dynamic

QoS environment.

vi

vii

CONTENTS
KEYWORDS ... ii

ABSTRACT ... iv

CONTENTS .. vii

LIST OF FIGURES ... x

LIST OF TABLES .. xiv

STATEMENT OF ORIGINAL AUTHORSHIP ... xv

ACKNOWLEDGEMENT .. xvii

LIST OF PUBLICATIONS ... xix

Journal Papers .. xix

CHAPTER 1 INTRODUCTION .. 1

1.1 Research Motivation ... 1

1.1.1 QoS Optimization of Composite Service ... 2

1.1.2 QoS of the Network .. 5

1.2 Research Problem ... 7

1.3 Major Contributions ... 10

1.4 Thesis Outline ... 12

CHAPTER 2 BACKGROUND AND LITERATURE REVIEW .. 15

2.1 Background ... 15

2.1.1 Web Service .. 15

2.1.2 Quality of Service (QoS) .. 17

2.1.3 QoS-aware Web Service Composition ... 20

2.2 Literature Review ... 22

2.2.1 Static Service Composition .. 23

2.2.2 Dynamic Service Composition ... 29

2.2.3 Web Service Composition in the Cloud ... 34

2.2.4 Network Coordinate Systems ... 37

2.3 Summary ... 41

CHAPTER 3 A METHOD FOR PREDICTING END TO END NETWORK PERFORMANCE OF

COMPOSITE SERVICES .. 42

3.1 Introduction .. 42

3.2 Problem Formulation .. 46

viii

3.3 A Learning Automata-based Matrix Factorization Method for Predicting
End-to-End Network Latency of Composite Services .. 48

3.3.1 Basic concept of NMF .. 48

3.3.2 LANMF Algorithm... 50

3.4 Experimental Setup and Evaluation ... 54

3.5 Results and Discussion ... 56

3.5.1 Analysis of Prediction Error ... 57

3.5.2 Impact of Number of Neighbours h .. 61

3.5.3 Impact of Constants J1 and J2 ... 62

3.5.4 Impact of Dimension g ... 65

3.5.5 Prediction of End-to-End Network Distance of Composite Service .. 67

3.6 Conclusion .. 69

3.7 Summary ... 69

CHAPTER 4 NEW METHODS FOR NETWORK-AWARE SERVICE COMPOSITION IN THE

CLOUD .. 71

4.1 Introduction .. 72

4.2 Problem Formulation .. 78

4.3 Evolutionary algorithms for Network-aware Service Composition in the
Cloud .. 82

4.3.1 Network-aware Genetic Algorithm .. 82

4.3.2 K-Genetic Algorithm .. 94

4.3.3 Multi population Particle Swarm Optimization Algorithm 98

4.3.4 Fruit Fly Optimization Algorithm for Service Composition 105

4.4 Evaluation .. 115

4.4.1 Setup ... 115

4.4.2 Algorithms ... 116

4.4.3 Results and Discussion .. 119

4.5 Summary ... 130

CHAPTER 5 A NEW METHOD FOR NETWORK-AWARE SERVICE COMPOSITION IN A

DYNAMIC ENVIRONMENT ... 133

5.1 Qualitative Representation of Network Latency 135

5.2 Cellular Automaton-Based NSGA-II Algorithm 138

5.3 Evaluation ... 146

ix

5.3.1 Optimality .. 147

5.3.2 Computation time .. 152

5.3.3 Comparison of CellGA against other dynamic approaches………154

5.4 Summary ... 154

CHAPTER 6 CONCLUSION AND FUTURE WORK .. 157

6.1 Summary ... 157

6.2 Key Contributions .. 161

6.2.1 Prediction problem (Chapter 3) .. 162

6.2.2 New Methods for Network-aware Web Service Composition in the
Cloud (Chapter 4) ... 162

6.2.3 A New Method for Network-aware Service Composition in Dynamic
Environment (Chapter 5) .. 164

6.3 Future Work .. 164

Bibliography ... 167

x

LIST OF FIGURES
2.1 Examples of workflows consisting of tasks g1 to g4 21

2.2 QoS-aware service composition process 22

2.3 Mapping between network distances (RTTs) and Euclidean
metric spaces between web service nodes n1 and n3 38

2.4 Triangle inequality problem 39

2.5 Network distance estimation between nodes n1, n2 and n3
using NMF 40

3.1 Network of n web service nodes and O (n2) paths for a
sequence of T tasks in a workflow and services a to f 44

3.2 Encoding of node coordinates with LA parameters 51

3.3 Experimental Cloud network showing web service nodes
ws1 to wsn deployed on Planet-Lab nodes CSP1 to CSPn 55

3.4 Plot of MPE and MAPE convergence 59

3.5 Paths of LANMF’s actions vs. paths of DMF’s action 60

3.6 Impact of h on MPE and MAPE 62

3.7 Impact of J1 and J2 on MPE and MAPE 65

3.8 Impact of g on MPE and MAPE 66

3.9 Test composite service 67

4.1 Workflow for Travel booking application with four tasks
and their respective web services 73

4.2 Web service deployment locations 76

4.3 Sequence workflow pattern with services and their QoS
scores 76

4.4 Classification of candidate services into service class and
tasks 79

4.5 Structure of Genome in INSGA 84

4.6 Example of a composite service encoded as integer array 85

4.7 Operation of ND-crossover operator 90

xi

4.8 Operation of ND-Mutation operator 92

4.9 Mutation Operation of KNSGA 97

4.10 Encoding of a particle 101

4.11 Food searching pattern of fruit fly 107

4.12 Services and their network positions 111

4.13 Encoding a composite service as a fruit fly using NFOA 112

4.14 Test sequence workflow where 1.. nj k and nk is

 number of candidate services in the n-th service class 115

4.15 Plot of optimality against average fitness, network latency
and standard deviation 121

4.16 Plot of Distribution index against fitness and latency 124

4.17 Plot of candidate service number against fitness and
latency 125

4.18 Plot of size of task against average fitness, network
latency and computation time 128

4.19 Plot of computation time against number of constraints 130

5.1 Variation in average fitness using dynamic QoS values 134

5.2 Transformation of RTT measurements into qualitative
values 137

5.3 Majority rule 140

5.4 Encoding of gene CAs 141

5.5 Structure of a gene’s cellular automaton 142

5.6 Cell-Crossover operator’s CA rule 143

5.7 Cell-Mutation operator’s CA rule 144

5.8 Average fitness versus Generation 148

5.9 Average network latency versus Generation 150

5.10 Standard deviation versus Generation 152

xii

5.11 Effect of number of tasks on computation times of

algorithms 154

xiii

xiv

LIST OF TABLES
2.1 Summary of major QoS attributes 19

3.1 Parameter settings 56

3.2 Average computation times (in seconds) of test algorithms 61

3.3 Comparison of test algorithms’ end-to-end network distances (ms) 68

3.4 Comparison between h and Diff (ms) 68

3.5 Comparison between g and Diff (ms) 68

3.6 Comparison between J1, J2 and Diff (ms) 68

4.1 Aggregation formulas for QoS computation of some major
workflow patterns 74

4.2 Types of workflow structures 74

4.3 Range of QoS values 116

4.4 Algorithm settings 117

4.5 Comparison of best fitness for test algorithms for ten runs 122

4.6 Effect of constraint strictness on standard deviation of algorithms’
Pareto sets 129

5.1 Cell-GA Algorithm settings 147

5.2 Comparison of Algorithms’ Average finesses 148

5.3 Comparison of Algorithms’ Average RTTs (in ms) 150

5.4 Comparison of Algorithms’ Computation time differences 154

xv

STATEMENT OF ORIGINAL AUTHORSHIP

The work presented in this thesis has not been submitted for a qualification in
any other University or Institute. To my utmost knowledge, this thesis does
not contain any material that has been previously authored or published by
another person other than where due reference is made.

Signed:

Date: 28/10/2015

xvi

xvii

ACKNOWLEDGEMENT

First and foremost, i would like to Almighty God for all the support,

opportunities, protection and resources i have been provided with throughout

this programme and also throughout my life.

I would also like to express my deepest gratitude to my PhD supervisors Dr.

Gregory Epiphaniou and Dr. Ghazanfar Ali Safdar for their invaluable

contributions, encouragement, patience and guidance throughout my PhD

work.

Also, I would like to thank my parents for all their support and encouragement

they have shown me throughout my life.

Special thanks to Petroleum Technology Trust Fund (PTDF) for their support

in the form of a Postgraduate Scholarship.

Finally, I wish to thank my friends Zinar, Wede, Jalo, Ali and Hadiza for their

consistent encouragement and patience throughout my work.

xviii

xix

LIST OF PUBLICATIONS

The following works were published during the course of this thesis study:

Journal Papers

 Umar Shehu, Gregory Epiphaniou, Ghazanfar Ali Safdar, “Towards

Network-Aware Composition of Big data Services in the Cloud”.

Accepted by International Journal of Advanced Computer Science and

Applications (IJACSA), 13th Oct. 2015.

 Umar Shehu, Gregory Epiphaniou, Ghazanfar Ali Safdar, “Network-

Aware Composition of Internet of Thing (IoT) Services”. Accepted by

Transactions on Networks and Communication Journal (TNC), 19th

Feb. 2015. DOI: 10.14738/TNC.31.961

 Umar Shehu, Gregory Epiphaniou, Ghazanfar Ali Safdar, “A Survey

of QoS-Aware Service Composition Techniques”. Accepted by

International Journal of Computer Applications (IJCA), Mar. 2014.

DOI: 10.5120/15681-44662013.

xx

1

CHAPTER 1
Introduction

The objective of this thesis is the study of evolutionary algorithms for QoS-

based web service composition in the cloud. QoS-based web service

composition raises several challenges which have been transformed into

optimization problems. We studied, elaborated, and experimentally validated

algorithms towards QoS-based web service composition in the cloud. This

research focuses on the application of evolutionary algorithms in tackling the

web service composition problem. Specifically, this research develops

efficient evolutionary algorithms to facilitate the delivery of composite

services that provide the level of quality required by service consumers. The

next section discusses the motivation, research challenges and contributions of

this research.

1.1 Research Motivation

Web service provides a platform for transforming the Internet into a vast

library of service-oriented applications (SOA) [32]. They enable Internet

applications to become interoperable, reusable and decoupled. They also

enhance the communication between Internet applications in order to realize

more complex functionalities. This is made possible by aggregating services

from different applications into a composite service that represents the

business process aimed at satisfying of a consumer’s request. The benefit of

web service composition comes from its ability to deliver added value to

services provided to the consumer. Because of this ability, web service

composition is of considerable interest to both industry and academic

research.

In order for QoS-based web service composition to be successful in the cloud,

several critical challenges need to be addressed.

Introduction

2

1.1.1 QoS Optimization of Composite Service

One of the challenges is how the Quality of service (QoS) of composite

services can meet both functional and non-functional requirements of

consumers in such a way that added value is generated. This challenge has

lead the research community to investigate how the QoS of composite services

is optimized. As such there has been considerable amount of research work

dedicated to this issue. The research works span across several aspects of web

service composition such as QoS modelling [1, 2], architectures for

discovering and registering restful web services [3, 4], and QoS-based web

service composition methods [5, 6]. Techniques proposed in each of these

aspects play a crucial role in ensuring that composite service QoS is

optimized. QoS-based web service composition has become important

because it will ensure that a composite service presented to the consumer has

optimal QoS. In real life situations, it is not uncommon for the consumer to

have a certain expectation of a composition’s QoS. For example, a consumer

may require that a composite service has minimal cost. Alternatively,

consumers may require that the solution has a minimal value for multiple QoS

attributes such as cost, response time and availability simultaneously. QoS-

based web service composition aims to address these expectations so that the

consumer’s value is maximized and a service provider can maximize return on

investment. Henceforth, restful web services will simply be referred to as web

services for the sake of simplicity.

Over the years, QoS-based web service composition problem has been

transformed into different classes of optimization problems. One type of

problem solves composite service optimization by using techniques that adjust

web services that are part of the composite service until optimisation is

achieved. Examples of this type of optimization problem include QoS-aware

service selection problem [7] and QoS-aware service scheduling problem [8].

In the former problem, a composite service is represented as a workflow [30]

Introduction

3

where each web service is assigned to a task that is part of the workflow. The

end-to-end QoS of a workflow is obtained by aggregating individual QoS

scores of each web service that is part of it. Techniques developed for the

service selection problem attempt to find the workflow with best end-to-end

QoS. The QoS-aware scheduling problem extends the service selection

problem with additional time constraints which dictate the execution order for

each web service within a workflow. Both problems have been mainly applied

to solving QoS optimization of composite service in cloud and grid

environments [10].

Another kind of optimization problem tackles web service composition by

altering the paths that interconnect web services the within the workflow. This

problem is referred to as QoS-aware service partitioning problem [9]. It

searches for workflow pattern that leads to optimal QoS. The problem has

been applied to a wide range of environments including but not limited to

cloud and grid environments.

Due to their challenging nature, the QoS-optimization problem has been

known to be NP-Hard [11]. Several reasons have contributed to this:

i. Due to the rise in number of web service offerings on the cloud, web

service composition has become a large scale problem where selecting

a single web service for each workflow task from a large number of

possible alternatives is a time consuming process. For instance,

assuming 15 tasks are part of a workflow and each task a set of 20

possible web services to execute it. Therefore the total number of

service combinations will be 2015 or 32.7 quintillion combinations. It is

impossible for any technique to make an optimal service selection in

reasonable time.

ii. The nature of consumer requests are taking a more complex form that

may require multiple conflicting QoS attributes to be considered

Introduction

4

simultaneously. This further compounds the difficulty of the problem

because it will be hard to find a composite service that has all QoS

values optimal at the same time. In many situations, the optimal

solution may have one QoS attribute optimal but the others

suboptimal. This is because in trying to optimize one QoS attribute,

other attributes become less optimal. For example, an optimal

composite service can have minimum cost but sub-optimal response

time or minimum response time but sub-optimal cost. The difficulty

stems from trying to select which of the two situations will be

acceptable to a consumer who expects both optimal cost and optimal

response time simultaneously.

iii. In addition to multiple QoS requirements, consumers usually specify

constraint requirements in a composition request. Constraints represent

further goals that need to be satisfied by the optimal composition in

order to fully meet the consumer’s expectations. This can add to the

difficulty of the QoS optimization problem because constraints can

further reduce the likelihood of finding a solution in reasonable time

given that the best solution may not completely satisfy a constraint

requirement.

Due to the NP-Hardness of the QoS optimization problem, it has become

necessary to develop efficient evolutionary algorithms (EA) that will be able

to find near optimal compositions in reasonable time. This research

investigates how EA can be used to tackle the problem. EAs are population-

based algorithms that operate on the concepts of natural evolution [12]. They

have shown great promise in dealing with NP-Hard optimization problems. In

situations where they don’t find optimal solutions, they are capable of finding

near-optimal ones. Some EAs go further in finding pareto-optimal set in

situations where multiple QoS attributes are conflicting. EAs have been

successful applied to large scale optimization problems in domains such as

Introduction

5

aerospace sciences [13], electrical circuits [14], microbiology [15], overlay

networks [17], etc. They have also been known to be very good in handling

constraint requirements [16]. An objective of this research is to develop

evolutionary algorithms for QoS-based web service composition with the aim

of optimising QoS of composite services in large scale environment.

1.1.2 QoS of the Network

Another challenge of web service composition is the impact of QoS of the

network [18] on composite service selection. The past few years has witnessed

a rapid rise in number and spread of modern web services deployed on the

Internet. The rapid development of modern web services can no longer be

supported by traditional client-server architectures because of increase in

traffic congestions and network instability caused by high demand of these

services. To address this issue, decentralised architectures such as p2p [18,

23], content delivery networks [19, 22] and decentralised cloud networks [20,

21] have been developed. These architectures provide more effective QoS

delivery by making better use of network resources. Amongst the

architectures, the cloud has become the most popular destination for deploying

web services [33]. Instead of deploying web services on several physical

servers or nodes that are distributed across different geographical areas,

service providers are increasingly deploying web services as platform-as-a-

service (PaaS), infrastructure-as-a-service (IaaS), or software-as-a-service

(SaaS). Usually, web services are deployed on a Virtual Machine (VM) node

which houses the CPU and memory resources necessary to run the service on

the cloud. Examples of Internet clouds which offer web services include

Amazon EC2 [37], Microsoft Azure platform [38] etc. In this research, we

focus on QoS-based service composition of web services offered on the cloud.

Also, we refer to “web service VM node” as “web service node” for the sake

of simplicity.

Introduction

6

In order to facilitate the composition of modern web services on the cloud, the

knowledge of QoS of the network is essential. The QoS of network for a

composite service represents its end-to-end network performance. This

constitutes the network paths between each web service node in a

composition’s workflow. Different metrics [39, 44] have been used to measure

the performance of network paths between web service nodes. Some examples

include network latency, Perceived QoS, network bandwidth, packet loss,

jitter, etc., although network latency and bandwidth are the most popular

network performance metrics used in web service architectures. Network

latency represents the forward and return path round-trip time (RTT) while

network bandwidth indicates the transfer rate of a given network path.

Usually, network latency is advertised as part of response time attribute in the

service provider’s Service Level Agreement (SLA) [51]. As such, the

advertised network latency only represents the theoretical RTT that is

expected to be experienced on a composition’s network path. In the real

world, this representation largely differs from the actual RTT experienced by

the physical network because network conditions change constantly. It is

therefore important to segregate QoS of the network from web service QoS

advertised in the SLA. This entails separating a network performance metric

such as network latency from the SLA’s response time so that the RTT of a

composition becomes a real representation of the physical condition of the

network path rather than a theoretical representation. Few research efforts

have tackled this issue. The traditional approach [33, 35, 44] is to measure

network latency by physically sending packet probes across all network paths

and then measure their RTTs. This approach allows for accurate measurement

of RTTs of a composition’s network paths, however it is time consuming and

expensive to implement. Another approach that is gaining popularity is the use

of prediction algorithms which measure RTT for a small subset of network

paths and then predict the RTT for the other un-measured paths. This

Introduction

7

approach is less time and resource consuming, although it is slightly less

accurate than the tradition approach. For this reason, the network performance

prediction algorithms have attracted significant attention in the research

community.

Generally, an issue with prediction techniques is their accuracy in estimating a

network metric. Different prediction techniques usually have different

estimation accuracies. Hence, choosing the right technique will determine how

close predicted values are to the actual representation of a composite service’s

network performance.

Motivated by this issue, another objective of this research is the development

of an accurate prediction technique which aids our proposed evolutionary

algorithms to efficiently estimate the end-to-end network performance for a

composite service in an accurate way. This will give the algorithms the ability

to search for compositions with optimal QoS without compromising QoS of

the network. Due to availability of data, this research studies the prediction of

network latency between web service nodes on the cloud.

1.2 Research Problem

QoS-based service composition problem arises when composing web services

deployed on the cloud. In such an environment, several factors can affect the

performance and quality of composite services. One is the selection of web

services that lead to optimal QoS. The other is impact of QoS of the network

(or network performance) on the quality of a composite service. Thus the

problem considers the impact of web service QoS attributes such as cost,

response time, execution time, and a network performance metric such as

network latency on web service composition in the cloud.

QoS-based web service composition problem is described as a problem of

selecting individual web services from the cloud that will be part of a QoS-

optimal composite service. The problem occurs when developing composite

Introduction

8

services from a set of service providers who deploy their services on the

cloud. The composition process is performed as follows:

i. Once a consumer request is made, it is broken down into several sub

requests or tasks linked to one another to form a workflow. For

example, a trip planning request could be broken down into tasks such

as online booking, hotel booking and payment processing which are

connected to each other within a workflow. The link between each task

dictates the direction of data flow and execution order of tasks in the

workflow.

ii. After the workflow has been built, then a search is made for different

web services available for each task. Examples of web services that

could be used for payment processing include PayPal, Master card,

Visa card, etc. Each of these services are otherwise known as a

candidate service.

iii. Once all the candidate services for each task has been discovered, a

web service composition algorithm is used to find a combination of

services that lead to optimal QoS.

Based on the specifications above, QoS-based web service composition in the

cloud can be formally stated as follows:

Given a workflow consisting of a set of interconnected tasks and candidate

services per task, how can we find a combination of services such that the QoS

and end-to-end network performance of the composite service is optimal?

The QoS-based web service composition problem is defined as a

combinatorial optimization problem [24, 25] where the number of possible

combinations increases as the number of workflow tasks and candidate

services increase. This also exponentially rises the computation time for

solving the problem. When additional QoS constraints such as optimal end-to-

Introduction

9

end network performance need to be satisfied, then it becomes further difficult

to find an optimal solution in reasonable time.

It has become crucial to develop service composition algorithms that will be

able to find near optimal solutions in reasonable time. This research examines

the QoS-based web service composition problem by tackling the following

aspects:

 QoS model: Current works [29, 30, 31] adopt a similar QoS model to

tackle the research problem. The traditional QoS model only considers

web service QoS attributes such as response time, availability,

reliability, cost etc. However it does not have a separate representation

for QoS of the network. When applied to the cloud-based web

services, the traditional QoS model will not be able to optimize

network performance for a composite service. This thesis extends the

traditional QoS model with network performance metric which

represents the QoS of the network. In doing so, the model will take

into account both web service QoS and QoS of the network for a

composite service during optimization.

 Web service composition algorithm: Web service composition

algorithms are tasked with the work of finding near optimal

compositions in reasonable time. Recent web service composition

algorithms [26, 27, 28] have succeeded in optimizing web service

QoS. However they are not meant to solve service composition in an

environments where web services are spread across different cloud

data centres whose network latencies can impact network performance

of composite services. This is because they don’t have the ability to

search for compositions that have near optimal network performance.

This thesis addresses how to utilize evolutionary algorithms to search

Introduction

10

for compositions that are near optimal with respect to both QoS and

network performance.

 Algorithm evaluation: In order to evaluate the behaviour of the

proposed algorithms in solving the problem, the thesis simulates a test

workflow consisting of several candidate services and tasks. The

evaluation process investigates the impact of simulation parameters on

the performance and optimality of the proposed evolutionary

algorithms. This will give us an idea of both the strengths and

weaknesses of the proposed algorithms in solving the research

problem.

1.3 Major Contributions

This research advances established knowledge of QoS optimization in web

services. In general, this research addresses key challenges of QoS

optimization in the area of web service composition in the cloud. More

specifically, this study tackles QoS optimization of composite services by

developing efficient evolutionary algorithms for network-aware and QoS-

based web service composition in the cloud. The algorithms proposed could

be utilized by applications built upon SOA applications in facilitating the

delivery of more responsive and efficient composite services to consumers. It

will also aid service providers in better meeting the quality requirements

expected by their consumers as outlined by the SLA. Apart from contributing

to research into QoS optimization of web services, this work also contributes

to body of knowledge for evolutionary algorithms. The contributions of this

thesis are detailed as follows:

1. Network performance prediction

This work adds to the research on estimating network performance

between web services nodes on the cloud. Existing works [33, 34] for

measuring the performance of network paths between cloud services are

Introduction

11

expensive, inaccurate and computationally inefficient. When applied to

modern web service composition, they could cause poor application

response times.

This work proposes a network coordinate system to estimate the end-to-

end network performance of composite service, using network latency as

the network performance metric. The network coordinate system is based

on a novel learning automata-based matrix factorization algorithm called

LANMF which measures the RTT between a small subset of services and

then predicts the network positions of the other services in the cloud. To

the best of our knowledge, this is the first time a learning-based matrix

factorization algorithm has been used to tackle network performance

estimation of web services nodes. Experimental results indicate that the

proposed algorithm is efficient and has low prediction error. Because of its

decentralised nature, LADMF can be applied to other modern

decentralised architectures besides the cloud to efficiently estimate

network latency of network paths.

2. Network-aware Evolutionary Algorithms

This work contributes to the research on QoS-based web service

composition by considering the impact of network performance on QoS

optimization. Although several works have been developed over the years

to tackle the problem, they do not consider the impact of QoS of the

network on composite service selection especially in large-scale web

service environment such as the cloud. The inability of current techniques

to consider QoS of the network will cause them to search to compositions

that have sub-optimal network performance.

This work proposes several evolutionary algorithms to tackle the problem

in a large scale environment. They include a network-aware genetic

algorithm (INSGA), a multi-population particle swarm optimization

Introduction

12

algorithm (NMPSO), a Kmean-based genetic algorithm (KNSGA) and a

non-dominated sort fruit fly optimization algorithm (NFOA).

Experimental results show that these algorithms are efficient in finding

low latency and QoS optimal composite services in a static QoS

environment. However, they do not fare well in a dynamic QoS

environment. Thus, an additional evolutionary algorithm called cellular

automata-based genetic algorithm (CellGA) is presented to tackle QoS

optimization in a dynamic QoS environment. Results show that CellGA

performs better than the other algorithms in coping with constant changes

in QoS while performing optimization.

1.4 Thesis Outline

The remainder of this thesis is organized as follows;

Chapter 2 introduces the basic concepts of web services, service composition,

QoS and network performance prediction. Also, the basic concepts of some of

the most common evolutionary algorithms are introduced. Then a review of

recent works which address QoS-based web service composition are

presented. A review is also made of recent techniques which address service

composition on the cloud. The Chapter then ends with an introduction to

network coordinate systems.

Chapter 3 presents a new method for predicting end-to-end network latency of

a composite service. The significance of estimating RTT between web service

nodes in the cloud is discussed. Then the prediction problem is defined,

followed by a brief description of methods already designed to address the

problem. It then introduces a new learning automata-based non-negative

matrix factorization (LANMF) technique which accurately predicts end-to-end

network performance between web services nodes in the cloud. The chapter

ends by presenting an experimental evaluation of LANMF to demonstrate its

effectiveness in solving the problem.

Introduction

13

Chapter 4 presents new evolutionary algorithms that utilize RTT estimates

from LANMF to perform service composition in the cloud. Firstly, the chapter

formulates the QoS-based web service composition problem as a

combinatorial optimization problem. The chapter also presents four new

evolutionary algorithms. Each of the proposed algorithms handles network

latency differently. The first algorithm is a genetic algorithm (INSGA) which

adopt network-aware ND-Crossover and ND-Mutation operators that adjust

population individuals according to the RTTs between their genes and their

crowding distances. The second algorithm is multi-population particle swarm

optimization algorithms (NMPSO) that separates individuals into two

populations and searches for a Pareto set of solutions. The third algorithm is a

genetic algorithm (KNSGA) with Kmean-based K-Mutation operator to search

for web service nodes that are close (in terms of network proximity) and

contribute to optimal QoS. Then the last algorithm is non-dominated sort fruit

fly optimization algorithm (NFOA) which translates RTTs into network

positions that are used to search for services close to certain network locations

without compromising QoS. The chapter rounds up by presenting experiments

that compare the optimality, performance and scalability of the algorithms.

Chapter 5 investigates QoS-based web service composition problem in a

dynamic QoS environment. The chapter first evaluates how quantitative RTT

values can impact the performance and optimality of the four previous

algorithms in a dynamic QoS setting. The chapter then focuses on adopting

qualitative RTT estimates to tackle the problem. Thus, LANMF is slightly

altered to classify network paths as either “good” or “bad” paths. Then a new

evolutionary algorithm called cellular automata-based genetic algorithm

(CellGA) is introduced to find “good” network paths that have near-optimal

QoS. CellGA uses cellular automata rules in its Cell-Crossover and Cell-

Mutation operators to perform dynamic QoS optimization. Experimental

Introduction

14

results are presented to compare performance of CellGA against other

algorithms in the previous chapter to demonstrate its efficiency.

Chapter 6 concludes the thesis by first summarizing the work done in each of

the previous chapters. Major contributions of the thesis were then laid out

followed by recommendations for future work.

15

CHAPTER 2

Background and Literature Review

In this chapter, the background and review of QoS-based web service

composition techniques are presented. An introduction to web services, QoS, and

web service composition is first presented followed by a general description of

QoS-based service composition procedure. Then a review of recent works in web

service composition is presented with special focus on techniques for general

service composition and service composition in the cloud. Finally network

coordinate systems are discussed. This will give us an idea of their importance

and the research efforts that have been carried out to solve network performance

prediction problem.

2.1 Background

2.1.1 Web Service

Web services are central to the realization of SOA applications. They make it

possible for application functionalities to be encapsulated into independent units

running on different machines. A web service is defined as a network-accessible

object that is self-governing and provides some functionality [40]. It enables the

development of distributed applications that can be aggregated through service

composition to meet consumer needs. Web services are characterized by their

ability to be provisioned, discovered and composed. Based on these properties, a

web service model [42] has been built to guide the development of SOA

applications. In the model, several key elements have been defined; service

consumer, service entity and service provider. The service consumer is the entity

that invokes the service’s functionality to satisfy a given request. The service

entity defines a set of capabilities that can be performed by the service. The

service provider is responsible for provisioning the service and its functionalities.

Background and Literature Review

16

Once a service is provisioned by its service provider, it is placed in a repository or

service registry where it is accessed by service consumers. The communication

and data exchange between each of the entities are handled using web service

standards such as XML [43], SOAP [46], WSDL [45], and UDDI [47]. These

standards are required for a successful development of SOA applications using

web services.

Several web services have been created to deal with different kinds of consumer

requests. Examples of services and their respective consumer requests include:

 Web services meant for business transactions can deal with requests such

as credit card validation, bank credit or debit requests, hotel reservation

requests, etc.

 Web services which provide access to large datasets or data logs e.g. a Big

data-as-a-service (BDaaS) that allows access to very large datasets stored

on cloud-based data centres.

