106 research outputs found

    Protein Interactions in Regulation and Assembly

    Get PDF
    The objectives of this work include: validation of yeast-based assays, investigation of protein-protein interactions in the regulatory role of an intrinsically disordered protein, Ultrabithorax (Ubx), and exploration of possible application of Ubx self-assemble protein materials for cell culture study. Yeast based assays are useful for detecting DNA-protein and protein-protein interactions. Although yeast-based assays are sensitive, substantial amount of artifacts often hinder the correct interpretation of the results. The first part of the project was focused on the validation of yeast one-hybrid and two- hybrid assay and assessment for the possible source of artifacts. We found that media sources and preparation methods had significant influence on the results to yeast-one-hybrid and yeast-two hybrid assay. Using condition optimized yeast-two hybrid assay to match in vivo experiments, we examined protein interactions formed by Ubx, a protein with intrinsically disordered regions. In the classical protein structure-function paradigm, protein function is determined by particular protein structure. However, some proteins do not have rigid structure, and these proteins extensively interact with proteins with diverse functions. The second part of this dissertation was focused on dissecting the topological features of binding partner of an intrinsically disordered protein, Ubx. We found that the binding partners of Ubx protein were enriched in particular folds and disordered regions on Ubx protein were essential for Ubx-partner protein interactions, which may explain why proteins with multiple binding partners often have disordered regions. Ubx protein not only interacts with other proteins but also with itself. This self-association has been explored for the application for tissue engineering purposes. The cytocompatible and biocompatible characteristics of Ubx self-assemble protein materials could provide an unmet need for 3-dimensional (3D) scaffolds on which to culture cancer cells for carcinogenesis characterization. The third part of this dissertation was focused on determining the compatibility between isogenic human mammary gland cell lines with various degrees of tumorigenesis and characterization of cell behavior on Ubx materials. We found that Ubx materials were not toxic to human mammary gland cells with similar genetic background but different degree of tumorigenesis. In addition, Ubx materials enabled further characterization of cancer cell specific cell behaviors

    Texture and Colour in Image Analysis

    Get PDF
    Research in colour and texture has experienced major changes in the last few years. This book presents some recent advances in the field, specifically in the theory and applications of colour texture analysis. This volume also features benchmarks, comparative evaluations and reviews

    Glioma on Chips Analysis of glioma cell guidance and interaction in microfluidic-controlled microenvironment enabled by machine learning

    Get PDF
    In biosystems, chemical and physical fields established by gradients guide cell migration, which is a fundamental phenomenon underlying physiological and pathophysiological processes such as development, morphogenesis, wound healing, and cancer metastasis. Cells in the supportive tissue of the brain, glia, are electrically stimulated by the local field potentials from neuronal activities. How the electric field may influence glial cells is yet fully understood. Furthermore, the cancer of glia, glioma, is not only the most common type of brain cancer, but the high-grade form of it (glioblastoma) is particularly aggressive with cells migrating into the surrounding tissues (infiltration) and contribute to poor prognosis. In this thesis, I investigate how electric fields in the microenvironment can affect the migration of glioblastoma cells using a versatile microsystem I have developed. I employ a hybrid microfluidic design to combine poly(methylmethacrylate) (PMMA) and poly(dimethylsiloxane) (PDMS), two of the most common materials for microfluidic fabrication. The advantages of the two materials can be complemented while disadvantages can be mitigated. The hybrid microfluidics have advantages such as versatile 3D layouts in PMMA, high dimensional accuracy in PDMS, and rapid prototype turnaround by facile bonding between PMMA and PDMS using a dual-energy double sided tape. To accurately analyze label-free cell migration, a machine learning software, Usiigaci, is developed to automatically segment, track, and analyze single cell movement and morphological changes under phase contrast microscopy. The hybrid microfluidic chip is then used to study the migration of glioblastoma cell models, T98G and U-251MG, in electric field (electrotaxis). The influence of extracellular matrix and chemical ligands on glioblastoma electrotaxis are investigated. I further test if voltage-gated calcium channels are involved in glioblastoma electrotaxis. The electrotaxes of glioblastoma cells are found to require optimal laminin extracellular matrices and depend on different types of voltage-gated calcium channels, voltage-gated potassium channels, and sodium transporters. A reversiblysealed hybrid microfluidic chip is developed to study how electric field and laminar shear can condition confluent endothelial cells and if the biomimetic conditions affect glioma cell adhesion to them. It is found that glioma/endothelial adhesion is mediated by the Ang1/Tie2 signaling axis and adhesion of glioma is slightly increased to endothelial cells conditioned with shear flow and moderate electric field. In conclusion, robust and versatile hybrid microsystems are employed for studying glioma biology with emphasis on cell migration. The hybrid microfluidic tools can enable us to elucidate fundamental mechanisms in the field of the tumor biology and regenerative medicine.Okinawa Institute of Science and Technology Graduate Universit

