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Abstract 

Owing to the incessant technology improvement, the number of processors 

integrated into a single chip increases consistently, integrating more and more 

applications. Also, demand for higher computing capability for applications makes 

a many-core accelerator become an important computing resource in a system-on-

chip. Efficient handling of the accelerator at run-time, however, is very challenging 

because the system status is subject to change dynamically by various factors. At 

the system level, the set of applications running concurrently may change according 

to user request. At the application level, the application behavior may change 

dynamically depending on input data or operation mode. At the architecture level, 
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hardware resource availability may vary since hardware components may 

experience transient or permanent failures. 

In this thesis, to resolve the difficulties in handling many-core accelerator, three 

techniques are proposed. The first technique is the re-scheduling of the entire 

application to minimize throughput degradation under a latency constraint when a 

permanent processor failure occurs. Sub-optimal re-scheduling results using a 

genetic algorithm for each scenario of processor failures are obtained at compile-

time. If a failure is detected at run-time, the live processors obtain the saved 

schedule, perform task transfer, and execute the remaining tasks of the current 

iteration. In this technique, preemptive and non-preemptive migration policies and 

a hybrid policy are proposed to obtain better performance. The viability of the 

proposed technique with real-life DSP applications as well as randomly generated 

graphs under timing constraints and random fault scenarios are shown through 

experiments. 

The second technique is a hybrid resource management scheme, expanded version 

of the first technique that also handles multi-applications specified as SDF graph 

and their relevant dynamisms such as application/task arrivals/ends as well as 

processor permanent failures. In the proposed technique, at design-time, 

throughput-maximized mappings of each SDF graph by varying the number of 

allocated processors are determined. Then, at run-time, the pre-computed mapping 

information is exploited to adjust the mapping of active applications to the 

processors without user intervention on the system status change. The proposed 

resource management is evaluated through intensive experiments with an in-house 

simulator built on top of Noxim, a Network-on-Chip simulator. Experimental 

results show the enhanced adaptability to dynamic system status change compared 

to other state-of-the-art approaches. 
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Finally, the software platform for a homogeneous many-core architecture that 

implements the second technique is proposed to evaluate the system performance 

more accurately before SoC fabrication. Existing approaches usually use a high-

level simulation model to estimate the performance without knowing how much 

actual performance will be deviated from the estimation. To overcome the 

limitation, the software platform is proposed and implementation details on a 

virtual prototyping system and on an emulation system realized with an Intel Xeon-

Phi coprocessor are presented. Actual implementation enables us to investigate the 

overheads involved in the hybrid resource management technique in detail, which 

was not possible in high-level simulation. Experimental results confirm that the 

proposed software platform adapts to the dynamic workload variation effectively by 

dynamic mapping of tasks and tolerate unexpected core failures by check-pointing. 
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Chapter 1 

Introduction 

1.1 Motivation 

The incessant demand for higher computing power makes a many-core accelerator 

become an important computing resource in a system-on-chip [1][2]. The hardware 

accelerator itself can consist of many homogeneous processor tiles and shared 

memory tiles that are inter-connected via an on-chip network. In such a system, the 

system needs to be properly configured at run-time because the system status may 

change dynamically due to various factors. A set of applications running 

concurrently and the set of available resources define the system status. At the 

system level, the set of applications running concurrently may change according to 

user request. At the application level, the application behavior may change 

dynamically depending on the input data. At the architecture level, hardware 

resource availability may vary since hardware components may experience transient 

or permanent failures as the technology scaling continues [3]. Power consumption 

and heat dissipation are also important factors to determine the mode of operation. 

For real-time embedded applications, abrupt hardware component failure may cause 

serious problems. Those failures may occur unexpectedly at any time. This thesis 
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involves the concern about what we can do when such a failure occurs. As a way of 

tolerating processor failures, re-scheduling technique [4] is presented in this thesis. 

In the technique, re-scheduling the single task graph is performed at run-time 

following each failure scenario prepared at compile-time, when and where a fault is 

detected. If a fault is detected at run-time, the live processors obtain the saved 

schedule, perform task migrations, and execute the remaining tasks at the current 

iteration. We consider the migration overhead when constructing a static schedule 

for each failure scenario. Since a failure may occur on any processor at any time, 

considering all failure scenarios may sound unrealistic. However, the space and time 

complexity of the proposed technique does not prevent it from being used as a 

practical solution. When we perform re-mapping/re-scheduling, we consider the 

worst-case scenario for each processor failure in order to guarantee the satisfaction 

of the latency constraint. The scheduling problem is no easier than an NP-hard 

problem of simple multiprocessor scheduling. Thus, we use a genetic algorithm to 

obtain a near-optimal re-scheduling for each failure scenario. 

On the other hand, in case the system behavior is unpredictable, the mapping of 

tasks to processors needs to be determined at run-time [5]; a central manager 

monitors the current system status on-line and decides where to map a next task to 

run; mapping is determined adaptively depending on the resource availability and 

the current workload. Many dynamic mapping techniques have been proposed so 

far for distributed systems where mapping decision is made based on the local 

system status so that no globally optimal decision can be expected [5][6][7][8][9]. 

On the other hand, optimizing design metrics such as energy or reliability while 

satisfying throughput requirements is critical in many multimedia embedded 

applications. Therefore, it is an important and challenging problem to effectively 

handle the design metrics and constraints together on such a dynamic system.  
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Recently, a hybrid mapping technique [10][11][12][13] where a set of Pareto-

optimal mappings of an individual application is prepared at design-time and the 

best combination is determined at run-time by considering the workload and 

resource availability is presented. This technique typically assumes that the 

mapping of an application is not changed at run-time after launched. Thus a newly 

arriving application should be mapped to available processors without affecting the 

mapping of pre-existing applications. Hence its capability to support the dynamic 

system behavior is limited since it may lead to higher probability of mapping failure 

as well as inefficient resource usage. 

To overcome the limitation of those hybrid mapping techniques, in this thesis, we 

propose a novel run-time resource management technique that allows remapping of 

applications at run-time. At every system status change, we perform the remapping 

of all active applications to minimize energy consumption while satisfying the 

throughput constraints of the applications. The proposed technique can be classified 

as a hybrid technique since the run-time remapping decision is made, based on the 

Pareto-optimal mapping information of applications. To support run-time 

remapping of applications, we need to check-point the global states of each 

application. It enables us to tolerate processor failures, which makes the proposed 

resource management technique fault-tolerable. 

Also, all the existing researches mainly resort to simulation at the high-level of 

abstraction for performance evaluation, which is not able to precisely capture and 

handle the dynamic behavior of a system. There are several factors that cause the 

deviation of the actual performance from the estimation based on the high-level 

simulation. One example is resource arbitration delay. Therefore, it is very desirable 

to evaluate the system performance before fabricating a SoC more accurately. 
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Therefore, in this thesis, we also present a software platform to implement the 

hybrid resource management technique that was proposed in [14] for homogeneous 

many-core architectures. The hybrid scheme takes the advantages of both static and 

dynamic mappings by referring to the pre-computed task mapping and schedule 

information at run-time. And it allows us to change the numbers of processors 

allocated to applications using task migration in adaptation to run-time variation of 

resource availability. Even though the proposed software platform is based on the 

hybrid resource management technique, it is flexible enough to support static 

mapping and dynamic mapping at user‟s decision.  

The run-time management implemented in the proposed software platform can 

efficiently handle various dynamic behaviors of a system such as workload 

variation, QoS requirement change, and unexpected processor failures. It mainly 

features an adaptive run-time processor remapping leveraging task migration and 

check-pointing on detecting the change of system status. Because frequent run-time 

remapping, however, in the proposed scheme may incur non-negligible time cost, an 

accurate estimation of such overhead is important to asset the viability of the 

proposed software platform. To this end, the software platform has been 

implemented and tested both on a virtual prototyping system and on an Intel Xeon-

Phi platform, a state-of-the-art many-core platform [15]. Quantitative evaluations 

have been performed to compare the performance of the proposed software platform 

with other resource management approaches. The evaluation on the virtual 

prototyping system enables us to observe the space and time overhead of the 

proposed platform as well as effects of several design parameters of interest, which 

was not possible in the previous approaches based on high-level model. For 

example, actual code migration overhead or message-based communication 

overhead depends on the communication bandwidth and arbitration method. The 
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Xeon-Phi based evaluation boosts the evaluation speed of the software platform and 

shows that the proposed run-time management implementation is able to deliver 

scalable performance to the number of processors. 

1.2 Contributions 

The contribution of this thesis can be summarized as follows.  

1) Fault-aware task mapping technique of applications to tolerate processor 

failures for many-core architecture is proposed. 

A. Unlike the previous works, we propose a novel idea of using the static 

scheduling results to make a task migration decision considering all 

fault scenarios. This technique is complementary to the conventional 

method of using redundant hardware and/or software.  

B. We propose a hybrid policy that selectively determines whether or not 

to preempt the current task depending on failure time. The hybrid 

policy provides better performance than the preemptive and non-

preemptive polices, as will be demonstrated through the experiments. 

C. We make a novel assumption to make finite fault scenarios in which a 

failure is signaled at the task boundary. This enables us to use static 

scheduling at compile-time to guarantee the real-time constraints. 

2) Fault-aware resource management technique for a many-core based 

accelerator is proposed. 

A. The proposed technique maximizes the utilization of resources by 

adaptively changing the number of processors allocated to 

applications and the associated mappings during execution.  
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B. The proposed technique aims at minimizing the energy consumption 

by adjusting the speed of processors when more processors are 

available than the minimum requirement to satisfy given throughput 

constraints. 

C. We quantitatively evaluate the proposed scheme through a detailed 

simulation to examine the communication cost, energy consumption, 

and the RTM overhead. And, a mathematical formula is derived to 

check if the central RTM becomes the performance bottleneck or not. 

3) Software platform for resource management is proposed. 

A. A software platform is proposed as a detailed implementation of the 

hybrid resource management scheme. It performs dynamic mapping of 

tasks and check-pointing in response to dynamic behavior of systems 

such as workload variation and processor failures. 

B. A virtual prototyping system of a NoC-based many-core accelerator is 

built to run the software platform. It is implemented by extending the 

existent parallel simulation technique [16][17][18][19].  

C. The software platform can be used as a baseline implementation on 

top of which more advanced resource management schemes can be 

devised-and-tested. 
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1.3 Thesis Organization 

This thesis is organized as follows. In Chapter 2, the system model assumed in this 

thesis and the overview of this thesis are presented. Chapter 3 explains the proposed 

re-scheduling technique in detail. Chapter 4 explains the proposed hybrid resource 

management scheme followed by the proposed software platform implementing the 

management scheme in Chapter 5. Finally, we draw the conclusion and address 

future work in Chapter 6. 
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Chapter 2 

Preliminaries 

2.1 Application Model 

The workload is given with a set of stream-based applications 𝐴 = *𝐺+ to execute. 

An application is specified by an SDF (synchronous dataflow) graph 𝐺 = (𝒱, ℰ) 

[20]. 𝒱 is a set of nodes that corresponds to tasks in application 𝐺 where the 

worst case execution time (WCET) 𝑐𝜏 is known for task 𝜏. A task is a primitive 

unit of scheduling. ℰ = *(𝜏, 𝜏′)|𝜏 ∈ 𝒱 ∧ 𝜏′ ∈ 𝒱+ is a set of edges that corresponds 

to FIFOs for communicating channels between 𝜏 and 𝜏′. A task consumes and 

produces a fixed number of data samples from each input edge(s) and to each output 

edge(s), respectively. An iteration of an SDF graph is defined as a set of task 

executions where the repetition counts of the tasks satisfy the relative execution 

rates between the tasks. Since the graph represents only the data dependency 

between tasks, there are numerous ways of scheduling the tasks exploiting the task-

level parallelism of an application and pipelining. A stream-based application has a 

throughput constraint; once activated, an application is periodically invoked with a 

given interval, which is an inverse of the throughput constraint. Note that our 

approaches can also be used with other models of computation, such as Cyclo-Static 
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Dataflow (CSDF) [21], Giotto [22], Scenario-Aware Data Flow (SADF) [23], and 

so on, as long as static scheduling can be performed. If an application has internal 

dynamism with a set of operation modes, we specify each operation mode of an 

application with a separate SDF graph. 

The key step in the SDF-based design methodology is to construct a node execution 

schedule that optimizes the design objectives while satisfying all design constraints. 

The process of static scheduling allows us to detect some significant errors, such as 

graph deadlock and buffer overflow. Such static analyzability is a very desirable 

feature for embedded system design [24].  

If the execution times of the SDF nodes are known, we can determine the mapping 

and scheduling of the SDF graph onto a given target architecture at compile-time. 

To construct static schedule, repetition count should be obtained which denotes the 

ratios in node executions. For example, when there is a SDF graph composed of 

three nodes; A, B, and C as shown in Figure 2.1 (a). Node A and B are connected 

with sample rates 2:3 and node B and C are connected with sample rates 2:1. Then 

repetition count of the SDF graph is 3:2:4. With this repetition count, iteration 

period can be determined. Iteration period denotes the minimum cycle that satisfies 

the ratio of node repetition counts. 

Valid schedules of a SDF graph are not unique because the graph describes only the 

partial order between nodes. Therefore, the best schedule depends on the design 

objectives, For example, if we map the task graph into a single processor, a schedule 

AABCCABCC is the schedule for minimum buffer size and (3A)(2(B(2C))) is the 

schedule which is appropriate for loop structure. Also there is Periodic Admissible 

Sequential Schedule (PASS) that repetitively applying the same program on an 

infinite stream of data [20]. 
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When the SDF graph in Figure 2.1 (a) is mapped to multi-processors to maximize 

throughput and minimize latency assuming that all the execution times of nodes are 

one time unit, the mapping and schedule can be determined as shown in Figure 2.1 

(b). With five processors, the throughput of the SDF graph becomes 1/2 and the 

latency of the SDF graph can be 6 time units. 

A B C 
2 3 2 1 

(a) 

A A 

A 

B 

C C 

C C 

B 

P1 

P2 

P3 

P4 

P5 

Throughput = ½ 
Latency = 6 

(b) 
 

Figure 2.1 (a) A multi-rate SDF graph example composed of three nodes; (b) Multi-

processor mapping and scheduling example. 

