10 research outputs found

    Application profiling and mapping on NoC-based MPSoC emulation platform on reconfigurable logic

    Get PDF
    In network-on-chip (NoC) based multi-processor system-on-chip (MPSoC) development, application profiling is one of the most crucial step during design time to search and explore optimal mapping. Conventional mapping exploration methodologies analyse application-specific graphs by estimating its runtime behaviour using analytical or simulation models. However, the former does not replicate the actual application run-time performance while the latter requires significant amount of time for exploration. To map applications on a specific MPSoC platform, the application behaviour on cycle-accurate emulated platform should be considered for obtaining better mapping quality. This paper proposes an application mapping methodology that utilizes a MPSoC prototyped in Field-Programmable Gate Array (FPGA). Applications are implemented on homogeneous MPSoC cores and their costs are analysed and profiled on the platform in term of execution time, intra-core communication and inter-core communication delays. These metrics are utilized in analytical evaluation of the application mapping. The proposed analytical-based mapping is demonstrated against the exhaustive brute force method. Results show that the proposed method is able to produce quality mappings compared to the ground truth solutions but in shorter evaluation time

    A Hybrid Task Mapping Algorithm for Heterogeneous MPSoCs

    Get PDF

    A hierarchical run-time adaptive resource allocation framework for large-scale MPSoC systems

    Get PDF
    In the embedded computer system domain, MPSoC systems have become increasingly popular due to the ever-increasing performance demands of modern embedded applications. The number of processing elements in these MPSoCs also steadily increases. Whereas current MPSoCs still contain a limited number of processing elements, future MPSoCs will feature tens up to hundreds of (heterogeneous) processing elements that are all integrated on a single chip. On these future large-scale MPSoC systems, the mapping of applications onto the hardware resources plays an important role to fully explore the parallelism of applications. In this article, a hierarchical run-time adaptive resource allocation framework which uses an intelligent task remapping approach is proposed to improve the system performance for large-scale MPSoCs

    A Scenario-based Run-time Task Mapping Algorithm for MPSoCs

    No full text
    The application workloads in modern MPSoC-based embedded systems are becoming increasingly dynamic. Different applications concurrently execute and contend for resources in such systems which could cause serious changes in the intensity and nature of the workload demands over time. To cope with the dynamism of application workloads at run time and improve the efficiency of the underlying system architecture, this paper presents a novel scenario-based run-time task mapping algorithm. This algorithm combines a static mapping strategy based on workload scenarios and a dynamic mapping strategy to achieve an overall improvement of system efficiency. We evaluated our algorithm using a homogeneous MPSoC system with three real applications. From the results, we found that our algorithm achieves an 11.3 % performance improvement and a 13.9 % energy saving compared to running the applications without using any run-time mapping algorithm. When comparing our algorithm to three other, well-known run-time mapping algorithms, it is superior to these algorithms in terms of quality of the mappings found while also reducing the overheads compared to most of these algorithms