 Web services that expose computing resources such as CPU, network,

memory and storage as metered services [49] e.g. Dropbox [48], Amazon

EC2, Windows Azure, etc.

Applying web services to the development of SOA applications has several

benefits when compared to traditional applications:

 Encapsulation: Web services give service providers the ability to hide the

implementation logic of their applications from service consumers or

other services that invoke them. If a service consumer or an external

service wants to execute a service, they are only presented with the

service’s interface and capabilities. This guarantees that they are not

aware of how a service performs its function.

Background and Literature Review

17

 Loose-coupling: SOA applications built on web services can restrict the

degree of dependency between its individual components or functional

units. This way, each unit operates independently of other units, thereby

enhancing the adaptability and interoperability of the SOA application far

beyond that of traditional applications.

 Reusability: Web services allow service providers to easily build more

sophisticated applications by reusing the logic of existing SOA

applications. This will consequently reduce the time between software

development and implementation phases.

These benefits make web service a popular technology for building heterogeneous

systems that can effectively address rapidly changing application requirements of

today’s Internet consumers and organisations.

2.1.2 Quality of Service (QoS)

Currently, there exists many organizations that provide services to consumers on

the Internet. Some of the services have similar capabilities while others have

disparate capabilities. As a result, web services are characterized by functional

and non-functional attributes [41]. The functional attribute dictates what kind of

task a web service is meant to perform e.g. credit card validation. While the non-

functional attribute, also known as Quality of Service (QoS), indicates a service’s

level of quality. QoS is mainly used to differentiate services having similar

functional attributes. Its significance stems from the fact that a web service may

be functionally capable of performing a given task, but might not be reliable in

performing the task up to the service consumer’s satisfaction. Service providers

normally advertise services together with their QoS values as part of a Service

Level Agreement (SLA). For instance, a web service may be advertised as having

cost and response time as $10 and 10ms respectively. Here, cost and response

Background and Literature Review

18

time are regarded as the QoS attributes of the service while $10 and 10ms are

their respective QoS values. QoS attributes define how well services meet

consumer’s quality expectations. As such, it is crucial for SOA applications to

consider QoS aspects of web services in addition to their functional aspects when

addressing consumer needs.

There are several QoS attributes that have been used to represent the quality

aspects of a web service. They are classified into different groups. QoS attributes

have been classified as user dependent and user independent [52]. User dependent

attributes are those attributes whose values vary depending on the consumer e.g.

throughput and response time. In contrast, user independent attributes have a

constant value irrespective of the consumer e.g. cost and popularity. Another

categorization distinguished QoS attributes as either measurable or immeasurable

[60]. Measurable QoS attributes are quantifiable e.g. execution time, while

immeasurable QoS attributes are naturally qualitative e.g. flexibility and

reputation. QoS attributes have also been categorized as application and network

attributes [56]. The former are application-level attributes e.g. availability,

reliability, cost, etc., while the latter are network-level attributes that impact the

performance of web service network paths e.g. network latency, packet loss,

delay variation, etc. In Table 2.1, we classify QoS attributes as either “lower is

better” or “higher is better” depending on how they define quality of a web

service. “Lower is better” QoS attributes represent attributes who’s lower values

signify better quality while higher values signify poorer quality e.g. cost, response

time, execution time, etc. On the other hand, “higher is better” defines attributes

who’s higher values represent better quality while lower values represent poorer

quality e.g. reputation, availability etc. Table 2.1 summarizes major QoS

attributes cost, response time, execution time, reputation and availability [50]

including their classifications.

Background and Literature Review

19

Table 2.1: Summary of major QoS attributes.

QoS

Attribute

Description Classification

Cost Amount payable in monetary value for the
execution of service.

Lower is better

Reputation Consumers’ average rank of a service based
on their experiences

Higher is better

Response
time

Time it takes to process a consumer request
from the point it is made up till the point it
is received.

Lower is better

Execution
time

Time required for the web service to process
the task.

Lower is better

Availability Chances that a service will be accessible
within a given time frame

Higher is better

Ideally, QoS values advertised in the SLA are values the consumer is expected to

experience. However, there is no guarantee that they will remain consistent all the

time. For example the response time attribute defines the expected processing

time for a given service. This time also includes the round-trip-time or network

latency [53]. If the advertised response time is applied to a latency-sensitive SOA

application [54] deployed on the cloud, it will not be able to guarantee that the

consumer experiences the same level of latency that is advertised as part of

response time. Therefore it has become necessary to define network latency as a

separate QoS attribute independent of response time attribute. This thesis deals

with network latency as a standalone QoS attribute whose values are not

determined by what is specified by the service provider, rather they are

determined using a network coordinate system which provides a realistic estimate

of the physical round-trip time the consumer is expected to experience. In

addition, this thesis also considers major QoS attributes such as cost, response

Background and Literature Review

20

time and execution time, although any other web service QoS attribute can be

considered.

2.1.3 QoS-aware Web Service Composition

In many situations a single service may not satisfy a consumer’s request. During

such situations services from different service providers would need to be

combined in order to meet the consumer’s requirements. This is where web

service composition comes into play. It is the process of aggregating web services

having disparate functionalities into a composite service. Composition of services

is achieved via their functional and QoS attributes. The QoS attributes are used

for composition only when the services involved have comparable functionalities.

The goal of service composition is to search for a combination of services that

leads to optimal QoS levels. The composition process is akin to the integration

process of workflow management systems [30]. A Workflow management system

consists of a workflow model and a set of tasks and transitions [55]. The

workflow management system processes data by passing it through a set of tasks

and transitions until its objective is achieved. In the area of service composition, a

similar workflow model is used to aggregate QoS values of web services

participating in the composition process. This is achieved by creating abstract

descriptions that compose existing services to form workflows [30]. The

workflow represents flow of data between tasks in order to achieve a set goal

which is usually the satisfaction of a consumer’s request. Some of the major types

of workflows, also known as workflow patterns, include;

 Sequence: used to represent a set of tasks that are connected in sequential

manner e.g. in Figure 2.1 (a)

 Parallel: used to define a set of tasks that connected in parallel manner and

are executed simultaneously such as in Figure 2.1 (b).

Background and Literature Review

21

 Loop: represents a set of tasks connected in a repetitive closed loop e.g. in

Figure 2.1 (c).

g1 g2 g3

g2

g3

g1

g4

g2 g3

(a) Sequence workflow (b) Parallel workflow (c) Loop workflow

Figure 2.1: Examples of workflows consisting of tasks g1 to g4

QoS-based web service composition process involves a number of steps [57, 58]

as shown in Figure 2.2. After the consumer’s request is issued, the request is

broken down into a set of interconnected tasks organized in the form of a

workflow. Then candidate services meant for each task are discovered and

classified into service classes, where every service class representing a group of

candidate services with similar capabilities. They are mapped as one service class

per workflow task. Once the classification is achieved, a candidate service is

selected from each service class and then bound to a composite service. In

situations where the number of web services participating in service composition

is large, a lot of composite services can be generated. Thus, the last stage of a

service composition process involves the selection of composite service among a

large set of possible compositions that has optimal QoS.

QoS-aware service composition problem is describe as an NP-hard optimization

problem [49]. Its NP-hardness stems from the large number of candidate services

Background and Literature Review

22

participating in service composition process which can lead to an exponential

increase in the number of possible composite services.

Also, another factor that contributes to the NP-hardness is the frequently

occurring likelihood performing web service composition process under multiple

QoS constraints and performance requirements such as end-to-end cost, response

time, availability etc.

1 2

Service Discovery and
Classification into

service classes.

Composite Service
Satisfying QoS

constraints

Sub Task
Workflow

Service
Selection and
Composition
based on QoS

Task1

Payment
validation

Task2

Hotel
Booking

Task3

Flight
Booking

Travel Booking
Request

3

4

5

Figure 2.2: QoS-aware service composition process.

Therefore the search for a solution or composite service with optimal QoS that

meets consumer’s QoS constraints can be very challenging and time consuming.

2.2 Literature Review

Several techniques have been developed to tackle QoS-based web service

composition problem. Some works have dealt with the problem under static QoS

environment while others have tried to solve the problem in dynamic QoS

Background and Literature Review

23

environment. Hence, recent works are categorized based on whether QoS

environment is either static or dynamic.

2.2.1 Static Service Composition

These service composition methods perform QoS optimization of composite

services using prior knowledge of web services QoS values. Also, the QoS values

do not change during the composition process. Under the static service

composition, recent studies can be further classified into four sub-categories: (1)

Intra-task composition approaches; (2) Inter-task composition approaches; (3)

Approximation approaches; (4) Pareto-optimization approaches.

2.2.1.1 Intra-Task Composition Approaches

One of the reasons why there is difficulty in dealing with a QoS service

composition problem is due to the presence of constraints at both the task level

(local constraints) and workflow level (global constraints). Ideally, an optimal

solution would have to satisfy both of these constraints. However, it is almost

impossible for such solutions to be found in short time. Hence some techniques

have tried to reduce this difficulty by considering only local QoS constraint.

These techniques select a single web service for each task within the workflow

that meets the consumer’s local constraint. An example of a local constraint could

be a requirement to select one candidate service within each task which has

minimum response time. Once a service has been selected for each task, they are

then aggregated into a composite service. The process is known as intra-task

service composition (IrTSC). In some other works it is known as local

optimization. Using this method, an optimal solution can be reached in very short

time. A popular IrTSC method is Dynamic Programming [59, 61]. Dynamic

programming breaks down a workflow into different divisible and indivisible

parts. It solves for optimal solution for each divisible part and uses recursive

Background and Literature Review

24

branch-and-bound algorithm in solving the indivisible parts. Another IrTSC

technique uses a learning-based depth-first search (LDFS) [62, 63] algorithm that

combines bound depth first searches with learning iteratively. Other IrTSC

techniques are based on Simple Additive Weighing (SAW) [64, 65]. This method

scores each candidate service per task by multiplying their QoS scores with a

consumer-defined weight value. The weight value defines local constraint’s level

of importance. The method then selects the candidate service with the best score

for each task.

An advantage of IrTSC techniques is that their computation times scale well with

increase in number of services per task. However, they suffer from high

inaccuracy as a result of the pre-selection process involved.

2.2.1.2 Inter-Task Composition Approaches

Rather than considering local constraints, inter-task service composition methods

(IeTSC) consider only global QoS constraints. Global constraints are defined for

the composite service (workflow) as a whole e.g. a constraint such as minimum

end-to-end response time for a composition. IeTSC refine the NP-hard problem

by transforming it into a linear objective function which can be optimized, where

the objective function is a measure of the overall QoS level of a composite service

or workflow. It is determined by combining QoS attributes of all the web services

contained within the composite service into a single aggregate value. A popular

IeTSC technique is Linear Integer Programming (LIP) [67, 70] which finds a

composite service that meets global QoS constraint (i.e. a globally best composite

service) without necessarily considering all possible composition paths. It also

supports both functional and QoS attributes into the composition process. LIP is

usually applied to small service environments where number of candidate services

per task is small. Although because they consider global constraints rather than

Background and Literature Review

25

local constraints, LIP techniques take a long time to search for the best global

composition.

2.2.1.3 Approximation Approaches

These approaches search for near-optimal solutions since they are easier and

faster to find than optimal ones. They are also heuristic in nature. Heuristics

achieve optimization of service composition problems by performing various

iterations to search for high quality solutions. Heuristics are capable of arriving at

solutions while making little or no assumptions about the problem. They are also

able rigorously cover vast search spaces in relatively short time. Several

approximation approaches have been introduced. One popular heuristic approach

is Particle Swarm Optimization (PSO) technique which utilizes the concept of

particle movement to search for optimal compositions. PSO was first applied to

solve QoS optimization of composite services in [68]. In their study, a discrete

PSO called DPSO was introduced to find near-optimal solutions. Improved

versions of DPSO have also been developed to deal with multiple QoS

requirements [66] and local optima trapping [69] during service orchestration. In

[69], an adaptive mutation operator is integrated to prevent particles from being

trapped in the local maxima by letting them hop out during early stages of

computation.

Another popular approximation technique is based on Genetic Algorithms (GA).

GA is an evolutionary optimization technique based on Charles Darwin's theory

of evolution. GAs are capable of evolving members of a generation according to a

set of rules up to a point where fitness value is optimized. Canfora et al. [71]

studied how GA can be used in searching for QoS-optimal compositions under

consumer constraints. In their approach they encode web services as genes inside

a genome. The author’s technique finds a combination of genes that achieve the

Background and Literature Review

26

best fitness values while meeting QoS constraints. In mathematical terms, the

research problem solved by the Author’s GA is expressed as follows;

Given a set of consumer-defined constraints for a given genome g;

niwheregci ,....,1,0)((2.1)

The constraint satisfaction distance ()C g is expressed as;

n

i
ii ygcgC

1

*)()((2.2)

Where
0)(,1

0)(,0

gcy

gcy

ii

ii

Therefore fitness value for genome g after normalization in the interval [0, 1] can

be expressed as:

1 2
5

3 4

. () . ()
() . ()

. () . ()

w Cost g w ResponseTime g
F g w C g

w Availability g w Reliability g

 (2.3)

The goal of GA in web service composition is to find g such that)(gF is

optimized.

Where

 iy is the parameter that indicates whether a candidate service is bound to

its service class.

 n is the number of web services that are bound in the genome.

Background and Literature Review

27

 1w , 2w , 3w and 4w are service weights signifying importance of a particular

QoS attribute, while w5 represents weight of penalty factor.

 Cost(g), Response Time(g), Availability(g) and Reliability(g) represent

cost, response time, availability and reliability QoS values for the genome

respectively.

Their approach finds good quality solutions most of the time, however it often

traps into local optima. Other works such as [72, 73] investigate how to GA can

multi-objectively optimize QoS of compositions without trapping into local

optimum. The general idea is that when multiple QoS requirements are specified,

QoS optimization of composite services can be achieved using improved genetic

operators such as multi-point crossover and probability-based mutation operators.

When these operators are applied to the individuals in a population they reduce

likelihood of trapping individuals into local optimum.

When QoS constraints are specified, GA handles the constraints using one of

several techniques such as penalty-based methods [29], repair-based methods

[139] and hybrid methods [138]. Penalty-based methods penalize the fitness of a

solution depending on the extent at which it violates constraints. Repair-based

methods adopt local search to wipe out any constraint violation within the

solution, while hybrid methods combine evolutionary search with repair-based

methods to enhance their effectiveness. Among these techniques, penalty based

methods are the most commonly used due to their ease of implementation.

Going by the literature indicators, approximation approaches have been known to

be more efficient than other approaches because they can rapidly eliminate large

numbers of possible execution plans in a relatively short time. Also, they are

Background and Literature Review

28

better equipped in handling large scale service composition than IeTSC and

IrTSC methods. However, they lack the ability to find truly optimal solutions.

2.2.1.4 Pareto-Optimization Approaches

These techniques model the service composition problem as a multi-dimensional,

multi-object, multi-choice knapsack problem (MMMKP) [74]. MMMKP problem

defines a set of classes, each having a set of items, where each item is defined by

profit and weight dimensions. When applied to a service composition process,

classes represent service classes, items are mapped to candidate services, profit

dimensions are mapped to QoS attributes, and weight dimensions represent QoS

constraints. Pareto-optimization approaches (POA) work by searching for a

Pareto front [75] of composite services that have one or more optimal profit

dimensions and do not compromise the weight dimensions. POA technique has

become the most preferred multi-objective QoS optimization method used by

research and industry experts because sometimes searching for a single truly

optimal solution in all profit and weight dimensions can be a slow and daunting

task. This stems from the fact that it is very difficult to use a one size fits all

approach towards finding the best solution with respect to all profit and weight

dimensions. POA solves this problem by obtaining a Pareto front which contains

a set of individuals that have optimal fitness in some of the profit dimensions and

satisfy all the weight dimensions. In other words, the Pareto front of POA consists

of trade-off solutions that are optimal with respect to one or more QoS attributes,

but not all. Also, the solutions satisfy all the consumer defined constraints.

One recently proposed POA method is a strength Pareto evolutionary algorithm

(SPEA2) [76] which uses mutation operation together with non-dominated sort

ability. The mutation operation combines individuals in the population to form

new children while the non-dominated sort process ranks and categorizes newly

Background and Literature Review

29

formed children into different fronts depending on the optimality of their profit

and weigh dimensions. A similar work [78] presents an NSGA-II genetic

algorithm which enhances SPEA2 with an additional crossover operator to

improve diversity of new children in the population. Another work [80] proposed

a more efficient kind of POA that relies on Recursive Assembly of Discretized

Optima (RADO) algorithm. RADO transforms composition workflows into

binary trees. It also uses join and filter operations to bind pairs of compositions

together within a population, then filter out bindings that are not dominating other

bindings. [79] Employs a different approach based on differential evolution

algorithm (DE) together with binary quality indicators to analyze pareto-optimal

solution sets.

It has been deduced from literature that POA tend to provide better performance

and good quality solutions when compared with other approaches. Also POA

gives the consumer access to more alternative non-dominant solutions so that they

can choose their most preferred composition from the options available.

This thesis proposes four meta-heuristic techniques (Chapter 4) that can search

for QoS-optimal solutions in a large scale cloud environment where QoS values

are static. Different from the techniques presented above which do not consider

network performance in their QoS models, the proposed algorithms consider

network performance in their QoS models. This gives them the ability to optimize

both QoS and network performance of a composite service simultaneously.

2.2.2 Dynamic Service Composition

In the previous section, we covered techniques that focus on finding optimal

solutions to the NP-Hard problem in static environments i.e. environments where

QoS values of web services are already known prior to generating the task

workflow. Some current studies have extended the service composition problem

Background and Literature Review

30

to finding optimal solution in situations where web service QoS values are not

known prior to generating the workflow. Such examples reflect a real life

scenario where actual web service QoS values vary from values advertised by

service providers. In order to solve such a problem, approaches would have to be

able to adapt to changes in QoS values or the service environment as a whole.

Dynamic service composition is a very active area of research that has attracted

much attention in recent years. It is divided into two types [99]: Internal

composition adaptation and External composition adaptation methods. Internal

composition adaptation approaches react to environmental changes by rebuilding

a composition either from ground up or from the point of fault within the

composite service. External composition adaptation approaches, on the other

hand, use adjustable adapters that bridge the gap between the service workflow

and the dynamically changing service environment. There are several internally

adaptable service composition approaches, most of which have focused on small

service environments. Amongst these approaches are AI Planning-based

techniques (AIP). One kind of AIP technique is proposed in [100], it relies on

Case Based Reasoning (CBR) to build service compositions on-the-fly. In the

technique, CBR is used to obtain solutions from a set of composition cases

gathered from past experiences. If such solutions do not exist, then AIP builds

composition solutions from ground up. Another study [99] present a self-adaptive

service composition method based on AIP graphs called Graph plan repair. Their

approach aims to reconfigure compositions during runtime. This is achieved with

the aid of a greedy search algorithm used to explore the planning graph for

possible service combinations that can achieve the consumer's goal. Greedy

search algorithm scouts through the planning graph to find and repair services that

don't meet user goal due to their unexpected change. If such services do exist,

then new services are added into the graph to satisfy user goals. Afterwards, the

Background and Literature Review

31

whole process starts all over until all services satisfy user goals. The method

presented in [101] uses AIP to dynamically map user requirements to service

workflows. In this case, their approach is goal-oriented; hence any changes to

user requirements at run time will ultimately be applied to the workflow structure.

Several other internal adaptation solutions focus on using Reinforced learning

(RL) techniques to solve adaptive service composition problem. [102] Proposes

an adaptive RL method based on Markov Decision Process (MDP) that finds

optimal solution at runtime without having any previous web service QoS

knowledge. MDP builds a model for obtaining compositions consisting of

multiple aggregated workflows. RL method takes over in finding optimal solution

(or pareto-optimal solutions) by acquiring MDP policy with the best QoS. Any

change in service environment will prompt a change of MDP policy for the sake

of continuing the learning process. In [103] an extended MDP method called

Semi Markov Process (SMP) has been given to forecast QoS and network

efficiency of web service environment during to composition. The output from

SMP will then determine which web services need to be replaced as a result of

poor QoS. In [85] the authors propose a method that re-plans composition once it

predicts a difference between estimated QoS and runtime QoS values. In their

approach, the authors utilize a proxy-based model to achieve runtime binding of

web services. [104] Proposes an improved RL approach that utilizes Reuse

Strategy to enhance performance and stability of RL. Another author [105]

introduces a randomized RL technique which considers multiple QoS and non-

QoS criteria like cost, reputation, deadline and user preferences to obtain optimal

solutions while adjusting to runtime changes in availability of service

environment. The author's approach extends RL-based service composition with

multi-agent exploration and exploitation capabilities, making the system more

reactive to environmental changes. Some studies [106] have modelled the

Background and Literature Review

32

dynamic service composition problem as a shortest path problem. Here, a shortest

path algorithm (CSP) is used to ascertain a faulty web service and come up with

an alternative path to a backup web service.

Other studies like [107] have focused on using heuristic approach to tackling

dynamic service composition. Their approach makes use of a K-means algorithm

to finding pareto-optimal solutions. It works by firstly normalizing QoS

constraints using the following criteria;

max
' max min

max min
0 (2.4)

" "

q q
q if q q

q q

For lower is better QoS attributes

 ,

min
' max min

max min
0 (2.5)

" "

q q
q if q q

q q

For upper is better QoS attributes

Where,

 'q is the normalized QoS value of an attribute.

 maxq and
minq is the maximum and minimum QoS scores for a given

attribute.

 q is the initial QoS value of an attribute.

A local classification is then made to group candidate services into clusters with

respect to their QoS levels. Upon which a heuristic algorithm performs global

optimal selection. Adaptation is performed by using a utility threshold

Background and Literature Review

33

 responsible that tunes selection of clusters based on environmental constraints

such as time or service density.

The benefit of internal adaptation techniques is that they are more efficient since

only a small part of a composite service is adjusted to reflect any fluctuation in

QoS of the environment. However, this slight adjustment may lead to the

generation of a sub-optimal workflow.

Some external composition adaptation techniques have been proposed in recent

studies. Studies like [108] propose a technique that uses composition policies and

protocols to continually regenerate and update optimal service workflows

according to changes in environment. Social network analysis techniques have

been recently introduced to tackle adaptation in service composition. They are

methods used to map and measure the relationship between web services in a

social network. An example is proposed in [109] which models service

composition problem as a service ranking problem. The authors applied link

analysis and page ranking to rank services based on their success and failure

popularity. In order to obtain such information, snapshots of the whole service

registry are taken at regular intervals so that popularity changes can be reflected

upon service workflows accessible to the user at runtime. A modified page rank

approach namely service rank is presented in [110]. In this approach, web

services were ranked based on connectivity and invocation history. The technique

combines ranking score with QoS score for composition ranking. External

adaptation approaches have slower execution times that internal adaptation

techniques. However since they adapt all aspects of the composite service, the

QoS optimality of the resulting composition retains is maintained.

Like [99-107], this thesis proposes a technique (Chapter 5) that can perform

dynamic service composition in the cloud. In comparison to these works, the

Background and Literature Review

34

proposed approach employs an internal adaptation technique based on qualitative

RTT values to efficiently alter composition workflows such that the resulting

composition maintains its QoS optimality whenever there is a change in QoS of

web service.

2.2.3 Web Service Composition in the Cloud

Cloud computing provides a platform for enterprises (service providers) to deploy

web services on cloud data centres so that internet users can access their

functionalities. This new mechanism of delivering web services to consumers has

several benefits to service providers such as reducing deployment costs, and

improving scalability and efficiency of service delivery.

Several web services exist on the cloud. For example companies like Amazon and

Microsoft provide public IaaS services via Amazon Web Services (AWS) and

Windows Azure platforms respectively. These services are usually deployed on

cloud data centres via virtual machines (VM) where consumers can access them

as Software-as-a-service (SaaS) from literally any part of the world. VMs provide

the computing resources such as CPU, storage and network resources required by

cloud-based web service (SaaS) to function properly. Usually, service providers

have the option of borrowing VMs from one or more cloud data centres that will

be used to host their web services. However, some service providers such as EC2

[33] are able to provision their own data centres and VMs in separate

geographical areas around the world to give consumers access to web services.

Hence, each web service-hosted VM will experience different network

performance depending on the geographical area it is located in. The network

performance can obviously affect application level performance of web services

hosted on the VMs. Also, there currently exists a large number of cloud-based

data centres and VMs located across the globe. This can exponentially increase

Background and Literature Review

35

the number of geographically dispersed web services that will participate in

service composition process. Thus QoS of the network, otherwise known as

network performance, cannot be ignored. In a situation where the number of

dispersed web services participating in a composition process are small, QoS of

the network may not significantly affect the performance of a composite service

at the application level. This is not the case when composition is taking place

between large numbers of dispersed services. QoS of the network is measured as

the network latency or round-trip time (RTT) between one service’s VM node and

others. Ideally network latency is accounted for in the service provider’s service

level agreement (SLA) [51, 81] as part of response time QoS attribute. However,

this representation can greatly differ from the true network latency that services

are physically experiencing. As such, this may lead to sub optimal performance of

a composite service from the consumer’s perspective even if it has been

advertised in the SLA as having optimal response time. Therefore network

latency is important in determining the realistic network performance of a

composite service in the cloud. In order to further illustrate this point, [77] claims

that a network latency of 20ms can lead to a 15 percent decrease in Google cloud

service response times. Similarly 500ms latency can negatively impact the

performance of Amazon web services.

Another important issue in the cloud is the need for composite services to meet

the QoS guarantees specified in the SLA between services providers and

consumers. This will allow service providers to maximize their earnings while

ensuring that consumer experiences of their services is optimized. Therefore QoS-

based web service composition is critical to the delivery of quality composite

services on the Cloud to customers.

Background and Literature Review

36

Few studies have investigated impact QoS of the network on performance of

composite services in the cloud. One such study is proposed in [85] where the

authors develop a genetic algorithm that automatically optimizes compositions in

the cloud. In their work they make use of a locality-sensitive hashing scheme

coupled with a generic network coordinate system to find services that are close

to certain network locations on the cloud. A similar approach in [82] presents a

genetic algorithm that tackles service composition in a cloud-based geo-

distributed network. In [84] an Ant colony optimization approach to service

composition in cloud is proposed. Their approach makes use of greedy search

coupled with ant colony algorithm to find minimum number of clouds that will

partake in successful service composition. Another study [64] employs a

technique for cloud-based service composition using finite state machines (FSM)

coupled with tree pruning and SAW to find optimal compositions. The authors

use FSM to define the execution order of a composition workflow which is

encoded in form of a composition tree. Then SAW is used to search for optimal

composition trees. A comparable study in [83] also encode workflow as a tree of

multiple cloud services, although an Hierarchical Task Network (HTN) algorithm

is instead adopted to find the cloud combination that yields minimal

communication cost and service QoS. The work in [86] then extended QoS-based

web service composition in the cloud by developing composition techniques that

first predict RTT between web service VM nodes, and then minimize RTT of

composition paths in addition to optimizing web service QoS. When compared to

other works, the ability to predict RTT without making use of additional

infrastructure or computational resources is novel and interesting. Furthermore,

the development of composition algorithms that minimize RTT between web

services without compromising QoS is not only new but of significant interest in

both research and industry because such algorithms can aid service providers to

Background and Literature Review

37

facilitate delivery of quality and reliable web services to their consumers. Hence,

this thesis presents a network coordinate system for estimating end-to-end

network performance for a composite service in the cloud.

2.2.4 Network Coordinate Systems

Network coordinate systems (NCS) are used to estimate network latency between

nodes in a network [85]. Their significance stems from the impracticability and

high computation cost experienced from performing direct performance

measurements or packet probing [93] especially on large networks. The purpose

of NCS is to reduce the overhead observed from sending round trip time (RTT)

packets between nodes across a network by predicting RTT measurements for a

fraction of nodes. NCS has been applied to different traditional overlay networks

to support a range of internet applications such as IPTV, file sharing and VoIP.

The performance of these applications are heavily dependent on network

performance which is usually represented as network latency or network

proximity [87]. NCS has the ability to find neighbouring nodes close to a given

node which have minimal RTT within a network. It functions by allowing each

node on a network to compute its own network coordinate in d-dimensional

geometric space such that the network distance between each node coordinate is a

representation of their RTT apart. Once the coordinates of any two nodes are

known, NCS uses a distance function to compute the network distance and

coordinates of other nodes.

NCS can been used to estimate other network performance metrics such as

network bandwidth [89] and hop count [88]. However, RTT information is quite

easier to estimate than the other metrics [90]. NCS normally performs its

estimation process in the background so that internet applications can get on-

demand access to RTT estimates.

Background and Literature Review

38

Several NCS models have been developed. They include Euclidean distance

models (EDM) [91, 92, 95] and matrix factorization approaches (NMF) [36, 89,

94]. EDM embeds network distances between nodes as metric spaces where

known network distances or RTTs are translated into positional coordinates that

further predict unknown network distances on the Internet. EDM employs a

centralized approach towards RTT estimation. It employs central nodes called

landmarks which use Euclidean metric spaces to map network distances of other

Internet nodes into positional coordinates where each coordinate represents the

virtual location of a node.

n1

n2

n3

(x1,y1)
(x3,y3)Euclidean Distance Model

(EDM)

Web Service Nodes

Eu
cli

de
an

M

etr
ic

sp
ac

e
RT

T
sp

ac
e

n1

n2 (landmark)

n3

Measured RTT

Predicted RTT
Figure 2.3: Mapping between network distances (RTTs) and Euclidean metric

spaces between web service nodes n1 and n3.
Once mapped, the positional coordinates are then stored in the landmark node

which subsequently uses them to estimate unknown network distances. EDM has

been known to be compatible with only network latency metric [89]. A major

drawback of EDMs is their susceptibility to triangle inequality [96] which leads to

inaccurate estimates. For instance in Figure 2.4, in order to avoid triangle

inequality;

1 3 1 2 2 3DC DC DC DC DC DC (2.6)

Background and Literature Review

39

Instead, 1 3 1 2 2 3DC DC DC DC DC DC since summing up 30 and 66

gives 82 instead of 96. This shows that the coordinates of the data centres are

suffer from triangle inequality.

82

Euclidean
Metric space

DC1(x1,y1) DC3 (x3,y3)

DC2 (x2,y2)

Figure 2.4: Triangle inequality problem

Hence this triangle inequality leads to errors in RTT estimates. Also, due to their

use of central landmarks, performance of EDM is are easily affected by single

point of failures and overload [119]. These reasons make EDM not very

compatible with modern Internet environment which is heavily distributed in

nature and mostly operates using decentralized processes.

NMF, on the other hand, estimates unmeasured network distances by using matrix

completion. NMF collects incomplete network distance measurements within a

distance matrix (D) and represents each node coordinate as d-dimensional vectors

in a row and column matrix, where the row matrix (Xi) represents outgoing

vectors of all nodes while the column vector (Yj) defines incoming vectors. Both

matrices are then transformed into a new distance matrix using concepts such as

non-negative matrix factorization [121] and gradient descent [97] to predict

unmeasured network distances. The new distance matrix (Dnew) consists of both

previously measured and newly predicted network distances for all the web

service nodes. Basically NMF finds estimates of row matrix Xi and transposed

Background and Literature Review

40

column matrix Yj that minimizes the difference () between measured network

distances in D and computed network distances in Dnew. Where the latency

prediction error is defined as . Also Dnew is expressed as;

T
newD X Y (2.7)

Figure 2.5 shows an example of NMF-based distance estimation.

n3

n2

n1

n1

n2

n3

n1 n2 n3

1 xn1 ... xn3Xi =

yn1…

yn3
Yj

T=*2

n1 n3…
n1

n3

…

3

Incomplete distance
Matrix (D) before

estimation

Row Matrix
10

6

n1

n2

n3

n1 n2 n3

10 4

8 19

6 1

Complete distance
Matrix (Dnew) after

estimation

Column Matrix

Figure 2.5: Network distance estimation between nodes n1, n2 and n3 using NMF.

NMF does not use metric spaces and so is resistant to triangle inequality and thus

produces more accurate RTT estimates than EDM. Also, while EDM is built on a

centralized architecture consisting of landmarks, NMF employs a decentralized

estimation process which is more compatible with modern Internet environments

than EDM. Our work in [97] introduces a NMF model that further enhances

decentralization of the estimation process. To the best of our knowledge, NMF

models have not yet been applied in the context of web services nodes in the

cloud. Although [126] applied an EDM model to predict end-to-end network

Background and Literature Review

41

performance of cloud-based servers with the aim of identifying low latency

servers for end users. This thesis proposes a learning-automata based NMF

(LANMF) model for predicting end-to-end RTT of composite services in the

cloud. The estimated RTTs are used by the proposed web service composition

algorithms to aid their search for low latency and QoS-optimal composite

services.

2.3 Summary

This chapter introduces background and literature review on QoS-based web

service composition in the cloud. Firstly, the chapter presents the concepts of web

services, QoS and service composition process. Then it analyses the current

techniques for QoS-based web service composition focusing on both static and

dynamic composition approaches. An introduction to service composition in the

cloud is then presented with focus on the impact QoS of the network on the

performance of composite services in the cloud. Current works on for service

composition in the cloud are then review followed by an introduction to basic

concepts of network coordinate systems and its respective models.

A New Method for Predicting End-to-End Network Performance of Composite Services

42

CHAPTER 3
A New Method for Predicting End-to-End Network Performance

of Composite Services

Web services provide a platform where organizations can dynamically share

business processes with each other. This is achieved by the composition of

different web services to meet increasingly complex consumer needs that cannot

be otherwise satisfied by a single web service. Usually separate business

processes are exposed as web services interconnected within a workflow. In the

past few years has witnessed an unprecedented growth in volume of data

transmitted between web services that are part of a composite service. This rise

can be attributed to recent trend of exposing cloud data centres as web services.

That being said, traditional client-server architectures are inefficient in supporting

modern web service applications because they are susceptible to network

congestion due to packet collisions especially when large numbers of web

services are involved. This chapter investigates the problem of predicting end-to-

end network performance of web service network paths in the cloud. It also

proposes an enhanced learning automata-based matrix factorization algorithm to

tackle the problem.

3.1 Introduction

Several decentralized architectures such as P2P, CDN and cloud networks have

been developed to provide better QoS delivery to consumers of modern web

services. In these architectures, end-to-end network performance, otherwise

known as QoS of the network, plays a crucial factor in determining the overall

performance of service-oriented applications built upon them [89]. End-to-end

network performance is described as quality of the network path between any two

web service nodes. In cloud-based architectures, web service nodes are often seen

A New Method for Predicting End-to-End Network Performance of Composite Services

43

as VM nodes which provision the resources necessary for the normal operation of

the web service. The quality of network paths can be represented mainly as either

network latency or bandwidth. Network latency is associated with round-trip

times between web service nodes, while bandwidth metric represents the

transmission rate of a given network path.

Through end-to-end network performance, modern web service applications are

able to determine which web service nodes are responsive or unresponsive. For

instance, this information is used in realizing network paths that can perform low

latency data transfer between data-intensive web services e.g. Big-data-as-a-

service (BDaaS), data-as-a-service (DaaS) etc. Also, end-to-end network

performance is also used in determining the proximity between web service nodes

on the cloud. This is especially useful in service-oriented multimedia applications

that require replication of media content on cloud-based content delivery

networks closest to service consumers.

Driven by the performance expectations of service-oriented applications and

service consumers, an extensive amount of research has been dedicated to

determine end-to-end network performance between web service nodes. Some

studies in this research field have considered end-to-end network performance

using metrics like network latency [97] or a combination of network latency and

bandwidth [89]. Although other related metrics such as packet loss [116], jitter

[117] and hop count [88] have been used to represent end-to-end network

performance, their occurrences are relatively rare on the cloud. In this study,

network latency is solely used to represent end-to-end network performance. This

is because it is easier to obtain network latency data from the cloud than other

metrics.

A New Method for Predicting End-to-End Network Performance of Composite Services

44

Network latency or round-trip time (RTT) is the time it takes a data packet to

move from a source node to a destination node and then back to the source node.

The RTT from source node to destination node can be different from the RTT

from the destination node to the source node because two or more network paths

may exist between both nodes. That being said, RTT is often treated as symmetric

[118, 122]. Traditionally, network latencies are observed by sending packets

across the network and then measuring RTT to their destinations. This can be a

very tedious and time consuming task especially in a large network where there

exists O (n2) network paths as seen in Figure 3.1. It is also costly to implement

because a large amount of computing resources are necessary to determine RTT

measurements.

a1

Task 1

Task 2

Task 3

Task T

a2

ai

b1

b2

bj

c1

c2

ck

f1

f2

fl

O(n2) Paths

Figure 3.1: Network of n web service nodes and O (n2) paths for a sequence of T

tasks in a workflow and services a to f.

Several research studies have been conducted to find more efficient methods for

estimating end-to-end network latency between a set of Internet nodes. This

problem has been described as a prediction problem. Generally, the problem is

described as follows;

A New Method for Predicting End-to-End Network Performance of Composite Services

45

Given a network of n Internet nodes which are interconnected via O(n2) paths

consisting of IP router links, how can we measure a subset of paths such that the

network latency of all other un-measured paths are predicted?

Recently, techniques based on network coordinate systems (NCS) have been used

by research community in tackling the prediction problem. As previously

discussed in Chapter 2, two common NCS are employed; Euclidian distance

model (EDM) [91, 92] and matrix factorization model (NMF) [89, 94]. EDM

conducts estimation of RTT with the aid of landmarks which collect RTT

measurements from all the Internet nodes. In contrast, NMF models use concepts

such as non-negative matrix factorization to predict RTTs between Internet nodes.

Generally, these methods predict RTT between a small subset of Internet nodes

while performing direct measurements on the other nodes. Note that [126] is the

first work that applied NCS for predicting end-to-end network performance of

cloud-based servers with the aim of identifying servers with low RTT for end

user.

Literature indicators suggest that both EDM and NMF consume less computing

resources than the traditional methods and therefore are more efficient. However,

EDM suffers from centralized estimation process and poor accuracy of RTT

estimates due to triangle inequality violations [96]. NMF, on the other hand,

employs decentralized estimation process to produce more accurate RTT

estimates than EDM. Between the two, NMF seems more suitable for modern

cloud environments which are naturally distributed and usually require

decentralized processes.

A major problem with NMF is that it uses the same general update strategy for all

node coordinates on the network until the latency prediction error is minimized.

This implies that, while the general update strategy might lead to accurate RTT

A New Method for Predicting End-to-End Network Performance of Composite Services

46

estimates for a fraction of web service nodes, it may also lead to inaccurate

estimates for other nodes. Hence, more accurate and decentralized estimation

techniques are necessary to effectively determine end-to-end network latency of

modern composite services.

To this end, an enhanced matrix factorization algorithm is proposed to solve the

problem. Unlike current NMF models, we present a learning automata-based

NMF technique, abbreviated as LANMF (Learning Automata-based Non-

negative Matrix Factorization). LANMF uses different update strategies for each

of the web service node coordinates throughout the estimation process. This

behavior is achieved by adding learning automata structures to each web service

node to allow them employ individual update strategies that will lead to minimum

latency prediction error. From this point onwards, latency prediction error will

simply be referred to as prediction error.

Generally, the problem of minimizing the prediction error is solved using

techniques such as non-negative matrix factorization [120] and singular value

decomposition [121], although the former has been known to be more efficient in

most cases. Thus LANMF models the prediction problem for composite services

as a matrix completion problem with the aim of using non-negative matrix

factorization to solve the problem. The problem is formulated in the next section.

3.2 Problem Formulation

Given n number of web service nodes participating in a web service composition

in the cloud. For this study, n is expected to be a very large value since we are

focusing on a large network of web service nodes.

Also, given an n n partially completed distance matrix D consisting of both

known and unknown network distances (ND), non-negative matrix factorization

A New Method for Predicting End-to-End Network Performance of Composite Services

47

aims to find estimates of row matrix U and transposed column matrix V which

minimize the difference () between values in D and values in new matrix Dnew;

 min (3.1)

Where Dnew represents fully completed version of D.

 represents the latency prediction error;

2.*() (3.2)newW D D

W defines a weight matrix having elements (
i j

w) set to either 0 (for unmeasured

ND) or 1(for measured ND). “.*” refers to the element-wise multiplication

operator.

Also Dnew is expressed as;

T
newD U V (3.3)

Dnew contains both measured ND (ijd) and predicted ND (ij).

The predicted ND from node i to j is defined as;

. (3.4)ij i ju v

Where iu is departing vector from i-th node to j-th node while jv is the arriving

vector to the i-th node from the j-th node,

u U , v V

A New Method for Predicting End-to-End Network Performance of Composite Services

48

“.” represents the scalar product. If prediction error is minimized, then ij will

closely approximate ijd . Also, ij is not always equal to ji .

U and V matrices represent u and v positional coordinates of all the web service

nodes respectively. U and V matrices are of sizes g n and

n g respectively. g denotes the dimension of the positional coordinates.

Typically when dealing with non-negative matrix factorization, values of U and V

are expected to be non-negative. This is necessary because non-negative matrix

factorization is only solved using gradient descent [97] which is a stepwise

optimization process that can only operate on non-negative values.

3.3 A Learning Automata-based Matrix Factorization Method for
Predicting End-to-End Network Latency of Composite Services

3.3.1 Basic concept of NMF

Currently, NMF models based on non-negative matrix factorization solve the

formulated problem by allowing each web service node to measure ND with a

subset of neighbours. These measurements are then used to predict ND values for

other nodes via gradient descent. In non-negative matrix factorization, a node i

stochastically selects a subset of h neighbours with a goal of finding positional

coordinates
1 2
, ,...,

hi i i iU u u u ,
1 2
, ,...,

hi i i iV v v v (departing and

arriving vectors) that lead to minimum latency prediction error. Where
hi

u and

hi
v denote departing and arriving vectors to and from h-th neighbour

respectively. The goal is achieved by an iterative process which starts by

randomly initializing the values iU and iV . Then forward and reverse ND vectors

between i and its neighbours are extracted from distance matrix D. The forward

A New Method for Predicting End-to-End Network Performance of Composite Services

49

ND vector represents the RTT from node i to h neighbours and is denoted

as ,1 ,2 ,, ,...,i
f i i i hd d d d , while reverse ND vector defines the RTT from h

neighbours to node i and is denoted as 1, 2, ,, ,...,i
r i i h id d d d . In the next step,

the coordinates of i are updated using expressions for solving regularized least

square problems [119] thus;

1
() = ()i T

i new f i i iU d V V V I (3.5)

1
() = ()i T

i new r i i iV d U U U I (3.6)

Where represents regularization coefficient which controls the speed of

convergence towards minimum prediction error. It also controls over fitting.

Once all Internet nodes have computed new coordinates with respect to all

neighbours, then both newD and are computed using (3.3) and (3.2)

respectively.

The Process is repeated again until either is minimized or the maximum

number of iterations is reached as the case may be.

From (3.5) and (3.6), it is observed that same update strategy is used between

node i and h neighbours to compute new coordinates during each iteration. Also,

the regularization parameter is always set at a fixed value. The effect is that every

node update is performed with the same speed towards convergence. While some

web service nodes may be successful in minimizing prediction error of their

coordinates, other nodes may have erroneous coordinates.

A New Method for Predicting End-to-End Network Performance of Composite Services

50

3.3.2 LANMF Algorithm

In order to improve the accuracy of ND predictions between web service nodes,

we propose an enhanced NMF model called LANMF. LANMF is derived from

[97] by adding learning automata structures in order to further improve prediction

accuracy of the estimation process. Instead of using a fixed value for

regularization parameter throughout the estimation process, LANMF allows each

node to use its own regularization value which will most likely lead it towards

error minimization. Based on previous experiences, each web service node will

choose its preferred update strategy towards minimizing prediction error. This is

achieved by encoding each web service node as a learning automaton (LA).

LA [111] is an entity that uses past experience to improve its ability to achieve an

ultimate goal. LA obtains its concepts from the learning process a living organism

goes through in adapting their actions so that it can cope with its environment. LA

has been applied to fields in Medicine, Electrical engineering and Computer

science to solve a variety of problem domains such as pattern recognition [114],

parameter tuning [115], DNA sequencing [113], and power systems design [112].

However to the best of our knowledge, this is the first time that LA has been used

to tackle prediction problem.

LA starts at an initial state and then applies a set of actions to transform the state.

Each action will lead to a specific response from the environment. LA then

identifies an action that leads to the most favourable environmental response. This

action will be used to update subsequent states until environmental response

becomes unfavourable. At that time, LA switches to a different action and the

process is repeated again.

Generally, LA is characterized by several properties like states, actions, feedback

and goal. Where the state defines the current configuration of LA; actions define a

A New Method for Predicting End-to-End Network Performance of Composite Services

51

number of alternative paths that can be taken in order to reach the goal; feedback

represents the response from environment about a specific action taken; and

finally the goal defines the final objective LA is trying to achieve.

In this study, LA structures are applied to state of the art NMF model to develop

the LANMF algorithm. The procedure for LANMF is described below;

Step.1. Initialization of Population.

In LANMF, parameters for the environment are initialized. They include

maximum number of iterations (max_iter), regularization value (), dimension

(g), number of neighbours (h), number of states (no_states), current state (state),

action probabilities (actions_prob), environment response (rp_env), current state,

and (iu , iv) positional coordinates for each node.

LANMF encodes each node’s iu and iv with additional LA parameters as seen in

Figure 3.2.

…… |Ω1 |β1|Pα

U = V T= |Ω
1 |β

1 |P
α

Learning
Automata

parameters

Initialized
coordinates

1
1u 2

1u
1
gu

…… |Ω2 |β2|Pα 1
2u 2

2u
2
gu

…
…
...

…… |Ωn |βn|Pα 1
nu 2

nu g
nu

…
…

1
1v
2
1v

1
gv |Ω

2 |β
2 |P

α
…
…

1
2v
2
2v

2
gv …… |Ω

n |β
n |P

α
…
…

1
nv
2
nv

g
nv

k

k

k

k k k

Figure 3.2: Encoding of node coordinates with LA parameters where k ranges

from 1 to g

A New Method for Predicting End-to-End Network Performance of Composite Services

52

Where

 α represents a set of two alternative update strategies (1 and 2)

employed in updating position coordinates in iu and iv :

-1
1 () 1

-1
() 2

-1
2 () 1

-1
() 2

= ((+)) ,
(3.7)

 = ((+))

 = ((-)) ,
(3.8)

 = ((-))

i T
i new f i i i

i T
i new r i i i

i T
i new f i i i

i T
i new r i i i

U d V V V J I

V d U U U J I

U d V V V J I

V d U U U J I

Also

 J1 and J2 are constants

 I - Identity matrix

 β represents feedback for an a given action in α. β = {
1

 ,
2

 }

 Pα is action probability which is determined from feedback of estimation

error.

If feedback for action 1 is good (
1

 = 0 and. is improved) then

action probability
1

P is rewarded while
2

P is penalized;

A New Method for Predicting End-to-End Network Performance of Composite Services

53

1 1 1

1

2 2 2

()

()

(1) 0.5,
(3.9)

0.005*0

(1)

new

new

P P c P c

e c

P P e P

Else if feedback is bad (βα1 = 1 or is not improved) then reverse is the

case;

2 2 2

2

1 1 1

()

()

0.5,(1)

1 (3.10)0.005*
(1)

new

new

cP P c P

e c
P P e P

In other words, each web service node evaluates its LA actions and assign action

probabilities based on environmental response which in this case is whether or not

the action leads to minimum prediction error. The action with the highest

probability of reaching minimum error is selected as the next action and its action

probability is rewarded, while other action probabilities with lower likelihood of

reaching minimum error are penalized.

The process is then repeated until the maximum number of iterations is reached.

The LANMF algorithm is outlined in Algorithm 3.1.

Algorithm 3.1 LANMF Algorithm
Input: D, g, n, , h, max_iter, no_states, state, actions_prob, rp_env,
w, J1, J2
Ouput: Dnew
1: Dnew = function LANMF(Input)
2: { for(i =1: max_iter) {
3: for(j =1: n) {
4: Select h random number of neighbors and

A New Method for Predicting End-to-End Network Performance of Composite Services

54

5: initialize action, actions_prob
6: Uj rand(x)
7: Vj rand(y)
8: Check action of Uj

9: If action 1 Then
10: Update Uj(new) according to equation (3.7)
11: If action 2 Then
12: Update Uj(new) according to equation (3.8)
13: Check action of Vj
14: If action 1 Then
15: Update Vj(new) according to equation (3.7)
16: If action 2 Then
17: Update Vj(new) according to equation (3.8)
18: Endfor }
19: Dnew U * VT
20: error w (D - Dnew) 2
21: rp_env Get response from environment
22: if (error is minimised) {
23: Reward actions_prob for Uj and Vj

24: Update state of Uj and Vj

25 Else
26: Penalize actions_prob for Uj and Vj
27: EndIf}
28: return Dnew
29: EndFor}

30: }

3.4 Experimental Setup and Evaluation

In this section, we evaluate the performance of LANMF and compare it against

state of the art ND prediction techniques such as EDM and NMF.

We simulate a cloud network (as seen in Figure 3.3) of real measurements

between internet nodes using data from Harvard dataset [124]. We opted for this

dataset because implementing a physically large cloud environment of VM nodes

A New Method for Predicting End-to-End Network Performance of Composite Services

55

is very expensive. Also, the dataset contains the most up-to-date RTT

measurements when compared to older datasets such as p2psim [125] and

Meridian [136]. The Harvard dataset contains actual RTT measurements between

1895 geographically dispersed Planet-Lab nodes. Note that Planet-Lab nodes can

be used to easily host VM nodes because they share similar characteristics as a

typical cloud computing host [123]. We assume each Planet-Lab node (PL1 to

PLn) hosts a single web service node for the sake of simplicity.

PL1

PL2

PLn

PL3
WS1

WS2

WSn

WS3

Cloud network

Figure 3.3: Experimental Cloud network showing web service nodes ws1 to wsn

deployed on Planet-Lab nodes CSP1 to CSPn

The experiments are executed on an Intel Core i7 CPU with 3.8GHz speed and

8GB memory. Both LANMF and cloud network are simulated on MATLAB

2013a. In this experiment, two state of the art RTT prediction models are

compared against LANMF;

 DMF: This algorithm represents a state of the art decentralized non-

negative matrix factorization method that uses a constant regularization

parameter. It also uses gradient descent for error minimization. The

algorithm is based on work by [119].

A New Method for Predicting End-to-End Network Performance of Composite Services

56

 EDM: This is a state of the art Euclidean distance model which uses

virtual coordinate system and landmark nodes to compute virtual

coordinates of Internet nodes. The EDM implemented in this study is

based on [95].

Initial parameter settings for our test environment and algorithms are specified in

Table 3.1.

Table 3.1: Parameter settings

PARAMETER DESCRIPTION LANMF EDM DMF
g Dimension 10 10 10
n Total number of nodes 1895 1895 1895
 Regularization

parameter
50 - 50

h Number of neighbors 32 - 32
maxIter Maximum number of

iterations
50 50 50

no_states Maximum number of
states

50 - -

state Current state 1 - -
actions_prob Current action

probability
0.5 - -

rp_env Environment response 0 - -
J1 Constant +1 - -
J2 Constant -1 - -

3.5 Results and Discussion

To evaluate the efficiency of LANMF, we compare its prediction accuracy

against EDM and DMF using initial parameter settings and classic evaluation

metrics such as mean prediction error (MPE), median absolute prediction error

(MAPE) and computation time.

MPE is computed as

A New Method for Predicting End-to-End Network Performance of Composite Services

57

1

[]
(3.11)

maxiter

i
iMPE

maxiter

While MAPE is obtained using

 (3.12)iMAPE median

We also analyse the effects of changing parameter settings for number of

neighbours, dimensions, J1 and J2 on the performance and accuracy of the

algorithms.

3.5.1 Analysis of Prediction Error

We compare the convergence and standard deviation of the each algorithm’s

prediction error over 50 iterations. The standard deviation defines the spread node

prediction errors around either MPE or MAPE as the case may be.

It can be observed that from the results shown in Figure 3.4 (a) and (b) that

LANMF converges to the lowest prediction error after 10 iterations in both MPE

and MAPE cases. The next best result was demonstrated by DMF, followed by

EDM which showed the worst accuracy. The result proves that due to the LA-

based update strategy, LANMF’s algorithm estimates slightly more accurate

network distances than DMF but significantly more accurate values than EDM.

A New Method for Predicting End-to-End Network Performance of Composite Services

58

(a) Graph showing convergence of MPE

(b) Graph showing convergence of MAPE

A New Method for Predicting End-to-End Network Performance of Composite Services

59

(c) Graph comparing MPE standard deviation for test algorithms

(d) Graph comparing MAPE standard deviation for test algorithms

Figure 3.4: Plot of MPE and MAPE convergence.

A New Method for Predicting End-to-End Network Performance of Composite Services

60

Figure 3.4 (c) and (d) show that DMF’s MPE values are closest to each other as

indicated by its low standard deviation. LANMF on the other hand shows similar

standard deviation to DMF, with EDM having the highest standard deviation.

This means that ND estimations for DMF and LANMF tend to move towards

regions in the MPE/MAPE space that are closest to the optimum MPE and MAPE

while error estimates of EDM are further away from the optimum MPE and

MAPE. Note that EDM’s poor prediction accuracy is due to its use of landmarks

which are not present in both DMF and LANMF.

1

α

α2

α1

5 10 15 20 25 30 35 40 45 50
Iterations

A
c
ti

o
n

0

DMF

LANMF

Figure 3.5: Paths of LANMF’s actions vs. paths of DMF’s action.

Figure 3.5 compares LANMF’s action path against DMF’s action path. In the

Figure, DMF follows a constant action path (i.e. constant value for the

regularization parameter) throughout the iteration process. In comparison,

LANMF toggles its action paths starting at α2 in the first iteration and then

switches to α1 in the second iteration and then back to α2 from the third to sixth

iteration and then back to α1 etc. This demonstrates that, while DMF adopts a

constant action path throughout the estimation process, LANMF toggles its

A New Method for Predicting End-to-End Network Performance of Composite Services

61

actions between two different paths with each path leading the estimation error to

a lower value until minimization is reached.

Table 3.2: Average computation times (in seconds) of test algorithms

LANMF. DMF EDM
31.15 33.41 32.58

Table 3.2 shows that the three algorithms have similar computation times. This

result demonstrates that enhancing LANMF with LA structures and parameters

did not induce any additional computational overhead on the estimation process.

3.5.2 Impact of Number of Neighbours h

In this experiment we vary h to evaluate how its value affects MAPE and MPE

for LANMF. Figure 3.6 shows that increasing the number of neighbours for each

node has the effect of increasing the accuracy of ND prediction. The reason for

this behaviour is that when h is increased, the number of direct ND measurements

rises while the number of ND predictions reduces. This will ultimately lessen the

prediction error. With respect to computational complexity, we notice that there is

little or no difference in computation times when h is increased from 20 to 100.

After 100, computation times start rising slightly with h. Thus, we recommend h

to be set as 60 which represents a good balance between accuracy and

computational complexity. This implies that 60/1895 (3.17%) direct

measurements are made by each web service node.

A New Method for Predicting End-to-End Network Performance of Composite Services

62

(a) Graph showing h vs. MPE

(b) Graph showing h vs. MAPE

Figure 3.6: Impact of h on MPE and MAPE

3.5.3 Impact of Constants J1 and J2

Constants J1 and J2 influence the numerical difference between the regularization

parameter’s previous and subsequent values. In this experiment, we assign

different values within the range [-50, +50] to J1 and J2 and assess how they

A New Method for Predicting End-to-End Network Performance of Composite Services

63

impact LANMF’s prediction accuracy. In Figure 3.7 (a) and (b), it is observed

that setting J1 and J2 at (-1, -2) respectively will yield the lowest MPE but slightly

higher MAPE. If numbers below those values are assigned to J1 and J2 e.g. (-2, -

3), then MPE increases slightly while MAPE slightly decreases. The same

situation will happen if J1 and J2 are set to numbers above (-1, -2) e.g. (-1, +2) or

(+30, -40) respectively.

Figure 3.7 (c) and (d) shows how variations of J1 and J2 affect the standard

deviation of prediction error. The graphs indicate that the setting J1 and J2 to

either of the two extremes i.e. (+30, -40) and (-2, -3) yield slightly higher spreads

of MPE and MAPE among the nodes, while settings of (-1, -2) show lower

MPE/MAPE spread among the nodes. The lower MPE/MAPE spread is because

the prediction error for most nodes tend to move closer to the optimal MPE. This

results proves that setting J1 to -1 and J2 to -2 will result in near optimum

prediction error.

(a) Graph showing J1 and J2 vs. MPE

A New Method for Predicting End-to-End Network Performance of Composite Services

64

(b) Graph showing J1 and J2 vs. MAPE

(c) Graph showing J1 and J2 vs. Standard deviation of MPE

A New Method for Predicting End-to-End Network Performance of Composite Services

65

(d) Graph showing J1 and J2 vs. Standard deviation of MAPE

Figure 3.7: Impact of J1 and J2 on MPE and MAPE

3.5.4 Impact of Dimension g

In this experiment, we vary dimensionality of LANMF’s positional coordinates

and determine how it impacts prediction error. Figure 3.8 demonstrates that

prediction error reduces when dimensionality is increased. The figure also

indicates that MPE and MAPE may converge into local optimum when g is

extremely low. Setting g to a higher value will ensure that it reaches a globally

optimum prediction error. However, this could increase the computation time of

the algorithm. So we set g at 25 to ensure a reasonable balance between

convergence of prediction error and computation time.

A New Method for Predicting End-to-End Network Performance of Composite Services

66

(a) Graph showing variations of g against MPE.

(b) Graph showing variations of g against MAPE.
Figure 3.8: Impact of g on MPE and MAPE

A New Method for Predicting End-to-End Network Performance of Composite Services

67

3.5.5 Prediction of End-to-End Network Distance of Composite Service

In this experiment, we evaluate LANMF’s ability to accurately estimate the end-
to-end network distance of a given composite service. We create a composite
service workflow consisting of 20 web service nodes connected sequentially for
the sake of simplicity. Each web service node consists of neighbouring web
service nodes a1 to th which are not part of the workflow but whose measurements
will aid in predicting the network distances of paths within the workflow. Here,
we randomly select about 400 Planet-Lab nodes from the Harvard dataset as the
web service nodes depicted in Figure 3.9.