    Deep Learning in Medical Image Analysis

    Get PDF
    The accelerating power of deep learning in diagnosing diseases will empower physicians and speed up decision making in clinical environments. Applications of modern medical instruments and digitalization of medical care have generated enormous amounts of medical images in recent years. In this big data arena, new deep learning methods and computational models for efficient data processing, analysis, and modeling of the generated data are crucially important for clinical applications and understanding the underlying biological process. This book presents and highlights novel algorithms, architectures, techniques, and applications of deep learning for medical image analysis

    Reversal of Centrosome Amplification to Reduce Oncogenicity of Metastatic Uveal Melanoma

    Get PDF
    Centrosome amplification (CA), whereby cells have more than the normal number of centrosomes, is a common feature amongst aggressive cancers with a poor prognosis. CA drives oncogenic phenotypes such as increased invasiveness (via both cell-autonomous and non-cell-autonomous mechanisms) and chromosomal instability. In addition, CA can initiate tumourigenesis in flies and mice, and can drive advanced tumourigenic traits early on that promote disease progression. We hypothesise that reversal of CA may reverse CA-driven oncogenic phenotypes and therefore might be a new way to target aggressive cancers with a poor prognosis. This thesis presents the use of three patient-matched uveal melanoma (UM) cell lines as a new model to study CA that has developed in a patient setting. Mel270 cells were derived from a primary tumour and have negligible CA. OMM2.3 and OMM2.5 cells were derived from distinct liver metastases from the same patient and have high levels of CA. Primary UM can be well managed, however ~50% patients develop metastatic disease, for which there is no curative treatment and 1 year survival rates are ~50%, so there is a need to develop new therapies to target metastatic UM. Using RNA-Seq, genes that were differentially expressed in metastasis versus primary derived cells were selected for an siRNA screen to identify genes with a role in CA. Knockdown of either Aurora A or HSP90B1 induced a consistent reduction of CA in OMM2.3 cells. It is believed that Aurora A and HSP090B1 have independent effects on CA, as depleting either Aurora A or HSP90B1 using siRNAs did not affect the RNA or protein levels of the other. A new assay combining live imaging of migrating cells and immunofluorescence was developed and used, which we call FUCCI-CLIF (Fluorescent Ubiquitination based Cell Cycle Indicator - Correlative Live imaging and Immunofluorescence). FUCCI-CLIF provides insight into cell migration, cell cycle and CA status. Knockdown of Aurora A or HSP90B1 reduced migration as calculated by mean straight line speed. Further investigation indicated this was a non-cell-autonomous effect on cell migration. Ultimately, the work presented suggests that depleting or inhibiting proteins required for CA in a cancer specific setting reverses CA and concomitantly reduces oncogenic properties of aggressive metastatic UM cells, and is therefore a much needed new potential therapeutic approach against metastatic UM

    Converging organoids and extracellular matrix::New insights into liver cancer biology

    Get PDF

    Converging organoids and extracellular matrix::New insights into liver cancer biology