 

As another SDF scheduling example, Figure 2.2 (b) and (c) show the mapping and 

scheduling examples on two difference architectures with four and three processors 

respectively, based on the node execution times in Figure 2.2 (a). We assume that 

the communication overhead is included in the node execution time. Note that 

multiple iterations of an SDF graph, e.g., the i-th and (i+1)-th iterations in the figure, 

may overlap in time, constituting pipelined execution. Since the graph is executed 

iteratively, the throughput of an SDF graph becomes the reciprocal of the longest 

elapsed time for a processor to execute its assigned tasks [25]. For instance, the 

throughput of the graph in Figure 2.2 (b) is 

1

max(120 + 120,   90 + 90 + 90,   60 + 120 + 90,   60 + 60 + 90 + 60)
=

1

270
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If the execution times of tasks are constant, the execution of an SDF graph will 

follow the schedule, which guarantees the satisfaction of real-time constraints. Even 

when the times vary, time-triggered execution can guarantee real-time performance; 

if a node finishes earlier than the WCET, idle time is added to result in the worst-

case execution time assumed for static scheduling [20]. There are various researches 

in obtaining throughput-maximized schedules [81][82]. In these approaches, 

however, there are limitations to integrate the approaches to this thesis. The 

technique in [81] targets homogeneous SDF graphs, therefore pseudo-polynomial 

transformations from general SDF graphs are needed. In case of the technique in 

[82], complete search takes exponential time even with about 20 tasks of a SDF 

graph to find optimal solutions that maximize throughputs. Note that SDFG 

mapping is a well-known NP-Hard problem [20]. 
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Figure 2.2 (a) An example SDF graph and its execution time information, and static 

schedules on (b) four processors and (c) three processors. 
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When SDF graph is mapped and scheduled for parallel execution, there are four 

strategies depending on the decision moment. The summary of the four strategies 

are shown in Table 2.1. In the table, “C” denotes compile-time decision and “R” 

denotes run-time decision. In case of Full-static strategy, real-time performance can 

be guaranteed with WCRT. As more parts of decisions are perform at run-time, 

simple heuristics are required to determine mappings and schedules to reduce run-

time overhead. 

 

Table 2.1 Parallel execution strategy of SDF model 

Strategy mapping Scheduling timing Property 

Fully-static C C C Least overhead 

Self-timed C C R Fixed scheduling order 

Static-assignment C R R Need run-time scheduler 

Dynamic R R R Need run-time mapper 

In the SDF model, arc buffers only define the persistent global states. A fault 

occurrence during a node execution does not incur any side effects to the other 

nodes if the arc buffers are check-pointed a priori. This is another good property of 

the SDF model for fault-tolerant system design. 

Though SDF model has various good properties, its expression capability is limited 

since SDF model cannot express control structures such as conditional execution 

and data dependent iteration. Also SDF model does not allow shared memory 

(global states) between nodes due to side effect. If shared memory is allowed, SDF 

model shows non-deterministic behavior since memory update order may vary 

depending on the schedule. At last, SDF model does not allow pointer operation and 

copies structured data as a token. Therefore SDF model is not good for software 
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synthesis. 

2.2 Architecture Model 

Our architecture model is a heterogeneous multi-processor platform, which consists 

of a host processor and a many-core hardware accelerator connected with an on-

chip network. The many-core accelerator consists of processor tiles and shared 

memory tiles. Each processor tile consists of a processor, a local memory, and a 

network interface to the network-on-chip (NoC). Processors in the accelerator are 

assumed to be homogeneous so that there is no need of preparing multiple binaries 

of different instruction set architectures for each task, easing task migration. 

To maximize the portability of the proposed software platform to various target 

architectures, we assume minimal architecture support; no operating system running 

on the processor tile and no cache coherent mechanism. We designate a processor 

tile as the master tile that manages the resources of the accelerator. While we may 

increase the number of master tiles as the number of processor tiles increases, the 

current implementation assumes a single master tile. Implementation of distributed 

masters remains as a future work.  

The master processor dispatches a compute-intensive task of an application to the 

many-core accelerator. We assume that the dispatched task is represented as a 

dataflow graph: 𝐺 = (𝒱, ℰ). V is a set of nodes that correspond to functions in the 

task and ℰ = *(𝜏, 𝜏′)|𝜏 ∈ 𝒱 ∧ 𝜏′ ∈ 𝒱+  is a set of edges that correspond to 

communicating channels between 𝜏 and τ^'. A function is executable only when its 

predecessors finish all their executions. We assume that no implicit communication 

between functions with shared variables is possible, which is a well-known feature 

of dataflow models of execution. A function is a primitive unit of mapping and 
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scheduling. The dataflow graph and function codes are sent to a shared memory tile 

at compile time or at run-time.  

As the many-core accelerator is triggered, the master processor finds an executable 

function and maps it to an available slave tile. The slave tile loads the code and the 

data from the shared memory to its local memory and performs the function. The 

modified global states after function execution are sent to the shared memory for 

check-pointing. And the slave tile notifies of the function completion to the master 

processor.  

Figure 2.3 (a) shows the example of a 4x4 NoC architecture, where memory tiles 

are placed in the centermost positions to reduce communication overheads. The 

master is embedded into the NoC structure for simplicity and also put into the 

centermost position to minimize communication overheads. 

P : Processor tile (slave) 

S : Shared memory tile 

M : Master processor 
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NI 

LM : Local memory     

NI : Network interface 
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Figure 2.3 (a) Target many-core architecture with a 4 x 4 2-D mesh structure. There 

are 13 homogeneous processor tiles, one master processor, and two shared memory 

tiles; (b) Target processor tile architecture. 
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2.3 Fault Model 

In this thesis, all the proposed approaches handle permanent processor failures. The 

other components of the architecture are assumed to be reliable. In re-scheduling 

technique, the technique is applied to each application under real-time constraints so 

that only a single permanent failure is assumed. This is because we assume that 

when a re-scheduling is performed at run-time, it signals the user to alert that the 

system needs replacement or repair. Thus, assuming a single permanent failure is 

reasonable for practical purpose. Further, in case redundant hardware resources are 

used, the technique can be applied after all of the redundant hardware resources are 

consumed. In that sense, it is complementary to using redundant hardware resources.  

2.4 Thesis Overview 

This thesis is composed of three approaches; fault-aware mapping, fault-aware 

resource management, and resource management software platform. The overview 

and summary of the three approaches are shown in Figure 2.4. In the fault-aware 

task mapping technique, the problem is to tolerate permanent processor failures 

when an application is modeled as an SDF graph minimizing the throughput 

degradation. To do this, throughput-maximized schedules are prepared at compile-

time for each possible failure scenario and then applied at run-time. Pre-pared 

schedules are applied following the number of allocated processors. As a second 

technique, fault-aware resource management technique is proposed to handle 

various dynamic behaviors of the system as well as processor failures and minimize 

energy consumption. The management technique handles multi-applications that 

enter/leave at any time by remapping applications. This technique maps applications 

considering given throughput constraints using pre-computed throughput-

maximized throughput and scales the speed of allocated processors to minimize the 
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overall energy. The experiment is performed based on an in-house simulator based 

on an open source NoC simulator, Noxim. The results show that the proposed 

technique effectively handles workload variation minimizing the overall energy than 

a state-of-the-art approach. The last one is a software platform that implements the 

hybrid resource management proposed as the second technique. The resource 

management software platform provides various spectrums of mappings and 

schedulings, i.e., static, hybrid, and dynamic mapping/scheduling. The software 

platform is in between application layer at the top and hardware platform at the 

bottom. And it is composed of five modules; application API, task 

scheduling/mapping, memory management, host interface, communication interface 

module. The software platform is implemented as virtual prototyping system and 

Xeon emulation system. In experiments, the viability of the platform is validated. 

Proposed 
approach 

 Application 
Optimization goal 

/constraint 
Mapping 
/Schedule 

1. Rescheduling 

Single SDF Throughput/latency Static/static 

 
 
 
 
 

 
2. Hybrid 
resource 
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Figure 2.4 Overview of three techniques proposed in the thesis. 
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Chapter 3 

Fault-aware Task Mapping 

3.1 Introduction 

As more processors are integrated into a single chip via relentless technology 

scaling, the mean-time-to-failure (MTTF) reduces the extent to which unexpected 

processor failures should be considered at design time [3]. For instance, increasing 

the power density of a chip accelerates temperature-dependent and current-

dependent wear-out failures such as electromigration, oxide breakdown, and 

thermo-mechanical stress [26]. Other causes related to aging also incur unexpected 

failure. 

The proposed fault-aware technique consists of two parts. The first one is re-

mapping technique that statically reconfigure task-to-processor mapping to 

minimize throughput degradation at processor failures. The formalization of the first 

problem tackled by this technique is as follows: 

Application. We are given an application described as an SDF. Once a task-to-

processor mapping is given, the corresponding schedule, execution order of tasks on 

a processor, is assumed to be determined accordingly. 
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Architecture. We are also given a multi-core architecture, where each of processors 

may experience a permanent failure, and then it will be no more available for 

further execution. 

Failure Model. On the occurrence of processor failures, the tasks on a faulty 

processor are moved to any of other processors. 

PROBLEM: Determine task migration policies on all possible processor failure 

scenarios such that the throughput degradation of a target application is minimized 

after task remapping, and the associated migration cost is also kept minimized. 

The fault-aware remapping technique performs intensive compile-time computation 

to produce the task-to-processor mapping to obtain maximum throughput for all 

possible failure scenarios. The task migration is performed with as low cost as 

possible while obeying the pre-computed optimal mappings. During run-time, the 

results of the analysis are stored as tables in a memory subsystem of target 

architecture. When a processor failure occurs, the task remapping caused by the 

current failure is looked up in the table to perform the associated task migration. 

Since we keep the remapping decisions for all possible scenarios, the storage 

overhead of the proposed technique is inevitable compared with dynamic 

approaches. In the fault-aware remapping technique, an efficient encoding scheme 

of the remapping information with respect to the numbers of processors and tasks is 

also proposed. To examine viability of the proposed encoding scheme, we then 

investigate the space complexity of the proposed technique considering multiple 

processor failures. Through the analysis, we show that the storage overhead of our 

technique is acceptable even if multiple failures occur. 

The second one is re-scheduling technique that also tolerates processor failures 

under real-time constraints. The second problem handled by the rescheduling 
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technique can be formalized as follows: 

Inputs and Constraints. An application is represented as an SDF graph, and the 

worst-case execution time of a node on each processor of the target architecture is 

given. The initial scheduling and mapping of the application is also given. As a real-

time constraint, an end-to-end latency of a single iteration of the SDF is given. 

Target Architecture and Fault Model. Throughout application execution, a target 

multiprocessor architecture may have at most a single permanent processor failure. 

The other components of the architecture are assumed to be reliable. We assume 

that when a re-scheduling is performed at run-time, it signals the user to alert that 

the system needs replacement or repair. Thus, assuming a single permanent failure 

is reasonable for practical purpose. Further, in case redundant hardware resources 

are used, the technique can be applied after all of the redundant hardware resources 

are consumed. In that sense, it is complementary to using redundant hardware 

resources. 

PROBLEM: Find a compile-time schedule with the live processors for each failure 

scenario such that the throughput degradation after a processor failure is minimized. 

In this technique, two basic migration policies, preemptive and non-preemptive, are 

also compared. When a fault is detected, the preemptive policy stops the current 

task and starts the re-scheduling step immediately. The current task is re-executed 

afterward. On the other hand, the non-preemptive policy waits until the current task 

finishes its execution and then starts the re-scheduling step. We investigate the 

effects of these migration policies on the latency of the current iteration and propose 

a hybrid policy to obtain better performance. 
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3.2 Related Work 

A traditional solution to tolerate unexpected processor failures is to use resource 

redundancy such as physical hardware replication and/or multiple software versions 

[27]. Some number of extra processors can be added to the system, which normally 

are in a dormant state but will be woken up to take over the tasks of faulty 

processors when a failure is detected. As the number of processors in a single chip 

increases, the cost overhead for using extra processors might be tolerable in a 

homogeneous processor system [28]. In a heterogeneous system, however, an extra 

processor of each type must be prepared [29]. For safety-critical systems, triple 

modular redundancy (TMR) is commonly used to tolerate errors using multiple 

copies of a resource [30]. For embedded systems with tight resource constraints, 

however, this approach might be too expensive. 

Another approach to tolerate processor failures is to migrate tasks from a faulty 

processor to other live processors. Previous work on the migration has mostly 

focused on minimizing the overhead of task migration [31][32][33][34][35][36][37]. 

If migration decision on where to migrate which tasks is made at run-time based on 

the local information when a processor failure is detected, it is not possible to 

guarantee any real-time performance [38][39]. As a result, this approach is 

commonly adopted in distributed systems that have no real-time constraints. On the 

other hand, the proposed technique in this thesis makes the migration decision at 

compile time, considering the throughput and latency performance of real-time 

applications. Precisely, we aim at maximizing the throughput under a latency 

constraint. For instance, a Global Positioning System (GPS)-based application 

requires a timely update of the geographical location. This is expressed as a latency 

constraint. At the same time, the GPS application may require higher throughput for 

more frequent updates.  
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And other researches handling failures can be classified into two categories; static 

approach or dynamic approach. 

3.2.1 Static Approach 

The static approach fully exploits application-specific information off-line, which in 

turn leads to the optimal performance even though temporary performance 

degradation may incur due to the task remapping. Furthermore, the static approach 

reduce the overhead to run mapping algorithm on-line, and further enables more 

predictable performance analysis, e.g. worst-case latency. There have been works 

trying to find static task schedule to achieve the highest reliability by means of a 

probabilistic failure model for processor and link in general purpose multiprocessor 

systems [40][41]. However, the recovery from the component failure is not 

addressed. Thus they are confined to a fixed number of components. 

There are other studies which have focused on finding a static schedule to maximize 

the expected value of MTTF(mean time to failure) for designing reliable multi-core 

systems [42][43][44]. In [42] and [43] task-to-processor mappings are made at 

compile-time to maximize MTTF of processors by probabilistic model of processor 

failure due to thermal effects. Also, the authors of [44] proposed a deterministic 

solution to static task mapping based on Integer Linear Programming (ILP), which 

in turn results in an optimal mapping solution for a given set of processors. 

However, since all of those works assume a given fixed number of processors, they 

are not directly applicable to where resource variations such as processor failure 

may occur and they do not address what to do when failure occurs. 