    ๋งค๋‹ˆ์ฝ”์–ด ๊ฐ€์†๊ธฐ์˜ ๊ฒฐํ•จ์„ ๊ณ ๋ คํ•œ ํƒœ์Šคํฌ ๋งคํ•‘ ๋ฐ ์ž์› ๊ด€๋ฆฌ ๊ธฐ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2014. 8. ํ•˜์ˆœํšŒ.๊ธฐ์ˆ ์ด ๋ฐœ์ „ํ•จ์— ๋”ฐ๋ผ ํ•˜๋‚˜์˜ ์นฉ ์•ˆ์— ์ง‘์ ๋˜๋Š” ํ”„๋กœ์„ธ์„œ์˜ ๊ฐฏ์ˆ˜๊ฐ€ ์ ์  ์ฆ๊ฐ€ํ•˜๊ฒŒ ๋˜์—ˆ๋‹ค. ๋˜ํ•œ, ์‘์šฉ๋“ค์˜ ๋ณด๋‹ค ๋†’์€ ์—ฐ์‚ฐ ๋Šฅ๋ ฅ์— ๋Œ€ํ•œ ์š”๊ตฌ๋กœ ์ธํ•ด ๋งค๋‹ˆ์ฝ”์–ด ๊ฐ€์†๊ธฐ๋Š” ์‹œ์Šคํ…œ-์˜จ-์นฉ์—์„œ ์ค‘์š”ํ•œ ์—ฐ์‚ฐ ์žฅ์น˜๊ฐ€ ๋˜์—ˆ๋‹ค. ์‹œ์Šคํ…œ์˜ ์ƒํƒœ๊ฐ€ ์—ฌ๋Ÿฌ๊ฐ€์ง€ ์š”์ธ์— ์˜ํ•ด ๋™์ ์œผ๋กœ ๋ณ€ํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ์‹œ์Šคํ…œ ์ˆ˜ํ–‰์ค‘์— ๊ทธ๋Ÿฌํ•œ ๊ฐ€์†๊ธฐ๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ๋‹ค๋ฃจ๋Š” ๊ฒƒ์€ ๋งค์šฐ ์–ด๋ ค์šด ๋ฌธ์ œ์ด๋‹ค. ์‹œ์Šคํ…œ ์ˆ˜์ค€์—์„œ๋Š” ์‘์šฉ๋“ค์ด ์‚ฌ์šฉ์ž์˜ ์š”๊ตฌ์— ๋”ฐ๋ผ ์‹œ์ž‘ ๋˜๋Š” ์ข…๋ฃŒ๊ฐ€ ๋˜๊ณ , ์‘์šฉ ๋ ˆ๋ฒจ์—์„œ๋Š” ์‘์šฉ ์ž์ฒด์˜ ๋™์ž‘์ด ์ž…๋ ฅ ๋ฐ์ดํƒ€๋‚˜ ์ˆ˜ํ–‰๋ชจ๋“œ์— ๋”ฐ๋ผ ๋™์ ์œผ๋กœ ๋ณ€ํ•˜๊ฒŒ ๋œ๋‹ค. ์•„ํ‚คํ…์ฒ˜ ์ˆ˜์ค€์—์„œ๋Š” ํ”„๋กœ์„ธ์„œ์˜ ์˜๊ตฌ ๊ณ ์žฅ์œผ๋กœ ์ธํ•ด ํ•˜๋“œ์›จ์–ด ์ปดํฌ๋„ŒํŠธ์˜ ์‚ฌ์šฉ ๊ฐ€๋Šฅํ•œ ์ƒํ™ฉ์ด ๋ณ€ํ•˜๊ฒŒ ๋œ๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ๋Š” ๊ฐ€์†๊ธฐ๋ฅผ ๋‹ค๋ฃจ๋Š”๋ฐ ์žˆ์–ด์„œ์˜ ์œ„์™€ ๊ฐ™์€ ์–ด๋ ค์›€๋“ค์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์„ธ๊ฐ€์ง€ ๊ธฐ๋ฒ•์„ ์ œ์‹œํ•˜์˜€๋‹ค. ์ฒซ๋ฒˆ์งธ ๊ธฐ๋ฒ•์€ ํ”„๋กœ์„ธ์„œ์˜ ์˜๊ตฌ ๊ณ ์žฅ์ด ๋ฐœ์ƒํ•˜์˜€์„ ๋•Œ, ์ „์ฒด ์‘์šฉ๋“ค์„ ์‹œ๊ฐ„ ์ œ์•ฝ ํ•˜์— ์ฒ˜๋ฆฌ๋Ÿ‰์˜ ์ €ํ•˜๋ฅผ ์ตœ์†Œํ™”ํ•˜๋ฉฐ ์žฌ์Šค์ผ€์ฅด์„ ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ์ตœ์ ์˜ ์žฌ์Šค์ผ€์ฅด ๊ฒฐ๊ณผ๋“ค์€ ์ง„ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ด์šฉํ•˜์—ฌ ์ปดํŒŒ์ผ ์‹œ์—, ๊ฐ๊ฐ์˜ ํ”„๋กœ์„ธ์„œ ๊ณ ์žฅ ์ƒํ™ฉ์— ๋”ฐ๋ผ ์ค€๋น„๊ฐ€ ๋œ๋‹ค. ์ˆ˜ํ–‰ ์‹œ๊ฐ„์— ํ”„๋กœ์„ธ์„œ ๊ณ ์žฅ์ด ๊ฐ์ง€๋˜๋ฉด, ์ •์ƒ์ ์œผ๋กœ ๋™์ž‘ํ•˜๋Š” ํ”„๋กœ์„ธ์„œ๋“ค์ด ์ €์žฅ๋œ ์Šค์ผ€์ฅด์„ ๊ฐ€์ง€๊ณ  ํƒœ์Šคํฌ ์ด์ฃผ๋ฅผ ์ˆ˜ํ–‰ํ•œ ํ›„ ํƒœ์Šคํฌ๋“ค์˜ ๋‚˜๋จธ์ง€ ์ˆ˜ํ–‰์„ ์ง€์†ํ•œ๋‹ค. ์ด ๊ธฐ๋ฒ•์—์„œ๋Š” ๋˜ํ•œ ๋” ์ข‹์€ ์„ฑ๋Šฅ์„ ์–ป๊ธฐ ์œ„ํ•ด, ์„ ์ , ๋น„์„ ์  ๋ฐ ์œตํ•ฉ ์ด์ฃผ ์ •์ฑ…์ด ์ œ์•ˆ๋˜์—ˆ๋‹ค. ์ œ์•ˆ๋œ ๊ธฐ๋ฒ•์˜ ๊ฐ€๋Šฅ์„ฑ์€ ์‹ค์ œ ๋””์ง€ํ„ธ ์‹ ํ˜ธ์ฒ˜๋ฆฌ ์‘์šฉ๋“ค๊ณผ ์ž„์˜๋กœ ์ƒ์„ฑ๋œ ์‘์šฉ๋“ค์— ๋Œ€ํ•ด ์‹œ๊ฐ„์ œ์•ฝ๊ณผ ๋‹ค์–‘ํ•œ ํ”„๋กœ์„ธ์„œ ๊ณ ์žฅ ์ƒํ™ฉ์— ๋Œ€ํ•ด ๊ฒ€์ฆ๋˜์—ˆ๋‹ค. ๋‘ ๋ฒˆ์งธ๋กœ ์ œ์•ˆ๋œ ๊ธฐ๋ฒ•์€ ๋ณตํ•ฉ ์ž์› ๊ด€๋ฆฌ ๊ธฐ๋ฒ•์œผ๋กœ, ์ฒซ๋ฒˆ์งธ ๊ธฐ๋ฒ•์—์„œ ๋‹ค๋ฃฌ ํ”„๋กœ์„ธ์„œ ์˜๊ตฌ๊ณ ์žฅ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ๋™๊ธฐํ™” ๋ฐ์ดํƒ€-ํ๋ฆ„ ๊ทธ๋ž˜ํ”„๋กœ ๊ธฐ์ˆ ๋œ ์—ฌ๋Ÿฌ ์‘์šฉ๋“ค๊ณผ ์‘์šฉ๋“ค์˜ ๋™์  ์–‘์ƒ์„ ๋‹ค๋ฃจ๋Š” ๊ฒƒ๊นŒ์ง€๋กœ ํ™•์žฅ์ด ๋œ ๊ฒƒ์ด๋‹ค. ์ œ์•ˆ๋œ ๊ธฐ๋ฒ•์—์„œ๋Š”, ์šฐ์„  ์„ค๊ณ„ ์ˆ˜์ค€์—์„œ ํ• ๋‹น๋˜๋Š” ํ”„๋กœ์„ธ์„œ์˜ ๊ฐฏ์ˆ˜๋ฅผ ๋ณ€ํ™”์‹œ์ผœ๊ฐ€๋ฉด์„œ ๋™๊ธฐํ™”๋œ ๋ฐ์ดํƒ€-ํ๋ฆ„ ๊ทธ๋ž˜ํ”„๋“ค์˜ ์ฒ˜๋ฆฌ๋Ÿ‰์ด ์ตœ๋Œ€๋กœ ์–ป์–ด์ง€๋Š” ๋งคํ•‘ ๊ฒฐ๊ณผ๋“ค์„ ์–ป๋Š”๋‹ค. ๊ทธ๋ฆฌ๊ณ ๋‚˜์„œ ์ˆ˜ํ–‰ ์‹œ๊ฐ„์—๋Š” ๋ฏธ๋ฆฌ ๊ณ„์‚ฐ๋œ ๋งคํ•‘ ์ •๋ณด๋“ค์„ ๊ฐ€์ง€๊ณ  ์ˆ˜ํ–‰์ค‘์ธ ์‘์šฉ๋“ค์˜ ๋งคํ•‘์„, ๋™์ ์ธ ์‹œ์Šคํ…œ ๋ณ€ํ™”๊ฐ€ ๋ฐœ์ƒํ•  ๋•Œ๋งˆ๋‹ค ์ ์šฉํ•˜๊ฒŒ ๋œ๋‹ค. ์ œ์•ˆ๋œ ์ž์› ๊ด€๋ฆฌ ๊ธฐ๋ฒ•์€ Noxim์ด๋ผ๋Š” ๋„คํŠธ์›Œํฌ-์˜จ-์นฉ ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ ์œ„์—์„œ ๊ตฌํ˜„์ด ๋˜์—ˆ์œผ๋ฉฐ, ์‹คํ—˜ ๊ฒฐ๊ณผ๋“ค์€ ์ œ์•ˆ๋œ ๊ธฐ๋ฒ•์ด ์ตœ์‹ ์˜ ๋‹ค๋ฅธ ๊ธฐ๋ฒ•๋“ค๊ณผ ๋น„๊ตํ•˜์—ฌ ๋” ์ข‹์€ ์„ฑ๋Šฅ์„ ๋ณด์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ๋Š”, ์‹œ์Šคํ…œ์˜ ์„ฑ๋Šฅ์„ ์‹œ์Šคํ…œ-์˜จ-์นฉ ์ œ์ž‘ ์ด์ „์— ๋ณด๋‹ค ์ •ํ™•ํ•˜๊ฒŒ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด์„œ, ๋‘ ๋ฒˆ์งธ ๊ธฐ๋ฒ•์„ ๊ตฌํ˜„ํ•œ ์†Œํ”„ํŠธ์›จ์–ด ํ”Œ๋žซํผ์ด ๋งค๋‹ˆ์ฝ”์–ด ์•„ํ‚คํ…์ฒ˜๋ฅผ ๋Œ€์ƒ์œผ๋กœ ์ œ์•ˆ๋˜์—ˆ๋‹ค. ๊ธฐ์กด์˜ ๋งค๋‹ˆ์ฝ”์–ด ์•„ํ‚คํ…์ฒ˜๋ฅผ ๋Œ€์ƒ์œผ๋กœ ํ•œ ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ ์ƒ์œ„ ์ˆ˜์ค€์˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์—ฌ ์„ฑ๋Šฅ์„ ์ธก์ •ํ•˜์˜€๊ธฐ ๋•Œ๋ฌธ์—, ์‹ค์ œ ์„ฑ๋Šฅ๊ณผ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์„ฑ๋Šฅ์ด ์–ผ๋งˆ๋‚˜ ์ฐจ์ด๊ฐ€ ๋‚ ์ง€๋ฅผ ์ •ํ™•ํ•˜๊ฒŒ ์•Œ ์ˆ˜๊ฐ€ ์—†์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์†Œํ”„ํŠธ์›จ์–ด ํ”Œ๋žซํผ๊ณผ, ๊ฐ€์ƒ ํ”„๋กœํ† ํƒ€์ดํ•‘ ์‹œ์Šคํ…œ ๋ฐ ์ œ์˜จ ์—๋ฎฌ๋ ˆ์ด์…˜ ์‹œ์Šคํ…œ์—์„œ์˜ ํ”Œ๋žซํผ ๊ตฌํ˜„ ๋ฐฉ๋ฒ•์ด ์ œ์•ˆ์ด ๋˜์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์‹ค์ œ ์‹œ์Šคํ…œ ๊ตฌํ˜„์„ ํ†ตํ•˜์—ฌ ์ œ์•ˆ๋œ ๋ณตํ•ฉ ์ž์› ๊ด€๋ฆฌ ๊ธฐ๋ฒ•์—์„œ์˜ ๋‹ค์–‘ํ•œ ๋™์  ๋น„์šฉ๋“ค์ด ์ •ํ™•ํ•˜๊ฒŒ ์ถ”์‚ฐ์ด ๋  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์‹คํ—˜์—์„œ๋Š” ์ œ์•ˆ๋œ ์†Œํ”„ํŠธ์›จ์–ด ๊ธฐ๋ฒ•์ด ํƒœ์Šคํฌ๋“ค์˜ ๋™์  ๋งคํ•‘๊ณผ ์ฒดํฌ-ํฌ์ธํŒ…์„ ํ†ตํ•œ ํ”„๋กœ์„ธ์„œ ์˜๊ตฌ ๊ณ ์žฅ์„ ํšจ๊ณผ์ ์œผ๋กœ ๊ฐ๋‚ดํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์˜€๋‹ค.Owing to the incessant technology improvement, the number of processors integrated into a single chip increases consistently, integrating more and more applications. Also, demand for higher computing capability for applications makes a many-core accelerator become an important computing resource in a system-on-chip. Efficient handling of the accelerator at run-time, however, is very challenging because the system status is subject to change dynamically by various factors. At the system level, the set of applications running concurrently may change according to user request. At the application level, the application behavior may change dynamically depending on input data or operation mode. At the architecture level, hardware resource availability may vary since hardware components may experience transient or permanent failures. In this thesis, to resolve the difficulties in handling many-core accelerator, three techniques are proposed. The first technique is the re-scheduling of the entire application to minimize throughput degradation under a latency constraint when