7 research outputs found

    A selective delayed channel access (SDCA) for the high-throughput IEEE 802.11n

    Get PDF
    Abstract— In this paper we investigate the potential benefits of a selective delayed channel access algorithm (SDCA) for the future IEEE 802.11n based high-throughput networks. The proposed solution aims to resolve the poor channel utilization and the low efficiency that EDCA’s high priority stations adhere due to shorter waiting times and consequently to the network’s degrading overall end performance. The algorithm functions at the MAC level where it delays the packets from being transmitted by postponing the channel access request, based on their traffic characteristics. As a result, the flow’s average aggregate size increases and consequently so is the channel efficiency. However, in some situations we notice that further deferring has a negative impact with TCP applications, thus we further introduce a traffic awareness feature that allows the algorithm to distinguish which flows are using the TCP protocol and override any additional MAC delay. We validate through various simulations that SDCA improves throughput significantly and maximizes channel utilization

    Group-Based Medium Access Control for IEEE 802.11n Wireless LANs

    Get PDF
    Abstract-The latest generation of Wireless Local Area Networks (WLANs) is based on IEEE 802.11n-2009 Standard. The standard provides very high data rates at the physical layer and aims to achieve a throughput at the Medium Access Control (MAC) layer that is higher than 100 Mbps. To do that, the standard introduces several mechanisms to improve the MAC efficiency. The most notable ones are the use of frame aggregation and Block-ACK frames. The standard, however, doesn't introduce a mechanism to reduce the probability of collision. This issue is significant because, with a high data rate, an AP would be able to serve a large number of stations, which would result in a high collision rate. In this paper, we propose a Group-based MAC (GMAC) scheme that reduces the probability of collision and also uses frame aggregation to improve the efficiency. The contending stations are divided into groups. Each group has one station that is the group leader. Only the leader stations contend, hence, reducing the probability of a collision. We evaluate the performance of our scheme with analytic and simulation results. The results show that GMAC achieves a high throughput, high fairness, low delay and maintains a high performance with high data rates

    Medium access control and network planning in wireless networks

    Get PDF
    Wireless Local Area Networks (WLANs) and Wireless Metropolitan Area Networks (WMANs) are two of the main technologies in wireless data networks. WLANs have a short range and aim at providing connectivity to end users. On the other hand, WMANs have a long range and aim at serving as a backbone network and also at serving end users. In this dissertation, we consider the problem of Medium Access Control (MAC) in WLANs and the placement of Relay Stations (RSs) in WMANs. We propose a MAC scheme for WLANs in which stations contend by using jams on the channel. We present analytic and simulation results to find the optimal parameters of the scheme and measure its performance. Our scheme has a low collision rate and delay and a high throughput and fairness performance. Secondly, we present a MAC scheme for the latest generation of WLANs which have very high data rates. In this scheme, we divide the stations into groups and only one station from each group contends to the channel. We also use frame aggregation to reduce the overhead. We present analytic and simulation results which show that our scheme provides a small collision rate and, hence, achieves a high throughput. The results also show that our scheme provides a delay performance that is suitable for real-time applications and also has a high level of fairness. Finally, we consider the problem of placing Relay Stations (RSs) in WMANs. We consider the Worldwide Interoperability for Microwave Access (WIMAX) technology. The RSs are used to increase the capacity of the network and to extend its range. We present an optimization formulation that places RSs in the WiMAX network to serve a number of customers with a pre-defined bit rate. Our solution also provides fault-tolerance by allowing one RS to fail at a given time so that the performance to the users remains at a predictable level. The goal of our solution is to meet the demands of the users, provide fault-tolerance and minimize the number of RSs used

    Contributions to QoS and energy efficiency in wi-fi networks

    Get PDF
    The Wi-Fi technology has been in the recent years fostering the proliferation of attractive mobile computing devices with broadband capabilities. Current Wi-Fi radios though severely impact the battery duration of these devices thus limiting their potential applications. In this thesis we present a set of contributions that address the challenge of increasing energy efficiency in Wi-Fi networks. In particular, we consider the problem of how to optimize the trade-off between performance and energy effciency in a wide variety of use cases and applications. In this context, we introduce novel energy effcient algorithms for real-time and data applications, for distributed and centralized Wi-Fi QoS and power saving protocols and for Wi-Fi stations and Access Points. In addition, the diÂżerent algorithms presented in this thesis adhere to the following design guidelines: i) they are implemented entirely at layer two, and can hence be easily re-used in any device with a Wi-Fi interface, ii) they do not require modiÂżcations to current 802.11 standards, and can hence be readily deployed in existing Wi-Fi devices, and iii) whenever possible they favor client side solutions, and hence mobile computing devices implementing them can benefit from an increased energy efficiency regardless of the Access Point they connect to. Each of our proposed algorithms is thoroughly evaluated by means of both theoretical analysis and packet level simulations. Thus, the contributions presented in this thesis provide a realistic set of tools to improve energy efficiency in current Wi-Fi networks
    corecore