

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. DISSERTATION

Fault-aware Task Mapping and Resource

Management Techniques for

Many-core Accelerators

매니코어 가속기의 결함을 고려한 태스크 매핑 및

자원 관리 기법

AUGUST 2014

DEPARTMENT OF ELECTRICAL ENGINEERING AND

COMPUTER SCIENCE

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

Chanhee Lee

FAULT-AWARE TASK MAPPING AND RESOURCE

MANAGEMENT TECHNIQUES FOR

MANY-CORE ACCELERATORS

매니코어 가속기의 결함을 고려한 태스크 매핑 및

자원 관리 기법

지도교수 하 순 회

이 논문을 공학박사학위논문으로 제출함

2014 년 6 월

서울대학교 대학원

전기∙컴퓨터 공학부

이 찬 희

이찬희의 박사학위논문을 인준함

2014 년 6 월

위 원 장 : ________염헌영________ (인)

부위원장 : ________하순회________ (인)

위 원 : ________최기영________ (인)

위 원 : ________이창건________ (인)

위 원 : ________김성찬________ (인)

 i

Abstract

Fault-aware Task Mapping and Resource

Management Techniques for

Many-core Accelerators

Chanhee Lee

School of Electrical Engineering and Computer Science

College of Engineering

The Graduate School

Seoul National University

Abstract

Owing to the incessant technology improvement, the number of processors

integrated into a single chip increases consistently, integrating more and more

applications. Also, demand for higher computing capability for applications makes

a many-core accelerator become an important computing resource in a system-on-

chip. Efficient handling of the accelerator at run-time, however, is very challenging

because the system status is subject to change dynamically by various factors. At

the system level, the set of applications running concurrently may change according

to user request. At the application level, the application behavior may change

dynamically depending on input data or operation mode. At the architecture level,

 ii

hardware resource availability may vary since hardware components may

experience transient or permanent failures.

In this thesis, to resolve the difficulties in handling many-core accelerator, three

techniques are proposed. The first technique is the re-scheduling of the entire

application to minimize throughput degradation under a latency constraint when a

permanent processor failure occurs. Sub-optimal re-scheduling results using a

genetic algorithm for each scenario of processor failures are obtained at compile-

time. If a failure is detected at run-time, the live processors obtain the saved

schedule, perform task transfer, and execute the remaining tasks of the current

iteration. In this technique, preemptive and non-preemptive migration policies and

a hybrid policy are proposed to obtain better performance. The viability of the

proposed technique with real-life DSP applications as well as randomly generated

graphs under timing constraints and random fault scenarios are shown through

experiments.

The second technique is a hybrid resource management scheme, expanded version

of the first technique that also handles multi-applications specified as SDF graph

and their relevant dynamisms such as application/task arrivals/ends as well as

processor permanent failures. In the proposed technique, at design-time,

throughput-maximized mappings of each SDF graph by varying the number of

allocated processors are determined. Then, at run-time, the pre-computed mapping

information is exploited to adjust the mapping of active applications to the

processors without user intervention on the system status change. The proposed

resource management is evaluated through intensive experiments with an in-house

simulator built on top of Noxim, a Network-on-Chip simulator. Experimental

results show the enhanced adaptability to dynamic system status change compared

to other state-of-the-art approaches.

 iii

Finally, the software platform for a homogeneous many-core architecture that

implements the second technique is proposed to evaluate the system performance

more accurately before SoC fabrication. Existing approaches usually use a high-

level simulation model to estimate the performance without knowing how much

actual performance will be deviated from the estimation. To overcome the

limitation, the software platform is proposed and implementation details on a

virtual prototyping system and on an emulation system realized with an Intel Xeon-

Phi coprocessor are presented. Actual implementation enables us to investigate the

overheads involved in the hybrid resource management technique in detail, which

was not possible in high-level simulation. Experimental results confirm that the

proposed software platform adapts to the dynamic workload variation effectively by

dynamic mapping of tasks and tolerate unexpected core failures by check-pointing.

keywords : Many-core accelerator; adaption; run-time mapping; resource

management; synchronous data-flow graph; throughput; energy; reliability

student number : 2009-30204

 iv

Contents

Abstract i

Contents iv

List of Figures viii

List of Tables xii

Chapter 1 Introduction 1

1.1 Motivation 1

1.2 Contribution 5

1.3 Thesis Organization 7

Chapter 2 Preliminaries 8

2.1 Application Model 8

2.2 Architecture Model 13

2.3 Fault Model 15

2.4 Thesis Overview 15

Chapter 3 Fault-aware Task Mapping 17

 v

3.1 Introduction 17

3.2 Related Work 20

3.2.1 Static Approach 21

3.2.2 Dynamic Approach 22

3.3 Proposed Task Remapping/Rescheduling Technique . . 23

 3.3.1 Remapping Technique 23

3.3.2 Rescheduling Technique 31

3.4 Experiments 38

3.4.1 Remapping Results 38

3.4.2 Rescheduling Results 46

Chapter 4 Fault-aware Resource Management 53

4.1 Introduction 53

4.2 Related Work 54

4.2.1 Static Approach 55

4.2.2 Dynamic Approach 55

4.2.3 Hybrid Approach 57

4.2.4 Summary 57

4.3 Background 58

4.3.1 Energy Model 59

4.3.2 Notation 60

4.4 Proposed Resource Management Technique 61

4.4.1 Motivational Example 61

4.4.2 Overall Procedure 65

4.4.3 Design-time Analysis 66

 vi

4.4.4 Run-time Mapping 67

4.5 Experiments 74

4.5.1 Setup 74

4.5.2 Analysis of Run-time Overheads 75

4.5.3 Comparison with Other Approaches 79

Chapter 5 Software Platform for Resource Management 86

5.1 Introduction 86

5.2 Related Work 87

5.3 Overall Structure 88

5.4 Components of Software Platform 89

5.4.1 Application API Layer 89

5.4.2 Communication Interface Module 92

5.4.3 Host Interface Layer 93

5.4.4 Memory Management Module 94

5.4.5 Design-time Analysis 94

5.4.6 Slave Manager 98

5.5 Software Platform Implementation 99

5.5.1 Scheduling Information 100

5.5.2 Function Migration and Execution 101

5.5.3 Function Migration and Execution 102

5.6 Virtual Prototyping System 105

5.7 Xeon Emulation System 106

5.8 Experiments 107

5.8.1 Setup 107

 vii

5.8.2 Experiments on the Virtual Prototyping System . . 108

5.8.3 Experiments on the Xeon Emulation System . . . 111

Chapter 6 Conclusion 116

Bibliography 119

Abstract in Korean 130

 viii

List of Figures

Figure 2.1 (a) A multi-rate SDF graph example composed of three nodes; (b)

Multi-processor mapping and scheduling example 10

Figure 2.2 (a) An example SDF graph and its execution time information, and

static schedules on (b) four processors and (c) three processors. 11

Figure 2.3 (a) Target many-core architecture with a 4 x 4 2-D mesh structure.

There are 13 homogeneous processor tiles, one master processor, and two

shared memory tiles; (b) Target processor tile architecture 14

Figure 2.4 Overview of three techniques proposed in the thesis 16

Figure 3.1 Procedure of the compile-time analysis in the proposed method . 24

Figure 3.2 Process of getting cost map CMi,3 when a processor P3 fails . . 26

Figure 3.3 Calculation of CMi,3(1,1) 27

Figure 3.4 Processor-to-processor mapping using dynamic programming. . 29

Figure 3.5 Process of encoding results 30

Figure 3.6 Latency computations for three migration policies 33

Figure 3.7 GA flow of the proposed compile-time analysis 34

Figure 3.8 Pseudo-code of the fitness evaluation 36

Figure 3.9 Latency calculations with overlapped iterations 37

Figure 3.10 A motivational task graph and (b) re-scheduling after a failure of a

processor P1 by the BBR scheme [45] 39

 ix

Figure 3.11 Comparison of two techniques using the task graph in Figure 3-10

(a) with uniform task execution times 41

Figure 3.12 Comparison of throughput that is normalized to the maximum

throughput on 3 processors 42

Figure 3.13 Comparison of two techniques using the task graph in Figure 3-10

(a) with non-uniform task execution times 43

Figure 3.14 (a) Comparison of throughput normalized to the maximum

throughput on 8 processors and (b) number of tasks to migrate according to

each of processor failures 45

Figure 3.15 Comparison of task migration policies in terms of the normalized

worst-case latency over all failure scenarios 49

Figure 3.16 Pareto-optimal solutions of the achievable throughput and the

latency constraints for the synthetic task graphs and real-life applications. . 52

Figure 4.1 Comparison of representative resource management techniques . 58

Figure 4.2 (a) Motivational example with four SDF graphs; (b) pre-computed

Pareto-mappings and corresponding energy consumption considering DVFS by

the design time analysis; (c) processor allocation and the associated energy

consumption with four different approaches for the given workload

variation. . 62

Figure 4.3 Overall procedure of the proposed resource management

technique . 66

Figure 4.4 Example of processor speed adaptation for energy reduction: (a)

when an application leaves and (b) when an application

arrives . 70

Figure 4.5 Example of proposed run-time mapping under the part of the given

workload variation of Figure 4-2 (c) 74

Figure 4.6 Execution scenario in timing diagrams of master, slave, and memory

tiles . 76

 x

Figure 4.7 Required average task execution time not to make the single master

saturated for different NoC sizes with (a) T=20000 kcycles and (b) T=100000

kcycles . 79

Figure 4.8 Gantt-chart representations of workloads of smartphone example; (a)

in case of VideoPlay scenario; (b) in case of VideoPhone

scenario . 81

Figure 4.9 (a) Average energy consumption of the smartphone applications on a

3x3 NoC with the three approaches; (b) breakdown of various run-time

overheads . 82

Figure 4.10 Gantt-chart representations of workloads of synthetic examples; (a)

when variation occurs scarcely; (b) when variation occurs

frequently . 84

Figure 4.11 Average energy consumption of (a) a synthetic application on a 8x8

NoC with the three approaches; (b) breakdown of various run-time

overheads . 85

Figure 5.1 Overall execution procedure of the proposed software platform . 87

Figure 5.2 Overall structure of the proposed software platform 89

Figure 5.3 Function code example of simple application composed of two

functions; (a) SDF graph of the application; (b) Sender function and (b)

Receiver function 91

Figure 5.4 Message structure between processor tiles: (a) Master-initiated

message and (b) slave-initiated message 93

Figure 5.5 Pseudo-code of the run-time manager on a master 96

Figure 5.6 Dynamic task mapping for data-parallelized tasks (a) Input data of

an application partitioned for data-parallelization; (b) Task graph of the

application; (c) Static task mapping of the application; (d) Dynamic task

mapping of the application 97

Figure 5.7 Pseudo-code of slave manager; (a) Main function; (b) Task

 xi

execution function 102

Figure 5.8 (a) Example of an application G_A; (b) Performance of static

schedules of G_A; (c) Gantt chart representation of static schedules; (d)

Control queue status after hybrid task mapping 103

Figure 5.9 Control queue status (a) After hybrid task mapping of application

𝐆𝑩; (b) When 𝐆𝑩 finishes; (c) When processor failure occurs the tile managed

by CQ3 during task B1; (d) When new application arrives 104

Figure 5.10 Overall structure of the virtual prototyping system . . . 106

Figure 5.11 (a) Ratio of various overheads and function execution time; (b)

breakdown of the run-time overheads 109

Figure 5.12 Speed-up of throughput performance in hybrid and dynamic

mapping . 110

Figure 5.13 Gantt-chart representations of mapping results with the execution

scenario involving a processors failure in Table 5.1 111

Figure 5.14 Comparisons of average throughput performance between hybrid

and dynamic function mapping 112

Figure 5.15 Task graph of H264 decoder with two operation modes . . 113

Figure 5.16 Scheduling information of three execution cases of H264

decoder . 114

Figure 5.17 Comparisons of average throughput performance varying the

number of allocated processors to H264 decoder 114

 xii

List of Tables

Table 2.1 Parallel execution strategy for SDF model 12

Table 3.1 Comparison of sustainable throughputs by two techniques with

various task graphs 46

Table 3.2 Sizes of the task graphs and the target system, along with the

execution time of the GA-based heuristic 48

Table 4.1 Pre-computed schedule of SDF graphs by varying allocated

processors . 76

Table 4.2 Run-time overhead measured by simulation 77

Table 4.3 Two use cases in the smartphone example 80

Table 4.4 Result of the design-time analysis of the smartphone

applications . 81

Table 5.1 Execution scenario involving a processor failure and task

arrivals/ends . 111

Table 5.2 Number of allocated processors of three execution cases for H264

decoder . 114

 １

Chapter 1

Introduction

1.1 Motivation

The incessant demand for higher computing power makes a many-core accelerator

become an important computing resource in a system-on-chip [1][2]. The hardware

accelerator itself can consist of many homogeneous processor tiles and shared

memory tiles that are inter-connected via an on-chip network. In such a system, the

system needs to be properly configured at run-time because the system status may

change dynamically due to various factors. A set of applications running

concurrently and the set of available resources define the system status. At the

system level, the set of applications running concurrently may change according to

user request. At the application level, the application behavior may change

dynamically depending on the input data. At the architecture level, hardware

resource availability may vary since hardware components may experience transient

or permanent failures as the technology scaling continues [3]. Power consumption

and heat dissipation are also important factors to determine the mode of operation.

For real-time embedded applications, abrupt hardware component failure may cause

serious problems. Those failures may occur unexpectedly at any time. This thesis

 ２

involves the concern about what we can do when such a failure occurs. As a way of

tolerating processor failures, re-scheduling technique [4] is presented in this thesis.

In the technique, re-scheduling the single task graph is performed at run-time

following each failure scenario prepared at compile-time, when and where a fault is

detected. If a fault is detected at run-time, the live processors obtain the saved

schedule, perform task migrations, and execute the remaining tasks at the current

iteration. We consider the migration overhead when constructing a static schedule

for each failure scenario. Since a failure may occur on any processor at any time,

considering all failure scenarios may sound unrealistic. However, the space and time

complexity of the proposed technique does not prevent it from being used as a

practical solution. When we perform re-mapping/re-scheduling, we consider the

worst-case scenario for each processor failure in order to guarantee the satisfaction

of the latency constraint. The scheduling problem is no easier than an NP-hard

problem of simple multiprocessor scheduling. Thus, we use a genetic algorithm to

obtain a near-optimal re-scheduling for each failure scenario.

On the other hand, in case the system behavior is unpredictable, the mapping of

tasks to processors needs to be determined at run-time [5]; a central manager

monitors the current system status on-line and decides where to map a next task to

run; mapping is determined adaptively depending on the resource availability and

the current workload. Many dynamic mapping techniques have been proposed so

far for distributed systems where mapping decision is made based on the local

system status so that no globally optimal decision can be expected [5][6][7][8][9].

On the other hand, optimizing design metrics such as energy or reliability while

satisfying throughput requirements is critical in many multimedia embedded

applications. Therefore, it is an important and challenging problem to effectively

handle the design metrics and constraints together on such a dynamic system.

 ３

Recently, a hybrid mapping technique [10][11][12][13] where a set of Pareto-

optimal mappings of an individual application is prepared at design-time and the

best combination is determined at run-time by considering the workload and

resource availability is presented. This technique typically assumes that the

mapping of an application is not changed at run-time after launched. Thus a newly

arriving application should be mapped to available processors without affecting the

mapping of pre-existing applications. Hence its capability to support the dynamic

system behavior is limited since it may lead to higher probability of mapping failure

as well as inefficient resource usage.

To overcome the limitation of those hybrid mapping techniques, in this thesis, we

propose a novel run-time resource management technique that allows remapping of

applications at run-time. At every system status change, we perform the remapping

of all active applications to minimize energy consumption while satisfying the

throughput constraints of the applications. The proposed technique can be classified

as a hybrid technique since the run-time remapping decision is made, based on the

Pareto-optimal mapping information of applications. To support run-time

remapping of applications, we need to check-point the global states of each

application. It enables us to tolerate processor failures, which makes the proposed

resource management technique fault-tolerable.

Also, all the existing researches mainly resort to simulation at the high-level of

abstraction for performance evaluation, which is not able to precisely capture and

handle the dynamic behavior of a system. There are several factors that cause the

deviation of the actual performance from the estimation based on the high-level

simulation. One example is resource arbitration delay. Therefore, it is very desirable

to evaluate the system performance before fabricating a SoC more accurately.

 ４

Therefore, in this thesis, we also present a software platform to implement the

hybrid resource management technique that was proposed in [14] for homogeneous

many-core architectures. The hybrid scheme takes the advantages of both static and

dynamic mappings by referring to the pre-computed task mapping and schedule

information at run-time. And it allows us to change the numbers of processors

allocated to applications using task migration in adaptation to run-time variation of

resource availability. Even though the proposed software platform is based on the

hybrid resource management technique, it is flexible enough to support static

mapping and dynamic mapping at user‟s decision.

The run-time management implemented in the proposed software platform can

efficiently handle various dynamic behaviors of a system such as workload

variation, QoS requirement change, and unexpected processor failures. It mainly

features an adaptive run-time processor remapping leveraging task migration and

check-pointing on detecting the change of system status. Because frequent run-time

remapping, however, in the proposed scheme may incur non-negligible time cost, an

accurate estimation of such overhead is important to asset the viability of the

proposed software platform. To this end, the software platform has been

implemented and tested both on a virtual prototyping system and on an Intel Xeon-

Phi platform, a state-of-the-art many-core platform [15]. Quantitative evaluations

have been performed to compare the performance of the proposed software platform

with other resource management approaches. The evaluation on the virtual

prototyping system enables us to observe the space and time overhead of the

proposed platform as well as effects of several design parameters of interest, which

was not possible in the previous approaches based on high-level model. For

example, actual code migration overhead or message-based communication

overhead depends on the communication bandwidth and arbitration method. The

 ５

Xeon-Phi based evaluation boosts the evaluation speed of the software platform and

shows that the proposed run-time management implementation is able to deliver

scalable performance to the number of processors.

1.2 Contributions

The contribution of this thesis can be summarized as follows.

1) Fault-aware task mapping technique of applications to tolerate processor

failures for many-core architecture is proposed.

A. Unlike the previous works, we propose a novel idea of using the static

scheduling results to make a task migration decision considering all

fault scenarios. This technique is complementary to the conventional

method of using redundant hardware and/or software.

B. We propose a hybrid policy that selectively determines whether or not

to preempt the current task depending on failure time. The hybrid

policy provides better performance than the preemptive and non-

preemptive polices, as will be demonstrated through the experiments.

C. We make a novel assumption to make finite fault scenarios in which a

failure is signaled at the task boundary. This enables us to use static

scheduling at compile-time to guarantee the real-time constraints.

2) Fault-aware resource management technique for a many-core based

accelerator is proposed.

A. The proposed technique maximizes the utilization of resources by

adaptively changing the number of processors allocated to

applications and the associated mappings during execution.

 ６

B. The proposed technique aims at minimizing the energy consumption

by adjusting the speed of processors when more processors are

available than the minimum requirement to satisfy given throughput

constraints.

C. We quantitatively evaluate the proposed scheme through a detailed

simulation to examine the communication cost, energy consumption,

and the RTM overhead. And, a mathematical formula is derived to

check if the central RTM becomes the performance bottleneck or not.

3) Software platform for resource management is proposed.

A. A software platform is proposed as a detailed implementation of the

hybrid resource management scheme. It performs dynamic mapping of

tasks and check-pointing in response to dynamic behavior of systems

such as workload variation and processor failures.

B. A virtual prototyping system of a NoC-based many-core accelerator is

built to run the software platform. It is implemented by extending the

existent parallel simulation technique [16][17][18][19].

C. The software platform can be used as a baseline implementation on

top of which more advanced resource management schemes can be

devised-and-tested.

 ７

1.3 Thesis Organization

This thesis is organized as follows. In Chapter 2, the system model assumed in this

thesis and the overview of this thesis are presented. Chapter 3 explains the proposed

re-scheduling technique in detail. Chapter 4 explains the proposed hybrid resource

management scheme followed by the proposed software platform implementing the

management scheme in Chapter 5. Finally, we draw the conclusion and address

future work in Chapter 6.

 ８

Chapter 2

Preliminaries

2.1 Application Model

The workload is given with a set of stream-based applications 𝐴 = *𝐺+ to execute.

An application is specified by an SDF (synchronous dataflow) graph 𝐺 = (𝒱, ℰ)

[20]. 𝒱 is a set of nodes that corresponds to tasks in application 𝐺 where the

worst case execution time (WCET) 𝑐𝜏 is known for task 𝜏. A task is a primitive

unit of scheduling. ℰ = *(𝜏, 𝜏′)|𝜏 ∈ 𝒱 ∧ 𝜏′ ∈ 𝒱+ is a set of edges that corresponds

to FIFOs for communicating channels between 𝜏 and 𝜏′. A task consumes and

produces a fixed number of data samples from each input edge(s) and to each output

edge(s), respectively. An iteration of an SDF graph is defined as a set of task

executions where the repetition counts of the tasks satisfy the relative execution

rates between the tasks. Since the graph represents only the data dependency

between tasks, there are numerous ways of scheduling the tasks exploiting the task-

level parallelism of an application and pipelining. A stream-based application has a

throughput constraint; once activated, an application is periodically invoked with a

given interval, which is an inverse of the throughput constraint. Note that our

approaches can also be used with other models of computation, such as Cyclo-Static

 ９

Dataflow (CSDF) [21], Giotto [22], Scenario-Aware Data Flow (SADF) [23], and

so on, as long as static scheduling can be performed. If an application has internal

dynamism with a set of operation modes, we specify each operation mode of an

application with a separate SDF graph.

The key step in the SDF-based design methodology is to construct a node execution

schedule that optimizes the design objectives while satisfying all design constraints.

The process of static scheduling allows us to detect some significant errors, such as

graph deadlock and buffer overflow. Such static analyzability is a very desirable

feature for embedded system design [24].

If the execution times of the SDF nodes are known, we can determine the mapping

and scheduling of the SDF graph onto a given target architecture at compile-time.

To construct static schedule, repetition count should be obtained which denotes the

ratios in node executions. For example, when there is a SDF graph composed of

three nodes; A, B, and C as shown in Figure 2.1 (a). Node A and B are connected

with sample rates 2:3 and node B and C are connected with sample rates 2:1. Then

repetition count of the SDF graph is 3:2:4. With this repetition count, iteration

period can be determined. Iteration period denotes the minimum cycle that satisfies

the ratio of node repetition counts.

Valid schedules of a SDF graph are not unique because the graph describes only the

partial order between nodes. Therefore, the best schedule depends on the design

objectives, For example, if we map the task graph into a single processor, a schedule

AABCCABCC is the schedule for minimum buffer size and (3A)(2(B(2C))) is the

schedule which is appropriate for loop structure. Also there is Periodic Admissible

Sequential Schedule (PASS) that repetitively applying the same program on an

infinite stream of data [20].

 １０

When the SDF graph in Figure 2.1 (a) is mapped to multi-processors to maximize

throughput and minimize latency assuming that all the execution times of nodes are

one time unit, the mapping and schedule can be determined as shown in Figure 2.1

(b). With five processors, the throughput of the SDF graph becomes 1/2 and the

latency of the SDF graph can be 6 time units.

A B C
2 3 2 1

(a)

A A

A

B

C C

C C

B

P1

P2

P3

P4

P5

Throughput = ½
Latency = 6

(b)

Figure 2.1 (a) A multi-rate SDF graph example composed of three nodes; (b) Multi-

processor mapping and scheduling example.