On the other hand, the technique in [45] is similar to ours in that task-to-processor 

reconfiguration is determined statically on a processor failure. A set of tasks in a 

target architecture are statically assigned to one of two bands, which is a 
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geometrical partition of a processor latitude. On the occurrence of processor failure, 

the direction and distance in the latitude which the tasks should be migrated to are 

statically determined in accordance with the band they belong to. The technique has 

been extended to minimize the latency of application by removing idle time 

between tasks scheduled consecutively on a processor [46]. Since they use the fixed 

task migration policy on a certain processor failure regardless of a target application, 

the remapping of task to processor does not guarantee the maximum throughput 

with a varied set of processors. Furthermore, they assume the identical execution 

time for all tasks, which might not be hold in many of modern embedded 

applications. On the other hand, our technique does not restrain how a remapping 

goes so that the maximized throughput for a given set of processors is preserved 

after failure. To our best knowledge, this is the first attempt to fully exploit the 

advantages of the static task reconfiguration on processor failures.  

3.2.2 Dynamic Approach 

The dynamic approach has been naturally brought to consider reliability issues in 

Multi-processor systems as well as distributed embedded system design. The 

authors in [47] proposed a general framework to dynamically reconfigure task-to-

processor mapping by considering processor workload that are broadcasted 

continuously via on-chip network. Also, since temperature has been proven to have 

great impact on reliability, there have been studies on task scheduling for Multi-

processor systems, which consider thermal issues to balance temperatures of 

different processors or to keep them under a threshold [48]. Further, to reduce 

migration cost, the technique utilizing debug register inside processor core has been 

proposed [49]. While the above literatures do not assume de-allocation of 

computation/ communication resources, the technique proposed in [50] considered 
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dynamic task remapping on detection of node/link failure in distributed embedded 

system. However, the architectural details and associated run-time overhead are not 

addressed in their work.  

3.3 Proposed Task Remapping/Rescheduling technique 

In this section, the details of fault-aware re-mapping/re-scheduling technique are 

explained. In both approaches, we utilize a GA-based scheduling approach [83] to 

obtain throughput-maximized schedules at compile-time. The approach in [83] 

optimizes buffer usage under throughput-constraints. We modify and expand the 

approach in [83] to implement the proposed fault-aware task mapping techniques.  

3.3.1 Remapping Technique 

1) Overall procedure 

The overall procedure of the proposed technique for the task-to-processor 

remapping to minimize the throughput degradation is presented in Figure 3.1. The 

technique consists of two parts: an intensive compile-time analysis to produce the 

static task-to-processor remapping on processor failures and its efficient encoding 

scheme to minimize storage overhead. 

The compile-time analysis begins with picking up two sets of processors to 

constitute a certain processor failure scenario as shown in the Figure, which forms a 

main loop of the compile-time analysis of the proposed technique. For instance, in a 

single processor-pool architecture, a processor set {P0, P1, P2} is paired with {P0, P1} 

when P2 fails. Then, we go through the following subsequent steps. First, the 

mapping and schedule are found to have the maximum throughput for the given 

processor set and a task graph of a target application. As shown in the figure, we 

obtain two mapping results for both processor sets related to the failure scenario 
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under consideration. In current implementation we use the scheduling and mapping 

technique proposed in [51]. The technique is based on an evolutionary algorithm, 

called Quantum-inspired Evolutionary Algorithm (QEA), to consider various 

parallelisms such as data, temporal, and task. We can adopt any sophisticated, and 

complicated, scheduling/mapping techniques to improve scheduling results. As a 

result, it produces the optimized task-to-processor mapping and related task 

scheduling, maximizing the throughput of the target application. In this way, the 

run-time overhead is avoided to find the optimal mapping decision on-line. Note 

that the mapping determined on this step concerns only about which tasks should go 

to which processor pool since processors in a pool are identical so need not be 

distinguished in this step. Or the tasks are considered as being mapped to virtual 

processors that will be mapped to the real processors in the next step. 

(1) Static mapping/scheduling 

task graph 
+ 

processor set 

(2) Mapping reconfiguration 
from (i) to (ii) 

Throughput 
maximized  

scheduling (i) 

(3) Encoding and saving 

task graph + 
available 

processors 

Consider 
another 
failure 

Throughput 
maximized  

scheduling (ii) 

Cost-minimized task migration 

before failure processor 
failure 

after failure 

 

Figure 3.1 Procedure of the compile-time analysis in the proposed method. 

 



 

 ２５ 

In the second step, we determine the processor-to-processor mapping between two 

processor sets. If a task is mapped to different processors in two sets, the task 

should be migrated at processor failure. Therefore the objective of this step is to 

find an optimal mapping to minimize the migration cost. Once processor-to-

processor mapping is determined, the task is remapped following the task schedule 

obtained from the first step.  

Once the cost-minimized task remapping is obtained from the second step, we 

record it into a mapping table to be maintained on a memory subsystem of the target 

architecture. We continue to repeat those three steps for all pairs of processor sets 

associated with the whole failure scenarios under consideration. Note that once the 

scheduling and mapping of a processor is found, we reuse the results in another 

failure scenario if necessary. 

The intensive compile-time analysis of the proposed technique eases run-time 

operation: we simply remap the tasks following the pre-computed decision when a 

process failure occurs. Moreover, even though the remapping information is stored 

in the encoded form, it can be retrieved with negligible overhead. To minimize the 

run time overhead for decoding, the intuitive but effective encoding scheme is 

suggested in the next section. 

2) Task remapping with the minimum cost 

From the first step of Figure 3.2, we are given two task mapping results that are 

optimal in terms of throughput performance. Figure 3.2 shows a simple example 

where the target architecture has four homogeneous processors. The initial mapping 

of tasks to processors and the cost of each task are also given. Suppose that a 

processor P3 is failed and, in turn, new task mappings are found with the remaining 

processors. As explained earlier, the processors used in the task mapping result after 
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processor failure are virtual processors that should be mapped to actual processors. 

Now we have to determine an optimal mapping between the virtual processors to 

actual processors. It should be noted that different mapping may incur different 

migration cost. For instance, the mapping of P1 to P1'  will cost 18 as depicted in 

Figure 3.3; tasks A, B, and C on P1 should be moved elsewhere with the cost of 

2+4+1=7; then tasks E, F, and H migrate into P1, which costs 5+2+4=11. On the 

other hand, the mapping of P1 to P4' results in the reduced cost, 10. Therefore, we 

may consider this step as the mapping of processors before failure to the processors 

after failure. In the example of Figure 3.2, we need to perform the 1-to-1 mapping 

of {P1, P2, P4} to {P1', P2', P4'} since P3 is no more available. In this way, we search 

for the processor-to-processor mapping such that the total cost considering all task 

migrations on remaining processors becomes the minimum, preserving the task 

mappings for the performance maximization. 

Processor 1 : {A, B, C} 
Processor 2 : {D, E} 
Processor 3 : {F, G,H} 
Processor 4 : {I} 

Processor 1’ : {E, F, H} 
Processor 2’ : {B, D, G} 
Processor 3’ : failure 
Processor 4’ : {A, C, I} 

<Before> <After> 

<Mapping results before/after processor failure> 

Cost map CMi,3 for remapping a 
processor into another processor 

A E F 

2 4 1 

(1) Migration costs of tasks 

3 

D B C 

5 2 5 4 

G H I 

6 

1’ 2’ 4’ 

1 

2 

4 

18 

9 

17 

11 

14 

18 

10 

17 

3 

3’ 

3 

 

Figure 3.2 Process of getting cost map CMi,3 when a processor P3 fails. 
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The processor-to-processor mapping problem to minimize the total cost of task 

migrations is NP-complete even when the cost for the migration of task from a 

processor to another is given. It can be easily proven that the traveling salesman 

problem (TSP) is transformed into the problem at polynomial time. Therefore, to 

attain the optimal solutions, we apply the dynamic programming (DP) to the 

problem on each of processor pools.  

<Before> <After> 

<Mapping results before/after process failure> 

P1 

A 

B 

P1’ 

CMi,3(1,1) : Sum of migration costs  
for setting P1 to P1’ 

A 

B C 

2 

4 

4 

CMi,3(1,1) = 2+4+1+5+2+4  
             = 18 

C E 

F 

H 

Migration cost of tasks 

A E F 
2 4 1 

B C 
5 2 H 

F 

2 

1 

E 

5 

H 
4 

P1P1’ 
 

Figure 3.3 Calculation of CMi,3(1,1). 

 

To ease the problem formulation, it is convenient to introduce a matrix CM to 

contain costs that are caused by possible processor-to-processor mappings as 

follows: 

, ( )
i ii j lm M MC M C   

where Clm is a cost associated with the case when a processor Pl becomes Pm for 
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task remapping on a failure, and Mi is the total number of processors without 

failures. The example to construct a cost matrix CMi,3 on a failure of processor P3 is 

shown in Figure 3.2. 

The pseudo code of the DP-based algorithm is described in Figure 3.4. The 

algorithm recursively searches the optimal solution that minimizes the total 

migration cost in a pool. Processors that are not considered yet is maintained in a 

list named procSet. The loop from line 12 to line 27 is the heart of the proposed DP 

algorithm. Search for the optimal solution begins with the selection of a processor 

in the foremost location of procSet as shown in line 13. Then we assign the chosen 

processor to any of processors for the task remapping after a failure, which is 

described in line 14, and create a copy of procSet, reducedProcSet, with the 

previously chosen processor removed as in line 15. Afterward, the successive search 

to find the minimum migration cost for a list reducedProcSet is followed by 

recursively calling the procedure findMinCost itself in lines 21 and 22. 

Once returned from the recursive search, each minimum cost corresponding to 

reducedProcSet is added to the total migration cost, which corresponds to 

candidiateCost. To avoid excessive computation time of the DP-based algorithm, 

we use a memoization technique to reuse partial results that are computed already 

from the previous searches. This accounts for the conditional behavior from line 17 

to line 23 according to the lookup of a hash table containing the cost, HashMap. 

Whenever any processor-to-processor mapping is completed, the accumulated cost 

is put to the hash table HashMap. After the entire space of possible mappings is 

explored, the final minimum cost is selected from the elements that are associated 

with only the lists containing all processors as in line 28. 

It should be noted that the complexity of the algorithm only depends on the number 
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of processors. This is because each of task migrations is merged into the cost matrix 

CM to represent the migration cost of each processor. In fact, the time complexity is 

O(2
N
). Nonetheless we can apply the DP algorithm as long as N is not too large for 

the algorithm to be practical.  

1 CostMap CM[i][j];       /* Cost of set proc. i into proc j */ 

2 HashMap <procSet, minCost>            /* Table for DP */ 

3 List procSet, reducedProcSet;    /* Set of processor Ids */ 

4   

5 int findMinCost ( procSet ) { 

6     int procId = procSet.getFirst(); 

7     if ( n( procSet ) = 1 ) { 

8         HashMap.put(procSet, minCost); 

9         return CM[procId][procId]; 

10     } 

11      

12     for( i < size of procSet ) { 

13         procId = procSet.getFirst(); 

14         colIndex = procSet.get(i); 

15         reducedProcSet = procSet - procId; 

16         if ( HashMap contains reducedProcSet ) {     

17             /* Dynamic programming */  

18             candidateCost = CM[procId][colIndex] + 

19                           HashMap.getValue(reducedProcSet); 

20         else { 

21             candidateCost = CM[procId][ colIndex] +  

22                                 findMinCost( reducedProcSet );         

23         }       

24         if( candidateCost < minCost )  {       

25             minCost = candidateCost; 

26         } 

27     } 

28     HashMap.put(procSet, minCost); 

29     return minCost; 

30 }  

 

Figure 3.4 Processor-to-processor mapping using dynamic programming. 

 

3) Encoding scheme of task remapping information 

After the task remapping decisions are made, they should be stored into a target 

system such that relevant task remapping information is retrieved to deal with a 
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processor failure at run-time. We explain the encoding scheme to represent the 

mapping results. For the ease of explanation, we assume a single processor failure 

only. However, this scheme can be easily extended to multiple failures. The 

scalability issue regarding this extension is discussed in the next section. 

An example of the processor-to-processor mapping explained in the previous 

section is shown on the left side of Figure 3.5. Each of rows in the 4×4 matrix 

corresponds to a failure of a certain processor. For instance, the first row of the 

matrix tells how the processors are reconfigured on the failure of processor P4;  

processor P1 becomes processor P3', and so on. Similarly, the second row is 

associated to the failure of processor P3. Then, the same row on the matrix on right 

side of the figure is the resultant task-to-processor mappings, which is actually to be 

stored on a target architecture. Let us consider the mapping of the example in Figure 

3.5 and the failure of P4 again, which corresponds to the first row of the matrices. 

Tasks F, G, and H are mapped to processor P3 initially. After the failure of P4, 

processor P3 will be processor P2 by referring the left matrix in Figure 3.5. Since 

task G belongs to processor P3 already, it is not migrated actually. Tasks B and D 

migrate to P3 and, instead, tasks F and H is newly assigned to P2. It is easy to see 

that there would be almost no run-time overhead to retrieve necessary information 

from the encoded remapping decisions. 

1 2 3 4 

3’ 1’ 2’ F 

2’ 1’ F 4’ 

3’ F 1’ 4’ 

F 2’ 1’ 4’ 

A E F D B C G H I 

4 1 4 1 2 2 1 2 4 

4 1 4 1 3 3 1 3 4 

4 2 4 2 3 3 2 3 4 

1 3 1 3 2 2 3 2 1 

Processor allocation Resultant encoding 

 

Figure 3.5 Process of encoding results. 



 

 ３１ 

 

3.3.2 Rescheduling Technique 

The proposed rescheduling technique also consists of two parts: an intensive 

compile-time analysis to identify schedules that maximize the throughput with live 

processors for all failure scenarios and a run-time management process to migrate 

tasks and resume execution after obtaining the saved schedule. We first explain the 

overall flow of the compile-time analysis based on a Genetic Algorithm (GA). Then, 

we explain in detail how to estimate the latency for a candidate re-scheduling result 

during the evolution process, which is an essential part of the proposed compile-

time analysis. 

1) Rescheduling policy 

Since a fault can occur at any moment on any processor during execution, the 

number of possible failure scenarios is infinite. To produce a finite number of 

failure scenarios, we assume that processor failure is determined only at task 

execution boundaries. Then a failure scenario can be defined by a task that 

encounters a processor failure during execution. In other words, the total number of 

possible failure scenarios is identical to the total number of task invocations in a 

single iteration of the input SDF graph. This assumption can be enforced at run-time 

since the proposed technique requires check-pointing after the completion of each 

task execution, during which we can signal an occurrence of a processor failure. 