a permanent processor failure occurs. Sub-optimal re-scheduling results using a genetic algorithm for each scenario of processor failures are obtained at compile-time. If a failure is detected at run-time, the live processors obtain the saved schedule, perform task transfer, and execute the remaining tasks of the current iteration. In this technique, preemptive and non-preemptive migration policies and a hybrid policy are proposed to obtain better performance. The viability of the proposed technique with real-life DSP applications as well as randomly generated graphs under timing constraints and random fault scenarios are shown through experiments. The second technique is a hybrid resource management scheme, expanded version of the first technique that also handles multi-applications specified as SDF graph and their relevant dynamisms such as application/task arrivals/ends as well as processor permanent failures. In the proposed technique, at design-time, throughput-maximized mappings of each SDF graph by varying the number of allocated processors are determined. Then, at run-time, the pre-computed mapping information is exploited to adjust the mapping of active applications to the processors without user intervention on the system status change. The proposed resource management is evaluated through intensive experiments with an in-house simulator built on top of Noxim, a Network-on-Chip simulator. Experimental results show the enhanced adaptability to dynamic system status change compared to other state-of-the-art approaches. Finally, the software platform for a homogeneous many-core architecture that implements the second technique is proposed to evaluate the system performance more accurately before SoC fabrication. Existing approaches usually use a high-level simulation model to estimate the performance without knowing how much actual performance will be deviated from the estimation. To overcome the limitation, the software platform is proposed and implementation details on a virtual prototyping system and on an emulation system realized with an Intel Xeon-Phi coprocessor are presented. Actual implementation enables us to investigate the overheads involved in the hybrid resource management technique in detail, which was not possible in high-level simulation. Experimental results confirm that the proposed software platform adapts to the dynamic workload variation effectively by dynamic mapping of tasks and tolerate unexpected core failures by check-pointing.Abstract i Contents iv List of Figures viii List of Tables xii Chapter 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . 1 1.2 Contribution . . . . . . . . . . . . 5 1.3 Thesis Organization . . . . . . . . . . . 