As another SDF scheduling example, Figure 2.2 (b) and (c) show the mapping and

scheduling examples on two difference architectures with four and three processors

respectively, based on the node execution times in Figure 2.2 (a). We assume that

the communication overhead is included in the node execution time. Note that

multiple iterations of an SDF graph, e.g., the i-th and (i+1)-th iterations in the figure,

may overlap in time, constituting pipelined execution. Since the graph is executed

iteratively, the throughput of an SDF graph becomes the reciprocal of the longest

elapsed time for a processor to execute its assigned tasks [25]. For instance, the

throughput of the graph in Figure 2.2 (b) is

1

max(120 + 120, 90 + 90 + 90, 60 + 120 + 90, 60 + 60 + 90 + 60)
=

1

270

 １１

If the execution times of tasks are constant, the execution of an SDF graph will

follow the schedule, which guarantees the satisfaction of real-time constraints. Even

when the times vary, time-triggered execution can guarantee real-time performance;

if a node finishes earlier than the WCET, idle time is added to result in the worst-

case execution time assumed for static scheduling [20]. There are various researches

in obtaining throughput-maximized schedules [81][82]. In these approaches,

however, there are limitations to integrate the approaches to this thesis. The

technique in [81] targets homogeneous SDF graphs, therefore pseudo-polynomial

transformations from general SDF graphs are needed. In case of the technique in

[82], complete search takes exponential time even with about 20 tasks of a SDF

graph to find optimal solutions that maximize throughputs. Note that SDFG

mapping is a well-known NP-Hard problem [20].

P1

P2

P3

P4
T11 T12

T2

T9

T7 T4

T5 T8

T1 T6 T3

T10

T4

T2 T1

T3

T7

T5

T6

T10

T9

T8

T11 T12

60 60

60 60 90

60 60

60

120

120

120

90

P1’

P2’

P3’
T11 T12

T2

T9

T7

T4 T5 T8

T1 T6 T3

T10

(b)

(a)

(c)

T2

T9

T7 T4

T5 T8

T1 T6 T3

T2

T7

T4 T5

T1 T3

i-th iteration (i+1)-th iteration

time

Figure 2.2 (a) An example SDF graph and its execution time information, and static

schedules on (b) four processors and (c) three processors.

 １２

When SDF graph is mapped and scheduled for parallel execution, there are four

strategies depending on the decision moment. The summary of the four strategies

are shown in Table 2.1. In the table, “C” denotes compile-time decision and “R”

denotes run-time decision. In case of Full-static strategy, real-time performance can

be guaranteed with WCRT. As more parts of decisions are perform at run-time,

simple heuristics are required to determine mappings and schedules to reduce run-

time overhead.

Table 2.1 Parallel execution strategy of SDF model

Strategy mapping Scheduling timing Property

Fully-static C C C Least overhead

Self-timed C C R Fixed scheduling order

Static-assignment C R R Need run-time scheduler

Dynamic R R R Need run-time mapper

In the SDF model, arc buffers only define the persistent global states. A fault

occurrence during a node execution does not incur any side effects to the other

nodes if the arc buffers are check-pointed a priori. This is another good property of

the SDF model for fault-tolerant system design.

Though SDF model has various good properties, its expression capability is limited

since SDF model cannot express control structures such as conditional execution

and data dependent iteration. Also SDF model does not allow shared memory

(global states) between nodes due to side effect. If shared memory is allowed, SDF

model shows non-deterministic behavior since memory update order may vary

depending on the schedule. At last, SDF model does not allow pointer operation and

copies structured data as a token. Therefore SDF model is not good for software

 １３

synthesis.

2.2 Architecture Model

Our architecture model is a heterogeneous multi-processor platform, which consists

of a host processor and a many-core hardware accelerator connected with an on-

chip network. The many-core accelerator consists of processor tiles and shared

memory tiles. Each processor tile consists of a processor, a local memory, and a

network interface to the network-on-chip (NoC). Processors in the accelerator are

assumed to be homogeneous so that there is no need of preparing multiple binaries

of different instruction set architectures for each task, easing task migration.

To maximize the portability of the proposed software platform to various target

architectures, we assume minimal architecture support; no operating system running

on the processor tile and no cache coherent mechanism. We designate a processor

tile as the master tile that manages the resources of the accelerator. While we may

increase the number of master tiles as the number of processor tiles increases, the

current implementation assumes a single master tile. Implementation of distributed

masters remains as a future work.

The master processor dispatches a compute-intensive task of an application to the

many-core accelerator. We assume that the dispatched task is represented as a

dataflow graph: 𝐺 = (𝒱, ℰ). V is a set of nodes that correspond to functions in the

task and ℰ = *(𝜏, 𝜏′)|𝜏 ∈ 𝒱 ∧ 𝜏′ ∈ 𝒱+ is a set of edges that correspond to

communicating channels between 𝜏 and τ^'. A function is executable only when its

predecessors finish all their executions. We assume that no implicit communication

between functions with shared variables is possible, which is a well-known feature

of dataflow models of execution. A function is a primitive unit of mapping and

 １４

scheduling. The dataflow graph and function codes are sent to a shared memory tile

at compile time or at run-time.

As the many-core accelerator is triggered, the master processor finds an executable

function and maps it to an available slave tile. The slave tile loads the code and the

data from the shared memory to its local memory and performs the function. The

modified global states after function execution are sent to the shared memory for

check-pointing. And the slave tile notifies of the function completion to the master

processor.

Figure 2.3 (a) shows the example of a 4x4 NoC architecture, where memory tiles

are placed in the centermost positions to reduce communication overheads. The

master is embedded into the NoC structure for simplicity and also put into the

centermost position to minimize communication overheads.

P : Processor tile (slave)

S : Shared memory tile

M : Master processor

P

P

P

P

P

S

P

P

P

M

S

P

P

P

P

P
(b)

Proc. LM

NI

LM : Local memory

NI : Network interface

(a)

Figure 2.3 (a) Target many-core architecture with a 4 x 4 2-D mesh structure. There

are 13 homogeneous processor tiles, one master processor, and two shared memory

tiles; (b) Target processor tile architecture.

 １５

2.3 Fault Model

In this thesis, all the proposed approaches handle permanent processor failures. The

other components of the architecture are assumed to be reliable. In re-scheduling

technique, the technique is applied to each application under real-time constraints so

that only a single permanent failure is assumed. This is because we assume that

when a re-scheduling is performed at run-time, it signals the user to alert that the

system needs replacement or repair. Thus, assuming a single permanent failure is

reasonable for practical purpose. Further, in case redundant hardware resources are

used, the technique can be applied after all of the redundant hardware resources are

consumed. In that sense, it is complementary to using redundant hardware resources.

2.4 Thesis Overview

This thesis is composed of three approaches; fault-aware mapping, fault-aware

resource management, and resource management software platform. The overview

and summary of the three approaches are shown in Figure 2.4. In the fault-aware

task mapping technique, the problem is to tolerate permanent processor failures

when an application is modeled as an SDF graph minimizing the throughput

degradation. To do this, throughput-maximized schedules are prepared at compile-

time for each possible failure scenario and then applied at run-time. Pre-pared

schedules are applied following the number of allocated processors. As a second

technique, fault-aware resource management technique is proposed to handle

various dynamic behaviors of the system as well as processor failures and minimize

energy consumption. The management technique handles multi-applications that

enter/leave at any time by remapping applications. This technique maps applications

considering given throughput constraints using pre-computed throughput-

maximized throughput and scales the speed of allocated processors to minimize the

 １６

overall energy. The experiment is performed based on an in-house simulator based

on an open source NoC simulator, Noxim. The results show that the proposed

technique effectively handles workload variation minimizing the overall energy than

a state-of-the-art approach. The last one is a software platform that implements the

hybrid resource management proposed as the second technique. The resource

management software platform provides various spectrums of mappings and

schedulings, i.e., static, hybrid, and dynamic mapping/scheduling. The software

platform is in between application layer at the top and hardware platform at the

bottom. And it is composed of five modules; application API, task

scheduling/mapping, memory management, host interface, communication interface

module. The software platform is implemented as virtual prototyping system and

Xeon emulation system. In experiments, the viability of the platform is validated.

Proposed
approach

 Application
Optimization goal

/constraint
Mapping
/Schedule

1. Rescheduling

Single SDF Throughput/latency Static/static

2. Hybrid
resource

management

Multi SDF Energy/throughput Dynamic/Static

3. Software
platform

Multi SDF Throughput/none Hybrid/Hybrid

A2

40

A3

70

25

A1 A4

30

A-2
A3

A2

A4

A1 P1

P2
< After failure >

< Before failure >
P1

A1

A3

A2

A4

P2

P3

A-1

P3 fails

A2

40

A3

70

25

A1 A4

30

B1

B2

40 80

Virtual Proto.

Xeon Phi

Map

Energy?

Performance? Prepare pareto-optimal
schedules for each app.

Adjust processor speed.

Remap dynamically at
run-time.

+ App.
dynamism

+ Actual
implementation

Figure 2.4 Overview of three techniques proposed in the thesis.

 １７

Chapter 3

Fault-aware Task Mapping

3.1 Introduction

As more processors are integrated into a single chip via relentless technology

scaling, the mean-time-to-failure (MTTF) reduces the extent to which unexpected

processor failures should be considered at design time [3]. For instance, increasing

the power density of a chip accelerates temperature-dependent and current-

dependent wear-out failures such as electromigration, oxide breakdown, and

thermo-mechanical stress [26]. Other causes related to aging also incur unexpected

failure.

The proposed fault-aware technique consists of two parts. The first one is re-

mapping technique that statically reconfigure task-to-processor mapping to

minimize throughput degradation at processor failures. The formalization of the first

problem tackled by this technique is as follows:

Application. We are given an application described as an SDF. Once a task-to-

processor mapping is given, the corresponding schedule, execution order of tasks on

a processor, is assumed to be determined accordingly.

 １８

Architecture. We are also given a multi-core architecture, where each of processors

may experience a permanent failure, and then it will be no more available for

further execution.

Failure Model. On the occurrence of processor failures, the tasks on a faulty

processor are moved to any of other processors.

PROBLEM: Determine task migration policies on all possible processor failure

scenarios such that the throughput degradation of a target application is minimized

after task remapping, and the associated migration cost is also kept minimized.

The fault-aware remapping technique performs intensive compile-time computation

to produce the task-to-processor mapping to obtain maximum throughput for all

possible failure scenarios. The task migration is performed with as low cost as

possible while obeying the pre-computed optimal mappings. During run-time, the

results of the analysis are stored as tables in a memory subsystem of target

architecture. When a processor failure occurs, the task remapping caused by the

current failure is looked up in the table to perform the associated task migration.

Since we keep the remapping decisions for all possible scenarios, the storage

overhead of the proposed technique is inevitable compared with dynamic

approaches. In the fault-aware remapping technique, an efficient encoding scheme

of the remapping information with respect to the numbers of processors and tasks is

also proposed. To examine viability of the proposed encoding scheme, we then

investigate the space complexity of the proposed technique considering multiple

processor failures. Through the analysis, we show that the storage overhead of our

technique is acceptable even if multiple failures occur.

The second one is re-scheduling technique that also tolerates processor failures

under real-time constraints. The second problem handled by the rescheduling

 １９

technique can be formalized as follows:

Inputs and Constraints. An application is represented as an SDF graph, and the

worst-case execution time of a node on each processor of the target architecture is

given. The initial scheduling and mapping of the application is also given. As a real-

time constraint, an end-to-end latency of a single iteration of the SDF is given.

Target Architecture and Fault Model. Throughout application execution, a target

multiprocessor architecture may have at most a single permanent processor failure.

The other components of the architecture are assumed to be reliable. We assume

that when a re-scheduling is performed at run-time, it signals the user to alert that

the system needs replacement or repair. Thus, assuming a single permanent failure

is reasonable for practical purpose. Further, in case redundant hardware resources

are used, the technique can be applied after all of the redundant hardware resources

are consumed. In that sense, it is complementary to using redundant hardware

resources.

PROBLEM: Find a compile-time schedule with the live processors for each failure

scenario such that the throughput degradation after a processor failure is minimized.

In this technique, two basic migration policies, preemptive and non-preemptive, are

also compared. When a fault is detected, the preemptive policy stops the current

task and starts the re-scheduling step immediately. The current task is re-executed

afterward. On the other hand, the non-preemptive policy waits until the current task

finishes its execution and then starts the re-scheduling step. We investigate the

effects of these migration policies on the latency of the current iteration and propose

a hybrid policy to obtain better performance.

 ２０

3.2 Related Work

A traditional solution to tolerate unexpected processor failures is to use resource

redundancy such as physical hardware replication and/or multiple software versions

[27]. Some number of extra processors can be added to the system, which normally

are in a dormant state but will be woken up to take over the tasks of faulty

processors when a failure is detected. As the number of processors in a single chip

increases, the cost overhead for using extra processors might be tolerable in a

homogeneous processor system [28]. In a heterogeneous system, however, an extra

processor of each type must be prepared [29]. For safety-critical systems, triple

modular redundancy (TMR) is commonly used to tolerate errors using multiple

copies of a resource [30]. For embedded systems with tight resource constraints,

however, this approach might be too expensive.

Another approach to tolerate processor failures is to migrate tasks from a faulty

processor to other live processors. Previous work on the migration has mostly

focused on minimizing the overhead of task migration [31][32][33][34][35][36][37].

If migration decision on where to migrate which tasks is made at run-time based on

the local information when a processor failure is detected, it is not possible to

guarantee any real-time performance [38][39]. As a result, this approach is

commonly adopted in distributed systems that have no real-time constraints. On the

other hand, the proposed technique in this thesis makes the migration decision at

compile time, considering the throughput and latency performance of real-time

applications. Precisely, we aim at maximizing the throughput under a latency

constraint. For instance, a Global Positioning System (GPS)-based application

requires a timely update of the geographical location. This is expressed as a latency

constraint. At the same time, the GPS application may require higher throughput for

more frequent updates.

 ２１

And other researches handling failures can be classified into two categories; static

approach or dynamic approach.

3.2.1 Static Approach

The static approach fully exploits application-specific information off-line, which in

turn leads to the optimal performance even though temporary performance

degradation may incur due to the task remapping. Furthermore, the static approach

reduce the overhead to run mapping algorithm on-line, and further enables more

predictable performance analysis, e.g. worst-case latency. There have been works

trying to find static task schedule to achieve the highest reliability by means of a

probabilistic failure model for processor and link in general purpose multiprocessor

systems [40][41]. However, the recovery from the component failure is not

addressed. Thus they are confined to a fixed number of components.

There are other studies which have focused on finding a static schedule to maximize

the expected value of MTTF(mean time to failure) for designing reliable multi-core

systems [42][43][44]. In [42] and [43] task-to-processor mappings are made at

compile-time to maximize MTTF of processors by probabilistic model of processor

failure due to thermal effects. Also, the authors of [44] proposed a deterministic

solution to static task mapping based on Integer Linear Programming (ILP), which

in turn results in an optimal mapping solution for a given set of processors.

However, since all of those works assume a given fixed number of processors, they

are not directly applicable to where resource variations such as processor failure

may occur and they do not address what to do when failure occurs.

On the other hand, the technique in [45] is similar to ours in that task-to-processor

reconfiguration is determined statically on a processor failure. A set of tasks in a

target architecture are statically assigned to one of two bands, which is a

 ２２

geometrical partition of a processor latitude. On the occurrence of processor failure,

the direction and distance in the latitude which the tasks should be migrated to are

statically determined in accordance with the band they belong to. The technique has

been extended to minimize the latency of application by removing idle time

between tasks scheduled consecutively on a processor [46]. Since they use the fixed

task migration policy on a certain processor failure regardless of a target application,

the remapping of task to processor does not guarantee the maximum throughput

with a varied set of processors. Furthermore, they assume the identical execution

time for all tasks, which might not be hold in many of modern embedded

applications. On the other hand, our technique does not restrain how a remapping

goes so that the maximized throughput for a given set of processors is preserved

after failure. To our best knowledge, this is the first attempt to fully exploit the

advantages of the static task reconfiguration on processor failures.

3.2.2 Dynamic Approach

The dynamic approach has been naturally brought to consider reliability issues in

Multi-processor systems as well as distributed embedded system design. The

authors in [47] proposed a general framework to dynamically reconfigure task-to-

processor mapping by considering processor workload that are broadcasted

continuously via on-chip network. Also, since temperature has been proven to have

great impact on reliability, there have been studies on task scheduling for Multi-

processor systems, which consider thermal issues to balance temperatures of

different processors or to keep them under a threshold [48]. Further, to reduce

migration cost, the technique utilizing debug register inside processor core has been

proposed [49]. While the above literatures do not assume de-allocation of

computation/ communication resources, the technique proposed in [50] considered

 ２３

dynamic task remapping on detection of node/link failure in distributed embedded

system. However, the architectural details and associated run-time overhead are not

addressed in their work.

3.3 Proposed Task Remapping/Rescheduling technique

In this section, the details of fault-aware re-mapping/re-scheduling technique are

explained. In both approaches, we utilize a GA-based scheduling approach [83] to

obtain throughput-maximized schedules at compile-time. The approach in [83]

optimizes buffer usage under throughput-constraints. We modify and expand the

approach in [83] to implement the proposed fault-aware task mapping techniques.

3.3.1 Remapping Technique

1) Overall procedure

The overall procedure of the proposed technique for the task-to-processor

remapping to minimize the throughput degradation is presented in Figure 3.1. The

technique consists of two parts: an intensive compile-time analysis to produce the

static task-to-processor remapping on processor failures and its efficient encoding

scheme to minimize storage overhead.

The compile-time analysis begins with picking up two sets of processors to

constitute a certain processor failure scenario as shown in the Figure, which forms a

main loop of the compile-time analysis of the proposed technique. For instance, in a

single processor-pool architecture, a processor set {P0, P1, P2} is paired with {P0, P1}

when P2 fails. Then, we go through the following subsequent steps. First, the

mapping and schedule are found to have the maximum throughput for the given

processor set and a task graph of a target application. As shown in the figure, we

obtain two mapping results for both processor sets related to the failure scenario

 ２４

under consideration. In current implementation we use the scheduling and mapping

technique proposed in [51]. The technique is based on an evolutionary algorithm,

called Quantum-inspired Evolutionary Algorithm (QEA), to consider various

parallelisms such as data, temporal, and task. We can adopt any sophisticated, and

complicated, scheduling/mapping techniques to improve scheduling results. As a

result, it produces the optimized task-to-processor mapping and related task

scheduling, maximizing the throughput of the target application. In this way, the

run-time overhead is avoided to find the optimal mapping decision on-line. Note

that the mapping determined on this step concerns only about which tasks should go

to which processor pool since processors in a pool are identical so need not be

distinguished in this step. Or the tasks are considered as being mapped to virtual

processors that will be mapped to the real processors in the next step.

(1) Static mapping/scheduling

task graph
+

processor set

(2) Mapping reconfiguration
from (i) to (ii)

Throughput
maximized

scheduling (i)

(3) Encoding and saving

task graph +
available

processors

Consider
another
failure

Throughput
maximized

scheduling (ii)

Cost-minimized task migration

before failure processor
failure

after failure

Figure 3.1 Procedure of the compile-time analysis in the proposed method.

 ２５

In the second step, we determine the processor-to-processor mapping between two

processor sets. If a task is mapped to different processors in two sets, the task

should be migrated at processor failure. Therefore the objective of this step is to

find an optimal mapping to minimize the migration cost. Once processor-to-

processor mapping is determined, the task is remapped following the task schedule

obtained from the first step.

Once the cost-minimized task remapping is obtained from the second step, we

record it into a mapping table to be maintained on a memory subsystem of the target

architecture. We continue to repeat those three steps for all pairs of processor sets

associated with the whole failure scenarios under consideration. Note that once the

scheduling and mapping of a processor is found, we reuse the results in another

failure scenario if necessary.

The intensive compile-time analysis of the proposed technique eases run-time

operation: we simply remap the tasks following the pre-computed decision when a

process failure occurs. Moreover, even though the remapping information is stored

in the encoded form, it can be retrieved with negligible overhead. To minimize the

run time overhead for decoding, the intuitive but effective encoding scheme is

suggested in the next section.

2) Task remapping with the minimum cost

From the first step of Figure 3.2, we are given two task mapping results that are

optimal in terms of throughput performance. Figure 3.2 shows a simple example

where the target architecture has four homogeneous processors. The initial mapping

of tasks to processors and the cost of each task are also given. Suppose that a

processor P3 is failed and, in turn, new task mappings are found with the remaining

processors. As explained earlier, the processors used in the task mapping result after

 ２６

processor failure are virtual processors that should be mapped to actual processors.

Now we have to determine an optimal mapping between the virtual processors to

actual processors. It should be noted that different mapping may incur different

migration cost. For instance, the mapping of P1 to P1' will cost 18 as depicted in

Figure 3.3; tasks A, B, and C on P1 should be moved elsewhere with the cost of

2+4+1=7; then tasks E, F, and H migrate into P1, which costs 5+2+4=11. On the

other hand, the mapping of P1 to P4' results in the reduced cost, 10. Therefore, we

may consider this step as the mapping of processors before failure to the processors

after failure. In the example of Figure 3.2, we need to perform the 1-to-1 mapping

of {P1, P2, P4} to {P1', P2', P4'} since P3 is no more available. In this way, we search

for the processor-to-processor mapping such that the total cost considering all task

migrations on remaining processors becomes the minimum, preserving the task

mappings for the performance maximization.

Processor 1 : {A, B, C}
Processor 2 : {D, E}
Processor 3 : {F, G,H}
Processor 4 : {I}

Processor 1’ : {E, F, H}
Processor 2’ : {B, D, G}
Processor 3’ : failure
Processor 4’ : {A, C, I}

<Before> <After>

<Mapping results before/after processor failure>

Cost map CMi,3 for remapping a
processor into another processor

A E F

2 4 1

(1) Migration costs of tasks

3

D B C

5 2 5 4

G H I

6

1’ 2’ 4’

1

2

4

18

9

17

11

14

18

10

17

3

3’

3

Figure 3.2 Process of getting cost map CMi,3 when a processor P3 fails.

 ２７

The processor-to-processor mapping problem to minimize the total cost of task

migrations is NP-complete even when the cost for the migration of task from a

processor to another is given. It can be easily proven that the traveling salesman

problem (TSP) is transformed into the problem at polynomial time. Therefore, to

attain the optimal solutions, we apply the dynamic programming (DP) to the

problem on each of processor pools.

<Before> <After>

<Mapping results before/after process failure>

P1

A

B

P1’

CMi,3(1,1) : Sum of migration costs
for setting P1 to P1’

A

B C

2

4

4

CMi,3(1,1) = 2+4+1+5+2+4
 = 18

C E

F

H

Migration cost of tasks

A E F
2 4 1

B C
5 2 H

F

2

1

E

5

H
4

P1P1’

Figure 3.3 Calculation of CMi,3(1,1).

To ease the problem formulation, it is convenient to introduce a matrix CM to

contain costs that are caused by possible processor-to-processor mappings as

follows:

, ()
i ii j lm M MC M C 

where Clm is a cost associated with the case when a processor Pl becomes Pm for

 ２８

task remapping on a failure, and Mi is the total number of processors without

failures. The example to construct a cost matrix CMi,3 on a failure of processor P3 is

shown in Figure 3.2.

The pseudo code of the DP-based algorithm is described in Figure 3.4. The

algorithm recursively searches the optimal solution that minimizes the total

migration cost in a pool. Processors that are not considered yet is maintained in a

list named procSet. The loop from line 12 to line 27 is the heart of the proposed DP

algorithm. Search for the optimal solution begins with the selection of a processor

in the foremost location of procSet as shown in line 13. Then we assign the chosen

processor to any of processors for the task remapping after a failure, which is

described in line 14, and create a copy of procSet, reducedProcSet, with the

previously chosen processor removed as in line 15. Afterward, the successive search

to find the minimum migration cost for a list reducedProcSet is followed by

recursively calling the procedure findMinCost itself in lines 21 and 22.

Once returned from the recursive search, each minimum cost corresponding to

reducedProcSet is added to the total migration cost, which corresponds to

candidiateCost. To avoid excessive computation time of the DP-based algorithm,

we use a memoization technique to reuse partial results that are computed already

from the previous searches. This accounts for the conditional behavior from line 17

to line 23 according to the lookup of a hash table containing the cost, HashMap.