WS1 ws2 ws3 WS20

ah

a1

bh

b1

ch

c1

th

t1

Measured ND

Predicted ND

NDe-to-e

p1 p2 p3 p19

Figure 3.9: Test composite service

In terms of parameter settings, we vary the parameter settings to see how they
affect the difference (Diff) between actual ND (NDA) and predicted end-to-end
network distance (NDe-to-e) of the composite service. We also pass the test
composite service to LANMF, DMF and EDM in an attempt to estimate the path-
wise network distances (pi) and composition’s end-to-end network distance (NDe-

to-e). Table 3.3 to Table 3.6 show the results of the experiment where all their
values are in milliseconds (ms).

A New Method for Predicting End-to-End Network Performance of Composite Services

68

Table 3.3: Comparison of test algorithms’ end-to-end network distances (ms)

NDA NDe-to-e
973.7 LANMF DMF EDM

971.34 953 1041.5

Table 3.4: Comparison between h and Diff (ms)

h NDe-to-

e
NDA Diff g

2 512.65 973.70 461.05 3
10 1032.4 58.70
30 995.30 21.60
60 982.40 8.70

Table 3.5: Comparison between g and Diff (ms)

g NDe-to-

e
NDA Diff h

3 982.4 973.7 8.70 60
10 1001.1 27.4
25 953.2 20.5
50 947.4 26.0

Table 3.6: Comparison between J1, J2 and Diff (ms)

J1 ,J2 NDe-to-e NDA Diff g
(+30,-40) 990.45 973.7 16.75 25

(+1,-1) 981.40 7.70
(-1,-2) 969.09 4.61
(-2,-3) 950.18 23.52

Table 3.3 shows that LANMF can estimate NDe-to-e close to the actual end-to-end
network distance of the composite service. Tables 3.4 to 3.6 further demonstrate
that parameter settings of LANMF can influence its accuracy as indicated by the

A New Method for Predicting End-to-End Network Performance of Composite Services

69

difference (Diff) between NDe-to-e and NDA. Also the boldly highlighted values
show that the recommended parameter settings yield the smallest difference
between predicted and actual ND.

3.6 Conclusion

This chapter introduced an enhanced LANMF algorithm for predicting end-to-end

network distances between of web service nodes in a large cloud network. State

of the art techniques poorly predict network distance either due to their use of

central landmarks to obtain network distance measurements as in the case of

EDM, or due to their use of constant regularization parameter as in the case of

NMF. LANMF uses learning automata concepts to allow each web service node

to predict its own network distance to a set of neighbours using variable

regularization parameter values. Simulations where carried out and the results

demonstrate that LANMF is superior to other methods in terms of accuracy. This

claim is further strengthened by the result comparing LANMF’s MPE/MAPE

standard deviation against NMF (DMF) and EDM models. The results also

evaluate the impact of LANMF’s parameter settings on its performance and

optimality. Some recommendations where made as to which parameter settings

would lead to best results.

3.7 Summary

In this chapter we introduced the problem of end-to-end network performance

prediction as a prediction problem. Firstly we presented a brief background on the

issues associated with predicting network performance of Internet nodes. Then

the chapter described the major techniques used to tackle the problem. Our

enhanced approach called LANMF was then presented followed by an

experimental comparison between the approach and state of the art techniques in

different contexts. The chapter then analysis how parameter settings of our

A New Method for Predicting End-to-End Network Performance of Composite Services

70

technique can affect its performance, quality and also composition’s predicted

network distance. Finally, the chapter concludes.

In the next chapter, we present new service composition algorithms which utilize

LANMF to search for composite services having low end-to-end network latency

without compromising their QoS levels.

71

CHAPTER 4

New Methods for Network-aware Web Service Composition in

the Cloud

The goal of web service composition is to aggregate both functional and QoS

attributes of web services into a composite service. But before service

composition process can proceed, it is necessary to determine how QoS of web

services should be modelled and then aggregated into the compositions end-to-

end QoS value. Once this is achieved, then the next issue involves how to choose

a service for each workflow task so that the end-to-end QoS of composite service

is optimal. The latter issue has been described as an NP-Hard problem. In real

world situations, QoS-based web service composition is also subject to several

additional requirements such as:

 Multiple conflicting QoS attributes e.g. response time, cost and execution

time should be optimized simultaneously.

 Multiple QoS constraints e.g. cost and response time should be less than

some threshold value specified by the consumer.

 Scalability i.e. service composition algorithms should be able to compose

a large numbers of web services in reasonable time.

These requirements have been mainly tackled by recent research works. However

network performance has not been considered by current works. Network

performance should be considered alongside other QoS attributes when

optimizing the QoS of composite services. This is because it has direct impact on

user satisfaction [111].

New Methods for Network-aware Web Service Composition in the Cloud

72

In the previous chapter, we presented a technique for estimating end-to-end

network distance (network latency) of a composite service. This chapter focuses

on tackling QoS-based web service composition under multiple QoS and network

latency constraints. In this chapter, four novel evolutionary algorithms are

introduced. Each of the proposed evolutionary algorithms utilizes a different

strategy for optimizing QoS and network latency attributes without compromising

constraints.

4.1 Introduction

As previously covered in Chapter 2, QoS-based web service composition process

involves a series of steps starting from decomposition of a consumer request into

sub-tasks, through discovery of candidate services, and then finally the generation

of workflow or composite service. The workflow consists of a set of

interconnected web services which have been bound to each sub-task. It is

typically modelled in different patterns such as sequence, choice, parallel split

and loop. These patterns are collectively known as workflow patterns or

workflow structures [30]. Each pattern determines how QoS of the composite

service is modelled. The QoS value of a composite service is calculated by

aggregating QoS of candidate services based on the type of workflow pattern

involved. For instance, considering the workflow for the travel booking example

shown in Figure 4.1, assuming the user requires minimization of cost and

response time. Also assuming that web services A1, C2 and D1 have been

selected as part of a sequence workflow (A1-C2-D1).

New Methods for Network-aware Web Service Composition in the Cloud

73

A1

A2

A3

B1

B2

B3

OnlinePaymentOffer
s

CreditOffers

Parallel workflow
structure

C1

C2

C3

D1

D2

D3

HotelReservation AirlineReservation

Sequence
workflow
structure

Start End

Figure 4.1: Workflow for Travel booking application with four tasks and their

respective web services

Then the end-to-end total response time e to eRT of this composite service will be

the sum of all response times of A1 (multiplied by probability of choosing A1),

C2 and D1.

 1 1 2 1(4.1)e to e A A C DRT p RT RT RT

Where pA1 is the probability of choosing A1 in the exclusive choice workflow

structure. RTA1, RTC2, and RTD1 are response time QoS values for A1, C2 and D1

respectively. A similar formula can be applied in computing end-to-end cost of

the composite service;

 1 1 2 1(4.2)e to e A A C DC p C C C

Where CA1, CC2, and CD1 represent execution cost for A1, C2 and D1 respectively.

Table 4.1 shows the QoS aggregation formulas for sequence, parallel, and loop

New Methods for Network-aware Web Service Composition in the Cloud

74

workflow patterns while Table 4.2 provides a description of each workflow

pattern.

Table 4.1: Aggregation formulas for QoS computation of some major workflow

patterns.

QoS attribute Sequence
pattern

Parallel pattern Loop pattern

Response time

n

i
iSRT

1

)(1(),.., ()nMin RT S RT S

OR

 1(),.., ()nMax RT S RT S

. ()ih RT S

Reputation

1

(S)
n

i
i

RP

n

 1(),.., ()nMax RP S RP S ()h

iRP S

Cost

n

i
iSC

1

)(

n

i
iSC

1

)(
. ()ih C S

Execution time

1

()
n

i
i

ET S

 1(),.., ()nMin ET S ET S

OR

 1(),.., ()nMax ET S ET S

. ()ih ET S

Table 4.2: Types of workflow structures

Workflow
pattern

Synonym Description

Sequence Sequential
routing

Executes a set of services sequentially

Parallel AND-split Executes a set of services simultaneously

Loop Cycle Executes a specific path continuously

New Methods for Network-aware Web Service Composition in the Cloud

75

The main aim of QoS-based web service composition is to search for a set of

interconnected web services within a workflow pattern that lead to optimum end-

to-end QoS. This problem has been regarded as an NP-Hard combinatorial

optimization problem. However, in practice several challenges have further

complicated the problem. Some of the major challenges have already been tackled

by recent works introduced in Chapter 2, although these works fail to consider a

pertinent issue such as the impact of network performance on composite service

QoS optimization. This issue is brought about by the increasing use of cloud

computing platform in deploying web services. Recently, service providers are

offering their web applications as services running on the Cloud. These services

currently span across different geographical locations around the world. The

spread can affect network performance of composite services especially since it

involves aggregation of services distributed on different cloud data centres. The

effect is further felt when dealing with a large scale composition of web services.

In this case, current studies may produce compositions that have optimal QoS but

sub-optimal network performance. An example is illustrated in Figure 4.2. The

example shows several web service deployed on different cloud data centres.

Assuming each data centre consists of two or more web service nodes and is

separated from other data centres by different round trip times (RTT). Also

assuming a user request consists of a sequence pattern of three tasks (t1, t2, and t3)

with each task having a set of candidate services and their respective QoS scores

for cost (P), response time (RT) and execution time (ET). Figure 4.3 shows an

instance of a sequence workflow pattern consisting of tasks (t1 to t3) and web

services (SA1 to SC3). Each web service is represented by a triangle with its

respective QoS values shown at the side of the triangle. Current approaches will

ordinarily pick the QoS optimal composite service (highlighted using bold boxes

in Figure 4.3) consisting of services (|SA1-SB1-SC2|) with respect to cost, execution

New Methods for Network-aware Web Service Composition in the Cloud

76

time and response time. In doing so, users may experience different levels of

performance for this optimal solution depending on the RTT between VMs of

participating services. VMs having shorter RTT will incur lower RTT than those

further away from each other.

54ms

100ms

User A

SB3
SC2

SA3
Cloud 1

Cloud 2

SA1

SB2

Cloud 3

SA2 SC3

User B

SC1
SB1

Cloud datacenter

Web Service
 VM

User

RTT distance

Figure 4.2: Web service deployment locations.

t1 t2 t3

SA1

SA2

SA3

£4 6s
10s

£8 14s
23s

£159s
8s

P
RT

ET

SB1

SB2

SB3

£6 9s
19s

£8 17s
39s

£4 24s
20s

P
RT

ET

SC1

SC2

SC3

£1 19s
27s

£5 11s
5s

£3 21s
14s

P
RT

ET

Figure 4.3: Sequence workflow pattern with services and their QoS scores

For instance user A may experience low network latency for composite service

|SA1-SB1-SC2| (i.e. end-to-end network latency for |SA1-SB1-SC2| is 400ms + 100ms

+ 54ms + 500ms = 1054ms, end-to-end cost, response time and execution time

New Methods for Network-aware Web Service Composition in the Cloud

77

are [£15 26s 34s] respectively), while user B experiences high end-to-end network

latency because of larger RTT to |SA1-SB1-SC2| (i.e. 500ms + 100ms + 54ms +

3000ms = 3654ms). Perhaps similar composite services such as |SA2-SB1-SC2|

(3087ms, [£19 34s 47s]) or |SA2-SB1-SC3| (311ms, [£17 44s 41s]) may be better

suited for user B since they have lower network latency but are sub-optimal in

terms of cost, response time and execution time i.e. [£15 26s 34s] of |SA1-SB1-SC2|

is better than [£19 34s 47s] of |SA2-SB1-SC2| and [£17 44s 41s] of |SA2-SB1-SC3|.

Several techniques have been proposed to tackle the QoS-based service

composition problem such as Dynamic programming [59, 61], AI planning [99,

100] and evolutionary algorithms [69, 71]. A major issue with the problem is how

to handle multi-objective optimization under conflicting QoS attributes and

constraints. Amongst, the approaches reviewed, evolutionary algorithms have

shown to be most suited to tackling the issue. This is because they employ

different naturally inspired methods which can be used to seamlessly handle

multiple QoS attributes and constraints during optimization process. Hence, this

research focuses on applying evolutionary algorithms to solve the problem. The

techniques proposed in this research differ from current approaches in that they

separate QoS of network from web service QoS. Having a separate representation

for QoS of the network allows the proposed techniques to find a composite

service who’s QoS in not only optimal, but also has near-optimal network latency.

This work presents four novel evolutionary algorithms for QoS-based web service

composition under quantitative QoS and network latency constraints. The

proposed algorithms leverage LANMF method presented in Chapter 3 to build a

network model for computing end-to-end network latency of a composite service.

Specifically, the network model estimates network distance between web service

VM nodes in the cloud. Estimation is necessary as traditional latency

measurement methods which involve distribution of RTT pings to directly

New Methods for Network-aware Web Service Composition in the Cloud

78

measure RTT between services nodes are generally slow and computationally

expensive. Via the network model, the proposed algorithms attempt to find a

composition that connects its constituent web service nodes through an end-to-

end network path that has near optimal QoS and low latency. Such kind of

composition methods presents several benefits to the Industry. Firstly, it will

enable service providers to facilitate delivery of better quality service to their

consumers. It will also serve to maximize the consumer’s experience of the

offered services.

In addition to network latency, the proposed algorithms consider three major QoS

attributes namely end-to-end cost, end-to-end response time and end-to-end

execution time in their QoS model, although any other set of QoS attributes could

be considered as this will not affect the operation or performance of the

algorithms. The next section presents the QoS model and formulates the problem.

4.2 Problem Formulation

The problem can be described as follows:

Given a user request T composed of a set of tasks 1t to nt ,

 ntttT ,,, 21 ,

Where n is the number of tasks to complete user request.

Each task is assigned a service class (iS) where each service class represents a set

of functionally similar web services or candidate services (ijs) that can perform

the associated task as seen in Figure. 4.4,

iikiii sssS ,,, 21 , ni ..1 , 1.. ij k

New Methods for Network-aware Web Service Composition in the Cloud

79

Where ik is the number of candidate services in the i-th service class.

For each task, only one candidate service within its service class can be bound to

the task it to form a composite service C.

s11

s12

s13

s21

s22

s23

sn1

sn2

sn3

t1 t2 tn

S1 S2 Sn

s1k1 s2k2 snkn

Figure 4.4: Classification of candidate services into service class and tasks.

A composite service can be formed from the aggregation of web services per

service class;

 njjj sssC ,,, 21 , kj ..1 , ni ..1

Where ijs is the web service of service class Si.

Also, given a set of QoS objectives; Cost, response time, execution time and

network latency, their end-to-end QoS value for a composite service ()(CQ) is

calculated by combining individual QoS values of its services based on the

following expressions.

To compute end-to-end cost of composite service, web service costs)(ijsP are

aggregated;

New Methods for Network-aware Web Service Composition in the Cloud

80

n

i
ijP sPCQ

1

)()((4.3)

Similarly, both end-to-end response time ()(ijsRT) and end-to-end execution

time ()(ijsET) are computed thus;

n

i
ijRT sRTCQ

1

)()(

(4.4),

n

i
ijET sETCQ

1

)()((4.5)

 As for end-to-end network latency, network distances for constituent network

paths within the composite service are combined using;

, 1,
1

() (,)
n

L i j i j
i

Q C L s s

 (4.6)

Where , 1,(,)i j i jL s s represents the round trip time of both forward and reverse

network paths within a composite service.). Note that network latency is defined

as RTT from one source service node to another and then back to the source node.

In the case of a composite service, network latency is defined as end-to-end RTT

from the first service’s node in a given composite service to the last service’s

node then back to the first service node.

QP, QRT, QET and QL represent end-to-end cost, response time and execution time

of a composite service respectively.

Given weights Pw , RTw , ETw and Lw which represent relative importance of QoS

objectives from the user's perspective. Where,

New Methods for Network-aware Web Service Composition in the Cloud

81

4

1

1m
m

w

(4.7)

QoS objectives are normalized into fitness values using the expressions in (4.8)

and (4.9). Cost, response time and execution time are computed using;

1

, ,

(S) - (s)
()

(S) (S)

n
m i m ij

m m
i m i m i

m P RT ET

Max Q
f C w

Max Min

 (4.8), kj ..1

Fitness value for network latency (Lf) is determined by (4.9) which normalizes

the end-to-end network latency QoS (LQ);

()
() L

L L

Q C
f C w

H

 (4.9)

Where H is a constant which normalizes value of ()LQ C in the range of [0 1].

Given that several QoS objectives need to be optimized, multiple trade-off

solutions can be found. Hence, the research problem is defined as a constrained

multi-objective optimization problem where the aim is to find a set of composite

services with near-optimal fitness value with respect to cost, response time,

execution time and RTT,

 , ,() , m P RT ET Lbest mC Min f C

Subject to:

 Selection constraint: Only one candidate service can be selected per

service class.

New Methods for Network-aware Web Service Composition in the Cloud

82

 QoS constraints 1 2 3 4, , ,c c c c , where 1 2 3 4, , ,c c c c are user specified QoS

constraints for cost, response time, execution time and network latency

respectively.

4.3 Evolutionary algorithms for Network-aware Service Composition in

the Cloud

In this chapter, novel evolutionary algorithms are proposed to search for low

latency compositions with near-optimal QoS. The algorithms presented in this

section include a network-aware GA, Kmean-based GA, multi population-based

PSO, and a network-aware fruit fly optimization algorithm. In the next sub

sections, the algorithms are described in detail.

4.3.1 Network-aware Genetic Algorithm

Genetic algorithm (GA) is an evolutionary optimization method that uses

concepts based on Charles Darwin's theory of evolution. GAs are characterized by

their ability to evolve individuals of a generation (genomes) in accordance with a

predefined set of rules up to a point where fitness value is optimized. Several GAs

[29, 128, 129, 130] have been developed to tackle service composition problem

using single QoS objective. However, they don’t work in situations where there

are multiple conflicting QoS objectives. A special type of GA called non-

dominated sort genetic algorithms (NSGA-II) has been applied to optimize

conflicting QoS objectives in the service composition context. NSGA-II is one of

the most often used optimization methods when dealing with conflicting QoS

objectives [127]. This is attributed to its ability to search for a set of non-

dominated best solutions also known as Pareto front. In this work, we employ an

enhanced NSGA-II algorithm to tackle the research problem.

New Methods for Network-aware Web Service Composition in the Cloud

83

Generally, NSGA-II encodes each solution as a genome and then initiates the

optimization process by initializing a generation of genomes. It then places the

best individuals are into a mating pool where they are sorted using non-dominated

sort technique. At this stage, elitism is used to sort each individual into a Pareto

front with individuals having better fitness being placed in higher ranks. Solutions

are then altered by crossover and mutation operators in order to improve their

quality and produce children for the next generation. The whole process is

repeated until either the optimal Pareto front is found or the maximum number of

generations is reached.

Several issues have been identified which affect the optimality of NSGA-II when

applied to our research problem. Firstly, NSGA-II employs a uniform distribution

index during mutation operation. This can decrease the diversity of individuals in

the population. Secondly, NSGA-II makes use of the same cut points during

crossover operation i.e. the points where one parent’s genes are interchanged with

genes of other parents. This can affect the quality and population diversity of

NSGA-II’s Pareto front as our experimental results will show. Thirdly, NSGA-

II’s crossover and mutation operators cannot search for latency-optimal solutions.

This is because they have no facility capable of handling optimization of

composite service network latency. They are only capable of searching for QoS

optimal solutions. Lastly, NSGA-II commonly adopts penalty based constraint

handling methods [29, 129]. However these methods are mainly suited to

constraints of either “higher is better” QoS attributes such as reputation,

availability, throughput etc. or a mixture of both “higher is better” and “lower is

better” QoS attributes. They are not very effective in situations where all the QoS

constraints specified are for “lower is better” QoS attributes. Obviously, cost,

response time, execution time and network latency are all classified as lower is

New Methods for Network-aware Web Service Composition in the Cloud

84

better QoS attributes i.e. attributes whose lower numeric values are better than the

higher values.

Motivated by these limitations. We develop an enhanced NSGA-II algorithm

called INSGA to tackle these issues. INSGA employs network-aware ND-

Crossover and ND-Mutation operators to search for low latency and QoS optimal

solutions. In addition, INGA adopts a unique penalty function for handling

multiple end-to-end QoS constraints for negative QoS attributes which are

considered in this study.

When applying INSGA to service composition problem, each genome represents

a possible composite service and is encoded in form of array of numbers or genes.

Each gene represents a task is assigned to any one of candidate services within its

service class as seen in Figure 4.5. The procedure for INSGA is described below;

GENOME(Composite service)

{Task 1}
Gene 1

{Task 2}
Gene 2

{Task 3}
Gene 3

{Task n}
Gene n

S11

S12

S1i

S13

S21

S22

S2i

S23

S31

S32

S3i

S33

Sn1

Sn2

Sni

Sn3

S11

Figure 4.5: Structure of Genome in INSGA

Initialization of population

INSGA starts by randomly generating an initial population of composite services.

In order for this to be achieved, we first encode every service as a two digit

integer value. For example, as shown in Figure 4.6, a web service encoded as

New Methods for Network-aware Web Service Composition in the Cloud

85

"33" is the 3rd candidate service capable of executing task 3. In the next step only

one candidate service is arbitrarily selected per task.

12 21 33

S21

S22

S23

S31

S33

S32

S11

S13

S12

Figure 4.6: Example of a composite service encoded as integer array.

Web service QoS scores are then randomly initialized. With the aid of LANMF

algorithm, the QoS scores are normalized and aggregated into values

representative of composite service’s end-to-end cost, response time, execution

time and network distance respectively. After normalization of QoS scores,

fitness for each solution is computed based on number of constraint violations

thus;

1

, ,

(S) - (s)
() () (4.10)

(S) (S)

n
m i m ij

m m m
i m i m i

m P RT ET

Max Q
f C w pen C

Max Min

()
() ()L

L L m

Q C
f C w pen C

H

(4.11)

New Methods for Network-aware Web Service Composition in the Cloud

86

0 (C) 0;

() (4.12)

() .

()
m

m

m

m

ub m

lb m

if cv

pen C

c Q C otherwise

c Q C

Where ()mpen C represents the penalty function that computes the magnitude at

which a composite services violates QoS constraints. (C)mcv is a binary number

that specifies whether or not a solution has violated a given constraint. 0 is

assigned to (C)mcv if there is no constraint violation otherwise 1 is

assigned.
mubc and

mlbc define the constraint upper and lower bounds

respectively, while ()mQ C represents end-to-end QoS of composite service.

Note that upper bound is the value at which end-to-end QoS score of a solution

should not exceed. Also, the lower bound is usually assigned as 0. For example

when a consumer specifies that response time of a solution should not exceed

200ms, the upper bound is assigned 200ms while the lower bound is assigned 0.

So if a solution has end-to-end response time of 250ms then (C)RTcv is assigned 1

because the constraint of 200ms has been violated and the solution is labeled

infeasible. Therefore the penalty function for the solution is computed as;

200 250 50
() 0.2

0 250 250RTpen C

New Methods for Network-aware Web Service Composition in the Cloud

87

Hence response time fitness ()RTf C of the solution is penalized (increased) by

0.2;

1

(S) - 250
() 0.2

(S) (S)

n
RT i

RT RT
i RT i RT i

Max
f C w

Max Min

On the other hand, if a solution has end-to-end response time of 150ms then

(C)RTcv is assigned 0 because the constraint has not been violated and the solution

is labeled feasible. Therefore the solution’s penalty function is;

200 150 50
() 0.2

0 250 250RTpen C

Hence, ()RTf C is not penalized but is reduced by -0.2 to improve its value.

Using this technique solutions having constraint violations are given higher

fitness values while those that do not violate constraints are given lower fitness

values. This has the effect of pushing constraint-violating solutions into lower

ranks in the Pareto set while non-constraint violating solutions are placed into

higher ranks during ranking and sorting operation.

Ranking and Sorting

INSGA uses a non-dominated sorting technique that ranks individuals into

different fronts according to the degree that they dominate other individuals in the

population. A composite service Ci perfectly dominates another composite service

jC if all the fitness values of iC are lower than the fitness values of jC .

Therefore iC will be placed in a higher front (rank) than jC . For each front,

individuals are sorted in ascending order according to the magnitude of their

New Methods for Network-aware Web Service Composition in the Cloud

88

fitness. This is used to establish the crowding distance (CD) which indicates the

Euclidean distance between individuals in the fitness value space. CD for a given

composite service iC is expressed as;

1 1

max min

() ()
() i i

i

f C f C
CD C

f f

 (4.13)

Where

)(iCCD is the crowding distance for the i-th individual.

 1()if C represents the fitness value of individual succeeding i-th

individual.

 1()if C represents the fitness value of individual preceding i-th individual

 maxf and minf represent the maximum and minimum fitness values in

population

When the fitness value of a composite is far away from fitness of other solutions

then its CD will be larger than solutions that have fitness values very close

together.

Tournament selection

A tournament selection of the best individuals is achieved to determine parents

who will take part in crossover operation. The selection process only the

individual with lower fitness and higher crowding distance is selected for

crossover operation.

New Methods for Network-aware Web Service Composition in the Cloud

89

Crossover operation

Crossover operation combines any two parents into offspring (children) that are

slightly different from their parents and can have superior properties of both

parents. Traditional crossover operation selects arbitrary cut points where genes

around cut points of one parent are replaced with genes of another parent to

construct an offspring. INSGA employs a network-aware two-point crossover

operator called ND-Crossover which cuts parents at two non-random cut points.

The two cut points (one per parent) are chosen from areas on each parent where

average RTT is high. In order to determine which point on a parent constitutes

high average RTT, every web service node is assigned an average latency score

(LA) which is the arithmetic sum of RTT values over all outgoing and incoming

paths divided by the number of outgoing and incoming paths from a given service

node,

() 1/ () (4.14)L L
g G

A s G Q g

Where AL (s) represents average latency score in milliseconds (ms) for service s,

G is number of outgoing and incoming paths from s, and QL (g) is RTT value for

a given network path.

Once average latency scores are known, ND-crossover operator selects a cut point

from each parent where AL is maximum. After the cut points are determined then

the genes around those points are interchanged between both parents. This

ensures that network paths of genes with highest LA are interchanged with genes

with lower LA network paths. Figure 4.7 depicts how ND-crossover operator

functions. One might argue that, in the process of interchanging high LA network

New Methods for Network-aware Web Service Composition in the Cloud

90

paths with low LA network paths at one cut point, other cut points having low

LA paths are replaced with genes having high LA network paths. However, results

prove that this is not the case.

(a) Before crossover operation

Child 1
{5 3} {6 4}{1 6} {2 4}

Child 2
{5 5} {6 1}{1 1} {2 6}

{3 6} {4 3}

{3 1} {4 4}

(b) After crossover operation

Figure 4.7: Operation of ND-crossover operator.

When cut points 1 and 2 are the same for both parents then the crossover

operation performed translates to a single-point crossover otherwise a three-point

crossover operation is performed. The impact of ND-crossover operator is that

children produced have lower end-to-end network distances than their parents as

demonstrated by our results.

Mutation operation

The function of mutation operation is to adjust a parent into new offspring that

closely resemble its parent with the aim of further improving parent fitness values

New Methods for Network-aware Web Service Composition in the Cloud

91

and discourage trapping into local optima. The standard mutation operator adjusts

parents by using a uniform distribution index (DI) [23]. DI controls degree of

similarity between parents and their children. The value for DI influences the

diversity of offsprings in the population. We propose a unique mutation operator

called ND-mutation which uses a dynamic DI whose value depends on the ratio

between a parent's crowding distance and its end-to-end network distance.

Each parent is going to be mutated according to the value of its distribution index

which is computed using the following expression:

() (4.15)
() (1 ())ipar i

L i i

H
DI CD par

f par CD par

Where

iparDI

is the distribution index for the parent.

 ()L if par represents the parent's fitness value for network distance.

)(iparCD indicates the parent's crowding distance.

 H is a constant.

The expression in Equation (4.15) used by ND-mutation operator will force a

strong mutation for poor quality parents (Fig. 4.8 (b)) and a weak mutation for

good quality parents (Fig. 4.8 (a)). For instance, a parent with a low end-to-end

network distance and high crowding distance will have a low DI which allows its

child to be slightly mutated to closely resemble the parent (e.g. in Fig. 4.8 (a)). On

the other hand, our mutation operator heavily mutates a parent with high DI (i.e. a

New Methods for Network-aware Web Service Composition in the Cloud

92

parent having high end-to-end network distance and low crowding distance) into

a child that has little resemblance to the parent (e.g. in Figure. 4.8 (b)).

Parent
{5 3} {6 4}{1 6} {2 4}

Child
{5 3} {6 4}{1 6} {2 6}

{3 6} {4 3}

{3 5} {4 3}

Parent
{5 3} {6 4}{2 4}

Child
{5 3} {6 6}{2 4}

{3 6} {4 3}

{3 0} {4 8}

{1 6}

{1 1}

(a) Low DI (b) High DI

Figure 4.8: Operation of ND-Mutation operator

A large value for
iparDI indicates that a parent has good fitness and crowding

distance therefore offspring’s genes will closely resemble the parent (i.e. weak

mutation), while a small value for
iparDI indicates parent has poor fitness and

crowding distance hence genes of offspring will differ greatly with the parent (i.e.

strong mutation)

ND-Mutation operator aims to improve the quality and population diversity of

new offsprings. This will ultimately increase the likelihood of finding a globally

optimal Pareto front.

After mutation operation is performed, parents are replaced by newly formed off

springs and the whole process is repeated until maximum number of generation is

reached. INSGA algorithm is outlined in Algorithm 4.1 while ND-Crossover and

ND-Mutation operators are outlined in Algorithm 4.2 and 4.3 respectively.