    Get PDF
    Primary liver cancer, consisting primarily of hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), is a heterogeneous malignancy with a dismal prognosis, resulting in the third leading cause of cancer mortality worldwide [1, 2]. It is characterized by unique histological features, late-stage diagnosis, a highly variable mutational landscape, and high levels of heterogeneity in biology and etiology [3-5]. Treatment options are limited, with surgical intervention the main curative option, although not available for the majority of patients which are diagnosed in an advanced stage. Major contributing factors to the complexity and limited treatment options are the interactions between primary tumor cells, non-neoplastic stromal and immune cells, and the extracellular matrix (ECM). ECM dysregulation plays a prominent role in multiple facets of liver cancer, including initiation and progression [6, 7]. HCC often develops in already damaged environments containing large areas of inflammation and fibrosis, while CCA is commonly characterized by significant desmoplasia, extensive formation of connective tissue surrounding the tumor [8, 9]. Thus, to gain a better understanding of liver cancer biology, sophisticated in vitro tumor models need to incorporate comprehensively the various aspects that together dictate liver cancer progression. Therefore, the aim of this thesis is to create in vitro liver cancer models through organoid technology approaches, allowing for novel insights into liver cancer biology and, in turn, providing potential avenues for therapeutic testing. To model primary epithelial liver cancer cells, organoid technology is employed in part I. To study and characterize the role of ECM in liver cancer, decellularization of tumor tissue, adjacent liver tissue, and distant metastatic organs (i.e. lung and lymph node) is described, characterized, and combined with organoid technology to create improved tissue engineered models for liver cancer in part II of this thesis. Chapter 1 provides a brief introduction into the concepts of liver cancer, cellular heterogeneity, decellularization and organoid technology. It also explains the rationale behind the work presented in this thesis. In-depth analysis of organoid technology and contrasting it to different in vitro cell culture systems employed for liver cancer modeling is done in chapter 2. Reliable establishment of liver cancer organoids is crucial for advancing translational applications of organoids, such as personalized medicine. Therefore, as described in chapter 3, a multi-center analysis was performed on establishment of liver cancer organoids. This revealed a global establishment efficiency rate of 28.2% (19.3% for hepatocellular carcinoma organoids (HCCO) and 36% for cholangiocarcinoma organoids (CCAO)). Additionally, potential solutions and future perspectives for increasing establishment are provided. Liver cancer organoids consist of solely primary epithelial tumor cells. To engineer an in vitro tumor model with the possibility of immunotherapy testing, CCAO were combined with immune cells in chapter 4. Co-culture of CCAO with peripheral blood mononuclear cells and/or allogenic T cells revealed an effective anti-tumor immune response, with distinct interpatient heterogeneity. These cytotoxic effects were mediated by cell-cell contact and release of soluble factors, albeit indirect killing through soluble factors was only observed in one organoid line. Thus, this model provided a first step towards developing immunotherapy for CCA on an individual patient level. Personalized medicine success is dependent on an organoids ability to recapitulate patient tissue faithfully. Therefore, in chapter 5 a novel organoid system was created in which branching morphogenesis was induced in cholangiocyte and CCA organoids. Branching cholangiocyte organoids self-organized into tubular structures, with high similarity to primary cholangiocytes, based on single-cell sequencing and functionality. Similarly, branching CCAO obtain a different morphology in vitro more similar to primary tumors. Moreover, these branching CCAO have a higher correlation to the transcriptomic profile of patient-paired tumor tissue and an increased drug resistance to gemcitabine and cisplatin, the standard chemotherapy regimen for CCA patients in the clinic. As discussed, CCAO represent the epithelial compartment of CCA. Proliferation, invasion, and metastasis of epithelial tumor cells is highly influenced by the interaction with their cellular and extracellular environment. The remodeling of various properties of the extracellular matrix (ECM), including stiffness, composition, alignment, and integrity, influences tumor progression. In chapter 6 the alterations of the ECM in solid tumors and the translational impact of our increased understanding of these alterations is discussed. The success of ECM-related cancer therapy development requires an intimate understanding of the malignancy-induced changes to the ECM. This principle was applied to liver cancer in chapter 7, whereby through a integrative molecular and mechanical approach the dysregulation of liver cancer ECM was characterized. An optimized agitation-based decellularization protocol was established for primary liver cancer (HCC and CCA) and paired adjacent tissue (HCC-ADJ and CCA-ADJ). Novel malignancy-related ECM protein signatures were found, which were previously overlooked in liver cancer transcriptomic data. Additionally, the mechanical characteristics were probed, which revealed divergent macro- and micro-scale mechanical properties and a higher alignment of collagen in CCA. This study provided a better understanding of ECM alterations during liver cancer as well as a potential scaffold for culture of organoids. This was applied to CCA in chapter 8 by combining decellularized CCA tumor ECM and tumor-free liver ECM with CCAO to study cell-matrix interactions. Culture of CCAO in tumor ECM resulted in a transcriptome closely resembling in vivo patient tumor tissue, and was accompanied by an increase in chemo resistance. In tumor-free liver ECM, devoid of desmoplasia, CCAO initiated a desmoplastic reaction through increased collagen production. If desmoplasia was already present, distinct ECM proteins were produced by the organoids. These were tumor-related proteins associated with poor patient survival. To extend this method of studying cell-matrix interactions to a metastatic setting, lung and lymph node tissue was decellularized and recellularized with CCAO in chapter 9, as these are common locations of metastasis in CCA. Decellularization resulted in removal of cells while preserving ECM structure and protein composition, linked to tissue-specific functioning hallmarks. Recellularization revealed that lung and lymph node ECM induced different gene expression profiles in the organoids, related to cancer stem cell phenotype, cell-ECM integrin binding, and epithelial-to-mesenchymal transition. Furthermore, the metabolic activity of CCAO in lung and lymph node was significantly influenced by the metastatic location, the original characteristics of the patient tumor, and the donor of the target organ. The previously described in vitro tumor models utilized decellularized scaffolds with native structure. Decellularized ECM can also be used for creation of tissue-specific hydrogels through digestion and gelation procedures. These hydrogels were created from both porcine and human livers in chapter 10. The liver ECM-based hydrogels were used to initiate and culture healthy cholangiocyte organoids, which maintained cholangiocyte marker expression, thus providing an alternative for initiation of organoids in BME. Building upon this, in chapter 11 human liver ECM-based extracts were used in combination with a one-step microfluidic encapsulation method to produce size standardized CCAO. The established system can facilitate the reduction of size variability conventionally seen in organoid culture by providing uniform scaffolding. Encapsulated CCAO retained their stem cell phenotype and were amendable to drug screening, showing the feasibility of scalable production of CCAO for throughput drug screening approaches. Lastly, Chapter 12 provides a global discussion and future outlook on tumor tissue engineering strategies for liver cancer, using organoid technology and decellularization. Combining multiple aspects of liver cancer, both cellular and extracellular, with tissue engineering strategies provides advanced tumor models that can delineate fundamental mechanistic insights as well as provide a platform for drug screening approaches.<br/