Whenever any processor-to-processor mapping is completed, the accumulated cost

is put to the hash table HashMap. After the entire space of possible mappings is

explored, the final minimum cost is selected from the elements that are associated

with only the lists containing all processors as in line 28.

It should be noted that the complexity of the algorithm only depends on the number

 ２９

of processors. This is because each of task migrations is merged into the cost matrix

CM to represent the migration cost of each processor. In fact, the time complexity is

O(2
N
). Nonetheless we can apply the DP algorithm as long as N is not too large for

the algorithm to be practical.

1 CostMap CM[i][j]; /* Cost of set proc. i into proc j */

2 HashMap <procSet, minCost> /* Table for DP */

3 List procSet, reducedProcSet; /* Set of processor Ids */

4

5 int findMinCost (procSet) {

6 int procId = procSet.getFirst();

7 if (n(procSet) = 1) {

8 HashMap.put(procSet, minCost);

9 return CM[procId][procId];

10 }

11

12 for(i < size of procSet) {

13 procId = procSet.getFirst();

14 colIndex = procSet.get(i);

15 reducedProcSet = procSet - procId;

16 if (HashMap contains reducedProcSet) {

17 /* Dynamic programming */

18 candidateCost = CM[procId][colIndex] +

19 HashMap.getValue(reducedProcSet);

20 else {

21 candidateCost = CM[procId][colIndex] +

22 findMinCost(reducedProcSet);

23 }

24 if(candidateCost < minCost) {

25 minCost = candidateCost;

26 }

27 }

28 HashMap.put(procSet, minCost);

29 return minCost;

30 }

Figure 3.4 Processor-to-processor mapping using dynamic programming.

3) Encoding scheme of task remapping information

After the task remapping decisions are made, they should be stored into a target

system such that relevant task remapping information is retrieved to deal with a

 ３０

processor failure at run-time. We explain the encoding scheme to represent the

mapping results. For the ease of explanation, we assume a single processor failure

only. However, this scheme can be easily extended to multiple failures. The

scalability issue regarding this extension is discussed in the next section.

An example of the processor-to-processor mapping explained in the previous

section is shown on the left side of Figure 3.5. Each of rows in the 4×4 matrix

corresponds to a failure of a certain processor. For instance, the first row of the

matrix tells how the processors are reconfigured on the failure of processor P4;

processor P1 becomes processor P3', and so on. Similarly, the second row is

associated to the failure of processor P3. Then, the same row on the matrix on right

side of the figure is the resultant task-to-processor mappings, which is actually to be

stored on a target architecture. Let us consider the mapping of the example in Figure

3.5 and the failure of P4 again, which corresponds to the first row of the matrices.

Tasks F, G, and H are mapped to processor P3 initially. After the failure of P4,

processor P3 will be processor P2 by referring the left matrix in Figure 3.5. Since

task G belongs to processor P3 already, it is not migrated actually. Tasks B and D

migrate to P3 and, instead, tasks F and H is newly assigned to P2. It is easy to see

that there would be almost no run-time overhead to retrieve necessary information

from the encoded remapping decisions.

1 2 3 4

3’ 1’ 2’ F

2’ 1’ F 4’

3’ F 1’ 4’

F 2’ 1’ 4’

A E F D B C G H I

4 1 4 1 2 2 1 2 4

4 1 4 1 3 3 1 3 4

4 2 4 2 3 3 2 3 4

1 3 1 3 2 2 3 2 1

Processor allocation Resultant encoding

Figure 3.5 Process of encoding results.

 ３１

3.3.2 Rescheduling Technique

The proposed rescheduling technique also consists of two parts: an intensive

compile-time analysis to identify schedules that maximize the throughput with live

processors for all failure scenarios and a run-time management process to migrate

tasks and resume execution after obtaining the saved schedule. We first explain the

overall flow of the compile-time analysis based on a Genetic Algorithm (GA). Then,

we explain in detail how to estimate the latency for a candidate re-scheduling result

during the evolution process, which is an essential part of the proposed compile-

time analysis.

1) Rescheduling policy

Since a fault can occur at any moment on any processor during execution, the

number of possible failure scenarios is infinite. To produce a finite number of

failure scenarios, we assume that processor failure is determined only at task

execution boundaries. Then a failure scenario can be defined by a task that

encounters a processor failure during execution. In other words, the total number of

possible failure scenarios is identical to the total number of task invocations in a

single iteration of the input SDF graph. This assumption can be enforced at run-time

since the proposed technique requires check-pointing after the completion of each

task execution, during which we can signal an occurrence of a processor failure.

Since the mechanism of detection of a processor failure is beyond the scope of this

thesis, we simply assume its occurrence.

To compute the latency overhead during the transient period, we also have to

determine the start point of the task migration in step (3). Regarding this, Figure 3.6

 ３２

illustrates three cases assuming that the processor failure is detected and notified at

the completion time of task T2.

Preemptive Policy: In a preemptive policy, we perform task migration immediately

after a failure is detected; we stop task T3 on P3 and task T4 on P1 in the middle of

execution. Then, each processor fetches the “re-schedule” to perform task migration

accordingly, as is depicted by the dashed rectangles in Figure 3.6 (a). Afterward, the

non-faulty processors execute the tasks that have not been completed in the current

iteration following the schedule obtained after the failure.

The earlier execution on P4, which is labeled as “Previous iteration” in Figure 3.6, is

the remaining portion of a prior iteration overlapped with the current iteration. We

allow prior iterations to complete their executions regardless of the task migration

policy. Thus, the migration for task T7 cannot start immediately upon detection of

the processor failure.

Non-preemptive Policy: The second case in Figure 3.6 (b) shows another policy,

called a non-preemptive policy, where task migration is delayed until the currently

running task is completed. In this example, the non-preemptive policy shows better

performance than the preemptive policy in terms of the latency of the faulty

iteration because the preemptive policy requires the overhead of re-execution of

tasks T3 and T4.

Hybrid Policy: In this technique, we also propose a new policy, called a hybrid

policy, which applies both of the aforementioned policies selectively. In Figure 3.6

(c), T3 on P3 is preempted but T4 on P1 is not. This leads to earlier completion of the

critical path T7 to T12. In the hybrid policy, a separate decision has to be made for

each processor regarding whether or not to preempt the current task.

 ３３

[Preemptive policy, latency = 720]

[Non-preemptive, latency = 645]

P1

P2

P3

P4

T2

T3 T1

T4

T2

T3 T1

T4

[Hybrid policy, latency = 625]

T6

T10 T11 T12

T8 T9

T7

T5

T2 T3

T2

T3 T1 T6

T4

T10 T11 T12

T8 T9

T7

T5 T4

T2 T3

Previous iteration

Previous iteration

Previous iteration

5,8,9

7

2

7

2

2

5,8,9

5,8,9

(a)

(b)

(c)

P1

P2

P3

P4

P1

P2

P3

P4

T8 T9 T5

T10 T11 T12 T7

T6 T2

7

Current iteration Previous iteration Failure notification k Migration cost of Tk

Figure 3.6 Latency computations for three migration policies.

In summary, we aim to find a static schedule along with migration policies of

processors for each failure scenario in order to maximize the throughput with the

remaining processors while satisfying a given latency constraint. By varying the

latency constraint, we obtain various Pareto-optimal solutions. If there is no latency

constraint, the proposed task re-scheduling technique degenerates to our previous

technique that maximizes the throughput [52].

2) Genetic algorithm-based compile-time analysis

The proposed compile-time analysis is based on the Genetic Algorithm (GA) to

obtain throughput-maximized schedules considering processor failures. The overall

flow is outlined in Figure 3.7. For each failure scenario, we perform a separate GA

that corresponds to the outermost loop of the flow. The inputs to each single run of

 ３４

the GA are the original (or initial) schedule used before the failure, the end-to-end

latency constraint of the target application, and the underlying target architecture.

A chromosome representation of candidate solutions in the GA is composed of

mapping, scheduling, and the migration policy information of tasks as a linear array.

The mapping information describes the allocation of tasks to processors. For a static

schedule, the execution orders of tasks are determined by the precedence

dependency and the static priorities of tasks. The priority of a task is assigned in the

GA. With the chromosome representation, the body of the GA, which is the

innermost loop (steps 2-7), can be implemented using any standard GA technique.

Original
schedule

Latency
constraint

Target
architecture

Failure
scenario
selection

Initial
population
generation

Parent
selection

crossover/
mutation

Fitness
evaluation

Termination?

Covered
all failure scenarios?

Population &
incumbent

solution update
Y

N

N Y

Best after-failure schedule
& migration policy

Worst result of
all scenarios

① ② ③ ④ ⑤

⑥⑦

⑧

⑨ ⑩

Figure 3.7 GA flow of the proposed compile-time analysis.

The GA begins by selecting two parent solutions from the current population to

produce a new candidate solution (step 2). For a candidate mapping and scheduling

solution which is created by crossover and mutation operations (steps 3-4), we

construct a schedule diagram to compute the throughput and the latency of the

solution (step 5). The schedule diagram is constructed via simulation that considers

 ３５

the detailed behavior of task migration involved in faulty iterations in order to

evaluate the fitness of the current solution (step 5). The pseudo-code of this step is

presented in Figure 3.8, which is explained in the next subsection. At each

invocation of the inner loop, the GA maintains the best solution for the population

of candidate solutions, which has the maximum throughput with the live processors

while satisfying the latency constraint. Whenever the population is updated, the GA

determines whether the fitness of the population converges (step 6). If not, the GA

repeats the aforementioned steps (step 7). We terminate the evolution process when

there is no further throughput improvement or when the user-defined limit on the

number of evolution cycles is reached.

Once we analyze all possible failure scenarios, the static task schedules for each set

of live processors are saved into the global memory of the target architecture (steps

8-9). Note that the maximum throughput that we can guarantee for a single-

processor failure on a given architecture is the minimum throughput among the

schedules for all failure scenarios (step 10).

3) Fitness Evaluation

The key operation of the proposed GA-based analysis is to evaluate the (end-to-end)

latency of the application in the fitness evaluation (step 3 in Figure 3.7) and to

determine whether the resultant latency meets the constraint. As explained earlier,

we consider all overheads involved in the run-time management. Once a fault is

signaled, the run-time manager first retrieves the migration policy recorded in the

global memory. The initiation time of a task migration depends on the task

migration policy chosen by the analysis. Based on the schedule, the run-time

manager selects the migrating tasks from the global memory and transfers them to

the associated local memory. For example, in Figure 3.6, the three tasks T5, T8, and

 ３６

T9 are moved to processor P1. We assume that the task migration phase precedes the

task restart phase. In other words, the restart of tasks on P1 is delayed until the three

tasks are completely migrated. Future work will determine the overlap of task

migration and task execution because such overlapped execution may be achieved if

the unfinished tasks from the current iteration are migrated before the finished tasks.

The migration overhead depends not on the migration policy, but on the mapping of

tasks onto processors.

Fitness evaluation(candidate solution, fail-notificationTime, failure-occurred iteration)

1 worstLatency = 0;

2 do list-scheduling with candidate solution

3 set SCHDcs as the schedule of candidate solution

4 worstLatency = latency of candidate solution

5 estimate migration cost

6 simulate failure-occurred iteration with SCHDcs and migration cost

7 latFI = latency of the failure-occurred iteration

8 if worstLatency < latFI then worstLatency = latFI

9 if worstLatency > latencyConstraint then return unschedulable

10 check overlapped iterations with fail-notificationTime

11 for(overlapped iterations) {

12 simulate overlapped iteration with SCHDcs and migration cost

13 latOI = latency of overlapped iteration

14 if worstLatency < latOI then worstLatency = latOI

15 }

16 if worstLatency > latencyConstraint then return unschedulable

17 return throughput of candidate solution

end Fitness evaluation

Figure 3.8 Pseudo-code of the fitness evaluation.

Figure 3.8 presents the pseudo-code of the fitness evaluation. First, we construct a

schedule diagram with a candidate solution to compute the throughput and the

latency of the solution (lines 1-4). In this thesis, task migration cost for each

processor is assumed to be linearly proportional to the size of task image and the

associated data input for restarting the task (line 5). The amount of transferred data

on task migration is estimated by comparing the original schedule and the schedule

 ３７

of the candidate solution with a selected failure scenario. Afterwards, the faulty

iteration with the selected failure scenario is simulated using the schedule of the

candidate solution to see if the faulty iteration satisfies the given latency constraint

(lines 6-9). The simulation considers task migration cost.

Recall that multiple iterations of a task graph may run simultaneously in a pipelined

execution. Therefore, a faulty iteration may affect the subsequent iterations that

overlap with the current iteration in time. It means that we need to simulate

iterations succeeding the faulty iteration (lines 10-17). Suppose that a fault occurs

during the execution of task T8 on processor P2 in the example of Figure 3.9. In this

situation, the tasks that run on processors P1 and P3 at that time do not belong to the

same iteration as T8 but to the next iteration. As a result, the task migration overhead

is added to the next iteration on processors P1 and P3.

P1

P2

P3

P4 T11 T12

T2

T4

T3

5,8,9

2

7

Latency1 = 550
Latency2 = 680

T8

T1

Previous iteration Current iteration

Tasks to restart

Next iteration

Migration of task Tk

T10

T8

T11 T12 T9 T10

T2

T3 T1

T5

T6

T9

T4 T7

T8 …

Figure 3.9 Latency calculations with overlapped iterations.

The latency of the faulty iteration (Latency1 in the figure) is 550, whereas the next

iteration has a worse latency (Latency2) of 680. These results confirm that the

worst-case latency may occur not in the current iteration, but in the next iteration. In

general, multiple subsequent iterations can be affected. Therefore, multiple

 ３８

iterations must be considered to obtain the worst-case latency for each failure

scenario. If the latency of the next iteration is longer than that of the current

iteration, we evaluate the latency of an additional iteration. This procedure

continues until no subsequent iteration with latency longer than the current iteration

is found. For the preceding iterations, however, we apply the non-preemptive policy

for simple implementation.

3.4 Experiments

3.4.1 Remapping Results

In this section, we validate the proposed remapping method by comparing the

throughput and migration cost with those from the previous work [45], which is

called „Band & Band reconfiguration‟ scheme, BBR shortly, throughout the rest of

this thesis. For the purpose of comparison, we implemented the scheduling

algorithm of the BBR scheme in C++. All experiments were conducted on the same

environment that was used in the previous section.

The main idea of the BBR scheme is explained with a motivational task graph in

Figure 3.10 (a), which is borrowed from [45]. In BBR, scheduling is performed with

slight modification of the Critical Path Node Dominate (CPND) algorithm [53]. A

partition called Basic Reconfiguration (BR) block that divides the scheduling is

organized corresponding to the horizontal line located below tasks 3 and 4 in Figure

3.10 (a). Then the staircase line called Band partition line in each BR block

identifies the left (L) and the right (R) band. Reconfiguration in this method can be

simply performed by sliding two bands so that L band places below the R band

when a process failure occurs. The key idea of this scheme is that if there is no

dependency from the left to the right band, such reconfiguration does not violate the

 ３９

dependency constraints and the resultant schedule becomes valid. For example, the

result of reconfiguration by BBR on the failure of a processor P1 is shown on the

right side of Figure 3.10 (b).

10

1 2

3 4

5 6 7

8 9

10 9
8

7

1 2

3
4

6
5

P1 P2 P3

inter-processor

communication

< Task graph >

10

9
8

7

1 2

3

4

6

5

P2 P3

reconfiguration

(b) (a)

Figure 3.10 (a) A motivational task graph; (b) re-scheduling after a failure of a

processor P1 by the BBR scheme [45].

In the first set of experiments, we compare the throughputs and migration costs of

the task graph in Figure 3.10 (a) by the proposed technique and the BBR scheme

respectively. The execution times of all tasks are assumed to be uniform to

minimize end-to-end latency without introducing slack when applying BBR. Since

the BBR scheme is not able to consider multiple processor failures, we examine just

three scenarios: failures of P1, P2, and P3 respectively. Figure 3.11 (a) shows the

normalized throughputs of two techniques while Figure 3.11 (b) corresponds to the

normalized migration cost on each of processor failures. In the experiments,

throughput is defined as the reciprocal of the end-to-end latency of a task graph.

Also, the migration cost of a task is assumed to be 10% of its execution time.

We observe that, on the failure of processor P1, the proposed technique shows better

 ４０

throughput while paying the same migration cost to the BBR scheme. On the other

hand, for the failures of processors P2 or P3, the two techniques perform similarly in

throughput. Also, the BBR scheme outperforms the proposed technique when

comparing migration cost. The proposed technique requires two times higher

migration cost in the worst case. This is due to the assumption of the uniform

execution time of all tasks, which is not the usual case. Since it minimizes the slack

between tasks after reconfiguration, it favors the BBR scheme to produce good

performance.

In the next experiment, we use the same environment but with non-uniform task

execution times that are randomly generated. The results by two techniques are

depicted in Figure 3.11. As shown in the graph, the throughput by the proposed

technique is always superior to the BBR scheme by up to 20%. In case of migration

cost, our technique has larger overhead on average than BBR. This is due to high

degree of freedom in task migration to preserve the maximized throughput in the

proposed method while the movement of tasks is restricted according to the band-

based partitioning in the BBR scheme.

To examine how much the throughput is degraded by the techniques along with

processor failures, we measured the throughput according to processor failures that

is normalized to the maximized throughput without processor failure. The

comparison result of two techniques is given in Figure 3.12. Our intuition is that

performance would be degraded by about 1/3 on average if the best throughput is

preserved in all sets having 2 processors and 3 processors respectively. In the table,

we observe that the throughput after a single processor failure is about 68% of the

best case by the proposed technique. This implies that our scheduling technique

maintains the throughput as high as possible after reconfiguration as we expect.

 ４１

Throughput

Migration cost

Failed processor

Failed processor
(b)

(a)

1.24

1.00 1.00 1.00 1.00 1.00

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

P1 P2 P3

Proposed BBR

1.00

1.49

2.00

1.00 1.00 1.00

0.00

0.50

1.00

1.50

2.00

2.50

P1 P2 P3

Proposed BBR

Figure 3.11 Comparison of two techniques using the task graph in Figure 3.10 (a)

with uniform task execution times.

On the other hand, the BBR scheme results in performance loss of 9-14% compared

with that of our technique at each of failure scenarios. As discussed above, this is

due to the restricted choices of task migrations in the band-based partitioning. In

other words, to preserve the principle of the task reconfiguration, enforcing the

 ４２

movement of the R band above the L band may not sufficiently exploit concurrent

execution of tasks. For example, on the failure of a processor P1 in Figure 3.10 (b),

the R band containing tasks 1, 2, and 4 is to move to the top of the L band where a

task 3 belongs. As a result, a task 3 is executed later than a task 4 even though they

can be executed in parallel on different processors. This causes the worst case

performance among all failure scenarios as shown in the first row in Figure 3.13 (a).

Even worse, the migration cost of the BBR scheme in the failure scenario is also

larger than that of our method. This is because the move of the R band requires 6 of

10 tasks to migrate, which are tasks 1, 2, 4, 6, 7, and 10.

0.68 0.68 0.68

0.54
0.59 0.59

0

0.2

0.4

0.6

0.8

P1 P2 P3

Proposed BBR
Throughput

Failed processor

Figure 3.12 Comparison of throughput that is normalized to the maximum

throughput on 3 processors.

As the second set of experiments, we conduct the comparison similar to the

previous experiment with a larger synthetic task graph. We use TGFF [54] to

generate the task graph with 40 tasks and perform the task-to-processor mapping

using 8 homogeneous processors. The execution times of tasks are given randomly

while the longest task execution time does not exceed twice the shortest one. The

migration cost of each task is set to 10% of its execution time as before. The results

 ４３

are shown in Figure 3.14.

Throughput

Migration cost

Failed processor

(b)

(a)

Failed processor

1.26

1.15 1.15

1 1 1

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

P1 P2 P3

Proposed BBR

0.97

1.62 1.59

1.00 1.00 1.00

0.00

0.50

1.00

1.50

2.00

P1 P2 P3

Proposed

BBR

Figure 3.13 Comparison of two techniques using the task graph in Figure 3.10 (a)

with non-uniform task execution times.

From the view of sustainable throughput, our technique outperforms BBR

 ４４

significantly. Only 10% of performance degradation is observed in our case while

BBR experiences severe performance loss. The throughput by BBR is less than half

the initial throughput in all failure scenarios. The amount of throughput degradation

by our technique is almost similar to the average case of performance loss when one

processor gets failed out of 8 processors, i.e., 1/8=0.125. This shows again that by

the proposed technique, all processors are being utilized quite well in any case of

processor failure. Furthermore, the efficient scattering of workload of a faulty

processor helps the performance degradation be minimized, which shows the

viability of our method. In case of the BBR scheme, however, the degree of

throughput degradation becomes much worse than the case of the small task graph

example in Figure 3.10 (a). This is mainly due to the unnecessary movements of

tasks by enforcing the L or the R band structure, prohibiting from being

reconfigured to better task remapping.

Even though there is no clear tendency on migration cost by both two techniques,

the migration cost by the BBR scheme is smaller than the proposed technique in

general. However, as a band that has more tasks moves, the migration cost by BBR

tends to increase. Since the migration cost we are using in the experiment is

artificial, we provide the number of migrated tasks as another metric of migration

overhead, which is reported in Figure 3.14 (b). In case of the proposed method, the

numbers of tasks to move are similar regardless of which processor fails. It implies

that the entire workload of a target application is kept quite well distributed over the

available processors even after a failure. The evaluation using measured migration

costs from the actual system implementation is left as one of future works.

 ４５

0.897 0.897 0.897 0.897

0.389 0.392 0.404 0.419

0

0.2

0.4

0.6

0.8

1

P0 P3 P5 P7

Proposed BBR

28 29 30 29

23

5

13 12

0

5

10

15

20

25

30

35

P0 P3 P5 P7

Proposed BBR

Throughput

Failed processor

Number of migrated tasks

(b)

(a)

Failed processor

Figure 3.14 (a) Comparison of throughput normalized to the maximum throughput

on 8 processors and (b) number of tasks to migrate according to each of processor

failures.

Varying the number of processors, the overall tendencies of the gap of sustainable

throughput between two techniques are summarized in Table 3.1. For this

comparison, we perform the previous experiments with another synthetic task graph

 ４６

that is mapped to architecture with 10 processors. The table contains throughputs

obtained according to each of failure scenarios for a given number of processors.

The throughputs are relative to the maximum throughputs without failures on each

of target architectures. Then, in the last part of the table, the ratios between

throughputs by the techniques are also reported. As seen in the table, the gap

between attained throughputs by two techniques grows as we adopt more processors

in a target architecture. Further, it is observed that the ratio of migration cost by the

proposed technique is similar to the case of 8 processors in other number of

processors even though we omit the results. The table confirms that proposed

technique is highly efficient over the previous approach for practical use.

Table 3.1 Comparison of sustainable throughputs by two techniques with various

task graphs.

Number of

processors
Approach

Throughput Ratio

Min. Max. Avg. Min. Max. Avg.

3
Proposed 0.68 0.68 0.68

1.15 1.26 1.19
BBR 0.54 0.59 0.57

8
Proposed 0.89 0.89 0.89

2.14 2.31 2.24
BBR 0.39 0.42 0.40

10
Proposed 0.97 0.97 0.97

2.60 2.85 2.74
BBR 0.34 0.37 0.35

3.4.2 Rescheduling Results

We implemented the proposed rescheduling technique using an open source GA

framework [55]. We used five synthetic task graphs (G1 to G5) generated by TGFF

[54] and three multimedia applications; two selected from StreamIt benchmark [56],

MPEG2 decoder and MP3 decoder, and H.263 decoder from [51]. The task graphs

 ４７

have 8 to 50 nodes that are run on 3 to 16 processors. The execution time of nodes

in the synthetic examples was adjusted so that the longest node execution time was

no larger than three times the shortest one. The execution time of the H.263 decoder

was profiled by cycle-level simulation using 16CIF-sized input video streams. In

the profiling, the migration cost of the code image and input data for task restart

were measured to use an average of 50% of the task execution time. The migration

overhead of the synthetic examples was also set to 50% of a task execution time. All

experiments were conducted on a desktop computer with an Intel Pentium 3.2-GHz

processor running Windows XP and 3-GB of main memory.