New Methods for Network-aware Web Service Composition in the Cloud

93

Algorithm 4.1 INSGA Algorithm
Input: D, g, n, , h, max_iter, no_states, state, actions_prob, rp_env, w, J1,
J2,
Ouput: pop
1: Set environment parameters
2: pop Randomly generate population
3: P Randomly generate QoS values of solutions
4: pop[Q , f] Determine end-to-end QoS and fitness of solutions

5: pop Perform non-dominated sort (pop)
6: pop LANMF (Input)
7: While (gen max_iter)
8: {
9: pop tournament selection (pop)
10: pop ND-Crossover (pop)
11: pop Perform non-dominated sort (pop)

12: child_pop ND-Mutation (pop)
13: combination_pop pop + child_pop
14: combination_pop Perform non dominated sort (combination_pop)
15: pop replacement (combination_pop)
16: endWhile
17: }

Algorithm 4.2 ND-Crossover operation
Input: pop
Ouput: Child
1: For(i = 1 to popsize)
2: {
3: Randomly pick Parent1 and Parent 2 from pop
4: Compute Average latency LA of Parent 1 and Parent 2

5: index1 Find cut point of Parent 1 with poorest latency
6: index2 Find cut point of Parent 2 with poorest latency

7: [Child 1, Child 2] Crossover genes for each parent around index 1 and
index 2
8: [Child 1, Child 2] Determine end-to-end QoS and fitness of children
9: Child Add Child 1 and Child 2 in the child population.
10: endFor
11: }

New Methods for Network-aware Web Service Composition in the Cloud

94

Algorithm 4.3 ND-Mutation
Input: pop
Ouput: Child
1: For(i = 1 to popsize)
2: {
3: Compute DI of pop(i) according to Equation (4.15)
4: Child(i) Mutate genes of pop(i) according to DI
5: Child(i) Determine end-to-end QoS and fitness of child
6: endFor
7: }

4.3.2 K-Genetic Algorithm

In our second approach, we develop another enhanced NSGA-II algorithm called

K-Genetic algorithm or KNSGA to solve our research problem. Compared to

INSGA which consists of ND-Crossover and ND-Mutation operators, KNSGA

employs traditional crossover operation coupled with a unique K-mean based

mutation operator called K-Mutation. As its name implies, K-Mutation uses the

concept of K-mean clustering [131] to mutate genes of parents into offsprings.

K-means is an unsupervised machine learning technique used to group items into

clusters based on their feature similarities. Typically, items having closely similar

features are placed into the same cluster while dissimilar items are placed into

different clusters. Basically, K-means operates by first determining the number of

clusters and centroids for each cluster. Then the distance between each item and a

set of centroids is estimated to determine which cluster the item belongs to.

K-means algorithm alongside supervised learning algorithms such as KNN

algorithm are popularly used to solve the nearest neighbor search problem which

aims to find a set of points p that are nearest to a point of interest q. This problem

is strikingly similar to the part of our research problem involving minimizing end-

to-end network distance of a composite service. Studies have attempted to apply

New Methods for Network-aware Web Service Composition in the Cloud

95

nearest neighbor search techniques to minimize the end-to-end network distance

of a composite service. One such study presented in [132] applied KD-trees

coupled with a standard two dimensional network coordinate system and unique

genetic algorithm to optimize end-to-end latency of a composition. A similar

study in [85] used locality sensitive hashing scheme instead of KD-trees to

perform search for composite service network paths constituting optimal latency.

However both KD-trees and locality sensitive hashing are only effective under

low dimensional network coordinates. Hence we do not use them in this study

because our problem considers mainly high dimensional network coordinates. K-

means has been known to be more efficient than KD-trees in handling high

dimensionality [140]. We enhance KNSGA’s mutation operator with K-mean

clustering in order to solve our research problem. KNSGA is described below.

Encoding

Similar to INSGA, KNSGA encodes composite service as a genome of genes. A

gene represents an integer-encoded web service attached to a given task.

Population Initialization

Also similar to INSGA, KNSGA starts its optimization process by generating an

initial population of compositions sorted via Non-dominated sort operation and

placed into a mating pool.

Tournament Selection

A tournament selection process which finds the best parents that will perform

crossover and mutation operations.

New Methods for Network-aware Web Service Composition in the Cloud

96

Crossover Operation

Different from INSGA, KNSGA employs traditional one point crossover

operation on each pair of parents. In this case each parent uses same cut point.

Mutation Operation

In comparison to ND-mutation operator in INSGA which uses extra computation

time to determine distribution index of genes, we improve computation time of

mutation operation by integrating K-means algorithm into our K-mutation

operator, the algorithm clusters each web service node into r separate groups

according to their network distances from r centroid nodes. Services nodes that

are closer together in RTT are placed in the same cluster, while nodes that are

further away are placed in different clusters. K-Mutation operator then arbitrarily

selects a small number of genes as reference genes. A Gene before or after each

reference gene is replaced by another gene that is contained in the reference

gene’s cluster. For example, in Figure 4.9, S13 and S63 are chosen as reference

genes while S26 and S56 are randomly selected for mutation. S26 can be mutated to

either S20, S28 or S22 from Cluster 1 since they are in same cluster with S13. S56 can

be mutated to either S53, S59 or S51 which are neighbors to S63 in Cluster 2.

KNSGA algorithm is described in Algorithm 4.4 while K-Mutation operation is

shown in Algorithm 4.5.

New Methods for Network-aware Web Service Composition in the Cloud

97

s13 s26 s33

s20 s28 s22

Composite Service
(Parent)

Cluster 2

s59 s51 s63

Cluster 1

Mutation candidates for s56

Mutation candidates for s26

s41 s56 s63

Non mutated
gene

Mutated gene

Reference gene

s13

s53

Figure 4.9: Mutation Operation of KNSGA

Algorithm 4.4 KNSGA Algorithm
Input: T, C, O, pop_size, max_iter, D
Output: pop
1: pop Randomly generate population
2: pop [Q , f] Determine end-to-end QoS and fitness of solutions

3: pop LANMF (pop, D)
4: while (gen max_iter)
5: {
6: pop Tournament Selection (pop)
7: child_pop Single Crossover Operator (pop)
8: child_pop Non-dominated Sort (child_pop)

9: pop K-Mutation Operator (child_pop)
10: combination_pop pop + child_pop
11: combination_pop Non-dominated Sort (combination_pop)
12. pop Replacement (combination_pop)
13: endwhile
14: }

New Methods for Network-aware Web Service Composition in the Cloud

98

Algorithm 4.5 K-Mutation operation
Input: pop
Ouput: Child
1: For(i = 1 to popsize)
2: {
3: For (each pop(i)),
4: [R1,.., Rj] Randomly pick small number of Reference genes
5: [Cl1,.., Clj] Find nearest neighbor clusters for each Reference gene
6: Child(i) Replace gene after/before Rj with any gene in Clj.
7: endFor
8: }

4.3.3 Multi population Particle Swarm Optimization Algorithm

Particle Swarm Optimization (PSO) is a meta-heuristic algorithm based on the

concept of particle movement. It is iterative algorithm that applies social

behaviour to a swarm of particles with the aim of guiding their search towards

optimal positions. In the past, various classical PSO techniques had been

developed to tackle single objective optimization problems. In recent years, PSO

has become a popular alternative to NSGA-II in tackling multi-objective

optimization problems. This is because they enable simultaneous exploration of

different search spaces to discover near optimal Pareto front. In fact PSO has been

demonstrated [98] to be competitive against NSGA-II and other evolutionary

algorithms in searching for near optimal Pareto fronts for various multi-objective

problems. Although its Pareto front may not necessarily be the true optimal one,

PSO has shown great promise in efficiently tackling complex optimization

problems involving conflicting objectives. The true strength of PSO resides in its

ability to allow particles in a swarm to share information during the optimization

process. The information includes the global best particle position (gbest) which

is the particle position having the best fitness in the swarm. During each iteration,

gbest is communicated to each particle to guide explorative search around the

New Methods for Network-aware Web Service Composition in the Cloud

99

global best position. This ability aids PSO to easily skip past local optimum

positions in the search space and drive towards a globally optimum position.

Traditionally, PSO algorithm carries out optimization by encoding each solution

as a particle with each particle characterized by velocity (v); current position (d);

local best position (lbest) i.e. the particle’s personal best position; and global best

position (gbest) in the swarm. At each iteration, each particle’s velocity, current

position, and sometimes local best position (especially when d is better than lbest)

are updated according to equations (4.16) and (4.17);

() 1 1 2 2() ()newv wv c r lbest d c r gbest d (4.16)

() ()new newd d v (4.17)

Where

 w, also known as inertia weight, represents the kind of search strategy to

be performed. w is used to control balance between exploration and

exploitative search.

 1c and 2c are positive constants

 1r and 2r are random numbers between [0, 1]

 ()newv and v represent current and old particle velocities respectively

 ()newd and d represent current and old particle positions respectively

Despite showing promising results in solving multi objective problem, PSO is

hampered by its inability to allow particles to share their lbest positions with other

New Methods for Network-aware Web Service Composition in the Cloud

100

particles in the swarm. Hence, information is only partially shared between

swarm particles i.e. the gbest. In a single objective optimization problem, this

shortcoming has little impact on PSO’s ability to avoid local optima. However in

a multi objective optimization problem which consists of multiple local optima,

partial information sharing could increase PSO’s chances of converging in one or

more local optima located across the different search dimensions. Thus, we

believe that improving information sharing between particles is essential in

increasing PSO’s chances of arriving at the true Pareto front.

In this study, we enhance the classic PSO to improve sharing of information

between particles in a swarm. To achieve this, we apply evolutionary concept like

non-dominated sorting and multiple populations to enhance PSO. Our resultant

algorithm is called Multi-population Particle Swarm or NMPSO. In NMPSO,

Non-dominated sorting is used to rank solutions according to different dimensions

which in this case are QoS attributes cost, response time and execution time. The

multi-population feature allows NMPSO to segregate the particles into two

populations. The first population provides a search space for finding particle

positions with best end-to-end network distance while the other population allows

particles to search for positions with best end-to-end to cost, response time and

execution time. Allowing two different populations to conduct their own

independent search will enable NMPSO to find two global best particles which

are shared with all the particles in both population. This social behavior is clearly

different from current PSO approaches which utilize only one population and

shares only one global best particle position.

NMPSO aims to search for a Pareto set of composite services that has optimal

QoS and near optimal network distances. The operation of NMPSO is described

as follows.

New Methods for Network-aware Web Service Composition in the Cloud

101

Encoding

The algorithm encodes each composite service as a particle array where each

array element (m1, m2…mn) represents a task that can be completed by any web

service. Figure 4.10 shows how a particle is encoded in NMPSO.

mnm2m1

Array elements

Candidate
 services

Particle

s12

s11

s13

s1k1

s22

s21

s23

s2k2

sn2

sn1

sn3

snkn

Figure 4.10: Encoding of a particle

Population initialization

NMPSO proceeds optimization process by initializing a population of particles

referred to as Pareto Set (PS). This is achieved by randomly choosing one

candidate service for each task until all array elements are allocated. NMPSO

leverages LANMF to estimate end-to-end network distances of each particle.

Other QoS values are randomly generated and assigned to every particle. Also,

the fitness for each particle is computed and penalized (according to equation

4.12) depending on whether or not they violate QoS constraints.

Non-dominated Sorting and Multi-population creation

In the next step, non-dominated sort operation similar to INSGA algorithm is

applied on the initialized PS. The operation sorts each particle based on their

fitness values. The operation then ranks particles into their respective fronts in PS

according to degree of domination over other particles. The most dominant

New Methods for Network-aware Web Service Composition in the Cloud

102

solutions are placed in front 1, the next most dominant solutions are placed in

front 2, the third most dominant solutions are placed in front 3 etc. This process is

slightly different from the one implemented in INSGA. INSGA sort particles

according to how well they dominate other solutions with respect to cost,

response time, execution time and network latency. NMPSO, on the other hand,

sort particles with respect to only cost, response time and execution time. This

will allow PS particles to search for global Pareto front in those three dimensions

only. The crowding distance (CD) for each particle in PS is then computed. This

value determines the Euclidean distance between a particle and its neighbors. CD

is an important value because it helps the algorithm to determine diversity or

spread between individuals in PS.

Once PS has been sorted and ranked, the top 25% of its particles are placed into

another population called O population. The 25% value is determined from

experimental evaluation as the percentage which gives the best balance between

optimality and performance. It is realized that any value above 25% of PS would

decrease the diversity of particles in the next Pareto set. This in turn will lead

NMPSO to trap in local optimum. For instance, if 50% of particles is retained

then about 50% of solutions in the next PS will be similar thereby causing lack of

diversity in the population but better performance of the algorithm. The O

population particles, or simply O particles, constitute the globally best particles

from the Pareto set with respect to cost, response time and execution time. For

example, if PS contains 200 particles, O population will consist of the top 50

dominant particles.

The next step involves sorting particles in the O population according to their

end-to-end network distances. The sorted particles are placed in a separate

population called the N population consisting of particles from O population with

New Methods for Network-aware Web Service Composition in the Cloud

103

the best end-to-end network distances. The N particles constitute solutions

searching for the global solution with respect to end-to-end network latency.

Mutate N-Particles

After N population has been constituted, its population diversity is observed to be

moderate. In a bid to improve diversity of N particles, they are mutated by ND-

Mutation operator which was first presented as part of INSGA. The operator

mutates elements of each N-particle that contributes to poor crowding distance

and network latency.

In the next stage, both O and N particles are used to update PS’s particle positions

to drive their search towards both globally best positions.

Updating Particle Velocity and Position

Information is shared between particles of O, N and Pareto set (PS) to update

velocity and position of each particle in PS. During each particle velocity update,

an O particle is randomly selected to represent its gbest position, while a random

N particle represents its lbest position. Thus, particle velocities and positions

computed using (4.11) and (4.12) respectively,

() 1 1 2 2() ()i new i i i i iV wV c r N PS c r O PS (4.11)

() ()i new i newPS PS V (4.12)

New Methods for Network-aware Web Service Composition in the Cloud

104

Where iV is i-th particle velocity; w is inertia weight, 1c and 2c represent

constants; 1r and 2r are random numbers in range [0, 1]; iN is global best N

particle i.e. N particle with best fitness in terms of cost, response time and

execution time; iO denotes global best O particle i.e. O particle with best fitness

with respect to end-to-end network distance; iPS represents the i-th particle

position. Equations (4.11) and (4.12) force each particle towards global Pareto

front in both N and O search spaces simultaneously, where a particle’s velocity is

directly proportional to both the distance between the particle and its N particle

and the distance between the particle and O particle. Typically particles with

lower velocities are particles closer to N and O’s particle while particles with

higher velocity are further away from the particles. Also, particles with low

velocity will move slower than particles with higher velocities in the search

space, where a slow movement signifies exploitation and a fast movement

represents exploration of the search space. This way, particles with low velocities

are retained to participate in subsequent iterations, while bad particles (with high

velocity) are rapidly changed to new positions. The effectiveness of equations

(4.11) and (4.12) are demonstrated by result of experiment in the next section.

After particle velocity and position has been updated, NMPSO determines if the

new particle’s fitness dominates the N particle fitness. If it the case, then the new

particle position is retained, else it is replaced by the N particle’s position. This

ensures that only the best particle positions are retained for the next iteration.

NMPSO algorithm is summarized in Algorithm 4.6.

Algorithm 4.6 NMPSO Algorithm
Input: T, C, O, pop_size, max_iter, D, c1, c2, w
Output: PS
1: PS Generate Population (T, C, O, pop_size)

New Methods for Network-aware Web Service Composition in the Cloud

105

2: PS LANMF (PS, D)
3: While (gen max_iter)
4: {
5: PS Non-dominated Sort (PS)
6: O_pop Top 25% of PS
7: N_pop Sort O_pop according to network distance
8: N_pop ND-Mutation (N_pop)
9: For i = 1 to pop_size
10: ()i newV Update Velocity according to Equation 4.11

11: ()i newPS Update particle position according to Equation 4.12

12: ()i newPS Compute QoS (()i newPS)

13: IF ()i newPS dominates iN

14: Keep ()i newPS

15: Else

16: Replace ()i newPS with iN

17: endFor
18: Clear N_pop

19: endWhile
20: }

4.3.4 Fruit Fly Optimization Algorithm for Service Composition

The previous sub sections introduced three distinct meta-heuristic algorithms that

employed different strategies in solving our research problem. The first one is an

INSGA (4.3.1) algorithm that uses ND-Crossover and ND-Mutation operators to

guide search towards low latency and QoS optimal solutions. The second

algorithm is a KNSGA (4.3.2) algorithm which applies K-mean based search in

its K-Mutation operator to find near optimal compositions. The third algorithm

known as NMPSO (4.3.3) is a non-dominated sort particle swarm algorithm

which applies globally best particles from two populations to all population

particles for the purpose of exploring areas around the Pareto front to find near

optimal solutions.

New Methods for Network-aware Web Service Composition in the Cloud

106

All three algorithms leveraged LANMF network coordinate system to facilitate

their search for near optimal solutions. LANMF decomposes known RTT

measurements into network coordinates prior to estimation process. It then has to

convert the coordinates back to RTT values after estimation process so that the

algorithms can perform optimization. This inadvertently creates additional

processes that complicates our algorithm implementations. The computation

times of our algorithms are also increased due to the two stage conversion process

employed. It is therefore necessary to discover an algorithm that can easily be

integrated with LANMF without increasing its complexity, implementation, and

computation time. To this end, we present an enhanced fruit fly algorithm known

as Network-aware fruit fly algorithm (NFOA) to search for low latency

compositions with near optimal QoS.

As a new meta-heuristic optimization algorithm, fruit fly optimization algorithm

(FOA) is inspired by the behavior of fruit flies in searching for food. FOA is easy

to implement and consists of few adjustable parameters. Due to these merits, FOA

has been successfully used in solving several NP-Hard optimization problems

such as neural network optimization [133], financial distress [134] and more

recently in scheduling problems [135]. A core characteristic of FOA that makes it

suitable in solving our problem is its ability to work with network coordinates.

This property sets FOA apart from our previously proposed algorithms because it

allows FOA to seamlessly work with network QoS metrics that are correlated to

network coordinates such as network latency. The network coordinates employed

by the proposed NFOA are directly obtained from LANMF which doesn’t need to

convert them back to RTT in the QoS model (as seen in equation 4.9) as was done

in our previous approaches.

In the next sub-section we present the basic concepts of FOA.

New Methods for Network-aware Web Service Composition in the Cloud

107

4.3.4.1 Basic Concept of Fruit Fly Optimization Algorithm

FOA is a new type of evolutionary algorithm proposed in 2011 which is based

on the behavior of a fruit fly during its search for food as shown in Figure 4.11.

A fruit fly is characterized by its acute sensing and perception abilities. This is

said to be as a result of its osphresis organs [134]. Via the organs, a fruit fly is

able to perceive food particles from several kilometers away. Once a fruit fly

smells the presence of food, it closes in on the direction of the food in a hoping

fashion. Each time the fly hops to a possible location, it tries to determine the

next hoping direction that will take it to closer to the food source. Based on the

behavior exhibited by the fruit fly, we describe the steps required by the FOA.

Y
-a

x
is

X-axisOrigin (0,0)

Smell area

Hop direction(X1,Y1)

(X2,Y2) Fly position

Fly distance
from origin

Food

Fruit Fly

Figure: 4.11: Food searching pattern of fruit fly

Initialize population

X and Y axes (x , y) for a fruit fly swarm are first initialized;

New Methods for Network-aware Web Service Composition in the Cloud

108

()
(4.13)

()

axis

axis

x Init X

y Init Y

Then individual positional coordinates of each fruit fly is initialized. For a fruit

fly i,

()
(4.14)

()

i

i

x x rand

y y rand

Estimate Distance and Smell concentration judgment value

Given that the exact position of the food is initially unknown, each fruit fly

computes its distance (g) from origin (0, 0) using equation (4.15), then the smell

concentration judgment value (v) for every fruit fly is computed as the inverse of

distance.

2 2 (4.15)i i ig x y

1
i

i

v
g

 (4.16)

Determine fitness value

The fitness value, also known as Smell concentration judgment function, is

calculated as a function of smell concentration value (g);

)17.4()(ii vfF

New Methods for Network-aware Web Service Composition in the Cloud

109

Determine best fruit fly

Compare fitness values of all fruit flies in swarm and determine fruit fly with the

best fitness value;

[] max() (4.18)F indexbest best F

Store attributes of best fruit fly

In order to compare fitness of best fruit fly against other fitness values subsequent

iterations, the best fitness is stored in memory,

(4.19)best FFit best

Then the positions of the best fruit fly are stored as new X and Y axes for the fruit

fly swarm,

()
(4.20)

()

index

index

x X best

y Y best

Best positions are used to update each fruit fly in the swarm according to equation

(4.14).

The whole process is repeated until either the maximum number of iterations is

reached or optimization is achieved.

4.3.4.2 Network-aware Fruit Fly Algorithm (NFOA)

We propose an enhanced fruit fly optimization algorithm called NFOA that has

the capability to find services whose network positions are closer to each other

and to the users while ensuring QoS is optimized. Consequently these services

New Methods for Network-aware Web Service Composition in the Cloud

110

will result in low latency compositions. Traditionally FOA is designed to solve

single objective optimization problems so it will not be able to solve our research

problem which involves multiple conflicting QoS attributes and constraints. Thus,

we enhance FOA with non-dominated sort operation and constraint handling to

enable it solve our research problem.

When NFOA is applied to our problem, instead of computing the end-to-end

network latency for a composite service such as in our previous approaches,

NFOA defines as a vector of network coordinates ()E for each composite

service.

 1 1 2 2() , , , , , ,j j j j nj njE C x y x y x y kj ..1

Where ,x y is the network coordinate of the j-th web service.

The values of ,x y coordinates are obtained from LANMF. Each service that

is part of a composite service is represented by two dimensional network

positions as seen in Figure 4.12. Where ijx and ijy are x-axis and y-axis

coordinates of a service ijs .

New Methods for Network-aware Web Service Composition in the Cloud

111

Y
-a

xi
s

X-axis

s12 snjs27 s33

(X12,Y12)

(X27,Y27)

(X33,Y33)

(Xnj,Ynj)

Datacenter
1

Datacenter
2

Datacenter 3

Datacenter
n

Workflow

Figure 4.12: Services and their network positions

As previously stated, our service composition problem is to find a composite

service that has optimal cost, response time, execution time and near optimal

network latency between constituent service network paths in terms of their

network positions. Using NFOA, the best composite service will have selected a

set of services with network positions that have near optimal E without

compromising QoS. Note that, because NFOA is dealing directly with network

coordinate representation of services, it is no longer necessary to have a

quantitative representation (fitness value) for end-to-end network latency of a

composite service in our QoS model (equation 4.9) or during the optimization

process. Thus, the dimensionality of our problem has been reduced. Results

demonstrate that this will in-turn improve computation time when compared to

our previous approaches. It will also reduce complexity of the research problem.

NFOA is described below.

Initialize population

New Methods for Network-aware Web Service Composition in the Cloud

112

Firstly, each fruit fly in the NFOA swarm is initialized as a possible composite

service. In this case, a fruit fly is encoded as a set of service coordinates where

each coordinate represents the network position of service within the cloud as

seen in Figure 4.13.

s11 s12 s13 s1k1t1

t2

tn

Tasks

Candidate services per
task

Fruit fly

s21 s22 s23 s2k2

sn1 sn2 sn3 snkn

Fruit fly representation of a
composite service with n = 3

x11,y11 s11

s23

s31

x23,y23

x31,y31

Fruit fly
Composite

Service

Figure 4.13: Encoding a composite service as a fruit fly using NFOA

Determine Vector of network coordinates and end-to-end QoS

Instead of randomly assigning coordinates to each service as seen in basic FOA,

NFOA uses LANMF to determine network coordinates of each service. These

coordinates will be a representation of the RTT between service datacentres in the

cloud. Hence,

(4.21)
i

i

x X

y Y

New Methods for Network-aware Web Service Composition in the Cloud

113

Where X and Y represent network coordinates for a service.

Using this procedure, a vector of network positions ()E is obtained for a fruit fly

by aggregating the network positions of each service within the fruit fly. Then

each fruit fly computes its end-to-end smell concentration value (G) by

combining individual smell concentration values (g) for all n services within.

1

(4.22)
n

i
i

G g

The next task involves determination of end-to-end QoS values (Pf , RTf , and

ETf) by aggregating QoS levels and then penalizing them according to equations

(4.10) and (4.11).

Estimation of end-to-end smell concentration judgment value

Smell concentration judgment value is estimated for each service in a fruit fly

(according to (4.16)) and then combined into end-to-end smell concentration

judgment value for the composite service;

1

(4.23)
n

i
i

V v

Computation of Smell Concentration Judgment function

Both end-to-end smell concentration judgment value and end-to-end QoS values

are used to compute the smell concentration judgment function (F) for each fruit

fly;

New Methods for Network-aware Web Service Composition in the Cloud

114

(4.24)P
P

V
F

f
 (4.25)RT

RT

V
F

f
 (4.27)ET

ET

V
F

f

Non-dominated sort operation

Different from FOA, NFOA performs non-dominated sort of fruit flies into their

various fronts with respect to fitness values for cost, response time and execution

time. Note that, since NFOA is dealing directly with coordinates, non-dominated

sorting is not performed with respect to network latency as is the case with

INSGA and KNSGA.

Determine best fruit flies and update population

Fruit flies in the highest front (i.e. Rank 1) representative of individuals with best

smell concentration judgment function are then stored and subsequently used to

update coordinates of each fruit fly in the population. The process is repeated

until maximum number of generations is achieved. Algorithm 4.7 outlines the

NFOA algorithm.

Algorithm 4.7 NFOA Algorithm
Input: T, C, O, max_iter, pop_size, D
Ouput: bestFly
1: pop Randomly generate fruit fly positions
2: P Randomly generate QoS values of positions
3: Q Determine end-to-end QoS of positions

4: pop LANMF (D)
5: While (gen max_iter)
6: {
7: G Determine distance of pop from origin (0,0)
8: V Compute Smell Conc. Value (pop)
9: [fP, fRT, fET] Compute Normalized QoS (Q)

10: [FP, FRT, FET] Compute Smell Conc. Function (V , Pf , RTf , ETf)

New Methods for Network-aware Web Service Composition in the Cloud

115

11: pop Perform Non Dominated Sort (pop)
12: bestFly pop[Rank 1]
13: pop bestFly + rand()
14: Compute newQ for each position in pop

15: endWhile
16: }

4.4 Evaluation

This section presents an evaluation of the performance of our proposed

algorithms.

4.4.1 Setup

Evaluations were conducted on a PC with Intel Core i7 processor with 2.8 GHz

CPU and 8GB RAM. Our algorithms and simulations were conducted on

MATLAB 2014 environment. To simulate our network environment, we make

use of Harvard dataset [124] which is a collection large scale RTT measurements

between 1890 Planet-Lab nodes. Each node has a unique IP address and is

assumed to be a data centre located in the cloud. We also assume each node

contains only one web service node. For the sake of simplicity, a large sequence

workflow of 13 tasks and 20 candidate services per task is considered (as shown

in Figure 4.14).

Datacenter1j

S1j

Datacenter2j

S2j

Datacenter3j

S3j

Datacenter13j

S13j

Figure 4.14: Test sequence workflow where 1.. nj k and nk is number of

candidate services in the n-th service class

New Methods for Network-aware Web Service Composition in the Cloud

116

This means that there exists about 2013 or 82 quadrillion possible service

combinations in our test workflow. The service numbers considered are meant to

simulate a realistically large service environment. Also, a single user location is

considered in our cloud network. In our simulation, we considered cost, response

time and execution time as web service QoS attributes, although any other QoS

attribute such as reputation, reliability, availability, etc. could be considered as

this will not affect our results. QoS values for services are generated randomly

within a realistic Gaussian distribution presented in Table 4.3.

Table 4.3. Range of QoS values

QoS Attribute Maximum value Minimum value

Response time 40 1
Cost 40 5

Execution time 40 5

4.4.2 Algorithms

We compare our proposed algorithms with previous meta-heuristic algorithms for

multi-objective optimization of composite service QoS. The previous works

considered are described below:

 NSGA-IIb: NSGA-II algorithm based on previous work in [137]. It is fed

by LANMF and has uniform distribution index set at 20. Also, the

algorithm uses a standard penalty-based constraint handling strategy

which will be compared to our unique penalty-based constraint strategy to

determine which one is superior.

 NSGA-IIc: Similar to NSGA-IIb, but having distribution index of 80. Note

that having two versions of NSGA-II with different distribution index

settings is important in evaluating the performance of INSGA’s ND-

New Methods for Network-aware Web Service Composition in the Cloud

117

Mutation operator which employs a variable distribution index for each

mutated gene. This will give us an idea of which distribution index

strategy is more effective in searching for near optimal compositions.

 INSGA: Our novel network-aware NSGA-II algorithm with unique ND-

Crossover and ND-Mutation operators.

 KNSGA: Our unique Kmean-based NSGA-II algorithm.

 INSGA-E: Similar to INSGA but fed by traditional Euclidean distance

network coordinate system (EDM). This variation of INSGA will be

compared against original INSGA to evaluate the impact of choice of

network coordinate system on accuracy of optimal compositions.

 PSO: Population-based particle swarm optimization algorithm based on

previous work in [133] and fed by LANMF.

 NMPSO: Our unique non-dominated sort PSO algorithm.