Since the mechanism of detection of a processor failure is beyond the scope of this 

thesis, we simply assume its occurrence. 

To compute the latency overhead during the transient period, we also have to 

determine the start point of the task migration in step (3). Regarding this, Figure 3.6 
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illustrates three cases assuming that the processor failure is detected and notified at 

the completion time of task T2. 

Preemptive Policy: In a preemptive policy, we perform task migration immediately 

after a failure is detected; we stop task T3 on P3 and task T4 on P1 in the middle of 

execution. Then, each processor fetches the “re-schedule” to perform task migration 

accordingly, as is depicted by the dashed rectangles in Figure 3.6 (a). Afterward, the 

non-faulty processors execute the tasks that have not been completed in the current 

iteration following the schedule obtained after the failure. 

The earlier execution on P4, which is labeled as “Previous iteration” in Figure 3.6, is 

the remaining portion of a prior iteration overlapped with the current iteration. We 

allow prior iterations to complete their executions regardless of the task migration 

policy. Thus, the migration for task T7 cannot start immediately upon detection of 

the processor failure. 

Non-preemptive Policy: The second case in Figure 3.6 (b) shows another policy, 

called a non-preemptive policy, where task migration is delayed until the currently 

running task is completed. In this example, the non-preemptive policy shows better 

performance than the preemptive policy in terms of the latency of the faulty 

iteration because the preemptive policy requires the overhead of re-execution of 

tasks T3 and T4. 

Hybrid Policy: In this technique, we also propose a new policy, called a hybrid 

policy, which applies both of the aforementioned policies selectively. In Figure 3.6 

(c), T3 on P3 is preempted but T4 on P1 is not. This leads to earlier completion of the 

critical path T7 to T12. In the hybrid policy, a separate decision has to be made for 

each processor regarding whether or not to preempt the current task. 
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[ Preemptive policy, latency = 720 ] 
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Figure 3.6 Latency computations for three migration policies. 

 

In summary, we aim to find a static schedule along with migration policies of 

processors for each failure scenario in order to maximize the throughput with the 

remaining processors while satisfying a given latency constraint. By varying the 

latency constraint, we obtain various Pareto-optimal solutions. If there is no latency 

constraint, the proposed task re-scheduling technique degenerates to our previous 

technique that maximizes the throughput [52]. 

2) Genetic algorithm-based compile-time analysis 

The proposed compile-time analysis is based on the Genetic Algorithm (GA) to 

obtain throughput-maximized schedules considering processor failures. The overall 

flow is outlined in Figure 3.7. For each failure scenario, we perform a separate GA 

that corresponds to the outermost loop of the flow. The inputs to each single run of 
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the GA are the original (or initial) schedule used before the failure, the end-to-end 

latency constraint of the target application, and the underlying target architecture. 

A chromosome representation of candidate solutions in the GA is composed of 

mapping, scheduling, and the migration policy information of tasks as a linear array. 

The mapping information describes the allocation of tasks to processors. For a static 

schedule, the execution orders of tasks are determined by the precedence 

dependency and the static priorities of tasks. The priority of a task is assigned in the 

GA. With the chromosome representation, the body of the GA, which is the 

innermost loop (steps 2-7), can be implemented using any standard GA technique. 
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Figure 3.7 GA flow of the proposed compile-time analysis. 

 

The GA begins by selecting two parent solutions from the current population to 

produce a new candidate solution (step 2). For a candidate mapping and scheduling 

solution which is created by crossover and mutation operations (steps 3-4), we 

construct a schedule diagram to compute the throughput and the latency of the 

solution (step 5). The schedule diagram is constructed via simulation that considers 
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the detailed behavior of task migration involved in faulty iterations in order to 

evaluate the fitness of the current solution (step 5). The pseudo-code of this step is 

presented in Figure 3.8, which is explained in the next subsection. At each 

invocation of the inner loop, the GA maintains the best solution for the population 

of candidate solutions, which has the maximum throughput with the live processors 

while satisfying the latency constraint. Whenever the population is updated, the GA 

determines whether the fitness of the population converges (step 6). If not, the GA 

repeats the aforementioned steps (step 7). We terminate the evolution process when 

there is no further throughput improvement or when the user-defined limit on the 

number of evolution cycles is reached. 

Once we analyze all possible failure scenarios, the static task schedules for each set 

of live processors are saved into the global memory of the target architecture (steps 

8-9). Note that the maximum throughput that we can guarantee for a single-

processor failure on a given architecture is the minimum throughput among the 

schedules for all failure scenarios (step 10).  

3) Fitness Evaluation 

The key operation of the proposed GA-based analysis is to evaluate the (end-to-end) 

latency of the application in the fitness evaluation (step 3 in Figure 3.7) and to 

determine whether the resultant latency meets the constraint. As explained earlier, 

we consider all overheads involved in the run-time management. Once a fault is 

signaled, the run-time manager first retrieves the migration policy recorded in the 

global memory. The initiation time of a task migration depends on the task 

migration policy chosen by the analysis. Based on the schedule, the run-time 

manager selects the migrating tasks from the global memory and transfers them to 

the associated local memory. For example, in Figure 3.6, the three tasks T5, T8, and 
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T9 are moved to processor P1. We assume that the task migration phase precedes the 

task restart phase. In other words, the restart of tasks on P1 is delayed until the three 

tasks are completely migrated. Future work will determine the overlap of task 

migration and task execution because such overlapped execution may be achieved if 

the unfinished tasks from the current iteration are migrated before the finished tasks. 

The migration overhead depends not on the migration policy, but on the mapping of 

tasks onto processors. 

Fitness evaluation(candidate solution, fail-notificationTime, failure-occurred iteration)  

1  worstLatency = 0; 

2  do list-scheduling with candidate solution 

3  set SCHDcs as the schedule of candidate solution 

4  worstLatency = latency of candidate solution 

5  estimate migration cost 

6  simulate failure-occurred iteration with SCHDcs and migration cost 

7  latFI = latency of the failure-occurred iteration 

8  if worstLatency < latFI then worstLatency = latFI 

9  if worstLatency > latencyConstraint then return unschedulable 

10  check overlapped iterations with fail-notificationTime 

11  for( overlapped iterations ) { 

12       simulate overlapped iteration with SCHDcs and migration cost 

13       latOI = latency of overlapped iteration 

14       if worstLatency < latOI then worstLatency = latOI 

15  } 

16  if worstLatency > latencyConstraint then return unschedulable 

17  return throughput of candidate solution 

end Fitness evaluation 
 

Figure 3.8 Pseudo-code of the fitness evaluation. 

 

Figure 3.8 presents the pseudo-code of the fitness evaluation. First, we construct a 

schedule diagram with a candidate solution to compute the throughput and the 

latency of the solution (lines 1-4). In this thesis, task migration cost for each 

processor is assumed to be linearly proportional to the size of task image and the 

associated data input for restarting the task (line 5). The amount of transferred data 

on task migration is estimated by comparing the original schedule and the schedule 
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of the candidate solution with a selected failure scenario. Afterwards, the faulty 

iteration with the selected failure scenario is simulated using the schedule of the 

candidate solution to see if the faulty iteration satisfies the given latency constraint 

(lines 6-9). The simulation considers task migration cost.  

Recall that multiple iterations of a task graph may run simultaneously in a pipelined 

execution. Therefore, a faulty iteration may affect the subsequent iterations that 

overlap with the current iteration in time. It means that we need to simulate 

iterations succeeding the faulty iteration (lines 10-17). Suppose that a fault occurs 

during the execution of task T8 on processor P2 in the example of Figure 3.9. In this 

situation, the tasks that run on processors P1 and P3 at that time do not belong to the 

same iteration as T8 but to the next iteration. As a result, the task migration overhead 

is added to the next iteration on processors P1 and P3. 
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Figure 3.9 Latency calculations with overlapped iterations. 

 

The latency of the faulty iteration (Latency1 in the figure) is 550, whereas the next 

iteration has a worse latency (Latency2) of 680. These results confirm that the 

worst-case latency may occur not in the current iteration, but in the next iteration. In 

general, multiple subsequent iterations can be affected. Therefore, multiple 
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iterations must be considered to obtain the worst-case latency for each failure 

scenario. If the latency of the next iteration is longer than that of the current 

iteration, we evaluate the latency of an additional iteration. This procedure 

continues until no subsequent iteration with latency longer than the current iteration 

is found. For the preceding iterations, however, we apply the non-preemptive policy 

for simple implementation. 

3.4 Experiments 

3.4.1 Remapping Results 

In this section, we validate the proposed remapping method by comparing the 

throughput and migration cost with those from the previous work [45], which is 

called „Band & Band reconfiguration‟ scheme, BBR shortly, throughout the rest of 

this thesis. For the purpose of comparison, we implemented the scheduling 

algorithm of the BBR scheme in C++. All experiments were conducted on the same 

environment that was used in the previous section. 

The main idea of the BBR scheme is explained with a motivational task graph in 

Figure 3.10 (a), which is borrowed from [45]. In BBR, scheduling is performed with 

slight modification of the Critical Path Node Dominate (CPND) algorithm [53]. A 

partition called Basic Reconfiguration (BR) block that divides the scheduling is 

organized corresponding to the horizontal line located below tasks 3 and 4 in Figure 

3.10 (a). Then the staircase line called Band partition line in each BR block 

identifies the left (L) and the right (R) band. Reconfiguration in this method can be 

simply performed by sliding two bands so that L band places below the R band 

when a process failure occurs. The key idea of this scheme is that if there is no 

dependency from the left to the right band, such reconfiguration does not violate the 
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dependency constraints and the resultant schedule becomes valid. For example, the 

result of reconfiguration by BBR on the failure of a processor P1 is shown on the 

right side of Figure 3.10 (b). 
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Figure 3.10 (a) A motivational task graph; (b) re-scheduling after a failure of a 

processor P1 by the BBR scheme [45].  

 

In the first set of experiments, we compare the throughputs and migration costs of 

the task graph in Figure 3.10 (a) by the proposed technique and the BBR scheme 

respectively. The execution times of all tasks are assumed to be uniform to 

minimize end-to-end latency without introducing slack when applying BBR. Since 

the BBR scheme is not able to consider multiple processor failures, we examine just 

three scenarios: failures of P1, P2, and P3 respectively. Figure 3.11 (a) shows the 

normalized throughputs of two techniques while Figure 3.11 (b) corresponds to the 

normalized migration cost on each of processor failures. In the experiments, 

throughput is defined as the reciprocal of the end-to-end latency of a task graph. 

Also, the migration cost of a task is assumed to be 10% of its execution time. 

We observe that, on the failure of processor P1, the proposed technique shows better 



 

 ４０ 

throughput while paying the same migration cost to the BBR scheme. On the other 

hand, for the failures of processors P2 or P3, the two techniques perform similarly in 

throughput. Also, the BBR scheme outperforms the proposed technique when 

comparing migration cost. The proposed technique requires two times higher 

migration cost in the worst case. This is due to the assumption of the uniform 

execution time of all tasks, which is not the usual case. Since it minimizes the slack 

between tasks after reconfiguration, it favors the BBR scheme to produce good 

performance.  

In the next experiment, we use the same environment but with non-uniform task 

execution times that are randomly generated. The results by two techniques are 

depicted in Figure 3.11. As shown in the graph, the throughput by the proposed 

technique is always superior to the BBR scheme by up to 20%. In case of migration 

cost, our technique has larger overhead on average than BBR. This is due to high 

degree of freedom in task migration to preserve the maximized throughput in the 

proposed method while the movement of tasks is restricted according to the band-

based partitioning in the BBR scheme. 

To examine how much the throughput is degraded by the techniques along with 

processor failures, we measured the throughput according to processor failures that 

is normalized to the maximized throughput without processor failure. The 

comparison result of two techniques is given in Figure 3.12. Our intuition is that 

performance would be degraded by about 1/3 on average if the best throughput is 

preserved in all sets having 2 processors and 3 processors respectively. In the table, 

we observe that the throughput after a single processor failure is about 68% of the 

best case by the proposed technique. This implies that our scheduling technique 

maintains the throughput as high as possible after reconfiguration as we expect. 
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Figure 3.11 Comparison of two techniques using the task graph in Figure 3.10 (a) 

with uniform task execution times.  

 

On the other hand, the BBR scheme results in performance loss of 9-14% compared 

with that of our technique at each of failure scenarios. As discussed above, this is 

due to the restricted choices of task migrations in the band-based partitioning. In 

other words, to preserve the principle of the task reconfiguration, enforcing the 
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movement of the R band above the L band may not sufficiently exploit concurrent 

execution of tasks. For example, on the failure of a processor P1 in Figure 3.10 (b), 

the R band containing tasks 1, 2, and 4 is to move to the top of the L band where a 

task 3 belongs. As a result, a task 3 is executed later than a task 4 even though they 

can be executed in parallel on different processors. This causes the worst case 

performance among all failure scenarios as shown in the first row in Figure 3.13 (a). 

Even worse, the migration cost of the BBR scheme in the failure scenario is also 

larger than that of our method. This is because the move of the R band requires 6 of 

10 tasks to migrate, which are tasks 1, 2, 4, 6, 7, and 10. 
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Figure 3.12 Comparison of throughput that is normalized to the maximum 

throughput on 3 processors.  

 

As the second set of experiments, we conduct the comparison similar to the 

previous experiment with a larger synthetic task graph. We use TGFF [54] to 

generate the task graph with 40 tasks and perform the task-to-processor mapping 

using 8 homogeneous processors. The execution times of tasks are given randomly 

while the longest task execution time does not exceed twice the shortest one. The 

migration cost of each task is set to 10% of its execution time as before. The results 
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are shown in Figure 3.14. 

Throughput 

Migration cost 

Failed processor 

(b) 

(a) 

Failed processor 

1.26  

1.15  1.15  

1 1 1 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

P1 P2 P3

Proposed BBR

0.97  

1.62  1.59  

1.00  1.00  1.00  

0.00

0.50

1.00

1.50

2.00

P1 P2 P3

Proposed

BBR

 

Figure 3.13 Comparison of two techniques using the task graph in Figure 3.10 (a) 

with non-uniform task execution times. 