First, we measure the average execution time of the proposed compile-time analysis

for each failure scenario, the results of which are shown in Table 3.2. The execution

time increased as the number of tasks or processors increased. For a given number

of tasks, the time complexity was roughly proportional to the number of processors.

Similarly, for a given number of processors, the execution time increased as the

number of tasks increased. While we could not find a fixed formula for the time

complexity, the experiment shows that the proposed compile-time analysis has good

scalability to accommodate a large task graph running on a few tens of processors.

Since the static analysis is performed off-line at compile-time, the measured latency

indicates that the proposed technique is affordable for practical use.

Next, we compare the three migration polices in terms of latency. To this end, we

first obtain a re-scheduling decision that minimizes the throughput degradation for

each processor failure, as performed in [52], that is, we ignore the latency constraint.

Then, we obtain the worst latency among all fault scenarios for each task graph. We

repeat the above procedure to obtain the normalized worst-case latency based on

each of the migration policies. The comparison results are shown in Figure 3.15.

 ４８

The horizontal axis corresponds to the task graphs, and the vertical axis indicates

the worst latency normalized to the initial latency.

Table 3.2 Sizes of the task graphs and the target system, along with the execution

time of the GA-based heuristic.

Application G1 G2 G3 G4 G5 MPEG MP3 H263

Number

of tasks
8 12 24 40 50 14 7 29

Number of

processors
3 4 3 8 12 16 8 12 16 4 3 5

Time for

GA-based

analysis

(seconds)

0.4 1.2 3.6 25.2 28 33.6 64.8 72.8 112 1.6 0.4 12.2

The results show that the hybrid policy always produces the best result, reducing the

latency by up to 15% compared with the other policies. On the other hand, there is

no preference between the preemptive policy and the non-preemptive policy.

In the next set of experiments, we found that the throughput-maximized schedules

by varying latency constraints. Again, we considered all fault scenarios to obtain the

worst-case throughput for a given latency constraint for each task graph and for

each migration policy. We obtained the Pareto-optimal solutions in terms of latency

and throughput in the proposed rescheduling technique. The results for each task

graph are depicted in Figure 3.16. The horizontal axis of each graph in the figure

represents the latency constraint normalized to the achievable shortest latency, and

the vertical axis represents the throughput normalized to the initial throughput.

 ４９

Normalized latency

0

0.5

1

1.5

2

2.5

3

G1 G2 G3 G4 G5

Hybrid Pre-emp. Non-pre.

0

0.5

1

1.5

2

2.5

H263 MPEG MP3

Hybrid

Pre-emp.

Non-pre.

Normalized latency

Figure 3.15 Comparison of task migration policies in terms of the normalized worst-

case latency over all failure scenarios.

From the figure, we observe the followings. First, the hybrid migration policy is not

inferior to any other migration policies. As the latency constraint became tighter,

either the preemptive policy or the non-preemptive policy failed to reach a better

rescheduling decision compared to the hybrid policy. In other words, the benefit of

the hybrid policy is more evident as the latency constraint becomes tighter.

Second, the non-preemptive policy is likely to perform better than the preemptive

policy for simple task graphs, even though this is not always true. A possible

explanation is that the overhead of task restarting in the preemptive policy

 ５０

outweighs the benefit of earlier execution of urgent tasks. On the other hand, such a

benefit of the preemptive policy may be greater than the task restart overhead in

more complicated task graphs, as illustrated in Figure 3.16 (d) and (e). Again, there

is no preference between the preemptive and non-preemptive policies in general.

Therefore, we propose to use the hybrid migration policy.

Finally, we compare our approach with the previous technique from [52]. Recall

that the previous work utilized a throughput-maximized schedule without

considering the latency constraint. In Figure 3.16 (a) and (b), “×” denotes the non-

preemptive policy, and “+” represents the pre-emptive and the hybrid policies when

the previous technique is applied. We confirmed that the previous work produced no

better solutions than the Pareto-optimal solutions provided by the proposed

technique. In general, the worst-case latency may be different even though the same

throughput is achieved. In these two examples, however, the same schedules are

obtained after a failure. In short, the previous work at most provides a single Pareto-

optimal solution, while the proposed method provides a set of Pareto-optimal

solutions.

 ５１

0.57

0.59

0.61

0.63

0.65

0.67

0.69

0.71

1.761.861.962.062.16

Hybrid

Pre-emp.

Non-pre.

Normalized throughput

Normalized

constraint

prev [17]

(a) G1 (b) G2

(c) G3 (d) G4

(e) G5

0.68

0.72

0.76

0.8

0.84

0.88

0.92

1.891.982.072.16

Hybrid

Pre-emp.

Non-pre.

0.62

0.63

0.64

0.65

0.66

0.67

1.611.671.731.79

Hybrid

Pre-emp.

Non-pre.

0.68

0.69

0.7

0.71

0.72

0.73

0.74

0.75

0.76

1.361.421.481.541.6

Hybrid

Pre-emp.

Non-pre.

prev [17]

0.69

0.74

0.79

0.84

0.89

0.94

1.831.91.972.04

Hybrid

Pre-emp.

Non-pre.

Normalized

constraint

Normalized

constraint

Normalized throughput

Normalized throughput

 ５２

0.4

0.49

0.58

0.67

0.76

0.85

1.11.151.21.251.31.351.4

Hybrid
Pre-emp.
Non-pre.

0.7

0.75

0.8

0.85

0.9

0.95

1.92.12.32.52.72.93.1

Hybrid
Pre-emp.
Non-pre.

0.76

0.78

0.8

0.82

0.84

0.86

1.4251.451.4751.51.5251.55

Hybrid

Pre-emp.

Non-pre.

(f) H263

(g) MPEG

(h) MP3

Normalized throughput

Normalized

constraint

Normalized

constraint

Normalized

constraint

Figure 3.16 Pareto-optimal solutions of the achievable throughput and the latency

constraints for the synthetic task graphs and real-life applications.

 ５３

Chapter 4

Fault-aware Resource Management

4.1 Introduction

In this chapter, fault-aware hybrid resource management technique that allows

remapping of applications at run-time is presented. The resource management

technique is expanded from the first technique targeting multi-applications that can

concurrently run. Additionally from the first technique that targets single application,

application-level dynamic behaviors are considered and handled through this

resource management techniques as well as processor failures. In the architecture

model, NoC interconnection is additionally considered than that of the first fault-

aware task mapping technique. This technique also assumes that each application

behavior is specified by a synchronous dataflow graph [20] that is suitable for

specifying multimedia and/or streaming applications [57], and a set of Pareto-

optimal schedules of each SDF graph onto the allocated processors is prepared a

priori at design-time. At run-time, a run-time manager (RTM) refers to the pre-

computed schedule information of all active applications whenever the system

status changes. The RTM initially allocates the minimum number of processors to

active applications to meet the throughput constraints. If there are available

processors more than the minimum requirement, the RTM aims at minimizing the

system energy consumption by allocating more processors to some applications and

then applying DVFS (Dynamic Voltage-Frequency Scaling) to the allocated

 ５４

processors. Thus, the run-time mapping problem addressed in the proposed

technique is to determine the number of processors allocated to each of running

applications and the DVFS policies applied to the processors in order to minimize

the overall energy consumption while satisfying the throughput constraints of the

applications. It can be formalized as follows:

Input. A set of applications that are specified by SDF graphs and the pre-computed

Pareto-optimal schedules of each application, and the NoC architecture with its

dimension and parameters.

Constraints. Each SDF graph has a throughput constraint.

PROBLEM: Find the processor allocation for the set of active applications running

concurrently as the system status changes, decide where to map a runnable task at

run-time, and apply DVFS aiming at minimizing the energy consumption of the

system.

Frequent run-time remapping in the proposed technique incurs non-negligible time

and energy overhead. Therefore, this study also analyzes the run-time overhead of

the proposed scheme and provides a rich set of quantitative evaluations with a NoC

(Network-on-Chip) simulator. The analysis reveals how large the size of NoC can

be supported by a central RTM and the dependency of the run-time overhead on the

node granularity of an application specified as an SDF graph. The viability of the

proposed technique is proven with a simple smart phone example and large

synthetic applications.

4.2 Related work

There are a lot of researches about mapping techniques handling the dynamic

behavior of the system so far and optimization goals and given constraints are

 ５５

different from each other. Since our research focus on satisfying real-time

performance and reducing energy efficiency, we classify the researches with the

way of handling the dynamism first, and then compare the optimization goals and

the type of constraints.

4.2.1 Static Approach

As an approach to mapping problem, a static mapping considers the worst-case

scenario of the system among all possible application combinations [58][59][60]. It

assumes that each task takes its worst-case execution time (WCET), and the system

runs the maximal set of applications. In [58] [59], an application can have several

states denoting the modes of operation and all the combinations of states of

applications are represented in a scenario graph. Therefore, the complexity of the

graph size increases exponentially which makes the approach unpractical as the

number of application increases. One of the technique presented in [60] concentrate

on handling a permanent failure under latency constraint while maximizing

throughput by preparing every possible failure scenario at design-time. As a result,

these methods are applicable only to cases that the number of application

combinations, also known as use-cases, is finite and manageably small.

4.2.2 Dynamic Approach

A mapping technique is classified as adaptive if it can change task mapping of an

application at run-time in response to the system status change. A pure dynamic

mapping belongs to this class. In those systems, a central RTM initiates mapping of

an incoming application to available resource in the presence of workload or

resource variation, aiming at minimizing communication overhead or energy

consumption [61][62]. As the number of participating applications increases or the

system grows in terms of the number of processors, a central RTM can be

 ５６

bottleneck because the RTM is involved in every application or task execution. To

overcome this problem, an agent-based technique has been proposed by employing

distributed RTMs [6][7], aiming to minimize communication related energy.

However, they do not consider real-time performance constraints.

The real-time issue has been addressed in the context of run-time mapping [61][63].

In [61][63], they perform run-time schedulability test based on processor utilization

to ensure that the task-set on each processor is schedulable under deadline

constraints. To enable static performance estimation based on predictable and

deterministic communication, they both assumed a TDMA arbitrated

communication network in the target hardware platform. The mapping decision in

these approaches is based on spatially or temporarily local information. As a result,

those techniques cannot guarantee any globally optimal results.

Some techniques have been proposed based on the adaptive run-time mapping

[6][63][64]. An agent-based technique proposed in [6] aims at minimizing

communication energy. The technique uses distributed run-time manager processors,

each of which is responsible for mapping tasks of incoming applications to a certain

set of processors that is called as a virtual cluster. They focused on reducing the

monitoring traffic on NoC and the computational time involved in the RTM.

However, they assume a single application in the system. Moreover, the impact of

the management overhead on the entire system performance was not addressed. In

[63], dynamic mapping is performed adaptively to minimize the weighted sum of

processor utilization, memory consumption, and bandwidth consumption. The

mapping decision in this approach is based on local information, leading to sub-

optimal mapping results.

 ５７

4.2.3 Hybrid Approach

Another approach is to use a hybrid mapping technique where the set of Pareto-

optimal mappings of an individual application is prepared at design-time and the

best combination is determined at run-time by considering the system status,

workload, and resource availability. This technique typically assumes the static

mapping of an application, meaning that the mapping is fixed at run-time. Thus its

capability to support dynamic system behavior is limited. In case a processor fails,

for instance, the mapping should be changed at run-time, which is not possible with

the hybrid mapping approaches.

A group of researchers has proposed hybrid mapping techniques [10][11][12]

[63][64]. In [10], a technique has been proposed to minimize energy consumption.

On the other hand, in the throughput constraint is considered in [11][12] while end-

to-end latency of applications is given as constraints in [63][64]. Especially in [12],

pareto-optimal mappings are prepared for various hop-distances considering the

worst communication overhead in the target NoC to ensure the real-time constraint

at run-time. In both approaches, however, the migration of tasks is not allowed. As a

result, these hybrid techniques are not adaptive.

4.2.4 Summary

The summary of the existing researches about mapping techniques are shown in

Figure 4.1. In the table, the term “WV” denotes whether the approach handles

workload variation. The change of operation mode can also be involved in the

category of the workload variation. And the term “FT” indicates whether the

approach is fault-tolerant, e.g., permanent failure in processors causing resource

variation in the system can be covered.

 ５８

Hybrid

P. Yang,

ISSS 2002
Yes No Energy & latency none

Heterogeneous

architecture

Z. Ma,

ESTIMedia 2007
Yes No Energy & latency none

Implementation in

a real board

G. Mariani,

 DATE 2010
Yes No Energy none DVFS

A. K. Singh,

CASES 2011
Yes No Resource Throughput NoC

C. Ykman-couver,

IET CDT 2011
Yes No Energy Latency

Shared memory

architecture

A. K. Singh,

TODAES 2012
Yes No Energy Throughput

Heterogeneous

and generic NoC

Self-

adaptive
Proposed Yes Yes Energy Throughput DVFS & NoC

Approach Research
Dynamism

Optimization Constraint Remarks
WV FT

Static

L. Thiele,

ASP-DAC 2010
Yes No Energy none

Exponential

complexity

S. Stuijk,

DSD 2010
Yes No Resource (Buffer) Throughput

Exponential

complexity

P. Eles,

DATE 2008
No Yes Processor utilization Latency Mixed criticality

A. Kumar,

RSP 2012
No Yes Throughput none

Migration

overhead

Dynamic

J. Henkel,

DAC 2008
Yes No

Latency &

communication cost
none

Distributed RTM

in NoC

A. Knoll,

DATE 2011
Yes No Communication cost none

TDMA-arbitrated

NoC

R. Marculescu,

DATE 2011
No Yes Throughput & energy none

Spare cores in

NoC

O. Derin,

NoCS 2011
No Yes

Latency &

communication cost
none

ILP(optimal)

analysis & NoC

Figure 4.1 Comparison of representative resource management techniques.

4.3 Background

In this section, additional models especially assumed in the hybrid resource

management technique are described.

 ５９

4.3.1 Energy Model

To estimate energy, we assume that processors are DVFS-enabled to adjust

processor clock rate for energy saving. We assume that we can adjust the clock rate

of individual processor. The processors allocated to the same application will have

the same clock speed in the current implementation of the proposed technique. To

this end, 𝜇: 𝐴 → ,0,1- is defined as a function that represents the relative speed of

processors allocated to application 𝐴; for instance, 1 for full speed or 0.5 for a half.

Note that the WCET, 𝑐𝜏, of task 𝜏 is given assuming full processor speed.

The energy model of processor and communication architecture used at the design-

time analysis is adopted from the previous work [16][18][19]. We denote energy

consumption of application 𝐺 by E(𝐺, μ(𝐺)) with speed ratio μ(𝐺), which is the

sum of computation energy 𝐸𝑐𝑜𝑚𝑝(𝐺, μ(𝐺)) and communication energy

𝐸𝑐𝑜𝑚𝑚(𝐺). 𝐸𝑐𝑜𝑚𝑝(𝐺, μ(𝐺)) is the sum of computation energy of all tasks in 𝐺.

E(𝐺, μ(𝐺)) = 𝐸𝑐𝑜𝑚𝑝(𝐺, μ(𝐺)) + 𝐸𝑐𝑜𝑚𝑚(𝐺)

 = ∑ 𝐸𝑐𝑜𝑚𝑝(𝜏, μ(𝐺))𝜏∈G + 𝐸𝑐𝑜𝑚𝑚(𝐺) (1)

𝐸𝑐𝑜𝑚𝑝(𝜏, μ(𝐺)) is further distinguished by p𝑖𝑛𝑑 and p𝑑𝑒𝑝 as shown in (2).

𝐸𝑐𝑜𝑚𝑝(𝜏, μ(𝐺)) =
𝑐𝜏

μ(G)
(p𝑖𝑛𝑑 + p𝑑𝑒𝑝) =

𝑐𝜏

μ(G)
(p𝑖𝑛𝑑 + 𝐶𝑒𝑓𝑓μ(G)

𝛼) (2)

where p𝑖𝑛𝑑 is the sum of the static power and the processor clock frequency-

independent dynamic power consumed by main memory and external devices. p𝑑𝑒𝑝

is the frequency-dependent dynamic power accounting for processors and other

components depending on the processor clock [66]. Since 𝑐𝜏 is the execution time

of task τ at full processor speed,
𝑐𝜏

μ(G)
 represents the lengthened execution time after

 ６０

the clock rate is reduced. 𝐶𝑒𝑓𝑓 is the effective switching capacitance of a processor

and α is a constant usually no smaller than 2 [67]. Communication energy

𝐸𝑐𝑜𝑚𝑚(𝐺) is estimated as

𝐸𝑐𝑜𝑚𝑚(𝐺) = ∑ 𝐸𝑏𝑖𝑡𝑣(𝑒)𝐻𝐷(𝑒)𝑒 ∈ℰ (3)

where 𝑣(𝑒) and 𝐻𝐷(𝑒) are the size of transferred data and the hop distance in the

NoC topology for edge 𝑒 ∈ ℰ, and 𝐸𝑏𝑖𝑡 denotes the energy required to transfer a

single bit through a single hop distance. Note that the design-time analysis uses the

worst case latency of communication on the target NoC when estimating the

communication energy.

4.3.2 Notation

We define the following notations that will be used in this chapter.

1) 𝐴′ ⊂ 𝐴 represents a set of currently active applications.

2) 𝑁: 𝐴 → ℕ is the number of processors allocated to an application and

may vary at run-time.

3) 𝑇𝐻:𝐴 × ℕ → ℝ denotes the maximum throughput of an application

with a given number of processors.

4) 𝑇𝐻𝑐: 𝐴 → ℝ is the throughput constraint of an application.

5) 𝐼: 𝐴 → ℝ is the invocation interval of an application once activated,

which is equal to
1

𝑇𝐻𝑐(⋅)

6) 𝑃 is the number of processor tiles.

7) 𝑆 is the number of shared memory tiles.

 ６１

4.4 Proposed Resource Management Technique

4.4.1 Motivational Example

In this section, we explain the basic idea of the proposed resource management

technique with a simple illustrative example. We are given four applications

𝐴 = *G𝐴, G𝐵, G𝐶 , G𝐷+ that will run on a 3x3 NoC with one shared memory tile at the

center and 8 processor tiles around the shared memory tile, i.e., 𝑃 = 8 and 𝑆 = 1.

We assume that one processor tile is used as the RTM and the remaining 7 processor

tiles are used to run the applications.

Figure 4.2 (a) shows the SDF graph specifications of the applications; a task is

annotated with its WCET, 𝑐𝜏, in milliseconds. All tasks are executed once per

iteration of each task graph assuming homogenous SDF graphs in this example. All

the SDF graphs are assumed to have the identical throughput constraints of

1

120
ms−1 and the same invocation periods of 120 ms.

The pre-computed mapping and the associated energy consumption at design-time

are given in Figure 4.2 (b). The third row shows the maximally achievable

throughput with a given number of processors. For instance, the maximum

throughput of GAwith two processors, TH(G𝐴, 2), is
1

90
, and TH(G𝐴, 3) =

1

60
. Note

that TH(⋅) is computed assuming full processor speed. If TH(⋅) is greater than the

throughput constraint, TH𝑐(⋅), we may lower 𝜇(⋅) through DVFS by utilizing

slacks to reduce energy consumption as shown in the fourth row of Figure 4.2 (b).

We may lower the energy consumption by allocating more processors and, in turn,

reducing the speed of the processors.

 ６２

30

A1

60 50

A2 A3

D1

D2

40 80

(a)
Throughput constraint :

(b)

Ideal 3 2 2 - 359.9

Static 2 2 2 - 390.6

Hybrid 3 2 2 - 359.9

Proposed 3 2 2 - 377.5

 in

(c)

2 2 2 1 513

2 2 2 1 513

Mapping failed

2 2 2 1 528.2

- 3 2 2 336.7

- 2 2 1 399.5

- 2 2 2 363.9

- 3 2 2 355.9

out

B2

40

B3

70

25

B1 B4

30

C1

C2

C3

60
80

30

Application

 2 3 2 3 2 3 1 2

 ()

 0.75 0.5 0.79 0.58 0.75 0.67 1 0.67

(mJ) 113.5 82.8 140.3 113.1 136.8 128.0 122.4 86.8

power (W) 9.5 6.9 11.7 9.4 11.4 10.7 10.2 7.2

Figure 4.2 (a) Motivational example with four SDF graphs; (b) pre-computed

Pareto-mappings and corresponding energy consumption considering DVFS by the

design time analysis; (c) processor allocation and the associated energy

consumption with four different approaches for the given workload variation.

Now we consider the run-time behavior of the system according to a workload

variation in three phases. In the first phase, G𝐴, G𝐵, and G𝐶are initially running

concurrently. Sometime later, G𝐷 enters the system in the second phase, and then

G𝐴 leaves the system a while later leading to the third phase.

Figure 4.2 (c) compares four different schemes for the given workload variation.

 ６３

The first scheme corresponds to an ideal solution, where the workload variation is

completely known at design-time. As a result, the optimal static mapping and DVFS

policy for each workload can be found a priori. At run-time, each processor knows

which task to execute without the guidance of the RTM. We add this unrealistic

ideal scheme to measure the run-time overhead of the proposed scheme. Surely the

ideal scheme gives the minimum energy consumption in all application sets.

The second scheme is to make a static decision assuming that the workload

variation is known a priori. By taking the worst-case scenario, we can perform task

mapping at design-time. In this example, the worst case is when all four

applications are running concurrently as in the second phase. Hence, the mapping

decision is made to accommodate the second phase and the same mapping is

applied to the first and third phases. Even though it performs for the second phase

as well as the ideal mapping case, it consumes more energy for other phases than

the other schemes.

The third scheme is a conventional hybrid mapping technique. At design-time, the

energy optimal mappings for each application are prepared. When the RTM maps

the applications, it refers to the pre-computed schedules to make an optimal

mapping aiming at minimizing the energy consumption with DVFS. If DVFS is not

applied, the hybrid mapping will allocate the minimum number of processors to

minimize the communication energy, which ends up with the same energy

consumption as the static scheme in this example. When the new application G𝐷

enters the system in the second phase, the RTM checks whether there are as many

available processors as G𝐷 requires. Since the applications in the first scenario

occupy all 7 processors already, G𝐷 cannot be accommodated immediately. Thus,

G𝐷 can be accepted only after G𝐴 leaves the system. As the mapping information

 ６４

for the third phase shows, the mappings of G𝐵 and G𝐶 remain the same when G𝐷

is mapped to the available processors released by G𝐴, missing the chance to allocate

more processors to G𝐵 to minimize the overall energy consumption. This example

shows the drawback of the hybrid mapping techniques that cannot adapt to dynamic

workload variation efficiently.

Our approach makes the same initial mappings with the ideal scheme for the first

scenario. Then, when G𝐷 enters the system, the RTM adjusts the mapping

decisions immediately to the same mappings as the ideal scheme. When G𝐴 leaves

the system, the task mappings are adjusted, leading to the same mapping decisions

to the ideal case again. In case the task migration or the check-pointing is involved

in each task activation, however, we have to pay extra energy overhead.