    WNT-DEPENDENT REGENERATIVE FUNCTION IS INDUCED IN LEUKEMIA-INITIATING AC133BRIGHT CELLS

    Get PDF
    The Cancer Stem Cell model supported the notion that leukemia was initiated and maintained in vivo by a small fraction of leukemia-initiating cells (LICs). Previous studies have suggested the involvement of Wnt signaling pathway in Acute Myeloid Leukemia (AML) by the ability to sustain the development of LICs. A novel hematopoietic stem and progenitor cell marker, monoclonal antibody AC133, recognizes the CD34bright CD38- subset of human acute myeloid leukemia cells, suggesting that it may be an early marker for the LICs. During the first part of my phD program we previously evaluated the ability of leukemic AC133+ fraction, to perform engraftment following to xenotransplantation in immunodeficient mouse model Rag2-/-\u3b3c-/-. The results showed that the surface marker AC133 is able to enrich for the cell fraction that contains the LICs. In consideration of our previously reported data, derived from the expression profiling analysis performed in normal (n=10) and leukemic (n=33) human long-term reconstituting AC133+ cells, we revealed that the ligand-dependent Wnt signaling is induced in AML through a diffuse expression and release of WNT10B, a hematopoietic stem cells regenerative-associated molecule. In situ detection performed on bone marrow biopsies of AML patients, showed the activation of the Wnt pathway, through the concomitant presence of the ligand WNT10B and of the active dephosphorylated \u3b2-catenin form, suggesting an autocrine / paracrine-type ligand-dependent activation mechanism. In consideration of the link between hematopoietic regeneration and developmental signaling, we transplanted primary AC133+ AML A46 cells into developing zebrafish. This biosensor model revealed the formation of ectopic structures by activation of dorsal organizer markers that act downstream of the Wnt pathway. These results suggested that the misappropriating Wnt associated functions can promote pathological stem cell-like regeneration responsiveness. The analyses performed in situ retained information on the cellular localization, enabling determination of the activity status of individual cells and allowing the tumor environment view. Taking this issue into consideration, during the second part of my phD program, I set up the application of a new in situ method for localized detection and genotyping of individual transcripts directly in cells and tissues. The mRNA in situ detection technique is based on padlock probes ligation and target priming rolling circle amplification allowing the single nucleotide resolution in heterogenous tissues. The mRNA in situ detection performed on bone marrow biopsies derived from AML patients, showed a diffuse localization pattern of WNT10B molecule in the tissue. Conversely, only the AC133bright cell population shows the Wnt signaling activation signature represented by the cytoplasmatic accumulation and nuclear translocation of the active form of \u3b2-catenin. In spite of this, we previously evidenced that the regenerative function of WNT signaling pathway is defined by the up-regulation of WNT10B, WNT10A, WNT2B and WNT6 loci, we identified the WNT10B as a major locus associated with the regenerative function and over-expressed by all AML patients. By the molecular evaluation of the WNT10B transcript, we isolated an aberrant splicing variant (WNT10BIVS1), that identify Non Core-Binding Factor Leukemia (NCBFL) class and whose potential role is discussed. Moreover, we demonstrate that the function of "leukemia stem cell", present in the cell population enriched for the marker AC133bright, is strictly related to regenerative function associated with WNT signaling, defining the key role of WNT10B ligand as a specific molecular marker for leuchemogenesis. This thesis defines the new suitable approaches to characterize the leukemia-initiating cells (LICs) and suggest the role of WNT10B as a new suitable target for AML
    • …
    corecore