 

From the view of sustainable throughput, our technique outperforms BBR 
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significantly. Only 10% of performance degradation is observed in our case while 

BBR experiences severe performance loss. The throughput by BBR is less than half 

the initial throughput in all failure scenarios. The amount of throughput degradation 

by our technique is almost similar to the average case of performance loss when one 

processor gets failed out of 8 processors, i.e., 1/8=0.125. This shows again that by 

the proposed technique, all processors are being utilized quite well in any case of 

processor failure. Furthermore, the efficient scattering of workload of a faulty 

processor helps the performance degradation be minimized, which shows the 

viability of our method. In case of the BBR scheme, however, the degree of 

throughput degradation becomes much worse than the case of the small task graph 

example in Figure 3.10 (a). This is mainly due to the unnecessary movements of 

tasks by enforcing the L or the R band structure, prohibiting from being 

reconfigured to better task remapping. 

Even though there is no clear tendency on migration cost by both two techniques, 

the migration cost by the BBR scheme is smaller than the proposed technique in 

general. However, as a band that has more tasks moves, the migration cost by BBR 

tends to increase. Since the migration cost we are using in the experiment is 

artificial, we provide the number of migrated tasks as another metric of migration 

overhead, which is reported in Figure 3.14 (b). In case of the proposed method, the 

numbers of tasks to move are similar regardless of which processor fails. It implies 

that the entire workload of a target application is kept quite well distributed over the 

available processors even after a failure. The evaluation using measured migration 

costs from the actual system implementation is left as one of future works. 
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Figure 3.14 (a) Comparison of throughput normalized to the maximum throughput 

on 8 processors and (b) number of tasks to migrate according to each of processor 

failures.  

 

Varying the number of processors, the overall tendencies of the gap of sustainable 

throughput between two techniques are summarized in Table 3.1. For this 

comparison, we perform the previous experiments with another synthetic task graph 
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that is mapped to architecture with 10 processors. The table contains throughputs 

obtained according to each of failure scenarios for a given number of processors. 

The throughputs are relative to the maximum throughputs without failures on each 

of target architectures. Then, in the last part of the table, the ratios between 

throughputs by the techniques are also reported. As seen in the table, the gap 

between attained throughputs by two techniques grows as we adopt more processors 

in a target architecture. Further, it is observed that the ratio of migration cost by the 

proposed technique is similar to the case of 8 processors in other number of 

processors even though we omit the results. The table confirms that proposed 

technique is highly efficient over the previous approach for practical use. 

 

Table 3.1 Comparison of sustainable throughputs by two techniques with various 

task graphs. 

Number of 

processors 
Approach 

Throughput Ratio 

Min. Max. Avg. Min. Max. Avg. 

3 
Proposed 0.68 0.68 0.68 

1.15 1.26 1.19 
BBR 0.54 0.59 0.57 

8 
Proposed 0.89 0.89 0.89 

2.14 2.31 2.24 
BBR 0.39 0.42 0.40 

10 
Proposed 0.97 0.97 0.97 

2.60 2.85 2.74 
BBR 0.34 0.37 0.35 

3.4.2 Rescheduling Results 

We implemented the proposed rescheduling technique using an open source GA 

framework [55]. We used five synthetic task graphs (G1 to G5) generated by TGFF 

[54] and three multimedia applications; two selected from StreamIt benchmark [56], 

MPEG2 decoder and MP3 decoder, and H.263 decoder from [51]. The task graphs 



 

 ４７ 

have 8 to 50 nodes that are run on 3 to 16 processors. The execution time of nodes 

in the synthetic examples was adjusted so that the longest node execution time was 

no larger than three times the shortest one. The execution time of the H.263 decoder 

was profiled by cycle-level simulation using 16CIF-sized input video streams. In 

the profiling, the migration cost of the code image and input data for task restart 

were measured to use an average of 50% of the task execution time. The migration 

overhead of the synthetic examples was also set to 50% of a task execution time. All 

experiments were conducted on a desktop computer with an Intel Pentium 3.2-GHz 

processor running Windows XP and 3-GB of main memory. 

First, we measure the average execution time of the proposed compile-time analysis 

for each failure scenario, the results of which are shown in Table 3.2. The execution 

time increased as the number of tasks or processors increased. For a given number 

of tasks, the time complexity was roughly proportional to the number of processors. 

Similarly, for a given number of processors, the execution time increased as the 

number of tasks increased. While we could not find a fixed formula for the time 

complexity, the experiment shows that the proposed compile-time analysis has good 

scalability to accommodate a large task graph running on a few tens of processors. 

Since the static analysis is performed off-line at compile-time, the measured latency 

indicates that the proposed technique is affordable for practical use. 

Next, we compare the three migration polices in terms of latency. To this end, we 

first obtain a re-scheduling decision that minimizes the throughput degradation for 

each processor failure, as performed in [52], that is, we ignore the latency constraint. 

Then, we obtain the worst latency among all fault scenarios for each task graph. We 

repeat the above procedure to obtain the normalized worst-case latency based on 

each of the migration policies. The comparison results are shown in Figure 3.15. 
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The horizontal axis corresponds to the task graphs, and the vertical axis indicates 

the worst latency normalized to the initial latency. 

 

Table 3.2 Sizes of the task graphs and the target system, along with the execution 

time of the GA-based heuristic.  

Application G1 G2 G3 G4 G5 MPEG MP3 H263 

Number  

of  tasks 
8 12 24 40 50 14 7 29 

Number of  

processors 
3 4 3 8 12 16 8 12 16 4 3 5 

Time for  

GA-based  

analysis  

(seconds) 

0.4 1.2 3.6 25.2 28 33.6 64.8 72.8 112 1.6 0.4 12.2 

The results show that the hybrid policy always produces the best result, reducing the 

latency by up to 15% compared with the other policies. On the other hand, there is 

no preference between the preemptive policy and the non-preemptive policy. 

In the next set of experiments, we found that the throughput-maximized schedules 

by varying latency constraints. Again, we considered all fault scenarios to obtain the 

worst-case throughput for a given latency constraint for each task graph and for 

each migration policy. We obtained the Pareto-optimal solutions in terms of latency 

and throughput in the proposed rescheduling technique. The results for each task 

graph are depicted in Figure 3.16. The horizontal axis of each graph in the figure 

represents the latency constraint normalized to the achievable shortest latency, and 

the vertical axis represents the throughput normalized to the initial throughput. 
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Figure 3.15 Comparison of task migration policies in terms of the normalized worst-

case latency over all failure scenarios. 

 

From the figure, we observe the followings. First, the hybrid migration policy is not 

inferior to any other migration policies. As the latency constraint became tighter, 

either the preemptive policy or the non-preemptive policy failed to reach a better 

rescheduling decision compared to the hybrid policy. In other words, the benefit of 

the hybrid policy is more evident as the latency constraint becomes tighter. 

Second, the non-preemptive policy is likely to perform better than the preemptive 

policy for simple task graphs, even though this is not always true. A possible 

explanation is that the overhead of task restarting in the preemptive policy 
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outweighs the benefit of earlier execution of urgent tasks. On the other hand, such a 

benefit of the preemptive policy may be greater than the task restart overhead in 

more complicated task graphs, as illustrated in Figure 3.16 (d) and (e). Again, there 

is no preference between the preemptive and non-preemptive policies in general. 

Therefore, we propose to use the hybrid migration policy. 

Finally, we compare our approach with the previous technique from [52]. Recall 

that the previous work utilized a throughput-maximized schedule without 

considering the latency constraint. In Figure 3.16 (a) and (b), “×” denotes the non-

preemptive policy, and “+” represents the pre-emptive and the hybrid policies when 

the previous technique is applied. We confirmed that the previous work produced no 

better solutions than the Pareto-optimal solutions provided by the proposed 

technique. In general, the worst-case latency may be different even though the same 

throughput is achieved. In these two examples, however, the same schedules are 

obtained after a failure. In short, the previous work at most provides a single Pareto-

optimal solution, while the proposed method provides a set of Pareto-optimal 

solutions. 
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Figure 3.16 Pareto-optimal solutions of the achievable throughput and the latency 

constraints for the synthetic task graphs and real-life applications. 
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Chapter 4 

Fault-aware Resource Management 

4.1 Introduction 

In this chapter, fault-aware hybrid resource management technique that allows 

remapping of applications at run-time is presented. The resource management 

technique is expanded from the first technique targeting multi-applications that can 

concurrently run. Additionally from the first technique that targets single application, 

application-level dynamic behaviors are considered and handled through this 

resource management techniques as well as processor failures. In the architecture 

model, NoC interconnection is additionally considered than that of the first fault-

aware task mapping technique. This technique also assumes that each application 

behavior is specified by a synchronous dataflow graph  [20] that is suitable for 

specifying multimedia and/or streaming applications [57], and a set of Pareto-

optimal schedules  of each SDF graph onto the allocated processors is prepared a 

priori at design-time. At run-time, a run-time manager (RTM) refers to the pre-

computed schedule information of all active applications whenever the system 

status changes. The RTM initially allocates the minimum number of processors to 

active applications to meet the throughput constraints. If there are available 

processors more than the minimum requirement, the RTM aims at minimizing the 

system energy consumption by allocating more processors to some applications and 

then applying DVFS (Dynamic Voltage-Frequency Scaling) to the allocated 
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processors. Thus, the run-time mapping problem addressed in the proposed 

technique is to determine the number of processors allocated to each of running 

applications and the DVFS policies applied to the processors in order to minimize 

the overall energy consumption while satisfying the throughput constraints of the 

applications. It can be formalized as follows: 

Input. A set of applications that are specified by SDF graphs and the pre-computed 

Pareto-optimal schedules of each application, and the NoC architecture with its 

dimension and parameters. 

Constraints. Each SDF graph has a throughput constraint. 

PROBLEM: Find the processor allocation for the set of active applications running 

concurrently as the system status changes, decide where to map a runnable task at 

run-time, and apply DVFS aiming at minimizing the energy consumption of the 

system. 

Frequent run-time remapping in the proposed technique incurs non-negligible time 

and energy overhead. Therefore, this study also analyzes the run-time overhead of 

the proposed scheme and provides a rich set of quantitative evaluations with a NoC 

(Network-on-Chip) simulator. The analysis reveals how large the size of NoC can 

be supported by a central RTM and the dependency of the run-time overhead on the 

node granularity of an application specified as an SDF graph. The viability of the 

proposed technique is proven with a simple smart phone example and large 

synthetic applications. 

4.2 Related work 

There are a lot of researches about mapping techniques handling the dynamic 

behavior of the system so far and optimization goals and given constraints are 
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different from each other. Since our research focus on satisfying real-time 

performance and reducing energy efficiency, we classify the researches with the 

way of handling the dynamism first, and then compare the optimization goals and 

the type of constraints. 

4.2.1 Static Approach 

As an approach to mapping problem, a static mapping considers the worst-case 

scenario of the system among all possible application combinations [58][59][60]. It 

assumes that each task takes its worst-case execution time (WCET), and the system 

runs the maximal set of applications. In [58] [59], an application can have several 

states denoting the modes of operation and all the combinations of states of 

applications are represented in a scenario graph. Therefore, the complexity of the 

graph size increases exponentially which makes the approach unpractical as the 

number of application increases. One of the technique presented in [60] concentrate 

on handling a permanent failure under latency constraint while maximizing 

throughput by preparing every possible failure scenario at design-time. As a result, 

these methods are applicable only to cases that the number of application 

combinations, also known as use-cases, is finite and manageably small. 

4.2.2 Dynamic Approach 

A mapping technique is classified as adaptive if it can change task mapping of an 

application at run-time in response to the system status change. A pure dynamic 

mapping belongs to this class. In those systems, a central RTM initiates mapping of 

an incoming application to available resource in the presence of workload or 

resource variation, aiming at minimizing communication overhead or energy 

consumption [61][62]. As the number of participating applications increases or the 

system grows in terms of the number of processors, a central RTM can be 



 

 ５６ 

bottleneck because the RTM is involved in every application or task execution. To 

overcome this problem, an agent-based technique has been proposed by employing 

distributed RTMs [6][7], aiming to minimize communication related energy. 

However, they do not consider real-time performance constraints. 

The real-time issue has been addressed in the context of run-time mapping [61][63]. 

In [61][63], they perform run-time schedulability test based on processor utilization 

to ensure that the task-set on each processor is schedulable under deadline 

constraints. To enable static performance estimation based on predictable and 

deterministic communication, they both assumed a TDMA arbitrated 

communication network in the target hardware platform. The mapping decision in 

these approaches is based on spatially or temporarily local information. As a result, 

those techniques cannot guarantee any globally optimal results.  

Some techniques have been proposed based on the adaptive run-time mapping 

[6][63][64]. An agent-based technique proposed in [6] aims at minimizing 

communication energy. The technique uses distributed run-time manager processors, 

each of which is responsible for mapping tasks of incoming applications to a certain 

set of processors that is called as a virtual cluster. They focused on reducing the 

monitoring traffic on NoC and the computational time involved in the RTM. 

However, they assume a single application in the system. Moreover, the impact of 

the management overhead on the entire system performance was not addressed. In 

[63], dynamic mapping is performed adaptively to minimize the weighted sum of 

processor utilization, memory consumption, and bandwidth consumption. The 

mapping decision in this approach is based on local information, leading to sub-

optimal mapping results. 
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4.2.3 Hybrid Approach 

Another approach is to use a hybrid mapping technique where the set of Pareto-

optimal mappings of an individual application is prepared at design-time and the 

best combination is determined at run-time by considering the system status, 

workload, and resource availability. This technique typically assumes the static 

mapping of an application, meaning that the mapping is fixed at run-time. Thus its 

capability to support dynamic system behavior is limited. In case a processor fails, 

for instance, the mapping should be changed at run-time, which is not possible with 

the hybrid mapping approaches. 

A group of researchers has proposed hybrid mapping techniques [10][11][12] 

[63][64]. In [10], a technique has been proposed to minimize energy consumption. 

On the other hand, in the throughput constraint is considered in [11][12] while end-

to-end latency of applications is given as constraints in [63][64]. Especially in [12], 

pareto-optimal mappings are prepared for various hop-distances considering the 

worst communication overhead in the target NoC to ensure the real-time constraint 

at run-time. In both approaches, however, the migration of tasks is not allowed. As a 

result, these hybrid techniques are not adaptive. 

4.2.4 Summary 

The summary of the existing researches about mapping techniques are shown in 

Figure 4.1. In the table, the term “WV” denotes whether the approach handles 

workload variation. The change of operation mode can also be involved in the 

category of the workload variation. And the term “FT” indicates whether the 

approach is fault-tolerant, e.g., permanent failure in processors causing resource 

variation in the system can be covered. 
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Figure 4.1 Comparison of representative resource management techniques. 