Let us investigate how the energy overhead of the run-time resource management is

considered in the energy consumption computation in this comparison. In the

overhead computation, we consider the least common multiple of the invocation

periods of active applications A′, i.e., hyper-period ℎ𝑝(𝐴′). The energy overhead

for the RTM is caused by 1) message delivery between a processor and the RTM, 2)

task migration with code fetch from the shared memory to the processor when

necessary for task remapping, and 3) check-pointing of output data after each task

execution. They are denoted by 𝐸𝑟(𝐺) , 𝐸𝑚(𝐺) , and 𝐸𝑝(𝐺) respectively for

application 𝐺 ∈ A′ . Assuming homogenous SDF graphs with the identical

invocation periods, they are formulated as follows:

𝐸𝑟(𝐺) = ∑ 𝐸𝑏𝑖𝑡𝑣(𝜏, 𝑅𝑇𝑀)𝐻𝐷𝑤𝑜𝑟𝑠𝑡(𝜏, 𝑅𝑇𝑀)𝜏∈𝐺 (4)

𝐸𝑚(𝐺) = ∑ 𝐸𝑏𝑖𝑡𝑣(code𝜏)𝐻𝐷𝑤𝑜𝑟𝑠𝑡(𝜏, 𝑆𝑀)𝜏∈𝐺 (5)

𝐸𝑝(𝐺) = ∑ 𝐸𝑏𝑖𝑡𝑣(𝑒)𝐻𝐷𝑤𝑜𝑟𝑠𝑡(𝜏, 𝑆𝑀)𝑒 ∈ℰ (6)

 ６５

where 𝑣(𝜏, 𝑅𝑇𝑀) indicates the average volume of messages between task 𝜏 and

the RTM and 𝑣(code𝜏) denotes the code size of task 𝜏. 𝐻𝐷𝑤𝑜𝑟𝑠𝑡(𝜏, 𝑅𝑇𝑀) is the

longest hop distance from the processor running 𝜏 to the RTM and

𝐻𝐷𝑤𝑜𝑟𝑠𝑡(𝜏, 𝑆𝑀) means the longest hop distance from the processor to the shared

memory respectively. Note that the hop distances in (3)-(6) are assumed be to the

worst case in the NoC topology since we do not consider the physical location of

the allocated processors in this example for brevity. It also should be noted that (4)-

(6) can be extended to a general SDF graph without difficulty. Then, the overall

energy consumption of the system, denoted by E𝑠𝑦𝑠, becomes

𝐸𝑠𝑦𝑠 = ∑ (E(𝐺, μ(𝐺)) + 𝐸𝑟(𝐺) + 𝐸𝑚(𝐺) + 𝐸𝑝(𝐺))G∈A′
ℎ𝑝(𝐴′)

𝐼(𝐺)
 (7)

For the energy computation in Fig. 1, the parameter values used in (1)-(7) are as

follows: 𝑝𝑠 , 𝐶𝑒𝑓𝑓 , and 𝐸𝑏𝑖𝑡 in (2) and (6) are 0.02mW, 1, and 0.1mJ/bit ,

respectively . And 𝑣(e), 𝑣(𝜏, 𝑅𝑇𝑀), and 𝑣(code𝜏) in (3), (4), and (5) are set to

0.04c𝜏 × 10
5bits/ms , 0.005c𝜏 × 10

5bits/ms , and 0.06c𝜏 × 10
5bits/ms ,

respectively.

4.4.2 Overall Procedure

The overall procedure of the proposed run-time resource management technique is

shown in Figure 4.3. It consists of two major phases: design-time analysis and run-

time management that exploits the design-time scheduling results. The inputs to the

design-time analysis are the application-related information including SDF graphs

with WCET, energy profile, and throughput constraints, and the target platform-

related information. In the following subsections, they are explained in detail.

 ６６

Design-time analysis

Pareto-optimal schedules for various
numbers of processors

Processor allocation

Processor binding

Design-time
phase

Run-time
Phase

• Task graphs
• WCET and energy profile

• NoC platform
configuration

System status change
(Task arrival/finish/execution mode change)

: Input Legend : Action : Stored info.

Figure 4.3 Overall procedure of the proposed resource management technique.

4.4.3 Design-time Analysis

When we construct the Pareto-optimal schedules for each SDF graph, we may use

any scheduling algorithm that serves the purpose; finding throughput-maximized

schedules for given numbers of allocated processors. In this thesis, we used a

genetic algorithm (GA)-based technique to make Pareto-optimal schedules for each

application [4][68]. The details of our design-time analysis are omitted due to lack

of space.

It is noteworthy that when we construct a static mapping of an SDF graph, the

bandwidth capacity of NoC link is taken into account in the design-time analysis to

ensure the satisfaction of the throughput constraints similarly to [12]. In other words,

 ６７

we use a pessimistic latency bound for inter-processor communications to guarantee

the throughput performance regardless of where tasks are mapped to.

4.4.4 Run-time Mapping

The run-time management phase consists of two steps. We first determine the

number of processors that will be allocated to each active application. After the

processor allocation is done, we decide physical locations of the allocated

processors on the target NoC platform. We denote the former by processor

allocation step and the latter by processor binding step respectively. To minimize the

compute overhead of the run-time management, we design each step in a greedy

fashion.

1) Processor allocation

Algorithm 1 describes the processor allocation step. In the first part, we allocate the

minimum number of processors to each of active applications in the order of

priority to satisfy their throughput constraints (lines 2-9). If available processors are

insufficient for the allocation to an application, the application is put off. If there are

remaining processors after the initial allocation, the next part of the algorithm

additionally allocates the remaining processors to the applications that can achieve

the energy saving most with the additional processors (lines 10-19). Currently, we

do not consider processor sharing between different applications owing to algorithm

complexity at run-time and leave it as future work.

The energy reduction is accomplished by decreasing processor speed till the

increased execution time of tasks does not violate the throughput constraints of the

applications. Key of the algorithm is to determine the degree of processor slowdown

to estimate the potential energy saving. We compute the ratio of the throughput

 ６８

constraint over the throughput with more allocated processors (line 12) to determine

the processor speed ratio. The energy saving potential 𝐸𝐺
′ by allocating one more

processor to application 𝐺 can be estimated using (1)-(3) (line 13). The processor

allocation step assumes the worst-case hop distance in (3) since the physical

location of the allocated processors on the NoC is unresolved yet. We give an

additional processor to the application with the largest energy saving potential (line

15). The time complexity of the processor allocation step is O(|𝐴|𝑃).

Figure 4.4 illustrates how the allocation step is performed with a simple example

where two applications G𝐵 and G𝐷 are initially running on three processors P1,

P2 and P3. G𝐷 uses P3 only. On the other hand, four tasks, B1, B2, B3, and B4,

of G𝐵 are allocated P1 and P2 with μ(G𝐵) =
10

12
 since the expected throughput of

G𝐵 is
1

100
 at full speed whereas the throughput constraint is

1

120
. When G𝐷 leaves

the system as shown in Fig. 3(a), P3 is additionally allocated to G_B by remapping

task B4 to P3. Then, the throughput of G𝐵 may increase up to
1

70
 at full speed.

Hence we may reduce μ(G𝐵) to
7

12
, reducing the energy consumption. At this

moment, the associated task migration is performed by fetching its code and data

from a shared memory to P3. Fig. 3(b) shows a reverse case where G𝐵 loses an

assigned processor due to the arrival of the new application G𝐷 that is launched to

take over the processor. In this situation, we apply the throughput-optimal mapping

of G𝐵 with N(G𝐵) = 2, increasing μ(G𝐵) to satisfy the throughput constraint.

 ６９

Algorithm 1 Processor allocation

Input

- A , the design-time analysis results, and the platform configuration with

𝑃 processors

Output

- Processor allocations and processor speed ratios for A

𝑃 : the number of processors left unallocated

1: P = 𝑃

2: for all 𝐺 ∈ A do

3: N(𝐺) = a gmi 𝑖 ′(𝑇𝐻(𝐺,) 𝑇𝐻𝑐(𝐺))

4: if (N(𝐺) 𝑃) then

5: A′ = A′ *𝐺+ // put off the mapping of 𝐺

6: else

7: 𝑃′ = 𝑃′ N(𝐺)

8: end if

9: end for

10: while P′ 0 do

11: for all 𝐺 ∈ A do

12: μ(𝐺) =
 H (𝐺)

𝑇𝐻(𝐺, (𝐺))
, μ (𝐺) =

 H (𝐺)

𝑇𝐻(𝐺, (𝐺) 1)

13: 𝐸𝐺
′ = E(𝐺, μ(𝐺)) E(𝐺, μ (𝐺))

14: end for

15: N(𝐺′) = N(𝐺) + 1 where 𝐺′ = a g max
𝐺∈A′

(𝐸𝐺
′)

16: 𝑃′ = 𝑃′ 1

17: end while

18: return N(⋅) and μ(⋅)

 ７０

: i+1th iteration

time (ms)

: System status change notification

: i-th iteration

B3

B2
B1

10/12

0

0

120

156 250

189

B4

0 293

 leaves

7/12

Fetch B4

B3

B2 B1

B4

36 84

120 36

120

Throughput constraint =

(a)

10/12
7/12

12/12
7/12

B3

B1

0

0

120

201 241

156

0

271

 arrives

7/12

B3

B2 B1

B4

51

171 51

time (ms)

120

B4

B2

10/12

204

(b)

7/12
10/12

12/12

Figure 4.4 Example of processor speed adaptation for energy reduction; (a) when an

application leaves and (b) when an application arrives.

2) Processor binding

After allocating all the processors to the active applications, we determine physical

locations of the processors on NoC tiles. To do this, Algorithm 2 shows a heuristic

to bind the allocated processors to the physical tiles on the target NoC platform,

aiming at minimizing the communication overhead between processors. We

 ７１

distinguish a tile from a processor in this step because a tile has its unique 2-

dimensional location on the target NoC platform while a processor refers to a

logical compute entity without awareness of physical location in the design-time

analysis and the processor allocation step.

Algorithm 2 Processor binding

Inputs

- A′, μ(⋅)

- P(G): a list of allocated processors for an application G from the

design-time analysis

Output

- The binding of the allocated processors to physical tiles

PT: a list of the entire 𝑃 physical tiles

C(G) , C𝑝𝑟𝑒 (G): lists of physical tiles (or tile cluster) bound to

application G at the current and the last adaptations

N(G), N𝑝𝑟𝑒 (𝐺) : the number of processors allocated to 𝐺 at the

current and the last adaptations

B(𝑝): a tile where a processor 𝑝 is bound to

𝑐 (𝑇, 𝑇′) : total communication volume between two sets of

processors 𝑇 and 𝑇′ for given task mapping

𝐻𝐷(𝑡, 𝑡′): a hop distance between tiles 𝑡 and 𝑡′

1: PT′ = PT // a list of unused physical tiles

2: P′(G) = P(G) // a list of processors left unbound

3: A = A // remaining applications

4: for all 𝐺 ∈ A do

5: if N(𝐺) = N𝑝𝑟𝑒 (𝐺) then

6: C(𝐺) = C𝑝𝑟𝑒 (𝐺)

7: A = A *𝐺}

 ７２

8: PT′ = PT′ C(𝐺)

9: end if

10: end for

11: Sort A in descending order of μ(⋅).

12: Sort PT′ such that outer physical tile with fewer unused

neighboring tiles appears first.

13: for all 𝐺 ∈ A do

14: C(𝐺) = *pop(PT′)+ // Select the first tile from PT′

15: C(𝐺) = C(G) + {a gmi
𝑡′∈ 𝑇′

(∑ 𝐻𝐷(𝑡 , 𝑡)𝑡∈𝐶(𝐺))}

16: repeat line 15 until |C(G)| = N(G)

17: C′(G) = 𝐶(𝐺) // a list of unmapped tiles for G

18: B.pop(P′(G))/ = pop(C′(G))// bind an initial processor to

the first tile of the cluster.

19: 𝑝 = a gmax
𝑝′∈ ′(𝐺)

(𝑐 (*𝑝′+, 𝑃(𝐺) 𝑃′(𝐺))

20: (𝑝) = a gmi
𝑡′∈𝐶′(𝐺)

(∑ 𝐻𝐷(𝑡 , 𝑡)𝑡∈𝐶(𝐺)−𝐶′(𝐺)))

21: repeat lines 19-20 until 𝑃′(𝐺) =

22: end for

23: return B(⋅)

In the first step of the processor binding, the RTM checks whether the previously

used tiles for each of the current active applications are available again if the

number of the allocated processors does not change with a new mapping. If so, the

same tiles are used for binding to avoid task code migration (lines 4-10). Afterwards,

the RTM generates a new tile cluster to assign the processors allocated to the

remaining applications in descending order of μ(⋅) for the applications (lines 11-

 ７３

22). A new cluster construction of an application begins with selecting the first tile

that has the fewest empty neighbor tiles or is located at NoC boundary to minimize

the fragmentation of available tiles. Then a cluster is formed by repeatedly adding

up a neighbor tile that has the smallest sum of hop distances to the selected tiles

(lines 14-16). When processors are bound to the tiles after the associated cluster is

formed, processors that communicate with each other heavily are preferred to be

placed into near tiles to minimize the communication overhead (lines 18-21). To do

this, at first, we find an unmapped processor that has the largest volume of

communication with the bound processors (line 19) then bind the selected processor

to the unmapped tile closest to the tiles mapped in the cluster (line 20). The time

complexity of the processor binding is governed by the later part of the algorithm

(lines 13-22), which is O(|𝐴|𝑃2).

For better understanding, Figure 4.5 depicts how the proposed run-time scheme is

applied to the workload variation with the four applications of Fig. 1. Given that G𝐴,

G𝐵 , and G𝐶 are running concurrently as shown in Fig. 4, the arrival of G𝐷

triggers a new mapping. The processor allocation step assigns 2, 2, 2, and 1

processors to the four applications respectively, which are the minimum numbers of

processors to satisfy the throughput constraints. In the processor binding step, G𝐵

and G𝐶remain unchanged since the number of allocated processors is the same on

the new mapping. Then the most energy-efficient application 𝐺𝐴 is bound to two

tiles at (0,0) and (0,1) that have the least unused neighboring tiles. Afterwards, 𝐺𝐷

is bound to the remaining tile at (0,2). Finding out a better processor binding

scheme that considers the code migration overhead is left as another future work.

 ７４

A1
B1

B2

A2

C1

C3

B3

B4

C2 A3

Mem.

A1A2
B1

B2

A3

C1

C3

B3

B4

C2 D1D2

: { , , } (enter)  { , , , }

(enters) 

Workload scenario

Mapping of

is adapted

(a)

(b)

RTM

Mem.

RTM

Workload variation

: { , , } (enter)  { , , , }

Mapping order determined by

cluster preservation and energy efficiency

    

(0,0) x-axis

y-axis

Figure 4.5 Example of proposed run-time mapping under the part of the given

workload variation of Figure 4.2 (c).

4.5 Experiments

4.5.1 Setup

To evaluate the proposed scheme, we performed extensive experiments with a real-

life example, a simple smart phone, and several sets of randomly generated

applications using TGFF. A set contains 10 randomly generated applications each of

which has 10-30 tasks. Table 4.1 shows the summary of 3 selected task graphs and

their pre-computed schedules. The table also includes how the throughput varies

according to the number of allocated processors, and the task execution time

variation. Even though other applications are not shown here, the number of tasks

and the number of allocated processors lie between 𝐺1 and 𝐺10. As mentioned

 ７５

earlier, we used a Genetic Algorithm (GA)-based scheduling technique to obtain a

throughput-maximized static schedule for a given number of processors. With

respect to target architectures, the clock rates of processor, local memory, shared

memory, and NoC link are set to 500, 250, 800, and 800 MHz, respectively.

4.5.2 Analysis of Run-time Overheads

First, we quantitatively analyze the overhead of the proposed run-time management

technique using our simulator. The master tile should pay the time overhead to

execute the RTM kernel whose pseudo-code is shown in Algorithm 3.

There are two kinds of overheads depending on who triggers the RTM. When a

system status change is notified, the RTM kernel executes the proposed task re-

mapping algorithm after reading the pre-computed scheduling information. This

overhead, denoted as 𝑅_𝑂𝑉1,, corresponds to the RTM execution step (① and ②)

in Figure 4.6 and it depends on the system complexity: the number of active

applications, the number of tasks, and the number of slave tiles. The RTM kernel is

also triggered when the master tile is notified of a task completion from a slave tile,

which is much more frequent than the other triggering condition. The RTM kernel

finds the next task to run and sends a control message to the selected slave tile. This

overhead, denoted as 𝑅_𝑂𝑉2, is almost constant.

We also measured the communication overhead that the slave tile experiences for

fetching the input data (OVD), for fetching the task code from the shared memory if

necessary (OVF), and for check-pointing the output data (OVC). These overheads

depend on the communication volume and the NoC size. As task execution time

becomes shorter, the aforementioned overheads will consume a significant portion

of the whole execution time of the slave tile, as shown in Figure 4.6. Table 4.2

summarizes how large each overhead is as a function of the system complexity,

 ７６

obtained by running the applications in Table 4.1 on our NoC simulator. When

computing 𝑅_𝑂𝑉1 , we assume that the pre-computed schedule information is

already stored in the local memory of the master tile.

time

Slave

tile(s)

Memory

tile(s)

Master

tile

①

②

③

④

⑤

⑥

System status is changed

① : Schedule loading
② : Adaptive mapping
③ : Task migration
④ : Task execution
⑤ : Check-pointing
⑥ : Reporting

Computation

Memory read/write

NoC communication

Figure 4.6 Execution scenario in timing diagrams of master, slave, and memory tiles.

Table 4.1 Pre-computed schedule of SDF graphs by varying allocated processors.

SDF

graph
tasks

alloc. proc.

(min, max)

Throughput (ms
-1

)

(min, max)

Task execution time variation

(ms)

G1 10 2, 4 1/379,1/196 100 60

G5 18 2, 5 1/772, 1/322 100 50

G10 26 3, 6 1/846, 1/424 100 80

 ７７

Algorithm 3 RTM Kernel

1: while true do

2: if status change is notified then // overhead: 𝑅_𝑂𝑉1

3: load the pre-computed schedule if necessary

4: perform processor allocation

5: perform processor binding

6: end if

7: if task completion is notified then // overhead: 𝑅_𝑂𝑉2

8: find the next task to run from the loaded schedule

9: send a control message to the slave tile

10: end if

11: end while

Table 4.2 Run-time overhead measured by simulation.

NoC dimension 4×4 6×6 8×8 10x10

memory tiles 2 4 8 10

applications 4 6 6 8 8 10 10

𝑅_𝑂𝑉1 (kcycles) 142 167 417 438 546 672 878

𝑅_𝑂𝑉2 (kcycles) 14.7 20.1 20.7 21.1 22.5 22.8 25.8

OVF (kcycles) 15.2 16.3 19.4 16.9 20.4 24.5 26.3

OVD (kcycles) 22.5 22.8 52.3 54.4 111.2 119.8 150.7

OVC (kcycles) 20.2 20.6 45.8 45.7 86.5 86.8 131.3

An interesting question is when the master tile will be fully saturated for the RTM.

Then, the central manager will become the performance bottleneck. We devised a

simple mathematical model to answer this question as follows:

 ７８

𝑇

𝑥 (𝑂𝑉𝐷 𝑂𝑉)
× 𝑃 × 𝑅_𝑂𝑉2 +𝑀 × 𝑅_𝑂𝑉1 < 𝑇 (8)

where 𝑥 represents the average execution cycle of tasks, 𝑥 is the total number of

the slave tiles, and 𝑀 is the total number of status change notifications for a given

period of time 𝑇 . The first term on the left side indicates how many task

completions a slave tile notifies to the master tile, multiplied by the number of slave

tiles and the associated RTM overhead. The second term estimates the RTM

overhead after being triggered by system status notification. If (8) is violated, we

can say that the master tile is saturated. For a given workload variation and

remapping frequency as a function of 𝑥, we can determine the maximum NoC size

that a single master tile can support.

Figure 4.7 shows the average task execution time required for each NoC size to

satisfy (8). Overall, as the NoC size increases, the number of processors increases

and communication overhead also increases. As a result, the required average task

execution time tends to increase to avoid the master tile saturation by invoking the

RTM less frequently. Figure 4.7 (b) indicates the case when the system status

changes less frequently than Figure 4.7 (a); same 𝑀 values for a larger 𝑇 value in

Figure 4.7 (b). In such a case, the required task execution time can be smaller. This

is because the overhead due to the system status change affects less under the lighter

workload variation so that the RTM can handle more frequent task schedule

requests from the slave tiles with shorter task execution time.

 ７９

0

100

200

300

400

500

600

700

4x4 6x6 8x8 10x10

M=8

M=12

M=16

M=20

NoC size

Average task execution time

(x1000 cycles)

NoC size

0

200

400

600

800

1000

1200

1400

1600

1800

2000

4x4 6x6 8x8 10x10

M=8

M=12

M=16

M=20

(a)

(b)

Average task execution time

(x1000 cycles)

Figure 4.7 Required average task execution time not to make the single master

saturated for different NoC sizes with (a) T=20000 kcyles and (b) T=100000

kcycles.

4.5.3 Comparison with Other Approaches

In the second set of experiments, we compare the proposed run-time scheme with

other approaches including a hybrid mapping technique [12]. Even though the

hybrid approach has been proposed without considering DVFS at run-time, we

 ８０

modify the approach to apply DVFS for fair comparison of energy consumption.

1) A Case Study: Simple Smartphone

We applied the proposed technique to a simple smartphone example as a real-life

example that has two use cases using five applications as shown in Table 4.3. The

corresponding workloads represented as Gantt-chart is shown in Figure 4.8. Each

block in Figure 4.8 denotes the duration of each application execution invoked

periodically. The numbers in blocks indicate orders of block executions. The H.264

decoder application has two operation modes, namely I or P frame, while the others

have a single operation mode only. Each mode of an application is specified by an

SDF graph. Note that applications have different invocation periods so that the

workload varies dynamically in each use case. The target architecture is a 3x3 NoC

with one shared memory tile, one master tile, and 7 slave tiles.

Table 4.3 Two use cases in the smartphone example.

Use case Active applications

VideoPlay MP3 decoder, H.264 decoder

VideoPhone
G.723 decoder, G.723 encoder,

H.264 decoder, x264 encoder

Table 4.4 shows the summary of the applications and their pre-computed schedule

information. It includes the number of tasks in an application, the throughput

performance with the number of allocated processors at full processor speed and the

throughput constraints in frame rate. Since each of the G.723 encoder and decoder

consists of a single task only, they are not shown in the table. The code size and the

task execution times were profiled using RealView Development Suite [69].

 ８１

Table 4.4 Result of the design-time analysis of the smartphone applications.

 # tasks
alloc. proc.

(min, max)

TH(⋅)

(f ame/s)

(min, max)

TH𝑐(⋅)

(f ame/s)

H.264 decoder

(I-frame)
10 1, 3 19.3, 55.6

V.Play: 30

V. Phone: 15

H.264 decoder

(P-frame)
7 1, 2 30.7, 54.4

V.Play: 30

V. Phone: 15

MP3 decoder 8 2, 3 61.0, 102.0 60

x264 encoder 5 2, 3 18.5, 22.4 15

0 33000

1

0

66000

G1, G3 : H264 decoder

G2 : MP3 decoder

G1, G3 : H264 decoder

G2 : x264 encoder

(a) Video Play

7 11

99000 12000 165000

8

(b) Video Phone

12 16

0

1

2 0

66000

3

132000

4

5

7

132000

15

2 3 5 6 9 10 13 14 17

18

50000

6

G1

G2

G3

G1

G2

G3

4

(us)

(us)

Figure 4.8 Gantt-chart representations of workloads of smartphone example; (a) in

case of VideoPlay scenario; (b) in case of VideoPhone scenario.

We compared the average energy consumption of the three schemes, our approach

(labeled as Proposed), the Static and the Hybrid approaches as discussed in the

motivational example. The system status changes more frequently as the invocation

period of an application becomes shorter. Therefore, the VideoPlay case has more

frequent system status changes than that of VideoPhone due to the shorter

 ８２

invocation period. In the Static scheme, all the applications are mapped statically in

each mode.

Proposed Hybrid

VideoPlay VideoPhone

Proposed Hybrid
0

30

60

90

120

150
R_OV1 R_OV2 OV_C OV_D OV_F

Proposed Hybrid Static

VideoPlay VideoPhone

0

200

400

600

800

1000
R_OV1 R_OV2 OV_C OV_D OV_F Compu

Proposed Hybrid Static

(a)

(b)

Average energy consumption (10-3 mJ)

Figure 4.9 (a) Average energy consumption of the smartphone applications on a 3x3

NoC with the three approaches; (b) breakdown of various run-time overheads.

