1,025 research outputs found

    3G Wideband CDMA : packet-based optimisation for high data-rate downlink transmission

    No full text
    A third generation (3G) of mobile communication systems, based on Wideband CDMA, are intended to offer high-speed packet-based services. Network operators wish to maximise the throughput in the downlink of3G systems, which requires efficient allocation ofresources. This thesis considers the problem ofmaximising throughput in an interference dominated channel. Cooperative broadcasting is a theoretical technique to mitigate this problem. Its implementation in practical systems requires efficient resource allocati.on to maximise the thr(oughput whilst meeting system and user-imposed constramts. A resource allocation approach is presented for implementing cooperative broadcasting. Users are paired and a teclmique for allocating resources between the pair is developed. Then, a method for pairing the users is considered. Simulation results are presented, which show a throughput improvement over existing resource allocation approaches. The problem ofcontrolling the distribution ofrandomly arriving data to meet the resource allocation specifications is examined. A single-threshold buffer is proposed, which requires fewer calculations than an existing double-threshold buffer. Simulation results are presented which show a throughput improvement may be realised, greater than that which would achievable using other rate control schemes. Cooperative broadcasting may lead to transmissions to some users being allocated low power. When full channel infonnation is available at the transmitter, a water filling solution may be used to maximise capacity. However, when combined with buffer management, erasure may result. This erasure may be overcome using an erasure protection code. Such a code is examined. When combined with Turbo coding, ajoint detector may be used for providing error and erasure protection. Analysis ofthis detector shows a lower limit on the error rate, dependent on the probability of erasure. Simulation results show that using this approach the error rate is significantly improved. This code can then be used to increase capacity, whilst achieving low error rates.Imperial Users onl

    System Level Analysis of LTE-Advanced:with Emphasis on Multi-Component Carrier Management

    Get PDF

    Uplink Overhead Analysis and Outage Protection for Multi-Carrier LTE-Advanced Systems

    Get PDF

    Traffic integration in personal, local and geograhical wireless networks

    Get PDF
    Currently, users identify wireless networks with the first and second generation of cellular-telephony networks. Although voice and short messaging have driven the success of these networks so far, data and more sophisticated applications are emerging as the future driving forces for the extensive deployment of new wireless technologies. In this chapter we will consider future wireless technologies that will provide support to different types of traffic including legacy voice applications, Internet data traffic, and sophisticated multimedia applications. In the near future, wireless technologies will span from broadband wide-area technologies (such as satellite-based network and cellular networks) to local and personal area networks. Hereafter, for each class of networks, we will present the emerging wireless technologies for supporting service integration. Our overview will start by analyzing the Bluetooth technology that is the de-facto standard for Wireless Personal Area Networks (WPANs), i.e. networks that connect devices placed inside a circle with radius of 10 meters. Two main standards exist for Wireless Local Area Networks (WLANs): IEEE 802. and HiperLAN. In this chapter we focus on the IEEE 802.11 technology, as it is the technology currently available on the market. In this chapter, after a brief description of the IEEE 802.11 architecture, we will focus on the mechanisms that have been specifically designed to support delay sensitive traffics

    Final report on the evaluation of RRM/CRRM algorithms

    Get PDF
    Deliverable public del projecte EVERESTThis deliverable provides a definition and a complete evaluation of the RRM/CRRM algorithms selected in D11 and D15, and evolved and refined on an iterative process. The evaluation will be carried out by means of simulations using the simulators provided at D07, and D14.Preprin

    THROUGHPUT OPTIMIZATION AND ENERGY EFFICIENCY OF THE DOWNLINK IN THE LTE SYSTEM

    Get PDF
    Nowadays, the usage of smart phones is very popular. More and more people access the Internet with their smart phones. This demands higher data rates from the mobile network operators. Every year the number of users and the amount of information is increasing dramatically. The wireless technology should ensure high data rates to be able to compete with the wire-based technology. The main advantage of the wireless system is the ability for user to be mobile. The 4G LTE system made it possible to gain very high peak data rates. The purpose of this thesis was to investigate the improvement of the system performance for the downlink based on different antenna configurations and different scheduling algorithms. Moreover, the fairness between the users using different schedulers has been analyzed and evaluated. Furthermore, the energy efficiency of the scheduling algorithms in the downlink of LTE systems has been considered. Some important parts of the LTE system are described in the theoretical part of this thesis.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Studies on efficient spectrum sharing in coexisting wireless networks.

    Get PDF
    Wireless communication is facing serious challenges worldwide: the severe spectrum shortage along with the explosive increase of the wireless communication demands. Moreover, different communication networks may coexist in the same geographical area. By allowing multiple communication networks cooperatively or opportunistically sharing the same frequency will potentially enhance the spectrum efficiency. This dissertation aims to investigate important spectrum sharing schemes for coexisting networks. For coexisting networks operating in interweave cognitive radio mode, most existing works focus on the secondary network’s spectrum sensing and accessing schemes. However, the primary network can be selfish and tends to use up all the frequency resource. In this dissertation, a novel optimization scheme is proposed to let primary network maximally release unnecessary frequency resource for secondary networks. The optimization problems are formulated for both uplink and downlink orthogonal frequency-division multiple access (OFDMA)-based primary networks, and near optimal algorithms are proposed as well. For coexisting networks in the underlay cognitive radio mode, this work focuses on the resource allocation in distributed secondary networks as long as the primary network’s rate constraint can be met. Global optimal multicarrier discrete distributed (MCDD) algorithm and suboptimal Gibbs sampler based Lagrangian algorithm (GSLA) are proposed to solve the problem distributively. Regarding to the dirty paper coding (DPC)-based system where multiple networks share the common transmitter, this dissertation focuses on its fundamental performance analysis from information theoretic point of view. Time division multiple access (TDMA) as an orthogonal frequency sharing scheme is also investigated for comparison purpose. Specifically, the delay sensitive quality of service (QoS) requirements are incorporated by considering effective capacity in fast fading and outage capacity in slow fading. The performance metrics in low signal to noise ratio (SNR) regime and high SNR regime are obtained in closed forms followed by the detailed performance analysis

    Cross-layer schedulling strategy for UMTS downlink enhancement

    Get PDF
    This article describes the benefits of including cross-layer information in the scheduling mechanism of a UMTS downlink channel. In particular, the information obtained from the fast power control algorithm is used to properly schedule transmissions. A prioritization function that exploits the short-term channel variations is proposed. This strategy is shown to be a feasible approach to improve system performance in terms of capacity and delay. This enhancement is obtained as a benefit of intrinsic multi-user diversity. The proposal is applicable within the current UMTS radio resource management framework.Peer Reviewe
    • …
    corecore