 NFOA: Our non-dominated sort based fruit fly optimization algorithm

 LIP: Linear Integer Programming algorithm for service composition based

on [70].

Table 4.4 presents the parameter settings for our test algorithms. These settings

are the optimal performance settings which were determined after performing

testing different parameter values for each algorithm.

Table 4.4. Algorithm settings

Paramete
rs

NSG
A-
IIb

NSG
A-
IIc

INSG
A

KNS
GA

INSG
A-E

PSO NMP
SO

NFO
A

LIP

Populatio 200 200 200 200 200 200 200 200 200

New Methods for Network-aware Web Service Composition in the Cloud

118

n size
Number

of
generatio

n

200 200 200 200 200 200 200 200 200

Crossove
r

probabilit
y

0.9 0.9 - 0.9 - - - - -

Mutation
probabilit

y

0.5 0.5 - - - - - - -

Tour size 2 2 2 2 2 - - - -
Network
model

LAN
MF

LA
NM
F

LAN
MF

LAN
MF

EDM LA
NM
F

LAN
MF

LA
NM
F

LA
NM
F

Distributi
on index

20 80 - - - - - - -

Crossove
r operator

Singl
e
cross
over

Sing
le
cros
sove
r

ND-
Cross
over

Single
crosso
ver

ND-
Cross
over

- - - -

Mutation
operator

Stan
dard
muta
tion

Stan
dard
muta
tion

ND-
Mutat
ion

K-
Mutat
iion

ND-
Mutat
ion

ND-
Mut
ation
-

- - -

Number
of Tasks

13 13 13 13 13 13 13 13 13

Number
of

Candidat
e services

20 20 20 20 20 20 20 20 20

Number
of

neighbors
(h)

32 32 32 32 - 32 32 32 32

Inertia
Weight

(w)

- - - - - 0.39 0.39 - -

New Methods for Network-aware Web Service Composition in the Cloud

119

c1/c2 - - 2/2 2/2 -
Number

of
Clusters

- - - 30 - - - - --

4.4.3 Results and Discussion

To demonstrate the efficiency of our algorithms we compare their optimality and

performance in terms of fitness, network latency, population diversity and in

some cases distribution index (DI) (especially for NSGA variants). We also

compare them against other service composition algorithms in different

environmental contexts such as variations in number of tasks, candidate services,

and computation times. Given the probabilistic nature of our proposed algorithms,

each one is run 50 times to obtain average values for fitness, latency and standard

deviation which is often used to measure diversity of population.

4.4.3.1 Optimality

We evaluate the optimality of our test algorithms. Figure 4.15 (a) shows that

INSGA leads with the best average fitness value, followed closely by NFOA,

KSGA and NMPSO. The other algorithms LIP, NSGA-IIb and PSO show

significantly poorer average fitness with PSO indicating the worst value due to its

inability to escape local optimum. The reason for our algorithms’ superiority in

fitness compared to PSO, NSGA-IIb and LIP is because of their unique

population update strategies which maintain population diversity (as seen in

Figure 4.15(c)) and ensure that only good individuals are retained throughout the

optimization process. This ability is absent in NSGA-IIb, LIP and PSO which is

why they often generate bad individuals using update strategies that lead to poor

fitness. Figure 4.15 (b) shows a similar trend to Figure 4.15 (a) with INSGA still

leading the pack in searching for best latency compositions. This confirms that

New Methods for Network-aware Web Service Composition in the Cloud

120

overall INSGA finds best solutions among the proposed algorithms. Although its

optimality is not significantly different from the other proposed algorithm.

Overall, the proposed algorithms have been shown to have significantly better

optimality than other service composition techniques. Table 4.5 shows the best

fitness values for each algorithm. The result demonstrates that INSGA finds best

fitness in eight runs out of ten as highlighted in bold. LIP and NFOA discover

best fitness in one run each.

(a) Average fitness vs Generation

New Methods for Network-aware Web Service Composition in the Cloud

121

(b) Average network latency vs Generation

(c) Standard deviation vs Generation

Figure 4.15: Plot of optimality against average fitness, network latency and
standard deviation

New Methods for Network-aware Web Service Composition in the Cloud

122

Table 4.5: Comparison of best fitness for test algorithms for ten runs

Runs INSGA KNSGA NMPSO LIP NFOA PSO NSGA-
IIb

1 0.32983 1.09161 1.34691 1.56965 1.30416 2.32433 1.52083
2 0.69713 1.21045 1.35127 1.24363 1.14710 2.58169 1.90261
3 0.29126 1.08312 1.18954 1.34473 1.37780 2.57142 1.58883
4 0.30682 1.13163 1.20425 1.21476 1.06168 2.33337 1.71169
5 0.73668 1.04919 1.40902 0.53175 1.23786 2.35396 1.75778
6 0.85042 1.03462 1.34800 1.43420 0.84480 2.37883 1.38422
7 0.20264 1.16006 1.45805 1.17998 1.2663 2.27811 1.75865
8 0.56565 1.05863 1.28388 1.44654 1.20992 2.34233 1.64492
9 0.65728 1.13630 1.17596 1.02549 1.38819 2.28622 1.96125

10 0.55980 1.01643 1.19119 1.42480 1.17973 2.47504 1.86472

4.4.3.2 Impact of Distribution Index (DI)

In this experiment, we evaluate the impact of DI on optimality and population

diversity the test NSGA-II algorithms. Here, we compare; (i) NSGA-IIb which

adopts uniform DI of 20, (ii) NSGA-IIc which adopts uniform DI of 80, and (iii)

INSGA which uses dynamic DI in its ND-Mutation operator. In Figures 4.16 (a)

(b) and (c), we notice that INSGA’s dynamic DI strategy resulted in solutions

with better fitness, network latency and population diversity (i.e. standard

deviation) than NSGA-IIb and NSGA-IIc. In addition, the strategy also helped

INSGA to avoid trapping in local optima while converging after 140 generations.

The reason for improved results is attributed to ND-Mutation operator which uses

our DI strategy to significantly mutate individuals that have poor optimality and

crowding distance.

New Methods for Network-aware Web Service Composition in the Cloud

123

(a) Graph indicating effect of distribution index on fitness

(b) Graph showing effect of distribution index on latency

New Methods for Network-aware Web Service Composition in the Cloud

124

(c) Graph showing effect of distribution index on diversity of population

Figure 4.16: Plot of Distribution index against fitness and latency

4.4.3.3 Size of Candidate services per task

In this experiment, we increase the number of candidate services per task from 20

to 50 and evaluate the impact on network latency, fitness, computation time and

diversity of population. In Figures 4.17(a) and (b), it is noticed that an increase in

size of candidate services drives our proposed algorithms closer to globally

optimal Pareto set. PSO shows the worst optimality of fitness and network latency

with increasing number of candidate services, this is because it easily traps into

local optimum due to its poor population diversity of particles. NSGA-IIb and

LIP follow closely ahead PSO’s poor optimality. It is noteworthy to state that LIP

has been known to be generally slower than meta-heuristic algorithms in reaching

a global solution. INSGA finds the globally optimal Pareto set amongst our

proposed algorithms, followed by KNSGA, NFOA and NMPSO. INSGA’s

superior optimality is largely because of the application of ND-Crossover and

New Methods for Network-aware Web Service Composition in the Cloud

125

ND-Mutation operators which exploit crowding distance and network latency

information in their operations. This ability is not present in the other approaches.

(a) Graph showing impact of number of candidate services on fitness

(b) Effect of number of candidate services on network latency

Figure 4.17: Plot of candidate service number against fitness and latency

New Methods for Network-aware Web Service Composition in the Cloud

126

4.4.3.4 Size of Tasks

In this experiment we vary the number of tasks from 13 to 40 and evaluate the

impact of fitness, network latency, computation time and standard deviation of

our algorithms. In Figures 4.18 (a) and (b), it is observed that the average fitness,

network latency and computation time increase almost linearly when the number

of tasks rises for all test algorithms. Here also, INSGA is seen to produce the best

quality solutions, with PSO showing the worst quality. However, Figure 4.18 (c)

demonstrates that INSGA shows second to the worst computation time, only

ahead of LIP which is the slowest among the test algorithms. The reason for

INSGA’s high computation time is due to the additional computations performed

by ND-Crossover and ND-Mutation operators. PSO shows the best computation

time followed closely by NFOA, NMPSO, KNSGA and NSGA-IIb. A likely

reason for their improved computation times is because they don’t use time

consuming computations such as ND-Crossover or ND-Mutation operators during

optimization process. LIP has already been known to be generally slower than

meta-heuristic algorithms so its behaviour is quite expected. The figure also

shows that there is considerable difference between computation times of

PSO/NMPSO/NFOA and INSGA/LIP which is about 50 seconds after 20 Tasks,

and then rises to 100 seconds after 35 tasks. Despite its poor computation time,

INSGA’s performance is still acceptable because it more than makes up for the

poor computation time by finding better quality solutions when compared to other

techniques. In terms of balance between performance and optimality, NFOA,

NMPSO and KNSGA show a better balance between performance and optimality

when compared to INSGA, PSO, LIP and NSGA-IIb. In terms of performance,

NMPSO shows the best performance in a large scale environment thus it is most

preferred when the number of tasks is large.

New Methods for Network-aware Web Service Composition in the Cloud

127

(e) Graph showing impact of number of tasks on fitness

(f) Graph showing impact of number of tasks on network latency

New Methods for Network-aware Web Service Composition in the Cloud

128

(g) Effect of number of tasks on computation time

Figure 4.18: Plot of size of task against average fitness, network latency and
computation time

4.4.3.5 Number and strictness of constraints

In this experiment we vary the strictness and number of global constraints for the

QoS attributes and then evaluate their impact on standard deviation of Pareto sets

and computation times of the algorithms. Here, we specify an end-to-end (global)

constraints for each attribute. For example, the first row in Table 4.6 specifies

end-to-end constraint values for cost, response time, execution time and network

latency as 150ms, 150ms, 150ms and 800ms respectively. The constraint values

in the table were carefully chosen to reflect realistic global constraints. The table

also shows how the standard deviation of the algorithms’ Pareto sets varies with

the strictness of the global constraints. It can be seen from the table that the higher

the constraint strictness the lower the standard deviation of solutions in each

algorithm’s Pareto set. In fact when the strictness of the global constraints is

increased by half (e.g. from 150ms in row one to 80ms in row three) then the

New Methods for Network-aware Web Service Composition in the Cloud

129

standard deviation for each algorithm declines to less than a third of their initial

values. This result shows that when constraints are too strict, then the number of

solutions in the Pareto set will be less. The result also shows that the standard

deviation of proposed algorithms are always higher than that of NSGA-IIb. This

is due to the proposed penalty factor which seems to be better suited to situations

where all the QoS attributes considered are “lower is better”.

Table 4.6: Effect of constraint strictness on standard deviation of algorithms’

Pareto sets

GLOBAL
CONSTRAINTS (ms)

IN
SG

A

K
N

S
G

A

N
M

P
S

O

N
FO

A

N
S

G
A

-
IIb

C RT ET NL
150 150 150 800

1.6011 1.1256 1.0963 1.0769 0.9722

C RT ET NL
100 100 100 600

0.8499 0.7785 0.7381 0.6905 0.6258

C RT ET NL
80 80 80 400

0.4152 0.3678 0.2917 0.2401 0.2242

New Methods for Network-aware Web Service Composition in the Cloud

130

Number of constraints
0 0.5 1 1.5 2 2.5 3 3.5 4

C
om

pu
ta

tio
 ti

m
e

(S
ec

on
ds

)

40

60

80

100

120

140

160

180

200

INSGA

KNSGA

NMPSO

LIP

NFOA

NSGA-IIb

Figure 4.19: Plot of computation time against number of constraints

Figure 4.19 shows the computation times obtained by the algorithms for each

number of constraints. It is observed that the computation time rises only slightly

when the number of constraints is increased for each algorithm except for LIP and

INSGA. The reason for INSGA’s and LIP’s high computation time may be

attributed to their large amount of processing during each iteration.

4.5 Summary

In this Chapter we presented four novel approaches to network-aware and QoS

based web service composition in the cloud. Contrary to current works, the

approaches separate QoS of network from web service QoS. They leverage

New Methods for Network-aware Web Service Composition in the Cloud

131

LADMF proposed in the previous Chapter to estimate end-to-end network

distance of a composite service. The four algorithms use different strategies for

handling QoS and network distance information during optimization. The first

approach is an enhanced NSGA-II algorithm called INSGA which uses unique

ND-Crossover and ND-Mutation operators to alter genes with poor fitness and

crowding distance into genes having good fitness and crowding distance. The

second approach is a Kmean-based NSGA-II algorithm called KNSGA which

uses Kmean clustering in its K-Mutation operator to alter poor latency genes with

good latency genes that are in the same Kmean cluster as their reference genes.

The third approach is a multi-population based non-dominated sort PSO

algorithm known as NMPSO. NMPSO uses information from two populations;

one population which searches for good latency solutions, and the other

population that searches for a Pareto set with optimal QoS. NMPSO uses best

solutions from both populations to update particle positions and guide search

towards optimal Pareto set with low latency and QoS optimal compositions. The

last approach is a Non-dominated Sort Fruit fly optimization algorithm called

NFOA which uses its strength of working with network coordinates coupled with

non-dominated sorting to search for network positions of composite services with

optimal QoS. The four algorithms were compared and their performance and

optimality were evaluated against other techniques such as linear integer

programming (LIP), traditional PSO and NSGA-II algorithms. Experimental

results show that INSGA finds best quality solutions among the algorithms,

although at the cost of performance. This is due to its unique ND-Crossover and

ND-Mutation operators which retain genes with good fitness and crowding

distance and significantly alters genes with bad fitness and crowding distance.

Results also show that NMPSO, KNSGA and NFOA have a better balance

between performance and optimality. This is because they utilize less

New Methods for Network-aware Web Service Composition in the Cloud

132

computations and resources than INSGA. NMPSO demonstrated the best

performance in a large scale environment. This is due to its number of

computations which is less when compared to the other proposed algorithms.

Finally, our proposed penalty-based constraint handling strategy outperformed the

standard constraint handling strategy of NSGA-II in maintaining better population

diversity of Pareto set under strict global constraints.

A New Method for Network-aware Service Composition in Dynamic Environment

133

CHAPTER 5
A New Method for Network-aware Service Composition in

Dynamic Environment

In the previous chapter, we introduced for unique evolutionary algorithms for

Network-aware and QoS based web service composition. The techniques

proposed focus on solving our research problem under static environment i.e.

environment where QoS values remain unchanged during the optimization

process. However they may not be able to perform effectively in a dynamic

environment i.e. environment where QoS values fluctuate constantly such as a

real world environment. To further emphasize this point, we evaluate the four

proposed algorithms in Chapter 4 using rapidly changing QoS scores to simulate a

real world environment. From Figure 5.1, it is observed that the ability for each of

the presented algorithms to find a globally optimal Pareto front has been

negatively affected due to fluctuations in the QoS values. In the figure, each

algorithm converged in local optimum when compared to their results in static

environment (i.e. Figure 4.15a). This result shows that the presented algorithms

do not fare well in real world service composition scenario.

A New Method for Network-aware Service Composition in Dynamic Environment

134

Figure 5.1: Variation in average fitness using dynamic QoS values

Part of the reason for their ineffectiveness is due to the use of exact values for

RTT which impacts their overall optimality and performance in dynamic

environment. We believe that if the network latency metric was used in

qualitative form, it would have been easier for the algorithms to cope in dynamic

setting. Another reason why RTT of a path should be represented as a qualitative

metric rather than a quantitative one is because consumers in the real world are

hardly interested in whether or not the end-to-end RTT of a composition is

optimal, instead they may be more interested in knowing if it is high enough to

provide satisfactory network performance. Therefore, it is important to develop

other evolutionary techniques that perform better than the previous algorithms in

a dynamic environment. Motivated by this necessity, we propose a novel

technique to search for low latency and QoS-optimal compositions in a dynamic

cloud environment.

A New Method for Network-aware Service Composition in Dynamic Environment

135

As previously covered in Chapter 2, QoS-based service composition in dynamic

environment has been tackled using techniques classified as either internal [99-

107] or external [108-110] adaptation methods. Generally, internal adaptation

techniques are known to be efficient in solving the problem however they have

poor optimality. External adaptation techniques on the other hand are capable of

producing better solutions, however they are very slow when compared to the

former. In this study we propose an enhanced internal adaptation technique based

on cellular automaton-based NSGA-II algorithm or CellGA for short. One might

argue that an external adaptation technique is more suitable for a dynamic

environment than an internal adaptation technique. However due to their poor

computation times, external adaptation techniques are inefficient in large dynamic

service environments. Also, because we are dealing with real time changes in

QoS, it is important for the composition algorithm to be able to quickly find a

near-optimal solution. Any slight delay in operation due to QoS fluctuation will

lead to poor consumer experience. Thus, CellGA aims to quickly find a near-

optimal Pareto set immediately after it has observed a change in QoS values. In

real world this change usually implies that one or more web services that are part

of the composition process have become unavailable or have been affected by

network or server conditions.

5.1 Qualitative Representation of Network Latency

This study considers the qualitative representation of composition network paths.

Ordinarily, RTT values are measured in quantitative form by projecting network

packets across the network and measuring transmission time to their destination

and then back to the source. However, this approach is computationally expensive

and inefficient. Also, quantitative RTT measurements do not reflect perceived

QoS experience from the user’s perspective. This chapter adapts the LANMF

algorithm to classify network paths as binary classes of either “good” or “bad”

A New Method for Network-aware Service Composition in Dynamic Environment

136

once they have been estimated. Where “good” represents 1 and “bad” represents

0. Such representations have several benefits over quantitative representation of

RTT.

 Qualitative values consume far less resources than quantitative values. For

example binary numbers like 1010011101 consume less memory and

transmission cost when compared to a large sequence of integer numbers

like 984,400,483,720,383… etc.

 Qualitative RTT values are easier to obtain than quantitative values. For

instance, it is easier to determine if a network path is either 1 or 0 than if it

is either 819ms or 1250ms.

 Qualitative RTT values better reflect stable representations of network

paths. For example, a network path has a more stable value if it is assigned

1 or “good” for having RTT between 1ms and 30ms than if it is assigned

an exact value which could change over time and render the path unstable.

 Qualitative RTT values can be easily integrated with a service

composition technique without making much modifications.

In order to obtain qualitative RTT values, the LANMF algorithm is slightly

modified to use a threshold value in transforming exact values into binary

numbers. The threshold value is denoted as and is chosen purely for

experimental usage. For instance, in a delay-tolerant application, LANMF may

classify a path as “good” or 1 if its RTT is lower than an arbitrary threshold value

of 20ms for the sake of experimentation. Other network paths above this

threshold will be classified as “bad” or 0. A less delay-sensitive application may

decide a higher threshold value of say 200ms since its network performance needs

are much less relaxed. Obviously the choice of can impact the result of the

composition technique. This will be analysed in the results presented later.

A New Method for Network-aware Service Composition in Dynamic Environment

137

A transformation operation between paths of services s11, s22, s23, s31, and s32, with

the predicted binary value highlighted in bold are illustrated in Figure 5.2. The

Figure shows the binary value assigned to the unmeasured network path between

s23 and s31 data centres is 1 using as 20ms.

Once RTT measurements are transformed into qualitative values, they are fed to

CellGA algorithm to search for “good” latency composite services with near-

optimal QoS. Algorithm 5.1 outlines the modified LANMF algorithm with the

additional adjustments highlighted in bold.

s12 s23 s31

80ms 66ms1 0

Composite service

RTT < RTT >

Transformed RTT values

0s11

s23

s31s12

1

s22

0

s32

0 1 1

1 1 0

= 70ms

Measured
RTT

Predicted
RTT

Figure 5.2: Transformation of RTT measurements into qualitative values

Algorithm 5.1 Modified LANMF Algorithm

Input: D, g, n, , h, maxIter, no_states, state, actions_prob, rp_env, w,
J1, J2
Ouput: Dnew
1: Dnew = function LANMF(Input)
2: { for(i =1: maxIter) {
3: for(j =1: n) {
4: Select h random number of neighbours and
5: initialize action, actions_prob
6: Uj rand(x)

A New Method for Network-aware Service Composition in Dynamic Environment

138

7: Vj rand(y)
8: Check action of Uj

9: If action 1 Then
10: Update Uj(new) according to equation (3.13)
11: If action 2 Then
12: Update Uj(new) according to equation (3.14)
13: Check action of Vj
14: If action 1 Then
15: Update Vj(new) according to equation (3.13)
16: If action 2 Then
17: Update Vj(new) according to equation (3.14)
18: Endfor }
19: Dnew U * VT
20: error w (D - Dnew) 2
21: rp_env Get response from environment
22: if (error is minimised) {
23: Reward actions_prob for Uj and Vj

24: Update state of Uj and Vj

25 Else
26: Penalize actions_prob for Uj and Vj
27: EndIf}
28: return Dnew
29: EndFor}

30: For each Dnew
31: {
32: If (Dnew (i, j) < Threshold value)
33: Then assign 1 to Network path
34: Else assign 0 to Network path
35: }
36: }

5.2 Cellular Automaton-Based NSGA-II Algorithm

In this technique, we enhance the traditional crossover and mutation operation of

NSGA-II with cellular automata [141] update strategy to facilitate Network-aware

and QoS based service composition in dynamic environment. Our unique

algorithm is known as CellGA. Compared to the previously introduced

A New Method for Network-aware Service Composition in Dynamic Environment

139

approaches, CellGA uses cellular automata rules to update its crossover and

mutation operators otherwise known as Cell-Crossover and Cell-Mutation

operators respectively.

Cellular automata (CA) are constantly-changing discrete systems that are mainly

used for large-scale parallel computations. In the field of science, CA has been

adopted in simulating many processes such as fluid dynamics [143], medical

image processing [144], traffic modelling [145] and chemical kinetics [142].

Common to all these processes is the idea that CA can identify and mimic distinct

features of a dynamic physical system which contains a large number of small

interconnect components. Due to its ability to handle large scale dynamic

systems, CA has been used in this study to enhance our approach to tackle the

service composition in dynamic setting.

A CA is described as a network or neighbourhood of interconnected cells, each of

which is in one of several local states at any given time. Each cell within a

neighbourhood adopts a general rule for updating its local state at time 1tm . The

general rule depends on the cell’s own local state and the local states of other

cells in the neighbourhood at time tm . Apart from each cell’s local state, the

neighbourhood is also characterized by a global state whose value is determined

by the local states of constituent cells. In this study, each i-th cell’s local state is

denoted as bi while a neighbourhood’s global state is denoted as B.

Once defined, a CA proceeds with an initial configuration of local states in the

neighbourhood. At each time step, the local states of all the cells in the

neighbourhood are updated simultaneously. Each cell’s state is only allowed to

have a binary value of either 0 or 1. Hence, the CA’s global state B is determined

by a vote between the cells in the neighbourhood which constitutes a CA rule.

The rule is used to update the global state of CA given its local states. Several

A New Method for Network-aware Service Composition in Dynamic Environment

140

rules can be defined for a CA. One of the major CA rules is the majority rule

which states that the global state for a CA is given as the state of majority of the

cells in the CA. For example assuming the local states of cells within a CA is

configured as seen in Figure. 5.3, cell 1 and cell 3 have the majority state of 1

while cell 2 has minority state of 0, therefore the CA’s global state is assigned 1.

CA
(Neighborhood)

B

b1 b3b2
Cell 1 Cell 2 Cell 3

1

1 10

Global state

Local states

Figure 5.3: CA Majority rule

Other CA rules [146] have been developed for different applications such as

minority rule, rule 30, rule 54, rule 62, etc. In this study, we adopt two novel CA

rules in CellGA’s Cell-Crossover and Cell-Mutation operators tasked with

eliminating “bad” network paths within a Pareto set while ensuring near-optimal

QoS. CellGA’s procedure is described below:

Encoding

Similar to our previously introduced algorithms, CellGA encodes composite

service as a genome of integer numbers, where each integer represents the value

of a gene within the genome. A gene represents specific sub-task while integers

A New Method for Network-aware Service Composition in Dynamic Environment

141

represent the candidate service numbers assigned to a particular sub-task. In

addition to encoding each composite service, CellGA creates two CAs for each

gene. One CA will be used to apply the Cell-Crossover rule while the other CA

will be used to apply the Cell-Mutation rule for the gene. Each CA will contain

 A global state which decides whether or not the associated gene will

participate in crossover and mutation. 1 indicates that the gene will be

crossed over or mutated while 0 indicates otherwise.

 Local cell states which represent the qualitative RTTs of paths between

the associated gene and all neighbouring genes.

For example, assuming a sequence of three tasks are part of a workflow and only

two candidate services exist for each task as seen in Figure 5.4. B decides if a

service e.g. s11 should be candidate for crossover or mutation while b1 and b2

represent the RTT binary values of network paths s11 - s21, and s11 - s22

respectively. Binary values of b1 and b2 signify whether a path RTT is below or

above threshold value .

s11

s12

t3t2t1

s21

s22

s31

s32

CA for Crossover/Mutation

operation for gene s11

B

b1 b2

s21 s22

Figure 5.4: Encoding of gene CAs

A New Method for Network-aware Service Composition in Dynamic Environment

142

Population Initialization

CellGA starts optimization process by generating a random population of

composite services and their QoS scores. Then CellGA calls LANMF to estimate

the qualitative RTTs of all network paths for each individual in the population.

The output of LANMF’s computation is a binary matrix which is used to populate

the CA’s for each gene. For example, some services from Figure 5.4 could be

populated using binary values shown in Figure 5.5.

b11

1 11

b12

1 01
S21 S22 S23 S21 S22 S23

Gene S11 Gene S12

Figure 5.5: Structure of a gene’s cellular automaton

Non-dominated Sort

In the next stage, CellGA performs non-dominated sort operation on the

population to search for individuals with the best fitness irrespective of whether

they constitute “good” or “bad” path latencies. This is to ensure that the best

infeasible solutions are retained for the next stages of the optimization process.

Tournament Selection

This process involves choosing a pair of strong parents that will be used to

produce high quality children and then placing the parents in a mating pool.

A New Method for Network-aware Service Composition in Dynamic Environment

143

Crossover Operation

Individuals in the population are subjected to Cell-Crossover operation. The

operation starts by cutting each parent in the mating pool into small number of

fragments and then interchanging one parent’s fragment with another parent to

produce children. Specifically, Cell-Crossover operator chooses a cut point for

each parent based on our proposed CA crossover rule which states that for each

gene’s CA, its global state is 1 if any of its neighbourhood cells is in local state 0

(i.e. gene is crossed over if any of its network path RTT to neighbourhood cells is

above threshold value). The value of 1 for the gene’s global state tells the

operator to crossover the gene. But, if there exists no cell having local state 0 then

the gene’s global state becomes 0 and the gene remains un-changed (i.e. gene

remains unchanged if all of its network path RTT to neighbourhood cells are

below threshold value). The crossover operator ensures that only the genes

whose global state is 1 are altered. The operator also ensures that only a

maximum of
2
nT

cut points can be established for any parent. Where n is number

of sub-tasks within a workflow. This is to ensure that population diversity is

maintained throughout the optimization process. Figure 5.6 shows the global cell

state of a gene given certain combinations of local states.

0 1 1S11 1
Neighborhood cellsGene

S21 S22 S23 S24

B11 = 1 (YES)
Crossover gene?

1 1 1S32 1 B32 = 0 (NO)

Figure 5.6: Cell-Crossover operator’s CA rule

A New Method for Network-aware Service Composition in Dynamic Environment

144

Mutation Operation

The mutation operation, also known as Cell-Mutation alters a few genes for each

parent into children that closely resemble their parents. The standard behaviour of

a mutation operator is to alter genes based on their randomly generated mutation

probabilities. CellGA’s mutation operator adopts a different strategy to alter

genes of parents. It uses a mutation CA rule which states that if majority of

neighbourhood cells of a gene have local state of 1 (i.e. if majority of network

paths from gene are below threshold value) then the gene should not be altered.

But if majority have local state 0 (i.e. if majority of network paths from gene are

above threshold value) then the gene should be altered. If the cells having local

state 1 are equal in number to those having local state 0 then the gene is also

altered. Figure 5.7 shows how Cell-Mutation operator assigns binary values to

each gene’s global state.

0 1 1S11 1
Neighborhood cellsGene

S21 S22 S23 S24

B11 = 0 (NO)
Mutate gene?

1 0 0S32 0 B32 = 1 (YES)
1 1 0S12 0 B12 = 1 (YES)

Figure 5.7: Cell-Mutation operator’s CA rule

Children produced from the crossover and mutation operations are then re-

integrated back into the population and the process is repeated until total number

of generations is reached. CellGA algorithm is outlined in Algorithm 5.2 while

A New Method for Network-aware Service Composition in Dynamic Environment

145

Cell-Crossover and Cell-Mutation operators are outlined in Algorithms 5.3 and

5.4 respectively.