Figure 4.9 shows that our approach outperforms the Hybrid approach and the Static

approach by 14-31% and 33-36% in the reduction of the average energy

consumption of the applications. With the less-frequent system status changes in the

VideoPhone case, our technique and the Hybrid approach show the similar energy

 ８３

consumption. On the other hand, the Hybrid scheme failed to handle 46% and 65%

of the run-time mappings in the VideoPhone and the VideoPlay cases respectively,

whereas our technique was able to handle all the use-cases successfully. This is

because with the Hybrid approach, there exist cases where a released application

may not start immediately due to lack of available processors than minimally

required to satisfy the throughput constraint. In this case, the delayed execution of

the application leads to throughput constraint violation. As a result, _OV1 in the

Hybrid scheme was bigger than that of our scheme in the VideoPlay case since the

average number of active applications tends to increase due to the delayed

applications.

2) Large Synthetic Applications

We made four different workload variations using 10 large synthetic applications,

each of which has 50-100 tasks. They require 5-12 processors to satisfy the

throughput constraints. The task execution times are set similarly to Table 4.1. We

make workload variations by adjusting the release intervals of the applications. The

Gantt-chart representations of workloads are shown in Figure 4.10. As the release

intervals decrease, a workload variation becomes heavier meaning that the system

status will change more frequently with more active applications. The lightest

workload variation in Figure 4.10 (a) has two active applications on average that

can be five at most. For the heaviest workload variation in Figure 4.10 (b), the

parameters are four and seven respectively. All the applications were assigned the

same period that is larger than the longest execution time of the applications. Then,

we measured the energy consumption of a single run of all the applications. The

target architecture is an 8x8 NoC composed of a single master tile, 55 slave

processor tiles, and eight shared memory tiles.

 ８４

0

G1

1000

G2
G3
G4
G5
G6
G7
G8

G9
G10

400 2000 3000 4000 5000 6000
(ms)

application

0

G1

1000

G2
G3
G4
G5
G6
G7
G8

G9
G10

400 2000 3000 4000 5000 6000
(ms)

application

7000
(a) Lightest workload

(b) Heaviest workload

Figure 4.10 Gantt-chart representations of workloads of synthetic examples; (a)

when variation occurs scarcely; (b) when variation occurs frequently.

The comparison of the average energy consumption of an application is shown in

Figure 4.11. The Hybrid scheme is likely to fail as the workload variation becomes

heavier since it cannot adapt to the variation of computation resource available. The

Hybrid scheme experienced 3-4 failures of application mappings, which amounts to

30-40% of the total number of applications. The Static scheme maps the 10

applications as a whole regardless of the workload variations, thus, consuming the

most energy.

 ８５

0

40

80

120

160

200

P. H. P. H. P. H. P. H. S.

R_OV1

R_OV2

OV-C

OV-D

OV-F

Compu

0

10

20

30

40

50

P. H. P. H. P. H. P. H.

R_OV1

R_OV2

OV-C

OV-D

OV-F

  heavy workload light workload

(P: Proposed, H: Hybrid, S: Static)

(a)

(b)

Average energy consumption (10-3 mJ)

Figure 4.11 Average energy consumption of (a) a synthetic application on a 8x8

NoC with the three approaches; (b) breakdown of various run-time overheads.

 ８６

Chapter 5

Resource Management Software Platform

5.1 Introduction

In this chapter, we describe the software platform implementing the fault-aware task

mapping and resource management technique in chapter 4. The software platform is

proposed to formalize the implementation method of the fault-aware techniques.

Through this platform, we aim to implement the fault-aware resource management

with any architecture which even has no operating systems or caches. Also, various

mapping approaches can be implemented and applied to enable the proposed

platform to become the baseline to analyze performance and overheads of run-time

mappings. In this section, we first overview the resource management scenario to

present how the master, slave, and shared memory tiles co-operate at run-time.

Based on this scenario, we extract the required features of the software platform and

discuss the overall structure of the software platform.

Figure 5.1 shows the major steps taking place between a master and a single slave.

At the beginning, the master fetches the task graph information and scheduling

information from shared memory tiles (step ①). With the loaded information, the

 ８７

master finds an executable function and an available slave tile to map the function.

In this step, static mapping decision is used in case static and hybrid mapping

policies are selected (step ②). After mapping decision is made, the master sends a

control message to the chosen slave to fetch and execute the function (step ③).

Once a control message arrives, the slave starts to load the code and input

arguments of the function from a shared memory tile (step ④). If the function code

is already loaded in the local memory of the slave time, code fetch can be omitted.

Note that minimizing the communication workload is an important optimization

goal of dynamic mapping. After performing the function (step ⑤) the slave tile

check-point the execution results by sending the results to a shared memory tile

(step ⑥) that may be different from the shared memory containing the code and

input data of the function. After the check-pointing is finished, the slave notifies of

the master the successful execution of the allocated function with an

acknowledgement message (step ⑦).

Mst : Master tile

Slv : Slave tile(s)

Mem : Shared memory tile

① : Schedule loading

② : Mapping/Proceeding tasks

③ : Sending control packet

④ : Code/Data loading

⑤ : Function execution

⑥ : Check-pointing

⑦ : Reporting
Mem

Mst Slv

①

②
③

④

⑤

⑥

⑦

Figure 5.1 Overall execution procedure of the proposed software platform.

5.2 Related work

Recently, some researches that deals resource management issues in many-core

 ８８

architecture are proposed [70][71][72][73]. The approach in [70] finds an optimal

mapping at run-time to maximize the overall weighted system throughput, assuming

that all applications are specified by linear graphs. In [71], communication packet

mapping and scheduling as well as task mapping and scheduling targeting many-

core architecture with NoC interconnection.

Most of the existing researches, however, are based on simulation with high-level

model and only few of researches consider the software that implements proposed

schemes [72][73]. In [72], distributed resource management scheme is proposed

concentrating on reducing overall communication overhead in large size of NoC.

Running applications compete with each other to obtain more cores based on greedy

heuristic. In this approach, however, only fully dynamic mapping is considered and

fault-tolerance is not provided. And it also assumes high-level simulation with small

agent software that run on an operating system running on each core that supports

basic functions such as message-passing in NoC. There is also a many-core OS [73]

targeted at the resource management challenges including the need for real-time and

QoS guarantees. In that approach, Space-Time partitioning (STP) and Two-Level

Scheduling are proposed for performance isolation and partitioning of resources.

5.3 Overall Structure

A software platform should support basic functions involved in the aforementioned

resource management flow, which includes run-time function mapping and

scheduling, shared memory management, communication between tiles, and so on.

Figure 5.2 shows the overall structure of the software platform that lies between the

many-core hardware platform and the application task to be executed on the

hardware platform. It consists of five parts as shown in the figure.

 ８９

As explained in the previous section, a task to be executed on the many-core

accelerator should be specified by a dataflow graph, which defines the application

API layer. At the bottom layer, the software platform communicates with the host

processor of the system through the host interface module while it communicates

with other tiles via an on-chip communication network through the communication

interface module. The main function of the software platform performs mapping

and scheduling of functions in the task scheduling module. The graph information

and the scheduling information as well as task function code/data, and global states

is stored into and fetched from the shared memory tiles through the memory

management module.

Application API (dataflow graph specification)

Communication
interface

Host interface

Task
scheduling/mapping

module

Memory management
module

HW platform

Application

Software
platform

Figure 5.2 Overall structure of the proposed software platform.

5.4 Components of Software Platform

5.4.1 Application API Layer

This layer defines how a function should be coded to run by the proposed software

platform. It is not implemented as a module since no run-time checking is

 ９０

performed. Nonetheless, we include this layer as a part of the software platform,

expecting that compile-time analysis will be able to detect violation of the coding

style in the future. For example, the occurrence of deadlock or buffer overflow in

SDF representation can be analyzed and detected in priori at compile-time. As of

now, it is programmer‟s responsibility whether the code is written according to the

rules that are described below.

Since a function is the unit of mapping and scheduling, code migration should be

simple and cheap. To serve this purpose, we enforce the body of a function to be a

single chuck after compilation. In other words, a function may not call other

functions inside. If it calls a nested function, the nest function should be inlined.

In a dataflow graph, channels define global states of the task, and so will be check-

pointed in the shared memory tiles. Functions communicated with each other

through these channel variables. Thus the input arguments to the function that are

associated input channels in the dataflow graph are given by the pointers to the

global states. For an output channel of the dataflow graph that corresponds to the

return value of the function, a pointer argument should be defined to make the

function void. And input arguments should be placed before output arguments.

Figure 5.3 shows a simple producer-consumer example where two functions are

connected via a channel. In sender task shown in Figure 5.3 (b), three integer values

are written to channel as check-pointed data. To perform check-pointing, at first, the

data size and the access address of the check-pointing are notified to slave manager

as in line 2 and 3. And then, actual data access is operated as in line 4 and 5. In case

of data loading in Figure 5.3 (c), read operation is performed in the same way of

check-pointing except the used parameters. Note that, in general, there exists the

actual task function between data loading and check-pointing.

 ９１

The data access size and data loading addresses are directly described by the user in

the task functions while the other parameters for shared memory access are

transferred to slave manager from master manager by control packet and

automatically inserted into the task functions. The other parameters are described in

host interface module, also by the user. Though all the memory access information

can be described together in the host interface module, we decide to let the user set

parameters in the source codes of the task functions since the data access size and

data loading addresses depends on the used data structures in the source codes.

sender(data_loading_addr[], checkpoint_addr,

 data_loading_base,checkpoint_base) {

 int i;

 *(checkpoint_base+1) = 3*4; // Set access size

 *(checkpoint_base+2) = checkpoint_addr; // Set access position

 for(i=0;i<3;i++) { // Write output data

 *(checkpoint_addr) = I; // to shared memory.

 }

}

receiver(data_loading_addr[], checkpoint_addr,

 data_loading_base,checkpoint_base) {

 int i;

 *(data_loading_base+1) = 3*4; // Set access size

 *(data_loading_base+2) = data_loading_addr[0]; // Set access position

 for(i=0;i<3;i++) { // Read input data

 *(data_loading_addr+i) != i; // to shared memory.

 break;

 }

}

(a)

(b)

1 1

(c)

sender receiver

Sender

Receiver

1

2

3

4

5

1

2

3

4

5

6

Figure 5.3 Function code example of simple application composed of two functions;

(a) SDF graph of the application; (b) Sender function and (c) Receiver function.

 ９２

5.4.2 Communication Interface Layer

The communication interface module uses message passing for communication

between tiles. The proposed software platform uses two types of inter-tile

communications: communication between processor tiles and communication

between processor and shared memory tiles. All the messages exchanged between

the tiles are packetized in this module. A packet consists of the packet header and

the payload. The packet header contains information specific to the on-chip

communication fabric. For example, the identifier of source tile and identifier of

destination tile need to be encoded for NoC communication. On the other hand, the

payload of a packet is distinguished by the communication type.

A message exchanged between processor tiles is either a control message or a report

message as shown in Figure 5.4, which are opposite in direction. The master sends a

control message to a slave after scheduling a new function. The control message is

divided into two parts: schedule information and control information. The schedule

part involves the identifier of the newly assigned function and the identifier of the

application. Since we allow multiple applications share the many-core accelerator,

we have to manage the application id in the control message.

On the other hand, the control part contains the main information about the function

code, data arguments, and check-pointing. Code information contains the code size

and the shared memory address from which the slave tile can fetch the function

code. Data information involves input data size and their location for the tile to

fetch input data. Input date may be fetched from several distributed shared memory

tiles. Lastly, check-point information is similar to data information.

A report message, the second type of messages sent by a slave, contains only the

schedule information to notify the master of what task has finished by the slave tile.

 ９３

control_info

code_info

data_info

check_info

Report message

= {code_size, code addr}

Control message

= {num_inData, inData_size[], inData_addr[]}

= {num_outData, outData_size, outData_addr}

code_info data_info check_info

Packet_header schedule_info

Packet_header schedule_info

app_id task_id

(a)

(b)

Figure 5.4 Message structure between processor tiles; (a) Master-initiated message

and (b) slave-initiated message.

5.4.3 Host Interface Layer

The master tile communicates with the host processor through the host interface

module. Since there is no operating system assumed in the master tile, the host

interface module uses polling mechanism for communicating with the host

processor. Note that the host processor may launch a new application to share the

many-core accelerator, and change the voltage or frequency of processor tiles at

run-time. And a resource failure is detected by the host controller and notified to the

master in the middle of task execution. The host interface module monitors any

command or signal from the host and delivers it to the task scheduling module.

The necessary role of the host interface face module is to give the information of

running applications and running environment to the master manager. As

application information, application identifier and code sizes and shared memory

addresses of tasks which can be known at compile-time should be given and sizes

and start addresses of shared memory should be given as environmental information.

 ９４

5.4.4 Memory Management Module

The master tile manages the layout of the code and data of tasks in the shared

memory tiles. In case there are multiple shared memory tiles, it should determine

how to distribute the contents. A simple scheme is to copy the code and read-only

data of tasks into all shared memory tiles to reduce the communication workload

while positioning the channel data into a single shared memory tile for easy check-

pointing. Then the slave tile can fetch the code and the read-only data from the

nearby shared memory tile.

Suppose we adopt this simple scheme in the memory management module, the

master sends the code of a newly launched task to all shared memory tiles at the

same offset position. It is noteworthy that actual code delivery is performed by the

communication interface module. The schedule information and the channel data

structure is stored in a shared memory tile closest to the master tile. The shared

memory tile becomes the check-pointing repository. Even though we assume that

the shared memory tile is protected from transient and permanent error, the memory

management module may use a software protection scheme in addition.

In the current memory management module, basic and simple scheme is applied.

All the running applications are assigned static size and position shared memory

area since we should know all the static information to perform hybrid mapping. To

implement more complex and efficient memory management scheme is left as a

future work.

5.4.5 Task Scheduling/Mapping Module

The task scheduling module plays the key role of hybrid resource management. The

pseudo-code of the task scheduling module that corresponds to steps ① and ② in

 ９５

Figure 5.1 is described in Figure 5.5. Corresponding to the step ① in Figure 5.1,

the master fetches the graph information and the scheduling information of all

outstanding tasks, which are required for run-time processor allocation under the

current workload in line 1. At first, it checks whether any notification arrives from

slave tiles or any control information is received from the host in line 3. It should be

checked by the master manager as soon as possible not to delay the progress of task

execution.

If all running applications are set to be mapped statically, static application mapping

is performed only once as shown in line 5 of Figure 5.5. Otherwise, at every loop,

the master checks whether there is any change in the system status that includes

arrival and departure of a task and variation of resource availability (line 9). If such

a status change is detected, application re-mapping is performed to handle the

dynamisms in line 11. Afterwards, depending on the resource management policy of

each task, executable functions are mapped in either the hybrid or dynamic way as

depicted in line 12 and 15. Finally, an executable function is assigned to a slave tile

following the scheduling/mapping decision and sends a control message to the slave

tile in line 17. After proceeding schedules, the master repeats the above procedure.

Run-time mapping of the proposed software platform has two phases; application

mapping and task mapping. Static mapping is classified with other two mappings by

the application mapping. Static mapping performs application mapping only once

since the number of allocated processors are not changed and mapped. In hybrid

mapping, all the available processors are allocated to all active applications to

maximize average performance utilizing design-time analysis result similar to [14].

Hybrid mapping is similar to static mapping in that it also utilizes static scheduling

information, but different from static mapping, the number of allocated processors

 ９６

can be changed. Therefore, it needs new task mappings whenever new application

mapping is invoked to handle the dynamisms.

In our hybrid resource management scheme, dynamic mapping is also supported.

Performance improvement of data-parallelizable application by data-parallelization

can be deviated when there exists large branch divergence in the data-parallelized

tasks. In other words, task execution time can become much different from each

invocation depending on the characteristic of input data. For example, in case of an

application that detects corners for a given picture as in Figure 5.6 (a), the picture is

partitioned into eight subsets that are processed by data-parallelized tasks, e.g., T1 to

T8. The execution time of T1 becomes much shorter than that of T8, since there are

much more cores in the input data of T8 than the input data of T1.

main() {

 initialize();

 while(true) {

 check_reportFromSlaves();

 if(do_static_mapping) {

 static_mapping(); // In case of static

 do_static_mapping = false; //Do mapping only once

 }

 else {

 dynamisms_happen = check_dynamicBehaviors();

 if(dynamisms_happen) static_task_mapping();

 if(do_dynamically) dynamic_function_mapping();

 else hybrid_function_mapping();

 }

 proceed_schedules();

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Figure 5.5 Pseudo-code of the run-time manager on a master.

 ９７

After run-time

mapping,

3 processors are

allocated to

T0

T2

T3

T1

T8

…

T9

Mapping of tasks are not

changed for all iterations

T1 P1

P2

P3

T0

T3 T5

T6

T7

T8

T9

(a)

(b)

Mapping of tasks

can be changed.

(c)

(d)

: current iteration task

: next iteration task

T2

T1 T0

T3

T2

T4

T5

P4

T1 P1

P2

P3

T0

T3

T4

T5

T6

T7

T8
T9

T2

T1 T0

T3

T2

T4

T5

T6

T7

P4

T4

T8

T6

Figure 5.6 Dynamic task mapping for data-parallelized tasks; (a) Input data of an

application partitioned for data-parallelization; (b) Task graph of the application; (c)

Static task mapping of the application; (d) Dynamic task mapping of the application.

 ９８

Different from hybrid mapping, dynamic task mapping is performed whenever a

report message is arrived to master manager as shown in line 11 of Figure 5.5. This

is natural in dynamic mapping because any task that is ready when all input data are

prepared should be able to be launched at the moment of a task finish. To achieve

better performance in dynamic task mapping, data-parallelized tasks can be

assigned and launched in the slave tiles that are idle as soon as a task is finished if

an application is set to be mapped with dynamic mapping. As a result, dynamic

mapping can reduce slacks, increasing the utilization of allocated processors as

shown in Figure 5.6 (d).

5.4.6 Slave Manager

The proposed software platform also defines the run-time system of a slave tile,

called slave manager. The slave manager manages the actual execution of a function

assigned to the slave tile from the master. All the steps performed in the slave

manager are executed sequentially and atomically without interruption.

1) Code migration and data loading

On receiving the control message, the slave manager first fetches the task code and

reads the input data from the designated memory tile. Remind that information

required to perform code/data loading such as shared memory addresses and shared

memory tile ids are extracted from the control message. To ensure correct execution

and communication between the master and the slave, we adopt a non-preemptive

task migration; task migration is performed after the current function finishes

execution [4].

In the baseline implementation, code and data fetching is not hidden since task

execution begins only after all fetching is completed. In the future, we will

 ９９

implement a prefetching scheme where a slave tile can be assigned the next function

while it executes the current function. Note that, at task code migration, it is

necessary to fetch the task code only if the slave tile does not have the task code in

its local memory due to task re-mapping or memory capacity limitation. Since the

local memory is a scarce resource, prefetching decision should be made carefully

not to waste the available memory space of the local memory. It is necessary for the

slave manager to manage the local memory in a smart way, which is left as a future

work.

2) Task execution, check-pointing, and reporting

Similar to the migration policy, function execution is also assumed to be non-

preempted, e.g., executed atomically. The only exception of atomic execution

occurs when processor failure occurs. In that case, though the function running on

the failed processor nay be halted during execution unavoidably, the will be

migrated to a new live processor without consistency problem since global states

are check-pointed at each function boundary.

After the assigned function finishes its execution, the slave manager sends the

output data and check-pointing data to the destination shared memory tile. After

check-pointing is finished, slave manager sends a message to master manager to

report the completion of the assigned task.

5.5 Software platform implementation

This section describes the implementation details of the proposed software platform

that is tailored for running on a generic NoC platform-based accelerator. However,

the proposed software platform can be easily deployed to other many-core platforms

with slight modifications, which is explained in the next section. As of now, we

 １００

have implemented the basic features of the platform, namely baseline

implementation, and run it on two evaluation HW platforms.

5.5.1 Scheduling Information

The proposed software platform is based on a hybrid resource management scheme

[14] that may use the pre-determined mapping decision to select the slave tile to

map each task at run-time. In the hybrid resource management technique, the

mapping and scheduling of a given dataflow graph is determined at compile-time

for a given number of processors. The mapping and scheduling information is

specified by a pair of functions: M(τ, N) = , 1 ≤ ≤ 𝑁 and S(τ, N) = 𝑘, 1 ≤ 𝑘 ≤ 𝑁

where 𝑁 is the number of assigned processors to the task. M(τ, N) represents on

which processor function τ is mapped and S(τ, N) represents the scheduling order

of function τ on the mapped processor. If no mapping decision is made at compile

time, M(τ, N) is set to 0 meaning that mapping decision is made at run-time.

Similarly, if no scheduling decision is made at compile time, S(τ, N) is set to 0

meaning that which function to schedule next is determined at run-time.

Note that the number of processors assigned for a given task, 𝑁, may vary at run-

time within a range denoted by (𝑁𝑚𝑖𝑛 , 𝑁𝑚𝑎𝑥). Therefore, a set of mapping and

scheduling information is constructed and stored for a varying number of assigned

processors at compile time. The mapping and scheduling information is saved in a

shared memory tile and delivered to the many-core accelerator when dispatching the

task.

In case the number of assigned processors is fixed and not varying during execution

and the static mapping and scheduling decision is preserved at run-time, it is

nothing but a static resource management scheme, which is an extreme case of the

hybrid resource management scheme. In case no mapping decision is made at

 １０１

compile time and the number of assigned processors can vary at run-time, it is a

fully dynamic mapping scheme. A true hybrid mapping lies in between, where the

number of assigned processors is determined at run-time while the static mapping

result of tasks onto a selected number of processors is used by the master processor.

By supporting a generic hybrid resource management scheme, the proposed

software platform can perform a full spectrum of resource management scheme,

static mapping to dynamic mapping. Which resource management scheme is

realized is determined by the user at compile time.

In the software platform, the scheduling information is expressed as follows:

𝑆 = (𝑁𝑝, *𝑀+, 𝑃)

𝑀 = (, 𝑁𝑡, *𝑇+)

𝑇 = * 𝑡 |𝑡 = 𝑡𝑎𝑠𝑘 𝑑 𝑎𝑝𝑝𝑒𝑑 𝑡 𝑝𝑟 𝑐𝑒𝑠𝑠 𝑟 +

𝑃 = * 𝑆𝑡𝑎𝑡 𝑐, 𝐷𝑦𝑛𝑎 𝑐, 𝐻𝑦𝑏𝑟 𝑑 +

A schedule 𝑆 has three tuples: 𝑁𝑝 is the number of allocated processors to 𝑆; 𝑀

denote the mapping of the allocated processor; 𝑃 is the scheduling policy. In the

mapping 𝑀, , 𝑁𝑡, and 𝑇 indicates the identifier of the allocated processor, the

number of mapped tasks, and the set of identifiers of the mapped tasks, respectively.

5.5.2 Function Migration and Execution

To make task code migration efficiently, our current implementation restricts the

code binary of a task to be a single data chunk on a shared memory tiles. To do this,

we make a task have a single function only. Sharing libraries between tasks will be

considered in future work. Note that code migration needs to be omitted to reduce

run-time overhead if we can execute a task on the same slave tile as shown in

 １０２

Figure 5.7 (a).

After code migration is finished in slave manager, data loading can be followed if

there are input data from precedent tasks. And then task execution can be performed

by the jump to the function pointer of the migrated task binary as shown in line 4 of

Figure 5.7 (b). The function pointer indicates the local address where the migrated

task binary is allocated. Then, check-pointing can be performed if required.

main() {

 while(true) {

 if(STATUS == ready) {

 ExecutionInfo info = readControlInfo();

 if(info.code_addr != before_code_addr;

 code_loading(info.codeLoading);

 execute_task(info);

 STATUS = idle;

 report();

 }

 }

}

(a) (b)

execute_task(ExecutionInfo info) {

 typedef void (*jmpPtr)(void);

 jmpPtr jmp;

 jmp = (jmpPtr) (info.exec_addr);

 (*jmp)(info);

}

1

2

3

4

1

2

3

4

5

6

7

8

Figure 5.7 Pseudo-code of slave manager; (a) Main function; (b) Task execution

function.