7 Chapter 2 Preliminaries 8 2.1 Application Model . . . . . . . . . . 8 2.2 Architecture Model . . . . . . . . . . 13 2.3 Fault Model . . . . . . . . . . . . 15 2.4 Thesis Overview . . . . . . . . . . . 15 Chapter 3 Fault-aware Task Mapping 17 3.1 Introduction . . . . . . . . . . . . 17 3.2 Related Work . . . . . . . . . . . . 20 3.2.1 Static Approach . . . . . . . . . . 21 3.2.2 Dynamic Approach . . . . . . . . . . 22 3.3 Proposed Task Remapping/Rescheduling Technique . . 23 3.3.1 Remapping Technique . . . . . . . . 23 3.3.2 Rescheduling Technique . . . . . . . . 31 3.4 Experiments . . . . . . . . . . . . . 38 3.4.1 Remapping Results . . . . . . . . 38 3.4.2 Rescheduling Results . . . . . . . . 46 Chapter 4 Fault-aware Resource Management 53 4.1 Introduction . . . . . . . . . . . . 53 4.2 Related Work . . . . . . . . . . . . 54 4.2.1 Static Approach . . . . . . . . . . 55 4.2.2 Dynamic Approach . . . . . . . . . 55 4.2.3 Hybrid Approach . . . . . . . . . . 57 4.2.4 Summary . . . . . . . . . . . . 57 4.3 Background . . . . . . . . . . . . . 58 4.3.1 Energy Model . . . . . . . . . . . 59 4.3.2 Notation . . . . . . . . . . . . 60 4.4 Proposed Resource Management Technique . . . . 61 4.4.1 Motivational Example . . . . . . . . . 61 4.4.2 Overall Procedure . . . . . . . . . . 65 4.4.3 Design-time Analysis . . . . . . . . . 66 4.4.4 Run-time Mapping . . . . . . . . . . 67 4.5 Experiments . . . . . . . . . . . . . 74 4.5.1 Setup . . . . . . . . . . . . . . 74 4.5.2 Analysis of Run-time Overheads . . . . . . 75 4.5.3 Comparison with Other Approaches . . . . 79 Chapter 5 Software Platform for Resource Management 86 5.1 Introduction . . . . . . . . . . . . 86 5.2 Related Work . . . . . . . . . . . . 87 5.3 Overall Structure . . . . . . . . . . . . 88 5.4 Components of Software Platform . . . . . . 89 5.4.1 Application API Layer . . . . . . . . . 89 5.4.2 Communication Interface Module . . . . . 92 5.4.3 Host Interface Layer . . . . . . . . . 93 5.4.4 Memory Management Module . . . . . . 94 5.4.5 Design-time Analysis . . . . . . . . . 94 5.4.6 Slave Manager . . . . . . . . . . . 98 5.5 Software Platform Implementation . . . . . . 99 5.5.1 Scheduling Information . . . . . . . . 100 5.5.2 Function Migration and Execution . . . . . 101 5.5.3 Function Migration and Execution . . . . . 102 5.6 Virtual Prototyping System . . . . . . . . 105 5.7 Xeon Emulation System . . . . . . . . . 106 5.8 Experiments . . . . . . . . . . . . . 107 5.8.1 Setup . . . . . . . . . . . . . . 107 5.8.2 Experiments on the Virtual Prototyping System . . 108 5.8.3 Experiments on the Xeon Emulation System . . . 111 Chapter 6 Conclusion 116 Bibliography 119 Abstract in Korean 130Docto