Algorithm 5.2 CellGA Algorithm

Input: D, max_iter
Ouput: pop
1:pop Randomly generate population
2:pop LANMF(D)
3:While (gen max_iter)
4:{
5: pop Tournament Selection (pop)
6: pop Cell-Crossover (pop, NP)
7: pop Non Dominated Sort (pop)
8: child_pop Cell-Mutation (pop, NP)
9: combination_pop pop + child_pop)
10: combination_pop Non Dominated Sort (combination_pop)
11: pop replacement(combination_pop)
12: EndWhile
13:}

Algorithm 5.3 Cell-Crossover Algorithm

Input: pop, Neighbor_Cells
Ouput: pop
1: totzero Total number of zeros
2: For Each (pop)
3: {
4: For Each (gene in pop)
5: {
6: totzero Count number of cells in Neighbor_Cells in NP with 0
7: If (totzero > 0)
8: Then crossover gene
9: Else do not crossover gene
10: }
11: }

A New Method for Network-aware Service Composition in Dynamic Environment

146

Algorithm 5.4 Cell-Mutation Algorithm

Input: pop, Neighbor_Cells
Ouput: pop
1: totone Number of ones
2: totzero Number of zeros
3: For Each (pop)
4: {
5: For Each (gene in pop)
6: {
7: totone Count number of cells in Neighbor_Cells with 1
8: totzero Count number of cells in Neighbor_Cells with 0
9: If (totone < totzero)
10: Then mutate gene
11: Else do not mutate gene
12: }
13: }

5.3 Evaluation

Several experiments were performed to evaluate the effectiveness and efficiency

of CellGA algorithm. In order to perform the evaluation, the algorithm was

implemented in MATLAB 2014. All experiments were simulated on a 2.8 GHz

PC with 8GB RAM. The parameter settings for the algorithm are shown in Table

5.1. Parameters for the other algorithms are already shown in Table 4.4. The

results of those algorithms in a dynamic environment will be compared against

CellGA in this experiment. The dynamic environment is simulated by randomly

changing a quarter of population’s individuals in each iteration. This is meant to

simulate a situation where the QoS scores and availability of web services are

constantly changing throughout the optimization process.

A New Method for Network-aware Service Composition in Dynamic Environment

147

Table 5.1: Cell-GA Algorithm settings

P
opulation

size

N
um

ber of
generations

T
our size

N
etw

ork
m

odel

C
rossover

operator

M
utation

operator

N
um

ber of
tasks

N
um

ber of
candidate
services

N
um

ber of
neighbours

L
atency

T
hreshold

value

200 200 2 LANM
F

Cell-
Cross
over

Cell-
Mut
ation

13 20 32 40ms

The same sequence workflow and Cloud network of 1890 Planet-Lab nodes

specified in previous experiment were used in this experiment. RTTs for the

Cloud network were generated using Harvard dataset similar to the previous

experiment.

5.3.1 Optimality

We evaluate the optimality of CellGA algorithm and compare it against our other

proposed algorithms. Figure 5.8 shows how average fitness of CellGA and other

algorithms vary over generations. The Figure demonstrates that CellGA avoids

local optimum and converges to a global Pareto front much later than other

algorithms. CellGA converged to the best average fitness precisely at the 190th

iteration while our previously best algorithm (in terms of optimality) INSGA

converged at the 120th iteration. The other algorithms converged much earlier to

average fitness values which are significantly higher than CellGA’s fitness. The

result demonstrates that CellGA is capable of finding better quality solutions than

other algorithms in a dynamic environment. The reason for CellGA’s superiority

is due to its ability to deal with qualitative RTTs instead of exact values which is

used by other algorithms. This qualitative representation allows CellGA’s Cell-

Crossover and Cell-Mutation to focus on finding QoS-optimal solutions whose

A New Method for Network-aware Service Composition in Dynamic Environment

148

RTTs are within the threshold value rather than solutions that have both optimal

QoS and optimal latency.

Figure 5.8: Average fitness versus Generation

Table 5.2: Comparison of Algorithms’ Average finesses

Run
s

CellG
A

INSG
A

KNSG
A

NMPS
O

LIP NFO
A

PSO NSGA
-11b

1 2.7839 3.1466 3.1019 3.3831 3.805
3

3.376
0

3.6657
4

3.6266

2 2.7720 3.0890 3.1823 3.3931 3.683
3

3.354
9

3.7293
1

3.6300

A New Method for Network-aware Service Composition in Dynamic Environment

149

3 2.7984 3.1029 2.9677 3.5216 3.698
9

3.371
4

3.8032
3

3.6267

4 2.7789 3.0821 3.1167 3.3069 3.705
2

3.369
7

3.7196
6

3.4108

5 2.7627 3.2359 3.1230 3.3154 3.761
2

3.364
7

3.8215
3

3.5243

6 2.6664 3.1384 2.9783 3.3448 3.743
4

3.288
6

3.8672
8

3.3989

7 2.7780 3.2015 3.0225 3.3476 3.717
5

3.267
4

3.7569
5

3.3747

8 2.7307 3.0728 3.0557 3.2634 3.772
5

3.259
9

3.6283
7

3.3617

9 2.9473 3.1614 3.1404 3.4562 3.780
6

3.422
0

3.7327
2

3.4287

10 2.6456 2.9385 3.1241 3.4106 3.164
5

3.293
9

3.9159
2

3.4558

Table 5.2 shows the best fitness values over ten runs. The table demonstrates that

CellGA finds the best solution in all ten runs as highlighted in bold.

A New Method for Network-aware Service Composition in Dynamic Environment

150

Figure 5.9: Average network latency versus Generation

In Figure 5.9, CellGA also tends to find lower latency solutions compared to

other algorithms despite using qualitative RTTs. This is because, with qualitative

RTTs, CellGA can consistently search for low latency solutions in a dynamic

environment whereas other algorithms tend to be inconsistent in their search for

low latency compositions. Table 5.3 shows the best RTTs obtained by the

algorithms over ten runs where CellGA shows best results in all runs.

..Table 5.3: Comparison of Algorithms’ Average RTTs (in ms)

Run
s

CellG
A

INSG
A

KNSG
A

NMPS
O

LIP NFO
A

PSO NSGA-
IIb

1 799.08 807.51 805.73 839.08 837.8
8

811.3
7

873.0
1

816.45

A New Method for Network-aware Service Composition in Dynamic Environment

151

2 751.11 848.14 825.35 840.69 806.2
7

820.3
1

863.6
4

814.79

3 771.51 819.25 842.96 824.34 827.7
6

821.2
4

861.8
1

818.09

4 784.63 808.81 837.23 841.11 809.3
9

859.4
7

878.8
2

812.15

5 738.94 792.64 816.92 853.59 820.6
2

822.0
4

865.6
7

784.23

6 759.87 827.17 824.05 828.73 819.6
8

829.6
8

860.1
5

810.01

7 773.75 798.43 812.35 827.01 821.5
2

813.1
0

865.2
0

815.53

8 772.73 829.80 819.53 825.97 857.3
9

824.2
5

873.3
5

834.39

9 774.38 816.32 837.51 821.26 815.9
8

845.6
2

868.6
3

803.93

10 748.28 827.21 829.15 850.64 831.0
9

842.9
4

853.2
6

823.38

We also evaluated how dynamic QoS fluctuations affected the population

diversity (standard deviation) of algorithms. Figure 5.10 shows that the level of

diversity of individuals for all algorithms was reduced due to dynamism of the

QoS attributes. For example in static environment, the standard deviation for

INSGA, KNSGA, NMPSO and NFOA averaged at around 1.2, 1.1, 0.9, and 0.8

respectively. However in dynamic setting, their average values fell to between the

A New Method for Network-aware Service Composition in Dynamic Environment

152

Generation
0 20 40 60 80 100 120 140 160 180 200

S
ta

nd
ar

d
de

vi
at

io
n

0.6

0.65

0.7

0.75

0.8

0.85

0.9

CellGA

INSGA

KNSGA

NMPSO

NFOA

Figure 5.10 Standard deviation versus Generation

The difference between this value and the standard deviations is quite considerate.

Despite this, CellGA’s ability to find better solutions than the other algorithms

was not hampered by its poor population diversity. This could be because

dynamic changes in QoS or availability of web services slightly contributes to

diversity of individuals which in turn aids CellGA to facilitate search for the best

individuals. Note that each time CellGA’s standard deviation plummets, it

immediately rises due to changes in web services so that average standard

deviation is maintained throughout the optimization process.

5.3.2 Computation time

In this experiment, we increase the number of tasks from 20 to 50 to evaluate its

impact of computation times of the algorithms. This will give us an idea of the

A New Method for Network-aware Service Composition in Dynamic Environment

153

ability of each algorithm to cope in a large scale dynamic environment. Figure

5.11 demonstrates that there is a partially linear correlation between number of

tasks and computation time. Unsurprisingly, NMPSO shows the best computation

time while INSGA shows the worst computation time among the algorithms.

CellGA seems to sit in between these two extremes at between 165 and 180

seconds. That is about a difference of 15 seconds which is a significantly small

value when compared to other algorithms. In fact, CellGA shows the smallest

difference between computation time at 20 tasks and computation time at 50 tasks

as seen in Table 5.4. The graph shows that CellGA’s computation time hardly

changes proportionately with increase in number of tasks when compared to other

algorithms. This is because qualitative RTT values adopted by CellGA hardly

affected the number of resources and computations necessary to carry out

optimization. This makes CellGA the most scalable among the algorithms in a

dynamic environment.

Figure 5.11: Effect of number of tasks on computation times of algorithms

A New Method for Network-aware Service Composition in Dynamic Environment

154

Table 5.4: Comparison of Algorithms’ Computation time differences
Algorithm Difference between computation times

at Task no. T = 20 and T = 50

(Seconds)

CellGA 15

INSGA 51

KNSGA 34

NMPSO 21

NFOA 24

5.3.3 Comparison of CellGA against other dynamic approaches

In this section, we aim to generally compare CellGA against other major dynamic

service composition algorithms such as reinforced learning (RL) and AI Planning

(AIP). RL and AIP are internal adaptation methods that use previous experiences

to alter parts of their solutions as the QoS values fluctuate. Both methods depend

solely on quantitative QoS values during their optimization process which causes

the process to be very slow and complex to implement. CellGA, on the other

hand, relies on the use of qualitative RTT estimates to drive optimization process.

This has the effect of minimizing the computational overhead and reducing

complexity of implementation. Hence, it is expected that CellGA will outperform

both RL and AIP in terms of computation time and ease of implementation due to

its use of qualitative QoS values. However, RL and AIP may find slightly better

quality solutions than CellGA due to their use of past experiences. In order to

confirm that this is the case, it is necessary to implement a common framework

for the comparison of CellGA against other dynamic approaches. This may prove

to be a very difficult task because it will require other dynamic approaches to

adapt their optimization processes so that they can work with qualitative QoS

values just like CellGA. As part of future work, this research will investigate how

A New Method for Network-aware Service Composition in Dynamic Environment

155

to implement a common framework for carrying out an appropriate comparison

between CellGA and other dynamic approaches to service composition.

5.4 Summary

In this Chapter we first investigate how rapidly changing QoS values can impact

the performance of proposed approaches in the previous Chapter which employed

quantitative RTTs during optimization. It is observed that a dynamic environment

would limit the effectiveness of our previous approaches. Thus, we present an

enhanced NSGA-II algorithm called CellGA to searches for low latency

compositions having optimal QoS in a dynamic environment. But first, the RTT

estimation method, LANMF, was modified to transform estimated RTT

measurements into qualitative form with the aid of a latency threshold value. Any

path having RTT less than the threshold value is allocated a binary value of 1 or

“good”, while a path with RTT more than threshold value is allocated a binary

value of 0 or “bad”. LANMF uses this strategy to build a binary matrix of binary

path RTTs which is passed to CellGA for use during optimization process.

CellGA creates a cellular automaton (CA) for each gene (service node). Every

CA consists of one global state and several local states. The global state

represents a binary value which decides whether a gene should be altered while

each local state represents the qualitative path RTT between the gene and another

service node. It then employs Cell-Crossover and Cell-Mutation operators that

adopt different CA rules to decide which genes will be altered based on their

CA’s global state. For instance the Cell-Crossover operator alters a gene if any of

the path RTTs to its neighbouring service nodes is above the latency threshold

value. Cell-Mutation operator mutates a gene if majority of path RTTs to

neighbouring service nodes is above the threshold value. Experimental evaluation

of CellGA was conducted and its performance was compared against algorithms

presented in Chapter 4. Results show that even though CellGA doesn’t have the

A New Method for Network-aware Service Composition in Dynamic Environment

156

best computation time, it outperforms other algorithms in finding better quality

solutions in a dynamic environment. Also CellGA demonstrated the best

scalability when the number of composition tasks is large.

Conclusion and Future Work

157

CHAPTER 6

Conclusion and Future Work

This chapter presents a summary of the contributions and research findings

that have materialized from our research. Also, the chapter presents some

future research directions.

6.1 Summary

This thesis studied the QoS-based web service composition problem in the

cloud. The main objective of this research was to develop effective

evolutionary algorithms to perform network-aware and QoS-based web

service composition in a large scale environment. The problem is described as

a constrained multi-objective optimization problem. This objective was

successfully solved via a set of novel evolutionary algorithms which have

been presented in this thesis.

Specifically, three major issues of QoS-based web service composition in the

cloud were tackled. The first issue is how to accurately and efficiently

estimate the end-to-end network distance (or network latency) of a composite

service in the cloud. We defined this issue as a prediction problem where the

aim is to estimate the unknown RTTs of a set of network paths given a subset

of already known path RTTs. The issue was successfully addressed in Chapter

3 where a new RTT estimation algorithm was presented. The second issue is

how to search for low latency and QoS optimal solutions in a large scale cloud

environment. This issue was tackled in Chapter 4 via four new evolutionary

algorithms. The third issue dealt involved how to find QoS and latency

optimal solutions in a dynamic environment where QoS values are constantly

changing. The issue was solved in Chapter 5 using a new genetic algorithm.

The proposed algorithms were evaluated in a simulated environment to test

their optimality, efficiency and scalability in different instances. Results

Conclusion and Future Work

158

obtained from the evaluation demonstrated the competitiveness of the

algorithms when compared to previous approaches.

Starting from Chapter 1, the thesis introduced the research objectives where

we discussed the research motivation, challenges and research problem. At

this point, the problem was defined as a NP-Hard combinatorial optimization

problem. The chapter outlined crucial challenges to be addressed in the thesis

such as type of QoS model, service composition algorithms and evaluation.

Major contributions of this research were also presented such as a novel

method for prediction end-to-end network latency, and a new set of

evolutionary algorithms for performing network-aware service composition in

the cloud. After the contributions were discussed, the outline of the thesis was

then presented to close the chapter.

In Chapter 2, a comprehensive background and analysis on QoS-based web

service composition techniques was presented. The chapter started by

describing web services, their benefits and web service model. The chapter

also described QoS and classified major QoS attributes such as cost,

reputation, response time, reliability and availability. Concepts of QoS-based

service composition were then introduced. The concepts discussed include

workflows, service composition steps and factors that justify the NP-Hardness

of the QoS-based service composition problem. The chapter then analysed the

recent techniques developed to tackle the problem. Techniques were first

classified into four categories; Intra-task approaches, inter-task approaches,

approximation approaches and pareto-optimization approaches. Each category

was explained in great detail including associated works, strengths and

weaknesses. For instance, intra-task approaches such as dynamic

programming, simple additive weighting are very efficient in large scale

environment however they have poor optimality. Inter task approaches like

linear integer programming have high optimality but are computationally

inefficient in large scale scenarios. Approximation approaches e.g. particle

Conclusion and Future Work

159

swarm and genetic algorithms are more efficient than other approaches in

large environments but they mostly find sub-optimal solutions. Pareto-optimal

approaches are similar to approximate methods except that they offer the

service consumer with an alternative solution in the form of a Pareto set. The

chapter then discusses techniques that perform service composition in

dynamic environment. These techniques normally don’t have prior knowledge

of QoS scores before the optimization process is performed. The techniques

discussed include; Internal composition techniques that rebuild compositions

from ground up or from point of failure e.g. AI planning and reinforced

learning; External adaptation techniques that use adapters to bridge between

composition and dynamic environment. From the analysis, it is observed that

external adaptation methods are slower than internal adaptation methods,

although they are able to find better quality solutions in a dynamic

environment. The chapter then reviewed recent works that focused on solving

QoS-based web service composition in the cloud. The techniques discussed

adopt mainly evolutionary algorithms to find QoS-optimal compositions with

minimal network cost to the cloud. Examples of methods discussed include

ant colony algorithm, genetic algorithm, hierarchical task networks and finite

state machines. Finally the chapter introduced network coordinate systems

(NCS) due to their significance in aiding the proposed algorithms to solve the

research problem. The operational procedure and benefits of NCS were

discussed including an analysis of its main works.

In Chapter 3, a new method for predicting end-to-end network performance of

a composite service is presented. The chapter first introduced end-to-end

network performance with special focus on network latency due to the ease at

which it can be obtained from the Internet. The importance of estimating

network latency in the cloud discussed. Then the prediction problem was

defined, followed by a brief description of current techniques used to solve the

problem. Here, Euclidean distance (EDM) and non-negative matrix

Conclusion and Future Work

160

factorization (NMF) methods were discussed. It was deduced that NMF

provided more accurate RTT estimates than EDM. Thus an Enhanced NMF

method known as LANMF was proposed to further improve the accuracy of

NMF. LANMF uses learning automata concepts to enhance the general update

strategy of NMF such that each web service node can employ its own

coordinate update towards minimal prediction error. Finally, the LANMF

algorithm is evaluated in a simulated large scale cloud environment of web

service nodes. It was observed from the results that LANMF obtains more

accurate RTT estimates than recent techniques based on NMF (DMF) and

EDM. This is thanks to its unique automata-based update strategy which

learns what path to take in updating a web service node’s coordinate to ensure

minimum prediction error.

Chapter 4 studied the QoS-based web service composition in the cloud.

Firstly, the chapter identified the challenges posed by QoS-based service

composition problem. They include multiple conflicting QoS attributes,

multiple QoS constraints and impact of network performance on composite

service selection. A detailed description of our QoS model is then presented.

The model consists of QoS attributes considered in this thesis e.g. cost,

response time, execution time, and network latency. The chapter also

discusses the significance of network latency during QoS optimization process

in the cloud.. The research problem is then formulated as a constrained multi-

objective optimization problem. To address the problem, we presented four

new algorithm namely network-aware NSGA-II algorithm (INSGA), K-mean

based NSGA-II (KNSGA) algorithm, multi-population PSO (NMPSO)

algorithm and non-dominated sort-based fruit fly optimization algorithm

(NFOA). INSGA employed unique ND-Crossover and ND-Mutation operators

which retains compositions having good crowding distances and RTTs and

alters solutions with poor RTTs and crowding distances into new children.

KNSGA searches for QoS-optimal and low latency solutions with the aid of

Conclusion and Future Work

161

K-mean based K-Mutation operator. NMPSO separates solutions into two

populations; the latency optimal population and QoS optimal population. It

also uses non-dominated sorting to guide search towards near optimal Pareto

set. Lastly, NFOA is a fruit fly optimization algorithm that looks for network

positions of a composite service with optimal QoS. We compared the

optimality and performance of the four algorithms against each other and

against other previous algorithm such as linear integer programming (LIP),

particle swarm algorithm and NSGA-II algorithm. The results proved that

INSGA outperformed other algorithms in terms of optimality while NFOA,

NMPSO and KNSGA had better balance between performance and optimality

than other algorithms in a large scale cloud environment.

Chapter 5 investigated QoS-based web service composition in a dynamic

cloud environment which entails an environment where web service QoS

scores fluctuate constantly. The previous approaches in Chapter 4 were first

tested in a dynamic environment. Preliminary results showed that they were

incapable of sustaining search for near optimal solutions. This motivated the

development of a technique called cellular automata-based NSGA-II

algorithm (CellGA) to addresses the problem. The main idea behind CellGA is

the development of cellular automata rules that decide which gene needs to be

altered to guide the search towards the global Pareto set. The chapter then

presented a comparison of CellGA against previous algorithms. Results of the

evaluation demonstrated its superiority in maintaining search for near-optimal

solutions despite QoS fluctuations.

6.2 Key Contributions

Several major contributions were made by this thesis towards research into

QoS-based web service composition in the cloud. It addressed three important

challenges of the problem which is described as an NP-Hard problem. They

include multiple-conflicting QoS objectives, multiple constraints and network

performance. The thesis also made contributions to the research into network

Conclusion and Future Work

162

performance prediction with emphasis on how to accurately estimating end-to-

end network latency. In addition, the thesis also made several contributions

towards evolutionary algorithm research by introducing new evolutionary

algorithms to address the problem. A detailed discussion of the contributions

is presented below in the next subsections.

6.2.1 Prediction problem (Chapter 3)

The prediction problem has been extensively studied by previous works

leading to the development of several network performance prediction

algorithms. However, the algorithms had difficulty in making accurate

estimates due to several reasons such as centralized architecture (in the case of

EDM) or adoption of a general coordinate update strategy (in the case of

NMF) which caused erroneous estimates. Hence, they are not suitable in a

cloud environment which usually requires accurate representations of RTTs

between web service nodes. This work contributed to the study of prediction

algorithms by developing a learning-based non-negative matrix factorization

algorithm (LANMF) to improve accuracy of estimating RTTs. LANMF

encodes each web service node coordinate as an automaton where each

automaton consists of its coordinate update strategy, set of actions and action

probabilities. At each iteration, LANMF selects the update strategy with the

best probability of leading to minimum prediction error. This is a clearly

different strategy from pervious works which generally use the same update

strategy for all node coordinates. An extensive comparison of LANMF against

other prediction algorithms demonstrated that it had better prediction accuracy

than them.

6.2.2 New Methods for Network-aware Web Service Composition in the
Cloud (Chapter 4)

This problem has been studied by recent research targeted at development of

web service composition algorithms that search for QoS optimal solutions in

the cloud. However these algorithms lacked the ability to address real-world

Conclusion and Future Work

163

issues in the cloud. The first issue is that recent works ignore the impact of

network performance on composite service selection. In practice, network

performance metric such as network latency plays a crucial role in

determining overall performance of a composition in the cloud. The second

issue is that the poor optimality of current techniques makes them unsuitable

in dealing with the problem. The third issue is that, due to the large scale

nature of our cloud environment, current techniques have poor scalability

which makes them a bad choice for tackling the problem. Lastly, current

constraint handling strategies are incapable of dealing with a situation where

all QoS attributes considered during optimization process are “lower is

better”. This work enriched the study of QoS-based web service composition

in the cloud by developing evolutionary algorithms that successfully address

the issues. This work also contributes to evolutionary algorithm research by

presenting for new algorithms; INSGA, KNSGA, NMPSO and NFOA.

INSGA provided novel ND-Crossover and ND-Mutation operators which

search for low latency and QoS-optimal solutions. KNSGA introduced a new

K-mean based K-Mutation operator for searching for web service nodes in the

same cluster (in term of network proximity) to certain reference web service

nodes. NMPSO uses best particles form different populations to guide search

for near-optimal Pareto set. Lastly, NFOA uses non-dominated sort fruit fly

search to find network positions of composite services with low latency and

optimal QoS. All four algorithms adopted a unique constraint penalty function

that rewarded solutions which satisfy QoS constraints and penalized those

ones that didn’t satisfy constraints. The penalty function was developed to

suite “lower is -better” QoS attributes which were considered in this thesis. An

extensive evaluation of the algorithms shows that they have good optimality

and scalability when compared to previous works. Among the four algorithms,

INSGA shows the best optimality albeit at the cost of scalability. Still,

INSGA’s scalability was better than linear integer programming (LIP) and

only slightly worse than the other algorithms. NMPSO, KNSGA and NFOA

Conclusion and Future Work

164

demonstrated better balance between optimality and scalability than INSGA,

Particle swarm optimization, NSGA-II, and LIP.

6.2.3 A New Method for Network-aware Service Composition in
Dynamic Environment (Chapter 5)

In contrast with the previous contribution, this work focused on addressing

QoS optimization in a dynamic environment where there are constant changes

in QoS of web services in the cloud. It is motivated by the discovery that

previously proposed techniques were only effective in QoS optimization if

QoS of web services remain unchanged. This work proposed a technique

known as cellular automata-based NSGA-II algorithm (CellGA) to tackle the

problem in a dynamic environment. CellGA adopts new Cell-Crossover and

Cell-Mutation operators. The novelty in the operators lies in their ability to

use different cellular automata (CA) rules to decide which genes need be

altered to arrive at superior children. The rules depend on the global state of a

gene which in turn rely on local states of gene’s CA neighbourhood.

Experiments conducted confirmed that CellGA has better optimality when

compared to the algorithms presented in Chapter 4. It also showed good

scalability due to the use of qualitative RTT values which were obtained from

LANMF.

6.3 Future Work

In Chapter 3, LANMF was not compared against tree-based prediction

techniques for estimating network latency e.g. Steiner trees. Therefore, the

next step of this study will involve a comparison of LANMF against

prediction techniques to determine which method is efficient.

In Chapter 4, only sequential workflow was considered in evaluating the

algorithms. It will be interesting to consider other more complex workflows

such as an aggregate workflow consisting of multiple connected sequence and

parallel workflows.

Conclusion and Future Work

165

In Chapter 5, only two unique CA rules were considered by the Cell-

Crossover and Cell-Mutation operators of CellGA. It will be useful to discover

other rules and compare their effectiveness against the two rules.

166

Bibliography

167

Bibliography

[1] H. Nematzadeh; H. Motameni; R. Mohamad; Z. Nematzadeh;” QoS
measurement of Workflow-Based Web Service Compositions Using
Colored Petri Net”, On The Scientific World Journal vol.2014, no.,pp.
1-14, 2014

[2] Y. Li; W. Zhao; L. Che; “Research on the Improvement of Traditional
Linear Weighted Algorithm for QoS-based Web Service Selection,” on
International Journal of Hybrid Information Technology, vol.7, no. 4,
pp.249-258, 2014

[3] M. Rathore; U. Suman; “QoS Broker based Architecture for Dynamic
Web Service Discovery and Composition” on International Journal of
u- and e- Service, Science and Technology vol. 7, no.6, pp.237-252,
2014

[4] Filomena de Santis; Delfina Malandrino; “QoS-Based Web Service
Discovery in Mobile Ad Hoc Networks Using Swarm Strategies,” on
Journal of Computer Networks and Communications, vol. 2014, no.,
pp.1-13, 2014

[5] Ying Chen; Jiwei Huang; Chuang Lin; "Partial Selection: An Efficient
Approach for QoS-Aware Web Service Composition," Web Services
(ICWS), 2014 IEEE International Conference on, vol., no., pp.1-8,
2014

[6] A. Mohammad; D. Skoutas; T. Risse; "Selecting skyline services for
QoS-based web service composition." Proceedings of the 19th
international conference on World Wide Web. ACM, 2010.

[7] . Hwang; C. Hsu; C. Lee; "Service Selection for Web Services with
Probabilistic QoS," Services Computing, IEEE Transactions on, vol.,
no.99, pp.1, 2014

[8] D. Prasad Sahu; K. Singh; S. Prakash; “A Review on Resource
Scheduling Models to Optimize Quality of Service Parameters in Grid
Computing using Meta-heuristics,” on International Journal of
Computer Applications vol.114, no.8, pp.1-4, 2015

[9] J. Parejo; S. Segura; P. Fernandez; A. Ruiz-Cortes; “QoS-aware Web
Service Composition Using GRASP with Path Relinking” On Expert
Systems with Applications: An International Journal vol.41, no.9, pp.
4211-4223, 2014

[10] Lifeng, Ai; "QoS-aware Web Service Composition Using Genetic
Algorithms," PhD Thesis Queensland University of Technology, USA
on, vol., no., pp.30, 2011.

Bibliography

168

[11] M. Garey; D. Johnson; “Computers and intractability: a guide to the
theory of NP-completeness”. W.H. Freeman, vol., no., pp., 1979

[12] Natallie Kokash; “An Introduction to Heuristic Algorithms,”
Department of Informatics and Telecommunications, vol., no., pp.1-8,
2006

[13] K. Giannakoglou; “Design of optimal aerodynamic shapes using
stochastic optimization methods and computational intelligence,”
Progress in Aerospace Sciences, vol. 38, no.1, pp. 43-76, 2002

[14] D. Jason; S. Colombano; “A circuit representation technique for
automated circuit design,” IEEE Transactions on Evolutionary
Computation, vol.3, no. 3, pp. 205-219, 1999

[15] Z. Davies; R. Gilbert; R. Merry; D. Kell; M. Theodorou; G. Griffith;
“Efficient improvement of silage additives by using genetic
algorithms,” Applied and Environmental Microbiology, vol.66, no.4,
pp. 1435–1443, 2000

[16] A. Zhou; B. Zu; H. Li; S. Zhao; P. Suganthan; Q. Zhang;
“Multiobjective Evolutionary Algorithms: A Survey of the state of the
art” Elsevier Swarm and Evolutionary Computation, vol.1, no.1, pp.38,
2011

[17] J. Wang; W. Jianping; B. Chen; N. Gu; “Minimum Cost Service
Composition in Service Overlay Networks” Springer Journal of World
Wide Web, vol. 14, no.1, pp. 75-103, 2011

[18] J. Jin; Y. Zhang; Y. Cao, X. Pu; J. Li; "ServiceStore: a peer-to-peer
framework for QoS-aware service composition." Network and Parallel
Computing. Springer Berlin Heidelberg, vol., no., pp.190-199, 2010

[19] R. Buyya; M. Pathan; A. Vakali; ”A Taxonomy CDNs,” Content
Delivery Networks, vol., no., pp.33-78, 2008.