5.5.3 Function Mapping and Scheduling

In our platform, task mapping and scheduling is implemented with control queues

(CQ). When task mapping and scheduling is finished, control messages are

organized and put into corresponding control queues. The master maintains a

control queue for each slave tile to manage the execution of slave tiles. A CQ

contains a list of tasks ready to run according to the schedule policy. In case a

hybrid task mapping is applied, static mappings of tasks are applied at run-time if

 １０３

the number of allocated processors of a running application is determined after the

allocation step of application mapping. Assume that application G𝐴 in Figure 5.8 (a)

enters and three processors are allocated and static mappings of schedule 2-A in

Figure 5.8 (c) prepared at compile time is selected for G𝐴. Then three processors are

bound after task mapping at three tiles of which control queues are CQ1, CQ2, and

CQ3, respectively. After line 17 of Figure 5.7, the three control queues are updated

as Figure 5.9 (a).

A2

40

A3

70

25

A1 A4

30 Schedule A-1 A-2

Allocated processors 2 3

 Throughput (/time unit)

A3

A3

A2

A2

A4

A1

A4

A1 P1

P2

P1

P2

P3

A-2

A-1 A1 A2

A3

CQ1

CQ2

A4
CQ3

(a) (b)

(c) (d)

Figure 5.8 (a) Example of an application G_A; (b) Performance of static schedules

of G_A; (c) Gantt chart representation of static schedules; (d) Control queue status

after hybrid task mapping.

After task mapping finishes, master manager proceeds the schedules by checking

iteration progress of the execution-completed task notified by report messages. This

corresponds to line 3 and line 14 of Figure 5.7. Once a report message comes from a

slave after a task execution and checked in line 3, control queues of running

applications are updated at line 14. In case the number of received report messages

becomes the same as the number of tasks of the application, master manager checks

 １０４

whether the application finishes or not. If so, the end flag of the application is set so

that the control queues of the allocated tiled are empty as in Figure 5.9 (b). run-time

mapping can be invoked and performed with running applications except the

finished application. Otherwise, simply control queue of the related slave tile is re-

filled following the selected schedule.

When remapping is performed in the middle of an application execution due to

dynamic behaviors of the system, the control messages in the control queues are re-

distributed following the new mapping decision. The example of re-distribution of

control queues are shown in Figure 5.9 (c). Application G𝐵 arrives during the

execution of task A1 and schedule A-2 is selected for G𝐴. As a result, CQ2 and CQ3

are updated following the result of run-time mapping.

A1 A2

A3

CQ1

CQ2

After

hybrid

mapping

CQ1

CQ2

App. GA

ends

App. GB

starts

A4
CQ3

: ready

task

(a) (b)

B1
CQ3

A2

A3

CQ1

CQ2

B2

A4

(d) (c)

A2

A3

CQ1

CQ2

Processor

failure

occurs

A4
CQ3

A4

CQ : Control

 queue

Empty

Empty

CQ3 Empty

Figure 5.9 Control queue status (a) After hybrid task mapping of application 𝐆𝑩; (b)

When 𝐆𝑩 finishes; (c) When processor failure occurs the tile managed by CQ3

during task B1; (d) When new application arrives.

 １０５

When a processor failure occurs, we reallocate processors for the application that

were allocated a faulty processor. In other words, we migrate tasks running on the

faulty processor to live processors allocated by new application mapping, following

corresponding new static schedule. For example, in Figure 5.9 (d), if a processor

failure occurs at the tile associated with CQ3 during the execution of task A1, new

application mapping is invoked after A1 finishes. If G𝐵 is allocated two processors

by the remapping, and schedule A-1 is applied, task A4 is migrated to another live

tile controlled by CQ2.

And to evaluate the SoPHy implementation, we consider two platforms, SystemC-

based NoC simulator and Intel-Xeon Phi-based many-core platform.

5.6 Virtual Prototyping System

We built the virtual prototyping system on top of HSIM, a cycle-level SystemC

simulator [16]. We also integrated Noxim, an open-source NoC simulator [73] into

our virtual prototyping system. The overall structure of the virtual prototyping

system is shown in Figure 5.10. HSIM consists of simulation backbone and

wrappers that connect Instruction Set Simulators (ISSs) to the backbone. The

simulator backbone gathers request accesses to shared memory tiles from processor

simulators and orders the requests in order to guarantee functional correctness of

simulation. At the same time, the backbone also evaluates the latency of memory

accesses through cycle-level simulation of the underlying communication

architecture. The integrated NoC simulator serves the purpose. As an ISS, we adopt

ARMulator, a processor simulator for ARM processors [75].

To enable shared memory access through cycle-level Noxim simulation, we connect

HSIM and Noxim. To do this, we combine processor wrapper (PW) module in

 １０６

HSIM and processing element (PE) module inside Tile module of Noxim. Since the

PE module communicates with router module, another module inside the Tile

module of Noxim, read/write accesses to shared memory tiles from ARMulator

received the PW modules can be transferred to the router module. As a result, the

shared memory access requests can be transferred to memory wrapper (MW)

modules in shared memory tiles through NoC interconnections.

Noxim (NoC interconnection)

HSIM (processor simulator)

ARMulator (ISS) ARMulator (ISS)

Processor

wrapper

Memory

wrapper

Figure 5.10 Overall structure of the virtual prototyping system.

5.7 Xeon Emulation System

The virtual prototyping system benefits from being a generic platform of the

accelerator and allowing us to observe detailed internal behavior such as

communication overheads. However, it suffers from long simulation time as the

system grows. To this end, we take an approach to use an Intel Xeon Phi [15] as an

emulation platform for evaluating the software platform implementation with

workloads big enough to make the virtual prototyping based evaluation impractical.

An Intel Xeon Phi
TM

 coprocessor “Knights Corner” architecture features 57 in-order

cores on a single die. Each core has two levels of cache, which is globally coherent

via directory-based MESI coherence protocol. Communication between the host

 １０７

CPU and Xeon Phi is done explicitly through message passing. However, unlike

many other coprocessors, it runs a complete Linux-based operating system, with full

paging and virtual memory support, and features a shared memory model across all

threads and hardware cache coherence.

Since the underlying architecture of Xeon Phi differs from that of the virtual

prototyping system, we made slight modifications to the software platform

implementation for the emulation. In Xeon Phi emulation system, slave managers

are implemented as threads. And shared memory is assigned as a global variable

and can be accessed the threads. Code migration and execution can be performed by

accessing the code in the shared memory. The task code to execute is copied into the

cache of the slave tile. And data loading and check-pointing are also performed in

similar way.

5.8 Experiments

5.8.1 Setup

In experiment, we use FAST circular corner detection [76][77][78] algorithm as an

example. It is well known that feature extraction of image corners and their tracking

are computationally intensive, but its acceleration using a GPGPU (General Purpose

Graphic Processing Unit), which is the most widely used many-core accelerator,

does not give significant speedups compared to non-accelerated CPU execution [2].

This is because in GPGPU, the parallelized functions that finish earlier should wait

until the end of the longest parallelized function. Such computation intensive and

data adaptive algorithms, however, can also be leveraged well on the proposed

software platform.

All the experiments are performed in 4x4 NoC which has a master tile, two shared

 １０８

memory tile, and 13 slave tiles shown in Figure 2.2 (a). And with respect to target

architectures, the clock rates of processor, local memory, shared memory, and NoC

link are set to 500, 250, 800, and 800 MHz, respectively.

5.8.2 Experiments on Virtual Prototyping System

We measure the proportions of various overheads in our virtual prototyping system

to evaluate the viability of the proposed resource management scheme. The results

varying the size of an input picture from 200x144 to 1280x720 sizes are shown in

Figure 5.11. We observe that code migration, data loading, and check-pointing

overheads are relatively small, i.e., 2.7-8.5% of a function execution time on

average. Also, the overheads for the run-time management by the master, which

includes proceeding schedules between two consecutive functions, are acceptable.

They are 1.6-21% of the function time execution time and almost constant, meaning

that the portion of run-time management overhead becomes smaller as the function

execution time grows. As the input data size grows, the ratio of run-time overheads

decreases since the function execution time grows more rapidly than the overheads.

As expected, the ratios of data loading and check-point depend on input data size

while the ratios of code migration overhead decreases as input size increases. This is

because the code migration overhead is almost constant regardless input data size.

The second experiment evaluates speed-up in throughput by the data-level

parallelization of the FAST application. Figure 5.12 shows speed-ups varying the

number of allocated processors for executing the eight functions with the hybrid and

the dynamic mappings. The result of static mapping is the same with hybrid

mapping unless processor re-mapping occurs at run-time, thus omitted in the figure.

 １０９

0

20

40

60

80

100

120

200x144 320x240 480x320 640x480 1280x720

Execution Check Code Data Master

0%

20%

40%

60%

80%

100%

1280x720640x480480x320320x240200x144

Check

Code

Data

Master

(a)

(b)

Figure 5.11 (a) Ratio of various overheads and function execution time; (b)

breakdown of the run-time overheads.

Speed-ups are linearly proportional to the number of allocated processors in both

mappings. Dynamic mapping shows similar or maximum 17% better performance

than hybrid mapping except the case that only a function is mapped to a processor.

This is because dynamic mapping has much more degree of freedom in the function

mapping so that it can reduce slacks better than hybrid mapping. If the number of

 １１０

functions in a task is the same as the number of allocated processors, both mappings

have similar mapping decisions. Since dynamic mapping has additional overhead

for run-time decision, the performance of hybrid mapping becomes 17% better than

dynamic mapping in that case. Therefore to provide both dynamic and hybrid

mapping is meaningful since the affordance of mapping is different from each

situation.

0

1

2

3

4

5

6

7

T8_P2 T8_P3 T8_P4 T8_P8

Dynamic Hybrid

T : Number

of functions

in a task

P : number

of allocated

processor

Average throughput improvement

x

x

x

x

x

x

5.2

6.1

3.9 3.9

2.8
2.4

1.9 1.7

x

Figure 5.12 Speed-up of throughput performance in hybrid and dynamic mapping.

We also organize an execution scenario that involves a processor failure and several

tasks to evaluate the correctness of the proposed run-time management scheme. We

use two more tasks, Needleman-Wunsch (NW) from Rodinia [79] and Fast Fourier

Transform (FFT) from SPLASH2 benchmark [80] to organize the scenario with

various granularities of tasks. The scenario and Gantt-chart representation of

mapping results with the scenario are shown in Table 5.1 and Figure 5.13. At the

beginning, the three tasks are mapped to 13 slave processors in 4x4 NoC (event ①).

When a processor failure (event ②) occurs on the first execution of the FAST

function 1, the number of allocated processors in FAST is changed from 5 to 4.

After NW and FFT finish (event ③, ④), FAST uses 8 processors for running 8

 １１１

functions to achieve best performance by run-time task re-mappings. Note that one

can omit code migration when the same functions are mapped successively to the

same slave tiles. The example is the FAST function 0 mapped to P1. The second

execution bar of the FAST function 0 becomes much shorter than the first execution

due to skipped code migration.

Table 5.1 Execution scenario involving a processor failure and task arrivals/ends.

Remapping event
① Beginning

on 4x4 NoC

② 1 processor

failure on FAST

③ Task

NW end

Allocated

proc.

FAST (T8) 5 4 8

NW (T4) 4 4 N/A

FFT (T4) 4 4 4

P1

P2

P3

P4

P5

P6

P7

P8

P9
P10

P11

P12

P13

: Failed function : Failure occurrence

event① event③ event②

: Task arrival/end

: Functions of FFT (notation omitted for simplicity) : Functions of FAST : Functions of NW

F-8-2
F-7-1

F-2-1
F-6-3
F-3-3

F-4-3
F-5-2

F-1-1 F-1-2
F-1-3

F-3-1

F-2-1

F-5-1

F-3-2

F-1-2 : Second execution of FAST function 1

F-3-1

F-6-1
N-1-1 N-2-1

Remapping

by master

N-3-1

N-4-1

N-5-1

N-1-1 N-2-2

N-3-2

N-4-2

N-5-2

F-4-2

F-6-2 F-8-1

F-8-3
F-7-2

N-1-2 : Second execution of NW function 1

Figure 5.13 Gantt-chart representations of mapping results with the execution

scenario involving a processors failure in Table 5.1.

5.8.3 Experiments on Xeon Emulation System

In the Xeon emulation system, we compare throughput performance between hybrid

and dynamic function mapping with large numbers of task functions and allocated

 １１２

processors. The result of average throughput for iterations is shown in Fig. 5.14.

Since static mapping is the same with hybrid mapping unless task re-mapping

occurs, the result of static mapping is omitted. As the number of functions increases

in a task, the size of input picture also increases so that the execution times of all

functions become similar.

In cases of 30 and 50 functions in a task, dynamic mapping shows maximum 40%

better performance than hybrid mapping except the case that only one function is

mapped to a processor. This is because dynamic mapping has much more degree of

freedom in the function mapping so that it can reduce slacks better than hybrid

mapping. If the number of functions in a task is the same as the number of allocated

processors, both mappings have the same mapping decision. Since dynamic

mapping has additional overhead for run-time decision, the performance of static

mapping becomes better than dynamic mapping. When there are 100 functions in a

task, static mapping also shows similar or better performance in most cases with

similar reason.

0

100

200

300

400

500

600

Proc10 Proc20 Proc30 Proc40 Proc50

H_Func30 D_Func30
H_Func50 D_Func50
H_Func100 D_Func100

Average

throughput(s-1)

Number of

allocated

processors

• H: Hybrid

• D: Dynamic

• Func

: Functions

 in a task

Figure 5.14 Comparisons of average throughput performance between hybrid and

dynamic function mapping.

 １１３

As a last experiment, we compare throughput performance of H264 decoder varying

the number of allocated processors used in the experiments in Section 4.5.3. The

task graph of H264 decoder with two operation modes is shown in Figure 5.15 and

the processor allocation information is shown in Table 5.2. We use a QCIF size

(176x144) of a movie composed of 40 frames to test the functionality of the decoder.

The movie format is transformed to .yuv after decoding. In Case 1, we allocate only

one processor to each operation mode. In other two cases, the number of allocated

processors is increased to evaluate the throughput performance improvement. The

result of executions of the three cases and scheduling information related to Table

5.2 is shown in Figure 5.16 and Figure 5.17, respectively. Throughput is measured

as the number of frames processed in a second.

P-frame mode

I-frame mode

Figure 5.15 Task graph of H264 decoder with two operation modes.

 １１４

Table 5.2 Number of allocated processors of three execution cases for H264 decoder.

Operation mode I-frame P-frame

Number of

allocated processors

Case 1 1 1

Case 2 2 2

Case 3 3 4

 Operation mode

 I-frame P-frame

Allocated

tasks

Case 1 Processor 1 All All

Case 2

Processor 1 ReadFileH, Decode
ReadFileH, Decode,

InterPredY

Processor 2

InterPredY/U/V,

IntraPredY/U/V,

Deblock, WriteFileH

InterPredU/V,

Deblock, WriteFileH

Case 3

Processor 1 ReadFileH ReadFileH, Decode

Processor 2 Decode InterPredY

Processor 3

InterPredY/U/V,

IntraPredY/U/V,

Deblock, WriteFileH

InterPredU/V,

Deblock

Processor 4 WriteFileH

Figure 5.16 Scheduling information of three execution cases of H264 decoder.

0

30

60

90

120

150

Case1 Case2 Case3

I-frame

P-frame

Frame/second

Figure 5.17 Comparisons of average throughput performance varying the number of

allocated processors to H264 decoder.

 １１５

In the result, it can be shown that the throughput performance becomes better as the

number of allocated processors increases. In case of I-frame operation, Case 2 and 3

shows 1.78 and 2.26 times better performance than the single processor execution,

respectively. And in P-frame operation, Case 2 and 3 shows 1.96 and 3.3 time better

performance than Case 1. Though the absolute performance in I-frame operation is

at most 33 frames per second, the performance of H264 decoder can be acceptable

since most part of executions can be performed as P-frame and the performance of

P-frame operation reaches 140 frames per second.

 １１６

Chapter 6

Conclusion

In this thesis, we proposed three techniques of fault-aware task scheduling/mapping

for a multi-processor accelerator. The first technique is to tolerate permanent

processor failure for reliable multi-core embedded systems that have real-time

constraints on the latency. By assuming that the fault is detected at a task boundary,

we can make finite the number of fault scenarios in the proposed technique. And we

determine the compile-time schedule that maximizes the throughput of the live

processors while also satisfying a given latency constraint for each failure scenario.

In this technique, two basic migration policies, preemptive and non-preemptive, and

a hybrid policy are proposed to obtain better performance. In the experiment, the

viability of the proposed technique through experiments with real-life applications

as well as randomly generated graphs is validated.

As a second technique, we proposed a run-time resource management scheme that

maps tasks to processors in response to the dynamic change of system status at run-

time. We aim at minimizing the overall energy consumption satisfying the

throughput constraints for all applications. Unlike the previous hybrid mapping

 １１７

techniques, the proposed technique changes the task mapping and the processor

speed during execution when the system status is changed. To support task

migration during execution, we perform check-pointing after each task execution. It

has a side benefit to tolerate processor failures. As experimental results show, the

proposed technique outperforms the state-of-the-art hybrid and static mapping

techniques with respect to energy reduction, showing better adaptability to the

system status change.

Finally, a software platform for efficient resource management in response to

dynamic behaviors of the system at run-time is presented. The software platform is

assumed to be run on a many-core accelerator and describes applications with SDF

model. And at application and architecture level, the dynamisms can be handled by

the proposed software platform with application and task mapping. The software

platform supports static, dynamic, and hybrid mapping and implemented as virtual

prototyping system and Intel Xeon Phi emulation. As a result, various run-time

overheads such as code migration and check-pointing and a rich set of quantitative

estimation of system performance can be obtained through the proposed software.

Experimental results show the viability of the proposed resource management

scheme since various dynamisms are efficiently handled and various statistics for

performance estimation are provided.

As a future work, in the fault-aware techniques, we plan to perform various

optimizations. At first, better heuristics for run-time processor allocation and

processor binding will be explored to reduce communication overheads and

increase the performance of task mappings when task granularities are not large.

Moreover, processor sharing can be considered to increase processor utilization. At

last, the performance of the proposed techniques when failures occur may be

analyzed with various failure scenarios.

 １１８

And the modules in the proposed software platform will be improved. The code

translator for generating API code from user-given information needs to be

developed in the application API module. More complicated and efficient memory

management schemes can be implemented and tested. If the sizes of local memories

are limited, to implement prefetching techniques may be required. In case of host

interface module, formalized communications between host processor and master

manager inside of many-core accelerator will be developed. As a result, we can

expect to run data-parallel tasks to achieve better performance rather than executing

whole applications in the accelerator. After improving modules of the software

platform, it will be applied to various hardware platforms to evaluate the

effectiveness and to find week points to be improved of the software platform.

 １１９

Bibliography

[1] L. Benini, E. Flamand, D. Fuin, and D. Melpignano, “Building an ecosystem

for a scalable, modular and high-efficiency embedded computing accelerator,”

In Proceedings of the Design, Automation and Test in Europe, pp. 983-987,

2012.

[2] D. Melpignano, L. Benini, E. Flamand, B. Jego, T. Lepley, G. Haugou, F.

Clermidy, and D. Dutoit, “Platform 2012, a many-core computing accelerator

for embedded SoCs: performance evaluation of visual analytics applications,”

In Proceedings of the 49th Annual Design Automation Conference, pp. 1137-

1142, 2012.

[3] Council, J. E. D. E, “Failure mechanisms and models for semiconductor

devices,” http://www.jedec.org/standards-documents/docs/jep-122e.

[4] C. Lee, S. Kim, H. Oh, S. Ha, “Failure-aware task scheduling of synchronous

data flow graphs under real-time constraints,” Journal of Signal Processing

Systems, Vol. 73, mo. 2, pp. 201-212, Nov. 2013.

[5] E. Carvalho, N. Calazans, and F. Moraes, “Heuristics for dynamic task

mapping in NoC-based heterogeneous MPSoCs,” In Proceedings of the

International Workshop on Rapid System Prototyping, pp. 34-40, 2007.

[6] M. A. A. Faruque, R. Krist, and J. Henkel, “ADAM: Run-time agent-based

distributed applications mapping for on-chip communication,” In Proceedings

of Design Automation Conference, pp. 760-765, 2008.

http://www.jedec.org/standards-documents/docs/jep-122e.

 １２０

[7] Y. Cui, W. Zhang, H. Yu “Decentralized agent based re-clustering for task

mapping of tera-scale network-on-chip system,” In Proceedings of International

Symposium on Circuits and Systems, pp. 2437-2440, 2012.

[8] C.-L. Chou, U. Y. Ogras, and R. Marculescu, “Energy- and performance-aware

incremental mapping for networks on chip with multiple voltage levels,” IEEE

Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 27, no.

10, pp. 1866-1879, 2008.

[9] C. Chou and R. Marculescu, “FARM: Fault-aware resource management in

NoC-based multiprocessor platforms,” In Proceedings of Design Automation

and Test in Europe, pp. 1-6, 2011.

[10] P. Yang, P. Marchal, W. Chun, S. Himpe, F. Catthoor, P. David, J. Vounckx,

and R. Lauwereins, “Managing dynamic concurrent tasks in embedded real-

time multimedia systems,” In International Symposium on System Synthesis,

pp. 112-119, Oct. 2002.

[11] A. Schranzhofer, J.-j. Chen, and L. Thiele, “Dynamic power-aware mapping of

applications onto heterogeneous MPSoC platforms,” IEEE Transaction on

Industrial Informatics, vol. 6, no. 4, pp. 692-707, 2010.

[12] A. K. Sing, A. Kumar, and T. Srikanthan, “Accelerating throughput-aware run-

time mapping for heterogeneous MPSoCs,” In ACM Transaction on Design

Automation of Electronic Systems, vol. 18, no. 9, Dec. 2012.

[13] W. Quan and A. D. Pimentel, “A scenario-based run-time task mapping

algorithm for MPSoCs,” In Proceedings of Design Automation Conference,

2013.

[14] C. Lee, S. Kim, S. Ha, “Efficient resource management of a manycore

accelerator for stream-based applications,” In Proceedings of IEEE Symposium

 １２１

on Embedded Systems for Real-time Multimedia (ESTIMedia‟13), pp. 51-60,

2013.

[15] J. Jeffers and J. Reinders, “Intel® Xeon PhiTM coprocessor high performance

programming,” Elsevier Inc. Waltham, MA, 2013.

[16] H. Kim, D. Yun, S. Ha, “Scalable and retargetable simulation techniques for

multiprocessor systems,” In Proceedings of International Conference on

Hardware/Software Codesign and System Synthesis, pp. 89-98, Oct. 2009.

[17] D. Yun, J. Kim, S. Kim, and S. Ha, “Simulation environment configuration for

parallel simulation of multicore embedded systems,” Design Automation

Conference, pp. 345-350, Jun. 2011.

[18] D. Yun, S. Kim, and S. Ha, “Relaxed synchronization technique for speeding-

up the parallel simulation of multiprocessor systems,” In Proceedings of the

17th Asia and South Pacific Design Automation Conference, pp. 449-454, Feb.

2012.

[19] D. Yun, S. Kim, S. Ha, “A parallel simulation technique for multicore

embedded systems and its performance analysis,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 31, no. 1, pp.

121-131, Jan. 2012.

[20] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” Proceeding of

the IEEE, vol. 75, no. 9, pp. 1235-1245, Sep. 1987.

[21] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete, “Cyclo-static

dataflow,” IEEE Transaction on Signal Processing, vol. 44, no. 2, pp. 397-408

Feb. 1996.

 １２２

[22] T. A. Henzinger, B. Horowitz, and C. M. Kirsch, “Giotto: a time-triggered

language for embedded programming,” Proceedings of the IEEE, vol. 91, no. 1,

pp. 84-91, Jan. 2003.

