91 research outputs found

    A Console GRID Leveraged Authentication and Key Agreement Mechanism for LTE/SAE

    Get PDF
    Growing popularity of multimedia applications, pervasive connectivity, higher bandwidth, and euphoric technology penetration among bulk of the human race that happens to be cellular technology users, has fueled the adaptation to long-term evolution (LTE)/system architecture evolution. The LTE fulfills the resource demands of the next generation applications for now. We identify security issues in authentication mechanism used in LTE that without countermeasures might give super user rights to unauthorized users. The LTE uses static LTE key to derive the entire key hierarchy, i.e., LTE follows Evolved Packet System–Authentication and Key Agreement based authentication, which discloses user identity, location, and other personally identifiable information. To counter this, we propose a public key cryptosystem named “International mobile subscriber identity Protected Console Grid based Authentication and Key Agreement (IPG-AKA) protocol” to address the vulnerabilities related to weak key management. From the data obtained from threat modeling and simulation results, we claim that the IPG-AKA scheme not only improves security of authentication procedures, but also shows improvements in authentication loads and reduction in key generation time. The empirical results and qualitative analysis presented in this paper prove that IPG-AKA improves security in authentication procedure and performance in the LTE

    Context awareness and related challenges: A comprehensive evaluation study for a context-based RAT selection scheme towards 5G networks

    Get PDF
    Ο αποτελεσματικός σχεδιασμός των δικτύων είναι απαραίτητος για να αντιμετωπιστεί ο αυξανόμενος αριθμός των συνδρομητών κινητού διαδικτύου και των απαιτητικών υπηρεσιών δεδομένων, που ανταγωνίζονται για περιορισμένους ασύρματους πόρους. Επιπλέον, οι βασικές προκλήσεις για τα συνεχώς αναπτυσσόμενα δίκτυα LTE είναι η αύξηση των δυνατοτήτων των υφιστάμενων μηχανισμών, η μείωση της υπερβολικής σηματοδότησης (signaling) και η αξιοποίηση ενός αποτελεσματικού μηχανισμού επιλογής τεχνολογίας ασύρματης πρόσβασης (RAT). Υπάρχουν ποικίλες προτάσεις στην βιβλιογραφία σχετικά με αυτές τις προκλήσεις, μερικές από τις οποίες παρουσιάζονται εδώ. Ο σκοπός της εργασίας αυτής είναι να ερευνήσει τις τρέχουσες εξελίξεις στα δίκτυα LTE σχετικά με την ενσωμάτωση EPC και WiFi και την επίγνωση πλαισίου (context awareness) στην διαχείριση κινητικότητας, και να προτείνει τον αλγόριθμο COmpAsS, έναν μηχανισμό που χρησιμοποιεί ασαφή λογική (fuzzy logic) για να επιλέξει την πιο κατάλληλη τεχνολογία ασύρματης πρόσβασης για τα κινητά. Επιπλέον, έχουμε ποσοτικοποιήσει το κόστος σηματοδότησης του προτεινόμενου μηχανισμού σε σύνδεση με τις σημερινές προδιαγραφές του 3GPP και εκτελέσαμε μια ολοκληρωμένη ανάλυση. Τέλος, αξιολογήσαμε τον αλγόριθμο μέσω εκτεταμένων προσομοιώσεων σε ένα πολύπλοκο και ρεαλιστικό σενάριο χρήσης 5G, που απεικονίζονται τα σαφή πλεονεκτήματα της προσέγγισής μας όσον αφορά τη συχνότητα μεταπομπών (handover) και τις μετρήσεις βασικών QoS τιμών, όπως ρυθμός μετάδοσης και καθυστέρηση.Effective network planning is essential to cope with the increasing number of mobile internet subscribers and bandwidth-intensive services competing for limited wireless resources. Additionally, key challenges for the constantly growing LTE networks is increasing capabilities of current mechanisms, reduction of signaling overhead and the utilization of an effective Radio Access Technology (RAT) selection scheme. There have been various proposals in literature regarding these challenges, some of which are discussed here. The purpose of this work is to research the current advances in LTE networks regarding EPC - WiFi integration and context awareness in mobility management, and propose the COmpAsS algorithm, a mechanism using fuzzy logic to select the most suitable Radio Access Technology. Furthermore, we quantify the signaling overhead of the proposed mechanism by linking it to the current 3GPP specifications and performing a comprehensive analysis. Finally, we evaluate the novel scheme via extensive simulations in a complex and realistic 5G use case, illustrating the clear advantages of our approach in terms of handover frequency and key QoS metrics, i.e. the user-experienced throughput and delay