 

4.3 Background 

In this section, additional models especially assumed in the hybrid resource 

management technique are described.  
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4.3.1 Energy Model 

To estimate energy, we assume that processors are DVFS-enabled to adjust 

processor clock rate for energy saving. We assume that we can adjust the clock rate 

of individual processor. The processors allocated to the same application will have 

the same clock speed in the current implementation of the proposed technique. To 

this end, 𝜇: 𝐴 → ,0,1- is defined as a function that represents the relative speed of 

processors allocated to application 𝐴; for instance, 1 for full speed or 0.5 for a half. 

Note that the WCET, 𝑐𝜏, of task 𝜏 is given assuming full processor speed.  

The energy model of processor and communication architecture used at the design-

time analysis is adopted from the previous work [16][18][19]. We denote energy 

consumption of application 𝐺 by E(𝐺, μ(𝐺)) with speed ratio μ(𝐺), which is the 

sum of computation energy 𝐸𝑐𝑜𝑚𝑝(𝐺, μ(𝐺))  and communication energy 

𝐸𝑐𝑜𝑚𝑚(𝐺). 𝐸𝑐𝑜𝑚𝑝(𝐺, μ(𝐺)) is the sum of computation energy of all tasks in 𝐺.  

E(𝐺, μ(𝐺)) =  𝐸𝑐𝑜𝑚𝑝(𝐺, μ(𝐺)) + 𝐸𝑐𝑜𝑚𝑚(𝐺)                                   

                                                           = ∑ 𝐸𝑐𝑜𝑚𝑝(𝜏, μ(𝐺))𝜏∈G + 𝐸𝑐𝑜𝑚𝑚(𝐺)         (1) 

𝐸𝑐𝑜𝑚𝑝(𝜏, μ(𝐺)) is further distinguished by p𝑖𝑛𝑑 and p𝑑𝑒𝑝 as shown in (2). 

𝐸𝑐𝑜𝑚𝑝(𝜏, μ(𝐺)) =
𝑐𝜏

μ(G)
(p𝑖𝑛𝑑 + p𝑑𝑒𝑝)  =

𝑐𝜏

μ(G)
(p𝑖𝑛𝑑 + 𝐶𝑒𝑓𝑓μ(G)

𝛼)   (2) 

where p𝑖𝑛𝑑 is the sum of the static power and the processor clock frequency-

independent dynamic power consumed by main memory and external devices. p𝑑𝑒𝑝 

is the frequency-dependent dynamic power accounting for processors and other 

components depending on the processor clock [66]. Since 𝑐𝜏 is the execution time 

of task τ at full processor speed, 
𝑐𝜏

μ(G)
 represents the lengthened execution time after 
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the clock rate is reduced. 𝐶𝑒𝑓𝑓 is the effective switching capacitance of a processor 

and α is a constant usually no smaller than 2 [67]. Communication energy 

𝐸𝑐𝑜𝑚𝑚(𝐺) is estimated as 

𝐸𝑐𝑜𝑚𝑚(𝐺)  = ∑ 𝐸𝑏𝑖𝑡𝑣(𝑒)𝐻𝐷(𝑒)𝑒 ∈ℰ    (3) 

where 𝑣(𝑒) and 𝐻𝐷(𝑒) are the size of transferred data and the hop distance in the 

NoC topology for edge 𝑒 ∈ ℰ, and 𝐸𝑏𝑖𝑡 denotes the energy required to transfer a 

single bit through a single hop distance. Note that the design-time analysis uses the 

worst case latency of communication on the target NoC when estimating the 

communication energy. 

4.3.2 Notation 

We define the following notations that will be used in this chapter.  

1) 𝐴′ ⊂ 𝐴 represents a set of currently active applications. 

2) 𝑁: 𝐴 → ℕ is the number of processors allocated to an application and 

may vary at run-time.  

3) 𝑇𝐻:𝐴 × ℕ → ℝ denotes the maximum throughput of an application 

with a given number of processors. 

4) 𝑇𝐻𝑐: 𝐴 → ℝ is the throughput constraint of an application. 

5) 𝐼: 𝐴 → ℝ is the invocation interval of an application once activated, 

which is equal to 
1

𝑇𝐻𝑐(⋅)
 

6) 𝑃 is the number of processor tiles. 

7) 𝑆 is the number of shared memory tiles. 
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4.4 Proposed Resource Management Technique 

4.4.1 Motivational Example 

In this section, we explain the basic idea of the proposed resource management 

technique with a simple illustrative example. We are given four applications 

𝐴 = *G𝐴, G𝐵, G𝐶 , G𝐷+ that will run on a 3x3 NoC with one shared memory tile at the 

center and 8 processor tiles around the shared memory tile, i.e., 𝑃 = 8 and 𝑆 = 1. 

We assume that one processor tile is used as the RTM and the remaining 7 processor 

tiles are used to run the applications.  

Figure 4.2 (a) shows the SDF graph specifications of the applications; a task is 

annotated with its WCET, 𝑐𝜏, in milliseconds. All tasks are executed once per 

iteration of each task graph assuming homogenous SDF graphs in this example. All 

the SDF graphs are assumed to have the identical throughput constraints of 

1

120
ms−1 and the same invocation periods of 120 ms. 

The pre-computed mapping and the associated energy consumption at design-time 

are given in Figure 4.2 (b). The third row shows the maximally achievable 

throughput with a given number of processors. For instance, the maximum 

throughput of GAwith two processors, TH(G𝐴, 2), is 
1

90
, and TH(G𝐴, 3) =

1

60
. Note 

that TH(⋅) is computed assuming full processor speed. If TH(⋅) is greater than the 

throughput constraint, TH𝑐(⋅), we may lower 𝜇(⋅) through DVFS by utilizing 

slacks to reduce energy consumption as shown in the fourth row of Figure 4.2 (b). 

We may lower the energy consumption by allocating more processors and, in turn, 

reducing the speed of the processors.  
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Figure 4.2 (a) Motivational example with four SDF graphs; (b) pre-computed 

Pareto-mappings and corresponding energy consumption considering DVFS by the 

design time analysis; (c) processor allocation and the associated energy 

consumption with four different approaches for the given workload variation. 

 

Now we consider the run-time behavior of the system according to a workload 

variation in three phases. In the first phase, G𝐴, G𝐵, and G𝐶are initially running 

concurrently. Sometime later, G𝐷 enters the system in the second phase, and then 

G𝐴 leaves the system a while later leading to the third phase. 

Figure 4.2 (c) compares four different schemes for the given workload variation. 
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The first scheme corresponds to an ideal solution, where the workload variation is 

completely known at design-time. As a result, the optimal static mapping and DVFS 

policy for each workload can be found a priori. At run-time, each processor knows 

which task to execute without the guidance of the RTM. We add this unrealistic 

ideal scheme to measure the run-time overhead of the proposed scheme. Surely the 

ideal scheme gives the minimum energy consumption in all application sets. 

The second scheme is to make a static decision assuming that the workload 

variation is known a priori. By taking the worst-case scenario, we can perform task 

mapping at design-time. In this example, the worst case is when all four 

applications are running concurrently as in the second phase. Hence, the mapping 

decision is made to accommodate the second phase and the same mapping is 

applied to the first and third phases. Even though it performs for the second phase 

as well as the ideal mapping case, it consumes more energy for other phases than 

the other schemes. 

The third scheme is a conventional hybrid mapping technique. At design-time, the 

energy optimal mappings for each application are prepared. When the RTM maps 

the applications, it refers to the pre-computed schedules to make an optimal 

mapping aiming at minimizing the energy consumption with DVFS. If DVFS is not 

applied, the hybrid mapping will allocate the minimum number of processors to 

minimize the communication energy, which ends up with the same energy 

consumption as the static scheme in this example. When the new application G𝐷 

enters the system in the second phase, the RTM checks whether there are as many 

available processors as G𝐷 requires. Since the applications in the first scenario 

occupy all 7 processors already, G𝐷 cannot be accommodated immediately. Thus, 

G𝐷 can be accepted only after G𝐴 leaves the system. As the mapping information 
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for the third phase shows, the mappings of G𝐵 and G𝐶 remain the same when G𝐷 

is mapped to the available processors released by G𝐴, missing the chance to allocate 

more processors to G𝐵 to minimize the overall energy consumption. This example 

shows the drawback of the hybrid mapping techniques that cannot adapt to dynamic 

workload variation efficiently. 

Our approach makes the same initial mappings with the ideal scheme for the first 

scenario. Then, when G𝐷  enters the system, the RTM adjusts the mapping 

decisions immediately to the same mappings as the ideal scheme. When G𝐴 leaves 

the system, the task mappings are adjusted, leading to the same mapping decisions 

to the ideal case again. In case the task migration or the check-pointing is involved 

in each task activation, however, we have to pay extra energy overhead. 

Let us investigate how the energy overhead of the run-time resource management is 

considered in the energy consumption computation in this comparison. In the 

overhead computation, we consider the least common multiple of the invocation 

periods of active applications A′, i.e., hyper-period ℎ𝑝(𝐴′). The energy overhead 

for the RTM is caused by 1) message delivery between a processor and the RTM, 2) 

task migration with code fetch from the shared memory to the processor when 

necessary for task remapping, and 3) check-pointing of output data after each task 

execution. They are denoted by 𝐸𝑟(𝐺) , 𝐸𝑚(𝐺) , and 𝐸𝑝(𝐺)  respectively for 

application 𝐺 ∈ A′ . Assuming homogenous SDF graphs with the identical 

invocation periods, they are formulated as follows: 

𝐸𝑟(𝐺) = ∑ 𝐸𝑏𝑖𝑡𝑣(𝜏, 𝑅𝑇𝑀)𝐻𝐷𝑤𝑜𝑟𝑠𝑡(𝜏, 𝑅𝑇𝑀)𝜏∈𝐺   (4) 

𝐸𝑚(𝐺) = ∑ 𝐸𝑏𝑖𝑡𝑣(code𝜏)𝐻𝐷𝑤𝑜𝑟𝑠𝑡(𝜏, 𝑆𝑀)𝜏∈𝐺    (5) 

𝐸𝑝(𝐺) = ∑ 𝐸𝑏𝑖𝑡𝑣(𝑒)𝐻𝐷𝑤𝑜𝑟𝑠𝑡(𝜏, 𝑆𝑀)𝑒 ∈ℰ    (6) 
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where 𝑣(𝜏, 𝑅𝑇𝑀) indicates the average volume of messages between task 𝜏 and 

the RTM and 𝑣(code𝜏) denotes the code size of task 𝜏. 𝐻𝐷𝑤𝑜𝑟𝑠𝑡(𝜏, 𝑅𝑇𝑀) is the 

longest hop distance from the processor running 𝜏  to the RTM and 

𝐻𝐷𝑤𝑜𝑟𝑠𝑡(𝜏, 𝑆𝑀) means the longest hop distance from the processor to the shared 

memory respectively. Note that the hop distances in (3)-(6)  are assumed be to the 

worst case in the NoC topology since we do not consider the physical location of 

the allocated processors in this example for brevity. It also should be noted that (4)-

(6) can be extended to a general SDF graph without difficulty. Then, the overall 

energy consumption of the system, denoted by E𝑠𝑦𝑠, becomes  

𝐸𝑠𝑦𝑠 =  ∑ (E(𝐺, μ(𝐺)) + 𝐸𝑟(𝐺) + 𝐸𝑚(𝐺) + 𝐸𝑝(𝐺))G∈A′
ℎ𝑝(𝐴′)

𝐼(𝐺)
  (7) 

For the energy computation in Fig. 1, the parameter values used in (1)-(7) are as 

follows: 𝑝𝑠 , 𝐶𝑒𝑓𝑓 , and 𝐸𝑏𝑖𝑡  in (2) and (6) are 0.02mW, 1, and 0.1mJ/bit , 

respectively . And 𝑣(e), 𝑣(𝜏, 𝑅𝑇𝑀), and 𝑣(code𝜏) in (3), (4), and (5) are set to 

0.04c𝜏 × 10
5bits/ms , 0.005c𝜏 × 10

5bits/ms , and 0.06c𝜏 × 10
5bits/ms , 

respectively. 

4.4.2 Overall Procedure 

The overall procedure of the proposed run-time resource management technique is 

shown in Figure 4.3. It consists of two major phases: design-time analysis and run-

time management that exploits the design-time scheduling results. The inputs to the 

design-time analysis are the application-related information including SDF graphs 

with WCET, energy profile, and throughput constraints, and the target platform-

related information. In the following subsections, they are explained in detail. 
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Figure 4.3 Overall procedure of the proposed resource management technique. 

 

4.4.3 Design-time Analysis 

When we construct the Pareto-optimal schedules for each SDF graph, we may use 

any scheduling algorithm that serves the purpose; finding throughput-maximized 

schedules for given numbers of allocated processors. In this thesis, we used a 

genetic algorithm (GA)-based technique to make Pareto-optimal schedules for each 

application [4][68]. The details of our design-time analysis are omitted due to lack 

of space. 

It is noteworthy that when we construct a static mapping of an SDF graph, the 

bandwidth capacity of NoC link is taken into account in the design-time analysis to 

ensure the satisfaction of the throughput constraints similarly to [12]. In other words, 
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we use a pessimistic latency bound for inter-processor communications to guarantee 

the throughput performance regardless of where tasks are mapped to. 

4.4.4 Run-time Mapping 

The run-time management phase consists of two steps. We first determine the 

number of processors that will be allocated to each active application. After the 

processor allocation is done, we decide physical locations of the allocated 

processors on the target NoC platform. We denote the former by processor 

allocation step and the latter by processor binding step respectively. To minimize the 

compute overhead of the run-time management, we design each step in a greedy 

fashion. 

1) Processor allocation 

Algorithm 1 describes the processor allocation step. In the first part, we allocate the 

minimum number of processors to each of active applications in the order of 

priority to satisfy their throughput constraints (lines 2-9). If available processors are 

insufficient for the allocation to an application, the application is put off. If there are 

remaining processors after the initial allocation, the next part of the algorithm 

additionally allocates the remaining processors to the applications that can achieve 

the energy saving most with the additional processors (lines 10-19). Currently, we 

do not consider processor sharing between different applications owing to algorithm 

complexity at run-time and leave it as future work.  