[23] B. D. Theelen, M. C. W. Geilen, T. Basten, J. P. M. Voeten, S. V. Gheorghita,

and S. Stuijk, “A scenario-aware data flow model for combined long-run

average and worst-case performance analysis,” In Proceedings of International

Conference on Formal Methods and Models for Codesign, pp 185-194, Jul.

2006.

[24] M. Bekooij, R. Hoes, O. Moreira, P. Poplavko, M. Pastrnak, B. Mesman, J. D.

Mol, S. Stuijk, V. Gheorghita, and J. van Meerbergen, “Dataflow analysis for

real-time embedded multiprocessor system design,” Springer, 2005.

[25] A. H. Ghammarian, M. C. W. Geilen, S. Stuijk, T. Basten, B. D. Theelen, M. R.

Mousavi, A. J. M. Moonen, and M. J. G. Bekkoij, "Throughput analysis of

synchronous data flow graphs," In Proceedings of 2006 IEEE 6th International

Conference on Application of Concurrency to System Design, pp. 25-36. 2006.

[26] D. K. Pradhan, “Fault-tolerant computer system design,” Prentice hall ptr,

Upper Saddle River, New Jersey 07458.

[27] I. Koren and C. M. Krishna, “Fault-tolerant systems,” Morgan Kaufmann

Publisher, 2007.

[28] X. Zhang and H. G. Kerkhoff, “A dependability solution for homogeneous

MPSoCs,” In Proceedings of 2011 IEEE 17th Pacific Rim International

Symposium on Dependable Computing, pp.53-62, 2011.

[29] K. Kim, R. Karri, and M. Potkonjak, “Configurable spare processors: a new

approach to system level fault-tolerance,” In Proceedings of 1996 IEEE

International Symposium on Defect and Fault Tolerance in VLSI Systems,

1996.

 １２３

[30] S. G. Miremadi and H. Asadi, “ScTMR: a scan chain-based error recovery

technique for TMR systems in safety-critical applications,” In Proceedings of

Design Automation and Test in Europe, pp. 1-4, Mar. 2011.

[31] G. Manimaran and C. S. R. Murthy, “A fault-tolerant dynamic scheduling

algorithm for multiprocessor real-time systems and its analysis,” IEEE

Transaction on Parallel and Distributed Systems, vol. 9, no. 11, pp. 1137-1152,

Nov. 1998.

[32] P. K. Saraswat, P. Pop, and J. Madsen, “task migration for fault-tolerance in

mixed-criticality embedded systems,” ACM SIGBED Review, vol. 6. No. 3,

Oct 2009.

[33] V. Nollet, P. Avasre, J-Y. Mignolet, and D. Verkest, “Low cost task migration

initiation in a heterogeneous MP-SoC,” In Proceedings of the Design,

Automation, and Test in Europe Conference and Exibition (DATE‟05), pp.

252-253, Mar 2005.

[34] S. Chabridon and E. Gelenbe, “Failure detection algorithms for a reliable

execution of parallel programs,” In Proceedings of International Symposium on

Reliable Distributed Systems, pp. 229-238, Sep. 1995.

[35] C. Gond, R. Melhem, and R. Gupta, “Loop transformations for fault detection

in regular loops on massively parallel systems,” IEEE Transaction on Parallel

and Distributed Systems, vol. 7, no. 12, pp. 1238-1249, Dec. 1996.

[36] M. Chean and J. Fortes, “The full-use-of-suitable-spares (FUSS) approach to

hardware reconfiguration for fault-tolerant processor arrays,” IEEE Transaction

on Computers, vol. 39, no. 4, pp. 564-571, Apr. 1990.

[37] H. W. D. Chang and W. J. B. Oldham, “Dynamic task allocation models for

large distributed computing systems,” IEEE Transaction on Parallel and

Distributed Systems, vol. 6, no. 12, pp. 1301-1315, Dec. 1995.

 １２４

[38] T. T. Y. Suen, T. and J. S. K. Wong, “Efficient task migration algorithm for

distributed systems,” IEEE Transaction on Parallel and Distributed Systems,

vol. 3, no. 4, pp. 488-499, Jul. 1992.

[39] G. M. Almeida, S. Varyani, R. Busseuil, G. Sassatelli, P. Benoit, L. Torress, E.

A. Carara, and F. G. Moraes, “Evaluating the impact of task migration in multi-

processsor systems-on-chip,” In Proceedings of the 23rd symposium on

Integrated circuits and system design, pp. 73-78, 2010.

[40] A. Dogan and F. Ozguner, “Matching and scheduling algorithms for

minimizing execution time and failure probability of applications in

heterogeneous computing,” IEEE Transaction on Parallel and Distributed

Systems, vo. 13, no. 3, pp. 308-323, Mar. 2002.

[41] S. M. Shatz, J.-P. Wang, and M. Goto, “Task allocation for maximizing

reliability of distributed computer systems,” IEEE Transaction on Computer,

vol. 41, no. 9, pp. 1156-1168, Sep. 1992.

[42] C. Zhu, Z. Gu, R. P. Dick, and L. Shang, “Reliable multiprocessor system-on-

chip synthesis,” In Proceedings of International Conference on

Hardware/Software Codesign and System Synthesis, pp. 239–244, Sep. 2007.

[43] L. Huang, F. Yuan, and Q. Xu, “Lifetime reliability-aware task allocation and

scheduling for MPSoC platforms,” In Proceedings of Design Automation and

Test in Europe, pp. 1338-1343, Apr. 2009.

[44] A. K. Coskun , T. S. Rosing , K. A. Whisnant , and K. C. Gross, “Static and

dynamic temperature-aware scheduling for multiprocessor SoCs,” IEEE

Transaction on Very Large Scale Integration (VLSI) Systems, vol. 16, no. 9, pp.

1127-1140, Sep. 2008.

[45] C. Yang and A. Orailoglu, “Predictable execution adaptivity through

embedding dynamic reconfigurability into static MPSoC schedules,” In

 １２５

Proceedings of International Conference on Hardware/Software Codesign and

System Synthesis, pp. 15-20, Sep. 2007.

[46] C. Yang and A. Orailoglu, “Towards no-cost adaptive MPSoC static schedules

through exploitation of logical-to-physical core mapping latitude,” In

Proceedings of Design Automation and Test in Europe, pp. 63-68, Apr. 2009.

[47] G. M. Almeida, G. Sassatelli, P. Benoit, N. Saint-Jean, S. Varyani, L. Torres,

and M. Robert, “An adaptive message passing MPSoC framework,”

International Journal of Reconfigurable Computing, vol. 2009, Article ID

242981, 2009.

[48] A. K. Coskun, T. S. Rosing, and K. Whisnant, “Temperature aware task

scheduling in MPSoCs,” In Proceedings of Design Automation and Test in

Europe, pp. 1-6, Apr. 2007.

[49] V. Nollet, P. Avasare, J.-Y. Mignolet, and D. Verkest, “Low cost task

migration initiation in a heterogeneous MP-SoC,” In Proceedings of Design

Automation and Test in Europe, p.252-253, Mar. 2005.

[50] T. Streichert, C. Strengert, C. Haubelt, and J. Teich, “Dynamic task binding for

hardware/software reconfigurable networks,” In Proceedings of Symposium on

Integrated Circuits and System Design, pp. 38-43, Aug. 2006.

[51] H. Yang and S. Ha, “Pipelined data parallel task mapping/scheduling technique

for MPSoC,” In Proceedings of Design Automation and Test in Europe, pp. 69-

74, Apr. 2009.

[52] C. Lee, H. Kim, H. Park, S. Kim, H. Oh, and S. Ha, “A task remapping

technique for reliable multi-core embedded systems,” In Proceedings of

International Conference on Hardware/Software Codesign and System

Synthesis, pp. 307-316, Oct. 2010.

 １２６

[53] Y.-K. Kwok, I. Ahmad, and J. Gu. “Fast: A low-complexity algorithm for

efficient scheduling of DAGs on parallel processors,” In Proceedings of

International Conference on Parallel Processing, pp. 155–157, Aug. 1996.

[54] R.P. Dick, D.L. Rhodes, and W. Wolf, “TGFF: Task graphs for free” In

Proceedings of International Workshop on Hardware/Software Codesign,

pp. 97-101, Mar. 1998.

[55] M. Lukasiewycz and et al. Opt4J - The Meta-heuristic Optimization

Framework for Java. http://opt4j.sourceforge.net/.

[56] W. Thies, M. Karczmarek, and S. Amarasinghe, “StreamIt: A language for

streaming applications,” In Proceedings of International Conference on

Compiler Construction, pp. 179-196, Apr. 2002.

[57] W. Thies and S. Amarasinghe, “An empirical characterization of stream

programs and its implications for language and compiler design,” In

Proceedings of Int. Conf. on Parallel Architectures and Compilation

Techniques, pp. 365-376, 2010.

[58] A. Schranzhofer, J.-J. Chen, L. Santinelli, and L. Thiele, “Dynamic and

adaptive allocation of applications on MPSoC platforms,” In Proceedings of the

Asia/South Pacific Design Automation Conference, pp. 885-890, 2010.

[59] S. Stuijk, M. Geilen, and T. Basten, “A predictable multiprocessor design flow

for streaming applications with dynamic behaviour,” In Proceedings of the

Euromicro Conference on Digital System Design: Architectures, Methods and

Tools, pp. 548-555, 2010.

[60] L. Schor, I. Bacivarov, D. Rai, H. Yang, S.-H. Kang, and L. Thiele, “Scenario-

based design flow for mapping streaming applications onto on-chip many-core

systems,” In Proceedings of International Conference on Compilers,

Architecture, and Synthesis for Embedded systems, pp. 71-80, 2012.

http://opt4j.sourceforge.net/

 １２７

[61] O. Moreira, J.-D. Mol, M. Bekooij, and J. van Meerbergen, “Multiprocessor

resource allocation for hard-real-time streaming with a dynamic job-mix,” In

Proceedings of Real Time and Embedded Technology and Applications

Symposium, pp. 332-341, Mar. 2005.

[62] Chen-Ling Chou, U. Y. Ogras, and R. Marculescu, “Energy- and performance-

aware incremental mapping for networks on chip with multiple voltage levels,”

IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol.

27, no. 10, pp. 1866–1879, Oct.2008.

[63] J. Huang, A. Raabe, C. Buckl, and A. Knoll, “A workflow for runtime

adaptive task allocation on heterogeneous MPSoCs,” In Proceedings of

Design Automation and Test in Europe, pp. 1-6, 2011.

[64] C. Ykman-couvreur, P. Avasare, G. Mariani, G. Palermo, C, Silvano, and V.

Zaccaria, “Linking runtime resource management of embedded multi-processor

platforms with automated design-time exploration.” IET Computers Digital

Techniques, vol. 5, no. 2, pp. 123–135, 2011.

[65] G. Mariani, P. Avasare, G. Vanmeerbeeck, C. Y.-Couvreur, G. Palermo, C.

Silvano, and V. Zaccaria, “An industrial design space exploration framework

for supporting run-time resource management on multi-processor systems,” In

Proceedings of Design Automation and Test in Europe, pp. 196-201, Mar. 2010.

[66] J. Hu, and R. Marculescu, “Energy-aware communication and task scheduling

for network-on-chip architectures under real-time constraints,” In Proceedings

of Design Automation and Test in Europe, pp. 23-29, 2004.

[67] B. Zhao, H. Aydin, and D. Zhu, “Generalized reliability-oriented energy

management for real-time embedded applications,” In Proceedings of Design

Automation Conference, pp. 381-386, 2011.

 １２８

[68] P. Marwedel, J. Teich, G. Kouveli, L. Bacivarov, L. Thiele, S. Ha, C. Lee, Q.

Xu, and L. Huang, “Mapping of applications to MPSoCs,” In Proceedings of

International Conference on Hardware - Software Codesign and System

Synthesis (CODES+ISSS‟11), pp. 109-118, 2011.

[69] ARM Ltd., RealView Development Suite. Available:

http://www.arm.com/products/tools/software-tools/rvds/index.php.

[70] J. Jahn, S. Pagani, S. Kobbe, J.-J. Chen, and J. Henkel, “Optimizations for

configuring and mapping software pipelines in many core systems,” In

Proceedings of Design Automation Conference, 2013.

[71] J. Lee, M. Chung, Y. Cho, S. Ryu, J. Ahn, and K. Choi, “Mapping and

scheduling of tasks and communications on many-core SoC under local

memory constraint,” IEEE Transaction on Computer-Aided Design of

Integrated Circuits and Systems, vol. 32, no. 11, Nov. 2013.

[72] S. Kobbe, L. Bauer, D. Lohmann, W. S.-Preikschat, and J. Henkel, “DistRM:

distributed resource management for on-chip many-core systems,” In

Proceedings of International Conference on Hardware - Software Codesign and

System Synthesis (CODES+ISSS‟11), pp. 119-128, 2011.

[73] H. A. Colmenares, S. Bird, H. Cook, P. Pearce, D. Zhu, J. Shalf, S. Hofmeyr, K.

Asanovic, and J. Kubiatowicz, “Resource management in the tessellation

manycore OS,” In Proceedings of Second USENIX workshop on Hot Topics in

Parallelism (HotPar‟10), 2010.

[74] F. Fazzino, M. Palesi, and D. Patti, “Noxim: Network-on-chip simulator,” 2008.

http://sourceforge.net/projects/noxim.

[75] http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dai0032f/index.ht

ml.

http://www.arm.com/products/tools/software-tools/rvds/index.php
http://sourceforge.net/projects/noxim
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dai0032f/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dai0032f/index.html

 １２９

[76] E. Rosten and T. Drummond, “Fusing points and lines for high performance

tracking,” Tenth IEEE International Conference on Computer Vision

(ICCV‟05), vol. 1, no. 2, pp. 1508-1515, 2005.

[77] E. Rosten and T. Drummond, “Machine learning for high-speed corner

detection,” Computer Vision (ECCV‟06), pp. 1-14, 2006.

[78] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”

International Journal of Computer Vision, vol. 60, no. 2, pp. 91-119, 2004.

[79] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K.

Skadron, “Rodinia: A benchmark suite for heterogeneous computing,” In

Proceedings of IEEE Symposium on Workload Characterization, pp. 44-54,

Oct 2009.

[80] S. C. Woo, M. Ohara, E. Torrie, J. P. Sing, and A. Gupta, “The SPLASH-2

programs: Charaterization and methodological considerations,” In Proceedings

of the 22nd Annual International Symposium on Computer Architecture, June

1995.

[81] A. Bonfietti, L. Benini, M.Lombardi, and M. Milano, “An efficient and

complete approach for throughput-maximal SDF allocation and scheduling on

multi-core platforms,” In Proceedings of the Conference on Design Automation

and Test in Europe (DATE‟10), pp. 897-902, 2010.

[82] B. Bodin, and A. Munier-Kordon, “K-periodic schedules for evaluating the

maximum throughput of a synchronous dataflow graph,” In Proceedings of

International Conference on Embedded Computer Systems, pp. 152-159, 2012.

[83] T. Shin, H. Oh, and S. Ha, “Minimizing buffer requirements for throughput

constrained parallel execution of synchronous dataflow graph,” In Proceedings

of Asia and South Pacific Design Automation Conference, pp. 165-170, Jan.

2011.

 １３０

요약

요약 내용

기술이 발전함에 따라 하나의 칩 안에 집적되는 프로세서의 갯수가 점점

증가하게 되었다. 또한, 응용들의 보다 높은 연산 능력에 대한 요구로

인해 매니코어 가속기는 시스템-온-칩에서 중요한 연산 장치가 되었다.

시스템의 상태가 여러가지 요인에 의해 동적으로 변하기 때문에, 시스템

수행중에 그러한 가속기를 효과적으로 다루는 것은 매우 어려운

문제이다. 시스템 수준에서는 응용들이 사용자의 요구에 따라 시작 또는

종료가 되고, 응용 레벨에서는 응용 자체의 동작이 입력 데이타나 수행

모드에 따라 동적으로 변하게 된다. 아키텍처 수준에서는 프로세서의

영구 고장으로 인해 하드웨어 컴포넌트의 사용 가능한 상황이 변하게

된다.

본 학위논문에서는 가속기를 다루는데 있어서의 위와 같은 어려움들을

해결하기 위해 세가지 기법을 제시하였다. 첫번째 기법은 프로세서의

영구 고장이 발생하였을 때, 전체 응용들을 시간 제약 하에 처리량의

저하를 최소화하며 재스케쥴을 하는 것이다. 최적의 재스케쥴 결과들은

진화 알고리즘을 이용하여 컴파일 시에, 각각의 프로세서 고장 상황에

따라 준비가 된다. 수행 시간에 프로세서 고장이 감지되면, 정상적으로

동작하는 프로세서들이 저장된 스케쥴을 가지고 태스크 이주를 수행한

후 태스크들의 나머지 수행을 지속한다. 이 기법에서는 또한 더 좋은

성능을 얻기 위해, 선점, 비선점 및 융합 이주 정책이 제안되었다.

제안된 기법의 가능성은 실제 디지털 신호처리 응용들과 임의로 생성된

응용들에 대해 시간제약과 다양한 프로세서 고장 상황에 대해

검증되었다.

두 번째로 제안된 기법은 복합 자원 관리 기법으로, 첫번째 기법에서

다룬 프로세서 영구고장 뿐만 아니라, 동기화 데이타-흐름 그래프로

기술된 여러 응용들과 응용들의 동적 양상을 다루는 것까지로 확장이 된

것이다. 제안된 기법에서는, 우선 설계 수준에서 할당되는 프로세서의

갯수를 변화시켜가면서 동기화된 데이타-흐름 그래프들의 처리량이

최대로 얻어지는 매핑 결과들을 얻는다. 그리고나서 수행 시간에는 미리

 １３１

계산된 매핑 정보들을 가지고 수행중인 응용들의 매핑을, 동적인 시스템

변화가 발생할 때마다 적용하게 된다. 제안된 자원 관리 기법은

Noxim이라는 네트워크-온-칩 시뮬레이터 위에서 구현이 되었으며,

실험 결과들은 제안된 기법이 최신의 다른 기법들과 비교하여 더 좋은

성능을 보였다.

마지막으로는, 시스템의 성능을 시스템-온-칩 제작 이전에 보다

정확하게 평가하기 위해서, 두 번째 기법을 구현한 소프트웨어 플랫폼이

매니코어 아키텍처를 대상으로 제안되었다. 기존의 매니코어 아키텍처를

대상으로 한 연구들은 주로 상위 수준의 시뮬레이션 모델을 사용하여

성능을 측정하였기 때문에, 실제 성능과 시뮬레이션 성능이 얼마나

차이가 날지를 정확하게 알 수가 없었다. 이러한 한계를 극복하기 위하여

소프트웨어 플랫폼과, 가상 프로토타이핑 시스템 및 제온 에뮬레이션

시스템에서의 플랫폼 구현 방법이 제안이 되었다. 이러한 실제 시스템

구현을 통하여 제안된 복합 자원 관리 기법에서의 다양한 동적 비용들이

정확하게 추산이 될 수 있었다. 실험에서는 제안된 소프트웨어 기법이

태스크들의 동적 매핑과 체크-포인팅을 통한 프로세서 영구 고장을

효과적으로 감내할 수 있음을 보였다.

주요어 : 매니코어 가속기; 런타임 매핑; 자원 관리; 동기화된 데이타-흐름

그래프; 처리량; 에너지; 신뢰성

학 번 : 2009-30204

	Chapter 1 Introduction
	1.1 Motivation
	1.2 Contribution
	1.3 Thesis Organization

	Chapter 2 Preliminaries
	2.1 Application Model
	2.2 Architecture Model
	2.3 Fault Model
	2.4 Thesis Overview

	Chapter 3 Fault-aware Task Mapping
	3.1 Introduction
	3.2 Related Work
	3.2.1 Static Approach
	3.2.2 Dynamic Approach

	3.3 Proposed Task Remapping/Rescheduling Technique
	3.3.1 Remapping Technique
	3.3.2 Rescheduling Technique

	3.4 Experiments
	3.4.1 Remapping Results
	3.4.2 Rescheduling Results

	Chapter 4 Fault-aware Resource Management
	4.1 Introduction
	4.2 Related Work
	4.2.1 Static Approach
	4.2.2 Dynamic Approach
	4.2.3 Hybrid Approach
	4.2.4 Summary

	4.3 Background
	4.3.1 Energy Model
	4.3.2 Notation

	4.4 Proposed Resource Management Technique
	4.4.1 Motivational Example
	4.4.2 Overall Procedure
	4.4.3 Design-time Analysis
	4.4.4 Run-time Mapping

	4.5 Experiments
	4.5.1 Setup
	4.5.2 Analysis of Run-time Overheads
	4.5.3 Comparison with Other Approaches

	Chapter 5 Software Platform for Resource Management
	5.1 Introduction
	5.2 Related Work
	5.3 Overall Structure
	5.4 Components of Software Platform
	5.4.1 Application API Layer
	5.4.2 Communication Interface Module
	5.4.3 Host Interface Layer
	5.4.4 Memory Management Module
	5.4.5 Design-time Analysis
	5.4.6 Slave Manager

	5.5 Software Platform Implementation
	5.5.1 Scheduling Information
	5.5.2 Function Migration and Execution
	5.5.3 Function Migration and Execution

	5.6 Virtual Prototyping System
	5.7 Xeon Emulation System
	5.8 Experiments
	5.8.1 Setup
	5.8.2 Experiments on the Virtual Prototyping System
	5.8.3 Experiments on the Xeon Emulation System

	Chapter 6 Conclusion
	Bibliography
	Abstract in Korean

<startpage>16
Chapter 1 Introduction 1
 1.1 Motivation 1
 1.2 Contribution 5
 1.3 Thesis Organization 7
Chapter 2 Preliminaries 8
 2.1 Application Model 8
 2.2 Architecture Model 13
 2.3 Fault Model 15
 2.4 Thesis Overview 15
Chapter 3 Fault-aware Task Mapping 17
 3.1 Introduction 17
 3.2 Related Work 20
 3.2.1 Static Approach 21
 3.2.2 Dynamic Approach 22
 3.3 Proposed Task Remapping/Rescheduling Technique 23
 3.3.1 Remapping Technique 23
 3.3.2 Rescheduling Technique 31
 3.4 Experiments 38
 3.4.1 Remapping Results 38
 3.4.2 Rescheduling Results 46
Chapter 4 Fault-aware Resource Management 53
 4.1 Introduction 53
 4.2 Related Work 54
 4.2.1 Static Approach 55
 4.2.2 Dynamic Approach 55
 4.2.3 Hybrid Approach 57
 4.2.4 Summary 57
 4.3 Background 58
 4.3.1 Energy Model 59
 4.3.2 Notation 60
 4.4 Proposed Resource Management Technique 61
 4.4.1 Motivational Example 61
 4.4.2 Overall Procedure 65
 4.4.3 Design-time Analysis 66
 4.4.4 Run-time Mapping 67
 4.5 Experiments 74
 4.5.1 Setup 74
 4.5.2 Analysis of Run-time Overheads 75
 4.5.3 Comparison with Other Approaches 79
Chapter 5 Software Platform for Resource Management 86
 5.1 Introduction 86
 5.2 Related Work 87
 5.3 Overall Structure 88
 5.4 Components of Software Platform 89
 5.4.1 Application API Layer 89
 5.4.2 Communication Interface Module 92
 5.4.3 Host Interface Layer 93
 5.4.4 Memory Management Module 94
 5.4.5 Design-time Analysis 94
 5.4.6 Slave Manager 98
 5.5 Software Platform Implementation 99
 5.5.1 Scheduling Information 100
 5.5.2 Function Migration and Execution 101
 5.5.3 Function Migration and Execution 102
 5.6 Virtual Prototyping System 105
 5.7 Xeon Emulation System 106
 5.8 Experiments 107
 5.8.1 Setup 107
 5.8.2 Experiments on the Virtual Prototyping System 108
 5.8.3 Experiments on the Xeon Emulation System 111
Chapter 6 Conclusion 116
Bibliography 119
Abstract in Korean 130
</body>