    A Quantum Safe Key Hierarchy and Dynamic Security Association for LTE/SAE in 5G Scenario

    Get PDF
    Millions of devices are going to participate in 5G producing a huge space for security threats. The 5G specification goals require rigid and robust security protocol against such threats. Quantum cryptography is a recently emerged term in which we test the robustness of security protocols against Quantum computers. Therefore, in this paper, we propose a security protocol called Quantum Key GRID for Authentication and Key Agreement (QKG-AKA) scheme for the dynamic security association. This scheme is efficiently deployed in Long Term Evolution (LTE) architecture without any significant modifications in the underlying base system. The proposed QKGAKA mechanism is analyzed for robustness and proven safe against quantum computers. The simulation results and performance analysis show drastic improvement regarding security and key management over existing schemes

    LTE Optimization and Resource Management in Wireless Heterogeneous Networks

    Get PDF
    Mobile communication technology is evolving with a great pace. The development of the Long Term Evolution (LTE) mobile system by 3GPP is one of the milestones in this direction. This work highlights a few areas in the LTE radio access network where the proposed innovative mechanisms can substantially improve overall LTE system performance. In order to further extend the capacity of LTE networks, an integration with the non-3GPP networks (e.g., WLAN, WiMAX etc.) is also proposed in this work. Moreover, it is discussed how bandwidth resources should be managed in such heterogeneous networks. The work has purposed a comprehensive system architecture as an overlay of the 3GPP defined SAE architecture, effective resource management mechanisms as well as a Linear Programming based analytical solution for the optimal network resource allocation problem. In addition, alternative computationally efficient heuristic based algorithms have also been designed to achieve near-optimal performance

    3G migration in Pakistan

    Get PDF
    The telecommunication industry in Pakistan has come a long way since the country\u27s independence in 1947. The initial era could be fairly termed as the PTCL (Pakistan Telecommunication Company Limited) monopoly, for it was the sole provider of all telecommunication services across the country. It was not until four decades later that the region embarked into the new world of wireless communication, hence ending the decades old PTCL monopoly. By the end of the late 1990\u27s, government support and international investment in the region opened new doors to innovation and better quality, low cost, healthy competition. Wireless licenses for the private sector in the telecommunication industry triggered a promising chain of events that resulted in a drastic change in the telecommunication infrastructure and service profile. The newly introduced wireless (GSM) technology received enormous support from all stakeholders (consumers, regulatory body, and market) and caused a vital boost in Pakistan\u27s economy. Numerous tangential elements had triggered this vital move in the history of telecommunications in Pakistan. Entrepreneurs intended to test the idea of global joint ventures in the East and hence the idea of international business became a reality. The technology had proven to be a great success in the West, while Pakistan\u27s telecom consumer had lived under the shadow of PTCL dominance for decades and needed more flexibility. At last the world was moving from wired to wireless! Analysts termed this move as the beginning of a new era. The investors, telecommunication businesses, and Pakistani treasury prospered. It was a win-win situation for all involved. The learning curve was steep for both operators and consumers but certainly improved over time. In essence, the principle of deploying the right technology in the right market at the right time led to this remarkable success. The industry today stands on the brink of a similar crossroads via transition from second generation to something beyond. With the partial success of 3G in Europe and the USA, the government has announced the release of three 3G licenses by mid 2009. This decision is not yet fully supported by all but still initiated parallel efforts by the operators and the vendors to integrate this next move into their existing infrastructure

    Performance evaluation of voice handover between LTE and UMTS

    Get PDF
    M.Sc.(Eng.), Faculty of Engineering and the Built Environment, 2011The main objective of seamless mobility is to enable mobile users to stay connected while roaming across heterogeneous networks. As cellular networks evolve from the third generation Universal Mobile Telecommunication System (UMTS) to the Long Term Evolution (LTE), a new Evolved Packet Core (EPC) will support heterogeneous radio access networks on the same platform. UMTS provides voice services in the circuit switched domain; while LTE operates in the packet switched domain. Cellular network operators thus face the challenge of providing voice services during initial deployment of LTE due to difficulty in mobility between the two domains. Seamless voice handover between packet switched LTE and the circuit switched UMTS network is therefore an important tool in solving this problem. This report investigates the performance of inter-Radio Access Technology voice handover between LTE and UMTS. The schemes evaluated were Voice Call Continuity (VCC) for UMTS to LTE handover and Single Radio Voice Call Continuity (SRVCC) for LTE to UMTS handover. The performance evaluation was done using mathematical models and equations that were derived for the handover service interruption time. The resulting equations were simulated and the output was analysed and compared with the Third Generation Partnership Project (3GPP) specifications