[20] H. Zhuang; R. Rahman; K. Aberer; "Decentralizing the cloud: How
can small data centers cooperate?," 14-th IEEE International
Conference on Peer-to-Peer Computing, vol., no., pp.1,10, 2014

[21] A. Khan; F. Freitag; S. Gupta; V. Muntès-Mulero; J. Dominiak; P.
Matthews; "On Supporting Service Selection for Collaborative Multi-
cloud Ecosystems in Community Networks," Advanced Information
Networking and Applications (AINA), 2015 IEEE 29th International
Conference on , vol., no., pp.634,641, 2015

[22] M. Wang; P. Jayaraman; R. Ranjan; K. Mitra; "An overview of Cloud
based Content Delivery Networks: Research Dimensions and state-of-

Bibliography

169

the-art." Transactions on Large-Scale Data-and Knowledge-Centered
Systems XX. Springer Berlin Heidelberg, vol., no., pp. 131-158, 2015

[23] G. Mohamed; M. Boufaida; "PM4SWS: A P2P Model For Semantic
Web Services Discovery And Composition." Journal of Advances in
Information Technology vol.2, no.1, pp.15-26, 2011

[24] M. Suciu; D. Pallez; M. Cremene; D. Dumitrescu; ”Adaptive
MOEA/D for QoS-based web service composition,” In Springer
Evolutionary Computation in Combinatorial Optimization, vol.7832,
no., pp.73-84, 2013.

[25] A. Bouguettaya; A. Quan; Z. Sheng; F. Daniel; “Web services
foundations,” In Springer, vol., no., pp. 164, 2014.

[26] Yilmaz, A.E.; Karagoz, P., "Improved Genetic Algorithm Based
Approach for QoS Aware Web Service Composition," Web Services
(ICWS), 2014 IEEE International Conference on, vol., no., pp.463,470,
June 27 2014-July 2 2014

[27] A. Sawczuk da Silva, H. Ma, M. Zhang; A GP Approach to QoS-
Aware Web Service Composition and Selection Springer Simulated
Evolution and Learning v8886 pp.180-191 2014

[28] X. Wu; T. Wang; X. Qian; C. Zeng; “Multi-QoS aware automatic
service composition” Springer Wuhan University Journal of Natural
Sciences vol.19, no.4, pp. 307-314 2014

[29] G. Canfora, M. D. Penta, R. Esposito, and M. L. Villani. “An approach
for QoS-aware service composition based on genetic algorithms,” In
GECCO ’05: Proceedings of the 2005 conference on Genetic and
evolutionary computation ACM, vol., no., pp. 1069–1075, 2005

[30] M. Jaeger, G. Rojec-Goldmann, and G. M¨uhl, “QoS Aggregation for
Web Service Composition using Workflow Patterns,” in EDOC ’04:
Proceedings of the Eighth IEEE International Enterprise Distributed
Object Computing Conference, vol., no., pp. 149–159, 2004

[31] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and Q. Z. Sheng.
Quality Driven Web Services Composition. In WWW '03: Proceedings
of the 12th international conference on World Wide Web, 2003

[32] T. Magedanz, N. Blum, and S. Dutkowski; “Evolution of SOA
concepts in telecommunications,” IEEE Computer Magazine, vol. 40,
no. 11, pp. 46–50, 2007.

[33] H. Keqiang, A. Fisher, L. Wang, A. Gember, A. Akella, T.Ristenpart;
"Next stop, the cloud: Understanding Modern Web Service Deployment

Bibliography

170

in EC2 and Azure." Proceedings of the 2013 conference on Internet
measurement conference. ACM, vol., no., pp.177-190, 2013.

[34] R. Krishnan, H. Madhyastha, S. Srinivasan, S. Jain, K, Arvind, A.
Thomas, J. Gao; "Moving beyond end-to-end path information to
optimize CDN performance." Proceedings of the 9th ACM SIGCOMM
conference on Internet measurement conference. ACM, vol., no.,
pp.190-201, 2009.

[35] Luckie, Matthew, Young Hyun, and Bradley Huffaker. "Traceroute
probe method and forward IP path inference." Proceedings of the 8th
ACM SIGCOMM conference on Internet measurement. ACM, vol., no.,
pp.311-324, 2008.

[36] Yang Chen; Xiao Wang; Cong Shi; Eng Keong Lua; Xiaoming Fu;
Beixing Deng; Xing Li, "Phoenix: A Weight-Based Network
Coordinate System Using Matrix Factorization," Network and Service
Management, IEEE Transactions on , vol.8, no.4, pp.334,347,
December 2011

[37] Amazon EC2. http://aws.amazon.com/ec2, 2015
[38] Jennings, Roger. Cloud Computing with the Windows Azure Platform.

John Wiley & Sons, vol., no., pp., 2010.
[39] A. Li, X. Zong, S. Kandula, X. Yang, and M. Zhang. “CloudProphet:

Towards Application Performance Prediction in Cloud,” In ACM
SIGCOMM Computer Communication Review, vol.41, no., pp. 426–
427, 2011.

[40] D. Sachan, D. Saurabh, S. Kumar. "QoS aware formalized model for
semantic web service selection," In International Journal of Web &
Semantic Technology (IJWesT), vol.5, no.4, pp.83-84, 2014.

[41] M. Chen, T. Tan, J. Sun, Y. Liu, J. Pang, X. Li; "Verification of
functional and non-functional requirements of web service
composition," In Formal Methods and Software Engineering. Springer
Berlin Heidelberg, vol., no., pp.313-328, 2013.

[42] Web Services Architecture. http://www.w3.org/TR/ws-
arch/#service_oriented_model, 2004

[43] Newcomer, Eric;”Understanding Web Services: XML, Wsdl, Soap,
and UDDI,” In Addison-Wesley Professional, vol., no., pp., 2002.

[44] A. Li, X. Yang, S. Kandula, and M. Zhang. “CloudCmp:Comparing
Public Cloud Providers,” In Proceedings of the10th ACM SIGCOMM
conference on Internet measurement, pages 1–14. ACM, 2010.

Bibliography

171

[45] E. Christensen, F. Curbera,, G. Meredith, S. Weerawarana; “Web
Services Description Language (WSDL) 1.1.”
http://www.w3.org/TR/wsdl, 2001.

[46] M. Gudgin, M. Hadley, N. Mendelsohn, J. Moreau, H. Nielson, A.
Karmarkar, Y. Lafon; “Simple Object Access Protocol.”
http://www.w3.org/TR/soap12-part1/, 2007

[47] UDDI Architecture. http://www.uddi.org/pubs/uddi-v3.0.2-
20041019.htm#_Toc85907967, 2004

[48] Lamont, Ian; ”Dropbox In 30 Minutes: The Beginner’s Guide To
Dropbox Backup, Syncing, And Sharing,” In i30 Media Corporation,
vol., no., pp., 2014.

[49] Metered Services. http://searchcio.techtarget.com/definition/metered-
services, 2009

[50] B. Al-Shargabi, A. Sabri, A. El Sheikh; "Web Service composition
survey: state of the art review." In Recent Patents on Computer Science,
vol.3, no.2, pp. 91-107, 2010.

[51] Yang, Stephen JH, Jia Zhang, and Blue CW Lan. "Service-level
agreement-based QoS analysis for web services discovery and
composition." In International Journal of Internet and Enterprise
Management, vol.5, no.1, pp. 39-58, 2006.

[52] Zibin Zheng; Yilei Zhang; Lyu, M.R.; "Distributed QoS Evaluation for
Real-World Web Services,"Web Services (ICWS), 2010 IEEE
International Conference on, vol., no., pp.83-90, 5-10 July 2010.

[53] J. Myerson; "Use SLAs in a web services context, part 1: Guarantee
your web service with a SLA." In IBM Research Report, vol., no., pp.1-
7, 2004.

[54] S. Barker, P. Shenoy; “Empirical evaluation of latency-sensitive
application performance in the cloud,” In MMSys 2010.

[55] Shi Yulu; Chen Xi; "A Survey on QoS-aware Web Service
Composition," Multimedia Information Networking and Security
(MINES), 2011 Third International Conference on , vol., no., pp.284, 4-
6 Nov. 2011

[56] KangChan Lee. 2003. QoS for Web Services: Requirements and
Possible Approaches. [ONLINE] Available
at: http://www.w3c.or.kr/kr-office/TR/2003/ws-qos. [Accessed 12
February 13].

Bibliography

172

[57] Strunk, A.; , "QoS-Aware Service Composition: A Survey," Web
Services (ECOWS), 2010 IEEE 8th European Conference on , vol., no.,
pp.67, 1-3 Dec. 2010

[58] Jamoussi, Yassine; "Towards an Approach to Guide End-user in
Interactive Web Services Composition," In Proceedings of the
International Multi-Conference of Engineers and Computer Scientists,
vol.1, no., pp. 511-516, 2015.

[59] C. Liying, S. Kumara, T. Yao; "Service composition using dynamic
programming and concept service (cs) network." Proceedings of IERC,
vol., no., pp.1-8, 2011.

[60] Wang, L.; Shen, J.; Yong, J;," A survey on bio-inspired algorithms for
web service composition," In Proceedings of CSCWD on, vol., no.,
pp.569-574, 2012.

[61] U. Víctor, F. Moo-Mena, R. Hernandez-Ucan; "Composition of Web
Services Using Markov Decision Processes and Dynamic
Programming,"The Scientific World Journal, vol., no., pp., 2015.

[62] Wonhong Nam; Hyunyoung Kil; Jungjae Lee; "QoS-Driven Web
Service Composition Using Learning-Based Depth First
Search," Commerce and Enterprise Computing, 2009. CEC '09. IEEE
Conference on, vol., no., pp.507-510, 20-23 July 2009.

[63] Kil, Hyunyoung; Wonhong Nam; "On-the-fly Learning-based Search
for QoS-aware Web Service Composition." Appl. Math, vol.8, no.1, pp.
141-147, 2014.

[64] Huihui Bao; Wanchun Dou, "A QoS-Aware Service Selection Method
for Cloud Service Composition," Parallel and Distributed Processing
Symposium Workshops & PhD Forum (IPDPSW), IEEE 26th
International, vol., no., pp.2254, 2261, 2012.

[65] S. Avila; K. Djemame; “A QoS optimization Model for Service
Composition,” In Fourth International Conference on Adaptive and
Self-Adaptive Systems and Applications, vol., no., pp.24-29, 2012.

[66] R. Hamed, N. Nemat, F. Mardukhi.; "A multi-objective particle swarm
optimization for web service composition." Networked Digital
Technologies. Springer Berlin Heidelberg, vol., no., pp.112-122, 2010.

[67] Ngoko, Yanik; Alfredo Goldman; Dejan Milojicic; "Service selection
in web service compositions optimizing energy consumption and
service response time," In Journal of Internet Services and
Applications, vol.4, no.1, pp. 1-12, 2013.

Bibliography

173

[68] Chen Ming; Wang Zhen Wu; "An Approach for Web Service
Composition Based on QoS and Discrete Particle Swarm
Optimization," Software Engineering, Artificial Intelligence,
Networking, and Parallel/Distributed Computing, SNPD 2007, Eight
ACIS International Conference on, vol.2, no., pp. 37-41, August 2007.

[69] Lou Yuan-sheng; Hu Pa; Tao Fu-ling; "An Improved Particle Swarm
Optimization and its Application on Web Service Composition,"
Computer Application and System Modelling (ICCASM), 2010
International Conference, vol.11, no.,pp.V11-44-V11-47, 2010.

[70] Fan Yan; "A Global optimization method of Web Services
Composition Based on QoS," International Conference on Engineering
and Business Management, vol., no., pp. 478-481, 2012.

[71] G. Canfora; M. Di Penta; R. Esposito; M. Villani; "QoS-aware
replanning of composite Web services," Web Services, 2005. ICWS
2005. Proceedings. 2005 IEEE International Conference on, vol., no.,
pp.121, 129 vol.1, 11-15 July 2005

[72] Q. Li, R. Dou; F. Chen; G. Nan; “A QoS-oriented Web Service
Composition approach based on multi-population genetic algorithm for
internet of things,” International Journal of Computational Intelligence
Systems, vol.7, no.2, pp.26-34, 2014.

[73] Yilmaz, A.E.; Karagoz, P.; "Improved Genetic Algorithm Based
Approach for QoS Aware Web Service Composition," Web Services
(ICWS), 2014 IEEE International Conference on, vol., no., pp.463, 470,
2014.

[74] M. C. Jaeger, G. Muhl, S. Golze; "QoS-aware composition of Web
services: a look at selection algorithms," In Web Services IEEE
International Conference ICWS, vol., no., pp.808, 2005.

[75] L. Julien, C. Guernic, S. Cotton, O. Maler; "Approximating the Pareto
Front of Multi-criteria Optimization Problems," TACAS Lecture Notes
in Computer Science, vol.6015, no., pp.69-83, 2010.

[76] L. Li, P. Cheng, L. Ou, Z. Zhang; "Applying multi-objective
evolutionary algorithms to QoS-aware web service composition," In
Advanced data mining and applications. Springer Berlin Heidelberg,
vol.6441, no., pp.270-281, 2010.

[77] http://www.wired.com/2012/09/layers-of-latency/
[78] B. Mustafa, M. Harman; "Optimised realistic test input generation

using web services," Search Based Software Engineering. Springer
Berlin Heidelberg, vol., no., pp.105-120, 2012.

Bibliography

174

[79] S. Mihai, D. Pallez, M. Cremene, D. Dumitrescu; “Adaptive MOEA/D
for QoS-based web service composition. Springer Berlin Heidelberg,”
vol.7832, no., pp.73-84, 2013.*****dynamic env

[80] T. Immanuel, B. Faltings,; “The RADO approach to Quality-Driven
Service Composition-Approximating the Pareto-Frontier in Polynomial
Time,”In EPFL-ARTICLE-197765 INFOSCIENCE, vol., no., pp.1-10,
2012.

[81] G. Landi, T. Metsch, P. Neves, J. Mueller, A. Edmonds, P. Secondo
Crosta; "SLA Management And Service Composition of Virtualized
Applications In Mobile Networking Environments," Network In
Operations and Management Symposium (NOMS) IEEE, vol., no.,
pp.1,8, 5-9 May 2014.

[82] D. Wang; Y. Yang; Z. Mi; ”A Genetic-based Approach to Web
Service Composition in Geo-distributed Cloud Environment,” In
Elsevier Journal of Computers and Electrical Engineering, vol.,
no.,pp.1-12, 2014

[83] G. Zou, Y. Chen, Y. Yang, R. Huang, Y, Xu; "AI planning and
combinatorial optimization for web service composition in cloud
computing." In Proc international conference on cloud computing and
virtualization. vol., no., pp., 2010.

[84] Q. Yu; L. Chen; B. Li; ”Ant Colony Optimization Applied to Web
Service Compositions in Cloud Computing,” In Elsevier Journal of
Computers and Electrical Engineering, vol.41, no.,pp.18-27, 2015

[85] Adrian, K.; Fuyuki I.; Shinichi Honiden; "Towards network-aware
service composition in the cloud," In Proceedings of the 21st
international conference on World Wide Web (WWW '12). ACM, New
York, NY, USA, on, vol., no., pp.959-968, 2012.

[86] U. Shehu; G. Ali Safdar; G. Epiphaniou; “Network-aware
Composition for Internet of Thing Services” in Transactions on
Networks and Communications vol.3, no.1, pp 45-58 February 2015.

[87] De Landtsheer, Assistant Renaud, Damien Saucez. "Securing Network
Coordinate Systems," PhD Thesis Universite Catholique De Louvain
UCL, vol., no., pp.13-14, 2007.

[88] Pietzuch, P.; Ledlie, J.; Mitzenmacher, M.; Seltzer, M., "Network-
Aware Overlays with Network Coordinates," Distributed Computing
Systems Workshops, 2006. ICDCS Workshops 2006. 26th IEEE
International Conference on, vol., no., pp.12, 12, 04-07 July 2006.

Bibliography

175

[89] Liao, Yongjun. "Learning to predict end-to-end network
performance.", PhD Thesis University of Liege Belgium, vol, no.,
pp.38-43, 2013.

[90] R. Prasad, M. Murray, C. Dovrolis, K. Claffy; “Bandwidth estimation:
metrics, measurement techniques and tools,” IEEE Network, vol. 17,
no., pp. 27–35, November 2003.

[91] Hyuk Lim, Jennifer C. Hou, Chong-Ho Choi; “Constructing internet
coordinate system based on delay measurement,” IEEE/ACM
Transactions on Networking, vol.13, no.3, pp.513-525, 2005.

[92] T.S.E. Ng, H. Zhang; “A Network Positioning System for the
Internet,” In: USENIX ATC, 2004, pp.11-11.

[93] Krishna P. Gummadi, Stefan Saroiu, Steven D. Gribble, King;
“Estimating latency between arbitrary internet end hosts,” in 2nd ACM
SIGCOMM Workshop on Internet measurement, vol., no., pp.5–18,
2002.

[94] Y. Mao, L. Saul, J. M. Smith, IDES: An Internet Distance Estimation
Service for Large Network, IEEE Journal on Selected Areas in
Communications (JSAC). (2006) 2273 - 2284.

[95] Frank Dabek; Russ Cox, frrans Kaashoek; "Vivaldi: A Decentralized
Network Coordinate System," ACM SIGCOMM '04 NY USA on, vol.,
no., pp.15-26, 2004.

[96] G. Wang, C. Zhang, X. Qiu, Z. Zeng; "Replacing Network Coordinate
System with Internet Delay Matrix Service (IDMS): A Case Study in
Chinese Internet," arXiv preprint arXiv:1307.0349, vol., no., pp., 2013.

[97] Yongjun Liao; Wei Du; Geurts, P.; Leduc, G.; "DMFSGD: A
Decentralized Matrix Factorization Algorithm for Network Distance
Prediction," Networking, IEEE/ACM Transactions on, vol.21, no.5,
pp.1511, 1524, Oct. 2013

[98] Li, Xiaodong. "A non-dominated sorting particle swarm optimizer for
multiobjective optimization." Genetic and Evolutionary Computation—
GECCO 2003. Springer Berlin Heidelberg, vol., no., pp. 37-48, 2003.

[99] Zibin Zheng; Yilei Zhang; Lyu, M.R.; , "Distributed QoS Evaluation
for Real-World Web Services," Web Services (ICWS), 2010 IEEE
International Conference on , vol., no., pp.83-90, 5-10 July 2010.

[100] Hongbing Wang; Xiaohui Guo; "An Adaptive Solution for
Web Service Composition," Services (SERVICES-1), 2010 6th World
Congress on , vol., no., pp.503-510, 5-10 July 2010.

Bibliography

176

[101] Jureta, I.J.; Faulkner, S.; Achbany, Y.; Saerens, M.; "Dynamic
Web Service Composition within a Service-Oriented
Architecture," Web Services, 2007. ICWS 2007. IEEE International
Conference on , vol., no., pp.304-311, 9-13 July 2007.

[102] KangChan Lee. 2003. QoS for Web Services: Requirements
and Possible Approaches. [ONLINE] Available
at: http://www.w3c.or.kr/kr-office/TR/2003/ws-qos. [Accessed 12
February 14].

[103] Rami Mounla;,"QoS-aware Web Service Composition,"
Computer Science University of Auckland on, vol., no.,pp.116-
122,2008.

[104] Yuhong Yan; Poizat, P.; Ludeng Zhao; , "Self-Adaptive
Service Composition Through Graphplan Repair," Web Services
(ICWS), 2010 IEEE International Conference on , vol., no., pp.624-
627, 5-10 July 2010.

[105] Hongbing Wang; Xuan Zhou; Xiang Zhou; Weihong Liu;
Wenya Li; , "Adaptive and Dynamic Service Composition Using Q-
Learning," Tools with Artificial Intelligence (ICTAI), 2010 22nd IEEE
International Conference on , vol.1, no., pp.145-152, 27-29 Oct. 2010.

[106] Zhanlei Ma; Lin Liu; Hongji Yang; Mylopoulos, J.; , "Adaptive
Service Composition Based on Runtime Requirements
Monitoring," Web Services (ICWS), 2011 IEEE International
Conference on , vol., no., pp.339-346, 4-9 July 2011.

[107] Qing Liu; Yulin Sun; Shilong Zhang; "A Scalable Web Service
Composition Based on a Strategy Reused Reinforcement Learning
Approach," Web Information Systems and Applications Conference
(WISA), 2011 Eighth , vol., no., pp.58-62, 21-23 Oct. 2011.

[108] Wang, L.; Shen, J.; Yong, J;," A survey on bio-inspired
algorithms for web service composition," In Proceedings of CSCWD
on, vol., no., pp.569-574, 2012.

[109] Strunk, A.; , "QoS-Aware Service Composition: A
Survey," Web Services (ECOWS), 2010 IEEE 8th European Conference
on , vol., no., pp.70, 1-3 Dec. 2010.

[110] Nebil Ben Mabrouk; Sandrine Beauche; Elena Kuznetsova;
Nikolaos Georgantas; Valerie Issarny;, "QoS-aware service
composition in dynamic service oriented environments,"
In Proceedings of the 10th ACM/IFIP/USENIX International

Bibliography

177

Conference on Middleware (Middleware '09). Springer-Verlag New
York, Inc., New York, NY, USA on, vol., no.7, pp.1-20, 2009.

[111] Li, Zhichun, M. Zhang, Z. Zhu, Y. Chen, A. G. Greenberg;
"WebProphet: Automating Performance Prediction for Web Services."
NSDI, vol., no., pp.1-15, 2010.

[112] Narendra, K.S.; Thathachar, M., "Learning Automata - A
Survey," Systems, Man and Cybernetics, IEEE Transactions on ,
vol.SMC-4, no.4, pp.323,334, July 1974.

[113] E. Mansour, V. Naderifar, Z. Shukur; "Design pattern mining
using distributed learning automata and DNA sequence alignment."
PLOS ONE Journal, vol., no., pp., 2014.

[114] N. Tsantalis , A. Chatzigeorgiou , G. Stephanides, S. Halkidis;
“Design Pattern Detection Using Similarity Scoring,” In IEEE
Transactions on software engineering, vol.30, no.11, pp., 2006.

[115] A. Gunawan, C. Hoong, M. Mısır; "Designing a Portfolio of
Parameter Configurations for Online Algorithm Selection." Workshops
at the Twenty-Ninth AAAI Conference on Artificial Intelligence, vol.,
no., pp., 2015.

[116] Guohui Wang; Ng, T.S.E., "The Impact of Virtualization on
Network Performance of Amazon EC2 Data Center," INFOCOM, 2010
Proceedings IEEE, vol., no., pp.1,9, 14-19 March 2010.

[117] Kyoung Shin Park; Kenyon, R.V., "Effects of network
characteristics on human performance in a collaborative virtual
environment," Virtual Reality, 1999. Proceedings., IEEE , vol., no.,
pp.104,111, 13-17 Mar 1999

[118] G. Almes, K. Sunil, M. Zekauskas,; “A round-trip delay
metric for IPPM”. No. RFC 2681. RFC 2681, vol., no., pp., Sep, 1999.

[119] Y. liao, P. Geurts, G. Leduc,; "Network distance prediction
based on decentralized matrix factorization." NETWORKING 2010.
Springer Berlin Heidelberg, vol., no., pp.15-26, 2010.

[120] C. Lin; "Projected Gradient Methods for Nonnegative Matrix
Factorization," Neural Computation , vol.19, no.10, pp.2756,2779,
Oct. 2007

[121] D. Cai; X. He; X. Wu; J. Han; "Non-negative Matrix
Factorization on Manifold," Data Mining, 2008. ICDM '08. Eighth
IEEE International Conference on , vol., no., pp.63,72, 15-19 Dec.
2008

Bibliography

178

[122] H. Zheng, E. Lua, M. Pias, T. Griffin,; "Internet routing
policies and round-trip-times." Passive and Active Network
Measurement. Springer Berlin Heidelberg, vol., no., pp.236-250, 2005.

[123] J. Sedayao, S. Su, X. Ma, M. Jiang, K. Miao; "A Simple
Technique for Securing Data at Rest Stored in a Computing
Cloud." Cloud Computing. Springer Berlin Heidelberg, vol., no.,
pp.553-558, 2009

[124] L. Jonathan, P. Gardner, M. Seltzer. "Network Coordinates in
the Wild." NSDI. Vol. 7, no., pp.,. 2007.

[125] Rongmei Zhang; Chunqiang Tang; Hu, Y.C.; Fahmy, S.;
Xiaojun Lin, "Impact of the Inaccuracy of Distance Prediction
Algorithms on Internet Applications - an Analytical and Comparative
Study," INFOCOM 2006. 25th IEEE International Conference on
Computer Communications. Proceedings , vol., no., pp.1,12, 23-29
April 2006

[126] Cong Ding; Yang Chen; Tianyin Xu; Xiaoming Fu,
"CloudGPS: A scalable and ISP-friendly server selection scheme in
cloud computing environments," Quality of Service (IWQoS), 2012
IEEE 20th International Workshop on , vol., no., pp.1,9, 4-5 June 2012

[127] C. Daniela, P. Albers, J. Hao; "Selecting web services for
optimal composition." ICWS international workshop on semantic and
dynamic web processes, Orlando-USA. Vol., no., pp., 2005.

[128] Yong-Yi FanJiang; Yang Syu; Chun-Hung Wu; Jong-Yin Kuo;
Shang-Pin Ma, "Genetic algorithm for QoS-aware dynamic web
services composition," in Machine Learning and Cybernetics (ICMLC),
2010 International Conference on , vol.6, no., pp.3246-3251, 11-14
July 2010

[129] Ai, Lifeng, Maolin Tang; "A penalty-based genetic algorithm
for QoS-aware web service composition with inter-service
dependencies and conflicts."Computational Intelligence for Modelling
Control & Automation, 2008 International Conference on. IEEE, vol.,
no., pp., 2008.

[130] Ma, Yue, Chengwen Zhang; "Quick convergence of genetic
algorithm for QoS-driven web service selection." Elsevier Computer
Networks vol.52, no. 5, pp.1093-1104, 2008.

[131] Y. Thakare, S. Bagal; "Performance Evaluation of K-means
Clusklering Algorithm with Various Distance Metrics." International
Journal of Computer Applications, vol.110, no.11, pp., 2015.

Bibliography

179

[132] Klein, A.; Ishikawa, F.; Honiden, S., "SanGA: A Self-Adaptive
Network-Aware Approach to Service Composition," in Services
Computing, IEEE Transactions on , vol.7, no.3, pp.452-464, July-Sept.
2014

[133] Ludwig, S.A., "Applying Particle Swarm Optimization to
Quality-of-Service-Driven Web Service Composition," Advanced
Information Networking and Applications (AINA), 2012 IEEE 26th
International Conference on , vol., no., pp.613,620, 26-29 March 2012

[134] Wen-Tsao Pan; “A new Fruit Fly Optimization Algorithm:
Taking The Financial Distress Model As An Example” In Elsevier
Knowledge-Based Systems vol 26 no. pp.69-74 2012

[135] W.T. Pan; “Using Modified Fruit Fly Optimization Algorithm
To Perform The Function Test And Case Studies,” Connect. Sci.,
vol.25, no., pp. 151–160, 2013

[136] Wong, B.; Slivkins, A.; Sirer, E.; “Meridian: A lightweight
network location service without virtual coordinates,” In: Proc. the
ACM SIGCOMM., vol., no., pp., 2005

[137] L. Li, P. Yang, L. Ou, Z. Zhang, P. Cheng,; “Genetic
Algorithm-Based Multi-Objective Optimisation for QoS-Aware Web
Services Composition,” In Springer Knowledge Science, Engineering
and Management, vol.6291, no., pp.549-554, 2010.

[138] T. Kay, Y. Chen, H. Chew, Loo Hay Lee; "A hybrid multi-
objective evolutionary algorithm for solving truck and trailer vehicle
routing problems." European Journal of Operational Research vol.172,
no.3, pp.855-885, 2006.

[139] Handa, H.; Watanabe, K.; Katai, O.; Konishi, T.; Baba, M.,
"Coevolutionary genetic algorithm for constraint satisfaction with a
genetic repair operator for effective schemata formation," in Systems,
Man, and Cybernetics, 1999. IEEE SMC '99 Conference Proceedings.
1999 IEEE International Conference on , vol.3, no., pp.616-621 vol.3,
1999

[140] Muja, M.; Lowe, D.G., "Scalable Nearest Neighbor Algorithms
for High Dimensional Data," in Pattern Analysis and Machine
Intelligence, IEEE Transactions on , vol.36, no.11, pp.2227-2240, Nov.
1 2014

[141] P. Kendall, M. Duff,; “Modern Cellular Automata: Theory and
Applications, ” In. Springer Science & Business Media, vol., no., pp.,
2013.

Bibliography

180

[142] B. Kier, P. Seybold, C. Cheng,;”Cellular automata modeling of
chemical systems,” Dordrecht: Springer, vol., no., pp., 2005.

[143] M. Norman, T. Toffoli, G. Vichniac,; "Cellular-automata
supercomputers for fluid-dynamics modelling, " Physical Review
Letters , vol.56, no.16, pp., 1986

[144] Sanchez, Manuel “A. Medical Image Segmentation using
Cellular Automata: a GPU Case Study for the Efficient Implementation
of a DE noising Algorithm and Seeded Speculation,” Diss. Vol., no.,
pp., 2014.

[145] Z. Jian-hua, J. Tao, W. Sheng-an, M. Jia-wei ,; "Research of
Cellular Automata Traffic Flow Model for Variable Traffic Flow
Density." International Conference on Chemical, Material and Food
Engineering (CMFE-2015), vol.10. no.20, pp. 25-26, 2015

[146] Cellular Automata Rules;
http://mathworld.wolfram.com/ElementaryCellularAutomaton.html