    A model-based approach for the specification and refinement of streaming applications

    Get PDF
    Embedded systems can be found in a wide range of applications. Depending on the application, embedded systems must meet a wide range of constraints. Thus, designing and programming embedded systems is a challenging task. Here, model-based design flows can be a solution. This thesis proposes novel approaches for the specification and refinement of streaming applications. To this end, it focuses on dataflow models. As key result, the proposed dataflow model provides for a seamless model-based design flow from system level to the instruction/logic level for a wide range of streaming applications

    Novel DVFS Methodologies For Power-Efficient Mobile MPSoC

    Get PDF
    Low power mobile computing systems such as smartphones and wearables have become an integral part of our daily lives and are used in various ways to enhance our daily lives. Majority of modern mobile computing systems are powered by multi-processor System-on-a-Chip (MPSoC), where multiple processing elements are utilized on a single chip. Given the fact that these devices are battery operated most of the times, thus, have limited power supply and the key challenges include catering for performance while reducing the power consumption. Moreover, the reliability in terms of lifespan of these devices are also affected by the peak thermal behaviour on the device, which retrospectively also make such devices vulnerable to temperature side-channel attack. This thesis is concerned with performing Dynamic Voltage and Frequency Scaling (DVFS) on different processing elements such as CPU & GPU, and memory unit such as RAM to address the aforementioned challenges. Firstly, we design a Computer Vision based machine learning technique to classify applications automatically into different categories of workload such that DVFS could be performed on the CPU to reduce the power consumption of the device while executing the application. Secondly, we develop a reinforcement learning based agent to perform DVFS on CPU and GPU while considering the user's interaction with such devices to optimize power consumption and thermal behaviour. Next, we develop a heuristic based automated agent to perform DVFS on CPU, GPU and RAM to optimize the same while executing an application. Finally, we explored the affect of DVFS on CPUs leading to vulnerabilities against temperature side-channel attack and hence, we also designed a methodology to secure against such attack while improving the reliability in terms of lifespan of such devices

    Hardware/Software Codesign of Embedded Systems with Reconfigurable and Heterogeneous Platforms

    Full text link
    corecore