The energy reduction is accomplished by decreasing processor speed till the 

increased execution time of tasks does not violate the throughput constraints of the 

applications. Key of the algorithm is to determine the degree of processor slowdown 

to estimate the potential energy saving. We compute the ratio of the throughput 
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constraint over the throughput with more allocated processors (line 12) to determine 

the processor speed ratio. The energy saving potential 𝐸𝐺
′  by allocating one more 

processor to application 𝐺 can be estimated using (1)-(3) (line 13). The processor 

allocation step assumes the worst-case hop distance in (3) since the physical 

location of the allocated processors on the NoC is unresolved yet. We give an 

additional processor to the application with the largest energy saving potential (line 

15). The time complexity of the processor allocation step is O(|𝐴|𝑃).  

Figure 4.4 illustrates how the allocation step is performed with a simple example 

where two applications G𝐵 and G𝐷 are initially running on three processors P1, 

P2 and P3. G𝐷 uses P3 only. On the other hand, four tasks, B1, B2, B3, and B4, 

of G𝐵 are allocated P1 and P2 with μ(G𝐵) =
10

12
 since the expected throughput of 

G𝐵 is 
1

100
 at full speed whereas the throughput constraint is 

1

120
. When G𝐷 leaves 

the system as shown in Fig. 3(a), P3 is additionally allocated to G_B by remapping 

task B4 to P3. Then, the throughput of G𝐵 may increase up to 
1

70
 at full speed. 

Hence we may reduce μ(G𝐵) to 
7

12
, reducing the energy consumption. At this 

moment, the associated task migration is performed by fetching its code and data 

from a shared memory to P3. Fig. 3(b) shows a reverse case where G𝐵 loses an 

assigned processor due to the arrival of the new application G𝐷 that is launched to 

take over the processor. In this situation, we apply the throughput-optimal mapping 

of G𝐵 with N(G𝐵) = 2, increasing μ(G𝐵) to satisfy the throughput constraint.   
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Algorithm 1 Processor allocation 

Input 

- A , the design-time analysis results, and the platform configuration with 

𝑃 processors 

Output 

- Processor allocations and processor speed ratios for A  

 

𝑃 : the number of processors left unallocated 

1: P = 𝑃 

2: for all 𝐺 ∈ A  do 

3:     N(𝐺) = a gmi 𝑖  ′( 𝑇𝐻(𝐺,  )  𝑇𝐻𝑐(𝐺)) 

4:     if (N(𝐺)  𝑃 ) then 

5:         A′ = A′  *𝐺+ // put off the mapping of 𝐺 

6:     else 

7:         𝑃′ = 𝑃′  N(𝐺) 

8:     end if 

9: end for 

10: while P′  0 do 

11:     for all 𝐺 ∈ A  do 

12:     μ(𝐺) =
 H (𝐺)

𝑇𝐻(𝐺, (𝐺))
, μ (𝐺) =

 H (𝐺)

𝑇𝐻(𝐺, (𝐺) 1)
 

13:     𝐸𝐺
′ = E(𝐺, μ(𝐺))  E(𝐺, μ (𝐺)) 

14: end for 

15:     N(𝐺′) = N(𝐺 ) + 1 where 𝐺′ = a g  max
𝐺∈A′

(𝐸𝐺
′ ) 

16:     𝑃′ = 𝑃′  1 

17: end while 

18: return N(⋅) and μ(⋅) 
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Figure 4.4 Example of processor speed adaptation for energy reduction; (a) when an 

application leaves and (b) when an application arrives. 

 

2) Processor binding 

After allocating all the processors to the active applications, we determine physical 

locations of the processors on NoC tiles. To do this, Algorithm 2 shows a heuristic 

to bind the allocated processors to the physical tiles on the target NoC platform, 

aiming at minimizing the communication overhead between processors. We 
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distinguish a tile from a processor in this step because a tile has its unique 2-

dimensional location on the target NoC platform while a processor refers to a 

logical compute entity without awareness of physical location in the design-time 

analysis and the processor allocation step. 

 

Algorithm 2 Processor binding 

Inputs 

- A′, μ(⋅) 

- P(G): a list of allocated processors for an application G from the 

design-time analysis 

Output 

- The binding of the allocated processors to physical tiles 

 

PT: a list of the entire 𝑃 physical tiles 

C(G) , C𝑝𝑟𝑒 (G): lists of physical tiles (or tile cluster) bound to 

application G at the current and the last adaptations 

N(G), N𝑝𝑟𝑒 (𝐺) : the number of processors allocated to 𝐺  at the 

current and the last adaptations 

B(𝑝): a tile where a processor 𝑝 is bound to 

𝑐   (𝑇, 𝑇′) : total communication volume between two sets of 

processors 𝑇 and 𝑇′ for given task mapping 

𝐻𝐷(𝑡, 𝑡′): a hop distance between tiles 𝑡 and 𝑡′ 

 

1: PT′ = PT  // a list of unused physical tiles 

2: P′(G) = P(G) // a list of processors left unbound 

3:  A = A  // remaining applications 

4: for all 𝐺 ∈ A  do 

5:     if N(𝐺) = N𝑝𝑟𝑒 (𝐺) then 

6:         C(𝐺) = C𝑝𝑟𝑒 (𝐺) 

7:          A =  A  *𝐺} 
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8:         PT′ = PT′  C(𝐺) 

9:     end if 

10: end for 

11: Sort  A in descending order of μ(⋅). 

12: Sort PT′ such that outer physical tile with fewer unused 

neighboring tiles appears first. 

13: for all 𝐺 ∈  A do 

14:     C(𝐺) = *pop(PT′)+ // Select the first tile from PT′ 

15:     C(𝐺) = C(G) + {a gmi 
𝑡′∈ 𝑇′

(∑ 𝐻𝐷(𝑡 , 𝑡)𝑡∈𝐶(𝐺) )} 

16:     repeat line 15 until |C(G)| = N(G)  

17:     C′(G) = 𝐶(𝐺) // a list of unmapped tiles for G 

18:     B.pop(P′(G))/ = pop(C′(G))// bind an initial processor to 

the first tile of the cluster. 

19:     𝑝 = a gmax
𝑝′∈ ′(𝐺)

(𝑐   (*𝑝′+, 𝑃(𝐺)  𝑃′(𝐺)) 

20:      (𝑝) = a gmi 
𝑡′∈𝐶′(𝐺)

(∑ 𝐻𝐷(𝑡 , 𝑡)𝑡∈𝐶(𝐺)−𝐶′(𝐺) )) 

21:     repeat lines 19-20 until 𝑃′(𝐺) =   

22: end for 

23: return B(⋅) 

 

In the first step of the processor binding, the RTM checks whether the previously 

used tiles for each of the current active applications are available again if the 

number of the allocated processors does not change with a new mapping. If so, the 

same tiles are used for binding to avoid task code migration (lines 4-10). Afterwards, 

the RTM generates a new tile cluster to assign the processors allocated to the 

remaining applications in descending order of μ(⋅) for the applications (lines 11-
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22). A new cluster construction of an application begins with selecting the first tile 

that has the fewest empty neighbor tiles or is located at NoC boundary to minimize 

the fragmentation of available tiles. Then a cluster is formed by repeatedly adding 

up a neighbor tile that has the smallest sum of hop distances to the selected tiles 

(lines 14-16). When processors are bound to the tiles after the associated cluster is 

formed, processors that communicate with each other heavily are preferred to be 

placed into near tiles to minimize the communication overhead (lines 18-21). To do 

this, at first, we find an unmapped processor that has the largest volume of 

communication with the bound processors (line 19) then bind the selected processor 

to the unmapped tile closest to the tiles mapped in the cluster (line 20). The time 

complexity of the processor binding is governed by the later part of the algorithm 

(lines 13-22), which is O(|𝐴|𝑃2). 

For better understanding, Figure 4.5 depicts how the proposed run-time scheme is 

applied to the workload variation with the four applications of Fig. 1. Given that G𝐴, 

G𝐵 , and G𝐶  are running concurrently as shown in Fig. 4, the arrival of G𝐷 

triggers a new mapping. The processor allocation step assigns 2, 2, 2, and 1 

processors to the four applications respectively, which are the minimum numbers of 

processors to satisfy the throughput constraints. In the processor binding step, G𝐵 

and G𝐶remain unchanged since the number of allocated processors is the same on 

the new mapping. Then the most energy-efficient application 𝐺𝐴 is bound to two 

tiles at (0,0) and (0,1) that have the least unused neighboring tiles. Afterwards, 𝐺𝐷 

is bound to the remaining tile at (0,2). Finding out a better processor binding 

scheme that considers the code migration overhead is left as another future work. 
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Figure 4.5 Example of proposed run-time mapping under the part of the given 

workload variation of Figure 4.2 (c). 

 

4.5 Experiments 

4.5.1 Setup 

To evaluate the proposed scheme, we performed extensive experiments with a real-

life example, a simple smart phone, and several sets of randomly generated 

applications using TGFF. A set contains 10 randomly generated applications each of 

which has 10-30 tasks. Table 4.1 shows the summary of 3 selected task graphs and 

their pre-computed schedules. The table also includes how the throughput varies 

according to the number of allocated processors, and the task execution time 

variation. Even though other applications are not shown here, the number of tasks 

and the number of allocated processors lie between 𝐺1 and 𝐺10. As mentioned 
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earlier, we used a Genetic Algorithm (GA)-based scheduling technique to obtain a 

throughput-maximized static schedule for a given number of processors. With 

respect to target architectures, the clock rates of processor, local memory, shared 

memory, and NoC link are set to 500, 250, 800, and 800 MHz, respectively. 

4.5.2 Analysis of Run-time Overheads 

First, we quantitatively analyze the overhead of the proposed run-time management 

technique using our simulator. The master tile should pay the time overhead to 

execute the RTM kernel whose pseudo-code is shown in Algorithm 3. 

There are two kinds of overheads depending on who triggers the RTM. When a 

system status change is notified, the RTM kernel executes the proposed task re-

mapping algorithm after reading the pre-computed scheduling information. This 

overhead, denoted as 𝑅_𝑂𝑉1,, corresponds to the RTM execution step (① and ②) 

in Figure 4.6 and it depends on the system complexity: the number of active 

applications, the number of tasks, and the number of slave tiles. The RTM kernel is 

also triggered when the master tile is notified of a task completion from a slave tile, 

which is much more frequent than the other triggering condition. The RTM kernel 

finds the next task to run and sends a control message to the selected slave tile. This 

overhead, denoted as 𝑅_𝑂𝑉2, is almost constant. 

We also measured the communication overhead that the slave tile experiences for 

fetching the input data (OVD), for fetching the task code from the shared memory if 

necessary (OVF), and for check-pointing the output data (OVC). These overheads 

depend on the communication volume and the NoC size. As task execution time 

becomes shorter, the aforementioned overheads will consume a significant portion 

of the whole execution time of the slave tile, as shown in Figure 4.6. Table 4.2 

summarizes how large each overhead is as a function of the system complexity, 
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obtained by running the applications in Table 4.1 on our NoC simulator. When 

computing 𝑅_𝑂𝑉1 , we assume that the pre-computed schedule information is 

already stored in the local memory of the master tile.   

time 
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Figure 4.6 Execution scenario in timing diagrams of master, slave, and memory tiles. 

 

Table 4.1 Pre-computed schedule of SDF graphs by varying allocated processors.  

SDF 

graph 
# tasks 

# alloc. proc.  

(min, max) 

Throughput (ms
-1

) 

(min, max) 

Task execution time variation 

(ms) 

G1 10 2, 4 1/379,1/196 100 60 

G5 18 2, 5 1/772, 1/322 100 50 

G10 26 3, 6 1/846, 1/424 100 80 
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Algorithm 3 RTM Kernel 

1: while true do 

2:     if status change is notified then // overhead: 𝑅_𝑂𝑉1 

3:         load the pre-computed schedule if necessary 

4:         perform processor allocation  

5:         perform processor binding  

6:     end if 

7:     if task completion is notified then // overhead: 𝑅_𝑂𝑉2 

8:         find the next task to run from the loaded schedule 

9:         send a control message to the slave tile 

10:     end if 

11: end while 

 

Table 4.2 Run-time overhead measured by simulation. 

NoC dimension 4×4 6×6 8×8 10x10 

# memory tiles 2 4 8 10 

# applications 4 6 6 8 8 10 10 

𝑅_𝑂𝑉1 (kcycles) 142 167 417 438 546 672 878 

𝑅_𝑂𝑉2 (kcycles) 14.7 20.1 20.7 21.1 22.5 22.8 25.8 

OVF (kcycles) 15.2 16.3 19.4 16.9 20.4 24.5 26.3 

OVD (kcycles) 22.5 22.8 52.3 54.4 111.2 119.8 150.7 

OVC (kcycles) 20.2 20.6 45.8 45.7 86.5 86.8 131.3 

An interesting question is when the master tile will be fully saturated for the RTM. 

Then, the central manager will become the performance bottleneck. We devised a 

simple mathematical model to answer this question as follows: 
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𝑇

𝑥 (𝑂𝑉𝐷 𝑂𝑉 )
× 𝑃 × 𝑅_𝑂𝑉2 +𝑀 × 𝑅_𝑂𝑉1 < 𝑇   (8) 

where 𝑥 represents the average execution cycle of tasks, 𝑥 is the total number of 

the slave tiles, and 𝑀 is the total number of status change notifications for a given 

period of time 𝑇 . The first term on the left side indicates how many task 

completions a slave tile notifies to the master tile, multiplied by the number of slave 

tiles and the associated RTM overhead. The second term estimates the RTM 

overhead after being triggered by system status notification. If (8) is violated, we 

can say that the master tile is saturated. For a given workload variation and 

remapping frequency as a function of 𝑥, we can determine the maximum NoC size 

that a single master tile can support. 

Figure 4.7 shows the average task execution time required for each NoC size to 

satisfy (8). Overall, as the NoC size increases, the number of processors increases 

and communication overhead also increases. As a result, the required average task 

execution time tends to increase to avoid the master tile saturation by invoking the 

RTM less frequently. Figure 4.7 (b) indicates the case when the system status 

changes less frequently than Figure 4.7 (a); same 𝑀 values for a larger 𝑇 value in 

Figure 4.7 (b). In such a case, the required task execution time can be smaller. This 

is because the overhead due to the system status change affects less under the lighter 

workload variation so that the RTM can handle more frequent task schedule 

requests from the slave tiles with shorter task execution time. 
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Figure 4.7 Required average task execution time not to make the single master 

saturated for different NoC sizes with (a) T=20000 kcyles and (b) T=100000 

kcycles. 