    Optimization and Performance Analysis of High Speed Mobile Access Networks

    Get PDF
    The end-to-end performance evaluation of high speed broadband mobile access networks is the main focus of this work. Novel transport network adaptive flow control and enhanced congestion control algorithms are proposed, implemented, tested and validated using a comprehensive High speed packet Access (HSPA) system simulator. The simulation analysis confirms that the aforementioned algorithms are able to provide reliable and guaranteed services for both network operators and end users cost-effectively. Further, two novel analytical models one for congestion control and the other for the combined flow control and congestion control which are based on Markov chains are designed and developed to perform the aforementioned analysis efficiently compared to time consuming detailed system simulations. In addition, the effects of the Long Term Evolution (LTE) transport network (S1and X2 interfaces) on the end user performance are investigated and analysed by introducing a novel comprehensive MAC scheduling scheme and a novel transport service differentiation model

    The strategies associated with the migration of networks to 4G

    Get PDF
    The networks need to provide higher speeds than those offered today. For it, considering that in the spectrum radio technologies is the scarcest resource in the development of these technologies and the new developments is essential to maximize the performance of bits per hertz transmitted. Long Term Evolution optimize spectral efficiency modulations with new air interface, and more advanced algorithms radius. These capabilities is the fact that LTE is an IPbased technology that enables end-to-end offer high transmission rates per user and very low latency, ie delay in the response times of the network around only 10 milliseconds, so you can offer any realtime application. LTE is the latest standard in mobile network technology and 3GPP ensure competitiveness in the future, may be considered a technology bridge between 3G networks - current 3.5G and future 4G networks, which are expected to reach speeds of up to 1G . LTE operators provide a simplified architecture but both robust, supporting services on IP technology. The objectives to be achieved through its implementation are ambitious, first users have a wide range of added services like capabilities that currently enjoys with residential broadband access at competitive prices, while the operator will have a network fully IP-based environment, reducing the complexity and cost of the same, which will give operators the opportunity to migrate to LTE directly. A major advantage of LTE is its ability to fuse with existing networks, ensuring interconnection with the same, increasing his current coverage and allowing a data connection established by a user in the environment continue when fade the coverage LTE. Moreover, the operator has the advantage of deploying network gradually, starting initially at areas of high demand for broadband services and expand progressively in line with this. RESUMEN. Las redes necesitan proporcionar velocidades mayores a las ofertadas a día de hoy. Para ello, teniendo en cuenta que en tecnologías radio el espectro es el recurso más escaso, en la evolución de estas tecnologías y en los nuevos desarrollos es esencial maximizar el rendimiento de bits por hercio transmitido. Long Term Evolution optimiza la eficiencia espectral con nuevas modulaciones en la interfaz aire, así como los algoritmos radio más avanzado. A estas capacidades se suma el hecho de que LTE es una tecnología basada en IP de extremo a extremo que permite ofrecer altas velocidades de transmisión por usuario y latencias muy bajas, es decir, retardos en los tiempos de respuesta de la red en torno a sólo 10 milisegundos, por lo que permite ofrecer cualquier tipo de aplicación en tiempo real. LTE es el último estándar en tecnología de redes móviles y asegurará la competitividad de 3GPP en el futuro, pudiendo ser considerada una tecnología puente entre las redes 3G – 3.5G actuales y las futuras redes 4G, de las que se esperan alcanzar velocidades de hasta 1G. LTE proporcionará a las operadoras una arquitectura simplificada pero robusta a la vez, soportando servicios sobre tecnología IP. Los objetivos que se persiguen con su implantación son ambiciosos, por una parte los usuarios dispondrá de una amplia oferta de servicios añadidos con capacidades similares a las que disfruta actualmente con accesos a banda ancha residencial y a precios competitivos, mientras que el operador dispondrá de una red basada en entorno totalmente IP, reduciendo la complejidad y el costo de la misma, lo que dará a las operadoras la oportunidad de migrar a LTE directamente. Una gran ventaja de LTE es su capacidad para fusionarse con las redes existentes, asegurando la interconexión con las mismas, aumentando su actual cobertura y permitiendo que una conexión de datos establecida por un usuario en el entorno LTE continúe cuando la cobertura LTE se desvanezca. Por otra parte el operador tiene la ventaja de desplegar la red LTE de forma gradual, comenzando inicialmente por las áreas de gran demanda de servicios de banda ancha y ampliarla progresivamente en función de ésta

    An Innovative RAN Architecture for Emerging Heterogeneous Networks: The Road to the 5G Era

    Full text link
    The global demand for mobile-broadband data services has experienced phenomenal growth over the last few years, driven by the rapid proliferation of smart devices such as smartphones and tablets. This growth is expected to continue unabated as mobile data traffic is predicted to grow anywhere from 20 to 50 times over the next 5 years. Exacerbating the problem is that such unprecedented surge in smartphones usage, which is characterized by frequent short on/off connections and mobility, generates heavy signaling traffic load in the network signaling storms . This consumes a disproportion amount of network resources, compromising network throughput and efficiency, and in extreme cases can cause the Third-Generation (3G) or 4G (long-term evolution (LTE) and LTE-Advanced (LTE-A)) cellular networks to crash. As the conventional approaches of improving the spectral efficiency and/or allocation additional spectrum are fast approaching their theoretical limits, there is a growing consensus that current 3G and 4G (LTE/LTE-A) cellular radio access technologies (RATs) won\u27t be able to meet the anticipated growth in mobile traffic demand. To address these challenges, the wireless industry and standardization bodies have initiated a roadmap for transition from 4G to 5G cellular technology with a key objective to increase capacity by 1000Ã? by 2020 . Even though the technology hasn\u27t been invented yet, the hype around 5G networks has begun to bubble. The emerging consensus is that 5G is not a single technology, but rather a synergistic collection of interworking technical innovations and solutions that collectively address the challenge of traffic growth. The core emerging ingredients that are widely considered the key enabling technologies to realize the envisioned 5G era, listed in the order of importance, are: 1) Heterogeneous networks (HetNets); 2) flexible backhauling; 3) efficient traffic offload techniques; and 4) Self Organizing Networks (SONs). The anticipated solutions delivered by efficient interworking/ integration of these enabling technologies are not simply about throwing more resources and /or spectrum at the challenge. The envisioned solution, however, requires radically different cellular RAN and mobile core architectures that efficiently and cost-effectively deploy and manage radio resources as well as offload mobile traffic from the overloaded core network. The main objective of this thesis is to address the key techno-economics challenges facing the transition from current Fourth-Generation (4G) cellular technology to the 5G era in the context of proposing a novel high-risk revolutionary direction to the design and implementation of the envisioned 5G cellular networks. The ultimate goal is to explore the potential and viability of cost-effectively implementing the 1000x capacity challenge while continuing to provide adequate mobile broadband experience to users. Specifically, this work proposes and devises a novel PON-based HetNet mobile backhaul RAN architecture that: 1) holistically addresses the key techno-economics hurdles facing the implementation of the envisioned 5G cellular technology, specifically, the backhauling and signaling challenges; and 2) enables, for the first time to the best of our knowledge, the support of efficient ground-breaking mobile data and signaling offload techniques, which significantly enhance the performance of both the HetNet-based RAN and LTE-A\u27s core network (Evolved Packet Core (EPC) per 3GPP standard), ensure that core network equipment is used more productively, and moderate the evolving 5G\u27s signaling growth and optimize its impact. To address the backhauling challenge, we propose a cost-effective fiber-based small cell backhaul infrastructure, which leverages existing fibered and powered facilities associated with a PON-based fiber-to-the-Node/Home (FTTN/FTTH)) residential access network. Due to the sharing of existing valuable fiber assets, the proposed PON-based backhaul architecture, in which the small cells are collocated with existing FTTN remote terminals (optical network units (ONUs)), is much more economical than conventional point-to-point (PTP) fiber backhaul designs. A fully distributed ring-based EPON architecture is utilized here as the fiber-based HetNet backhaul. The techno-economics merits of utilizing the proposed PON-based FTTx access HetNet RAN architecture versus that of traditional 4G LTE-A\u27s RAN will be thoroughly examined and quantified. Specifically, we quantify the techno-economics merits of the proposed PON-based HetNet backhaul by comparing its performance versus that of a conventional fiber-based PTP backhaul architecture as a benchmark. It is shown that the purposely selected ring-based PON architecture along with the supporting distributed control plane enable the proposed PON-based FTTx RAN architecture to support several key salient networking features that collectively significantly enhance the overall performance of both the HetNet-based RAN and 4G LTE-A\u27s core (EPC) compared to that of the typical fiber-based PTP backhaul architecture in terms of handoff capability, signaling overhead, overall network throughput and latency, and QoS support. It will also been shown that the proposed HetNet-based RAN architecture is not only capable of providing the typical macro-cell offloading gain (RAN gain) but also can provide ground-breaking EPC offloading gain. The simulation results indicate that the overall capacity of the proposed HetNet scales with the number of deployed small cells, thanks to LTE-A\u27s advanced interference management techniques. For example, if there are 10 deployed outdoor small cells for every macrocell in the network, then the overall capacity will be approximately 10-11x capacity gain over a macro-only network. To reach the 1000x capacity goal, numerous small cells including 3G, 4G, and WiFi (femtos, picos, metros, relays, remote radio heads, distributed antenna systems) need to be deployed indoors and outdoors, at all possible venues (residences and enterprises)

    User-oriented mobility management in cellular wireless networks

    Get PDF
    2020 Spring.Includes bibliographical references.Mobility Management (MM) in wireless mobile networks is a vital process to keep an individual User Equipment (UE) connected while moving within the network coverage area—this is required to keep the network informed about the UE's mobility (i.e., location changes). The network must identify the exact serving cell of a specific UE for the purpose of data-packet delivery. The two MM procedures that are necessary to localize a specific UE and deliver data packets to that UE are known as Tracking Area Update (TAU) and Paging, which are burdensome not only to the network resources but also UE's battery—the UE and network always initiate the TAU and Paging, respectively. These two procedures are used in current Long Term Evolution (LTE) and its next generation (5G) networks despite the drawback that it consumes bandwidth and energy. Because of potentially very high-volume traffic and increasing density of high-mobility UEs, the TAU/Paging procedure incurs significant costs in terms of the signaling overhead and the power consumption in the battery-limited UE. This problem will become even worse in 5G, which is expected to accommodate exceptional services, such as supporting mission-critical systems (close-to-zero latency) and extending battery lifetime (10 times longer). This dissertation examines and discusses a variety of solution schemes for both the TAU and Paging, emphasizing a new key design to accommodate 5G use cases. However, ongoing efforts are still developing new schemes to provide seamless connections to the ever-increasing density of high-mobility UEs. In this context and toward achieving 5G use cases, we propose a novel solution to solve the MM issues, named gNB-based UE Mobility Tracking (gNB-based UeMT). This solution has four features aligned with achieving 5G goals. First, the mobile UE will no longer trigger the TAU to report their location changes, giving much more power savings with no signaling overhead. Instead, second, the network elements, gNBs, take over the responsibility of Tracking and Locating these UE, giving always-known UE locations. Third, our Paging procedure is markedly improved over the conventional one, providing very fast UE reachability with no Paging messages being sent simultaneously. Fourth, our solution guarantees lightweight signaling overhead with very low Paging delay; our simulation studies show that it achieves about 92% reduction in the corresponding signaling overhead. To realize these four features, this solution adds no implementation complexity. Instead, it exploits the already existing LTE/5G communication protocols, functions, and measurement reports. Our gNB-based UeMT solution by design has the potential to deal with mission-critical applications. In this context, we introduce a new approach for mission-critical and public-safety communications. Our approach aims at emergency situations (e.g., natural disasters) in which the mobile wireless network becomes dysfunctional, partially or completely. Specifically, this approach is intended to provide swift network recovery for Search-and-Rescue Operations (SAROs) to search for survivors after large-scale disasters, which we call UE-based SAROs. These SAROs are based on the fact that increasingly almost everyone carries wireless mobile devices (UEs), which serve as human-based wireless sensors on the ground. Our UE-based SAROs are aimed at accounting for limited UE battery power while providing critical information to first responders, as follows: 1) generate immediate crisis maps for the disaster-impacted areas, 2) provide vital information about where the majority of survivors are clustered/crowded, and 3) prioritize the impacted areas to identify regions that urgently need communication coverage. UE-based SAROs offer first responders a vital tool to prioritize and manage SAROs efficiently and effectively in a timely manner
    corecore