 

4.5.3 Comparison with Other Approaches 

In the second set of experiments, we compare the proposed run-time scheme with 

other approaches including a hybrid mapping technique [12]. Even though the 

hybrid approach has been proposed without considering DVFS at run-time, we 
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modify the approach to apply DVFS for fair comparison of energy consumption. 

1) A Case Study: Simple Smartphone 

We applied the proposed technique to a simple smartphone example as a real-life 

example that has two use cases using five applications as shown in Table 4.3. The 

corresponding workloads represented as Gantt-chart is shown in Figure 4.8. Each 

block in Figure 4.8 denotes the duration of each application execution invoked 

periodically. The numbers in blocks indicate orders of block executions. The H.264 

decoder application has two operation modes, namely I or P frame, while the others 

have a single operation mode only. Each mode of an application is specified by an 

SDF graph. Note that applications have different invocation periods so that the 

workload varies dynamically in each use case. The target architecture is a 3x3 NoC 

with one shared memory tile, one master tile, and 7 slave tiles.  

 

Table 4.3 Two use cases in the smartphone example.  

Use case Active applications 

VideoPlay MP3 decoder, H.264 decoder 

VideoPhone 
G.723 decoder, G.723 encoder, 

H.264 decoder, x264 encoder 

Table 4.4 shows the summary of the applications and their pre-computed schedule 

information. It includes the number of tasks in an application, the throughput 

performance with the number of allocated processors at full processor speed and the 

throughput constraints in frame rate. Since each of the G.723 encoder and decoder 

consists of a single task only, they are not shown in the table. The code size and the 

task execution times were profiled using RealView Development Suite [69]. 
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Table 4.4 Result of the design-time analysis of the smartphone applications. 

 # tasks 
# alloc. proc.  

(min, max) 

TH(⋅)  

(f ame/s) 

(min, max) 

TH𝑐(⋅)  

(f ame/s) 

H.264 decoder 

(I-frame) 
10 1, 3 19.3, 55.6 

V.Play: 30 

V. Phone: 15 

H.264 decoder 

(P-frame) 
7 1, 2 30.7, 54.4 

V.Play: 30 

V. Phone: 15 

MP3 decoder 8 2, 3 61.0, 102.0 60 

x264 encoder 5 2, 3 18.5, 22.4 15 

0 33000 

1 

0 

66000 

G1, G3 : H264 decoder 

G2  :  MP3 decoder 

G1, G3 : H264 decoder  

G2  :  x264 encoder 

(a) Video Play 

7 11 

99000 12000 165000 

8 

(b) Video Phone 
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Figure 4.8 Gantt-chart representations of workloads of smartphone example; (a) in 

case of VideoPlay scenario; (b) in case of VideoPhone scenario. 

 

We compared the average energy consumption of the three schemes, our approach 

(labeled as Proposed), the Static and the Hybrid approaches as discussed in the 

motivational example. The system status changes more frequently as the invocation 

period of an application becomes shorter. Therefore, the VideoPlay case has more 

frequent system status changes than that of VideoPhone due to the shorter 
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invocation period. In the Static scheme, all the applications are mapped statically in 

each mode. 

Proposed          Hybrid 

VideoPlay VideoPhone 
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Figure 4.9 (a) Average energy consumption of the smartphone applications on a 3x3 

NoC with the three approaches; (b) breakdown of various run-time overheads. 

 

Figure 4.9 shows that our approach outperforms the Hybrid approach and the Static 

approach by 14-31% and 33-36% in the reduction of the average energy 

consumption of the applications. With the less-frequent system status changes in the 

VideoPhone case, our technique and the Hybrid approach show the similar energy 
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consumption. On the other hand, the Hybrid scheme failed to handle 46% and 65% 

of the run-time mappings in the VideoPhone and the VideoPlay cases respectively, 

whereas our technique was able to handle all the use-cases successfully. This is 

because with the Hybrid approach, there exist cases where a released application 

may not start immediately due to lack of available processors than minimally 

required to satisfy the throughput constraint. In this case, the delayed execution of 

the application leads to throughput constraint violation. As a result,  _OV1 in the 

Hybrid scheme was bigger than that of our scheme in the VideoPlay case since the 

average number of active applications tends to increase due to the delayed 

applications. 

2) Large Synthetic Applications 

We made four different workload variations using 10 large synthetic applications, 

each of which has 50-100 tasks. They require 5-12 processors to satisfy the 

throughput constraints. The task execution times are set similarly to Table 4.1. We 

make workload variations by adjusting the release intervals of the applications. The 

Gantt-chart representations of workloads are shown in Figure 4.10. As the release 

intervals decrease, a workload variation becomes heavier meaning that the system 

status will change more frequently with more active applications. The lightest 

workload variation in Figure 4.10 (a) has two active applications on average that 

can be five at most. For the heaviest workload variation in Figure 4.10 (b), the 

parameters are four and seven respectively. All the applications were assigned the 

same period that is larger than the longest execution time of the applications. Then, 

we measured the energy consumption of a single run of all the applications. The 

target architecture is an 8x8 NoC composed of a single master tile, 55 slave 

processor tiles, and eight shared memory tiles. 
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Figure 4.10 Gantt-chart representations of workloads of synthetic examples; (a) 

when variation occurs scarcely; (b) when variation occurs frequently. 

 

The comparison of the average energy consumption of an application is shown in 

Figure 4.11. The Hybrid scheme is likely to fail as the workload variation becomes 

heavier since it cannot adapt to the variation of computation resource available. The 

Hybrid scheme experienced 3-4 failures of application mappings, which amounts to 

30-40% of the total number of applications. The Static scheme maps the 10 

applications as a whole regardless of the workload variations, thus, consuming the 

most energy. 



 

 ８５ 

0

40

80

120

160

200

P. H. P. H. P. H. P. H. S.

R_OV1

R_OV2

OV-C

OV-D

OV-F

Compu

0

10

20

30

40

50

P. H. P. H. P. H. P. H.

R_OV1

R_OV2

OV-C

OV-D

OV-F

    heavy workload                    light workload 

(P: Proposed, H: Hybrid, S: Static) 

(a) 

(b) 

Average energy consumption (10-3 mJ) 

 

Figure 4.11 Average energy consumption of (a) a synthetic application on a 8x8 

NoC with the three approaches; (b) breakdown of various run-time overheads. 
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Chapter 5 

Resource Management Software Platform 

5.1 Introduction 

In this chapter, we describe the software platform implementing the fault-aware task 

mapping and resource management technique in chapter 4. The software platform is 

proposed to formalize the implementation method of the fault-aware techniques. 

Through this platform, we aim to implement the fault-aware resource management 

with any architecture which even has no operating systems or caches. Also, various 

mapping approaches can be implemented and applied to enable the proposed 

platform to become the baseline to analyze performance and overheads of run-time 

mappings. In this section, we first overview the resource management scenario to 

present how the master, slave, and shared memory tiles co-operate at run-time. 

Based on this scenario, we extract the required features of the software platform and 

discuss the overall structure of the software platform.  

Figure 5.1 shows the major steps taking place between a master and a single slave. 

At the beginning, the master fetches the task graph information and scheduling 

information from shared memory tiles (step ①). With the loaded information, the 
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master finds an executable function and an available slave tile to map the function. 

In this step, static mapping decision is used in case static and hybrid mapping 

policies are selected (step ②). After mapping decision is made, the master sends a 

control message to the chosen slave to fetch and execute the function (step ③). 

Once a control message arrives, the slave starts to load the code and input 

arguments of the function from a shared memory tile (step ④). If the function code 

is already loaded in the local memory of the slave time, code fetch can be omitted. 

Note that minimizing the communication workload is an important optimization 

goal of dynamic mapping. After performing the function (step ⑤) the slave tile 

check-point the execution results by sending the results to a shared memory tile 

(step ⑥) that may be different from the shared memory containing the code and 

input data of the function. After the check-pointing is finished, the slave notifies of 

the master the successful execution of the allocated function with an 

acknowledgement message (step ⑦).  

Mst   : Master tile 

Slv     : Slave tile(s) 

Mem : Shared memory tile 

① : Schedule loading  

② : Mapping/Proceeding tasks 

③ : Sending control packet 

④ : Code/Data loading  

⑤ : Function execution 

⑥ : Check-pointing 

⑦ : Reporting 
Mem 

Mst Slv 

① 

② 
③ 

④ 

⑤ 

⑥ 

⑦ 

 

Figure 5.1 Overall execution procedure of the proposed software platform. 

 

5.2 Related work 

Recently, some researches that deals resource management issues in many-core 



 

 ８８ 

architecture are proposed [70][71][72][73]. The approach in [70] finds an optimal 

mapping at run-time to maximize the overall weighted system throughput, assuming 

that all applications are specified by linear graphs. In [71], communication packet 

mapping and scheduling as well as task mapping and scheduling targeting many-

core architecture with NoC interconnection. 

Most of the existing researches, however, are based on simulation with high-level 

model and only few of researches consider the software that implements proposed 

schemes [72][73]. In [72], distributed resource management scheme is proposed 

concentrating on reducing overall communication overhead in large size of NoC. 

Running applications compete with each other to obtain more cores based on greedy 

heuristic. In this approach, however, only fully dynamic mapping is considered and 

fault-tolerance is not provided. And it also assumes high-level simulation with small 

agent software that run on an operating system running on each core that supports 

basic functions such as message-passing in NoC. There is also a many-core OS [73] 

targeted at the resource management challenges including the need for real-time and 

QoS guarantees. In that approach, Space-Time partitioning (STP) and Two-Level 

Scheduling are proposed for performance isolation and partitioning of resources. 

5.3 Overall Structure 

A software platform should support basic functions involved in the aforementioned 

resource management flow, which includes run-time function mapping and 

scheduling, shared memory management, communication between tiles, and so on. 

Figure 5.2 shows the overall structure of the software platform that lies between the 

many-core hardware platform and the application task to be executed on the 

hardware platform. It consists of five parts as shown in the figure. 
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As explained in the previous section, a task to be executed on the many-core 

accelerator should be specified by a dataflow graph, which defines the application 

API layer. At the bottom layer, the software platform communicates with the host 

processor of the system through the host interface module while it communicates 

with other tiles via an on-chip communication network through the communication 

interface module. The main function of the software platform performs mapping 

and scheduling of functions in the task scheduling module. The graph information 

and the scheduling information as well as task function code/data, and global states 

is stored into and fetched from the shared memory tiles through the memory 

management module. 

Application API (dataflow graph specification) 

Communication 
interface 

Host interface 

Task 
scheduling/mapping 

module 

Memory management 
module 

HW platform 

Application 

Software  
platform 

 

Figure 5.2 Overall structure of the proposed software platform. 

 

5.4 Components of Software Platform 

5.4.1 Application API Layer 

This layer defines how a function should be coded to run by the proposed software 

platform. It is not implemented as a module since no run-time checking is 
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performed. Nonetheless, we include this layer as a part of the software platform, 

expecting that compile-time analysis will be able to detect violation of the coding 

style in the future. For example, the occurrence of deadlock or buffer overflow in 

SDF representation can be analyzed and detected in priori at compile-time. As of 

now, it is programmer‟s responsibility whether the code is written according to the 

rules that are described below.  

Since a function is the unit of mapping and scheduling, code migration should be 

simple and cheap. To serve this purpose, we enforce the body of a function to be a 

single chuck after compilation. In other words, a function may not call other 

functions inside. If it calls a nested function, the nest function should be inlined.  

In a dataflow graph, channels define global states of the task, and so will be check-

pointed in the shared memory tiles. Functions communicated with each other 

through these channel variables. Thus the input arguments to the function that are 

associated input channels in the dataflow graph are given by the pointers to the 

global states. For an output channel of the dataflow graph that corresponds to the 

return value of the function, a pointer argument should be defined to make the 

function void. And input arguments should be placed before output arguments.  

Figure 5.3 shows a simple producer-consumer example where two functions are 

connected via a channel. In sender task shown in Figure 5.3 (b), three integer values 

are written to channel as check-pointed data. To perform check-pointing, at first, the 

data size and the access address of the check-pointing are notified to slave manager 

as in line 2 and 3. And then, actual data access is operated as in line 4 and 5. In case 

of data loading in Figure 5.3 (c), read operation is performed in the same way of 

check-pointing except the used parameters. Note that, in general, there exists the 

actual task function between data loading and check-pointing. 
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The data access size and data loading addresses are directly described by the user in 

the task functions while the other parameters for shared memory access are 

transferred to slave manager from master manager by control packet and 

automatically inserted into the task functions. The other parameters are described in 

host interface module, also by the user. Though all the memory access information 

can be described together in the host interface module, we decide to let the user set 

parameters in the source codes of the task functions since the data access size and 

data loading addresses depends on the used data structures in the source codes.  

sender( data_loading_addr[], checkpoint_addr,  

 data_loading_base,checkpoint_base ) { 

     int i; 

     *(checkpoint_base+1) = 3*4;  // Set access size 

     *(checkpoint_base+2) = checkpoint_addr;     // Set access position 

     for(i=0;i<3;i++) {   // Write output data 

          *(checkpoint_addr ) = I;   // to shared memory. 

     } 

} 

receiver( data_loading_addr[], checkpoint_addr,  

 data_loading_base,checkpoint_base ) { 

     int i; 

     *(data_loading_base+1) = 3*4;  // Set access size 

     *(data_loading_base+2) = data_loading_addr[0];     // Set access position 

     for(i=0;i<3;i++) {   // Read input data 

          *(data_loading_addr+i) != i;  // to shared memory. 

          break; 

     } 

} 

(a) 

(b) 

1 1 

(c) 

sender receiver 

Sender 

Receiver 

1 

2 

3 

4 

5 

1 
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6 

  

Figure 5.3 Function code example of simple application composed of two functions; 

(a) SDF graph of the application; (b) Sender function and (c) Receiver function. 
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5.4.2 Communication Interface Layer 

The communication interface module uses message passing for communication 

between tiles. The proposed software platform uses two types of inter-tile 

communications: communication between processor tiles and communication 

between processor and shared memory tiles. All the messages exchanged between 

the tiles are packetized in this module. A packet consists of the packet header and 

the payload. The packet header contains information specific to the on-chip 

communication fabric. For example, the identifier of source tile and identifier of 

destination tile need to be encoded for NoC communication. On the other hand, the 

payload of a packet is distinguished by the communication type. 

A message exchanged between processor tiles is either a control message or a report 

message as shown in Figure 5.4, which are opposite in direction. The master sends a 

control message to a slave after scheduling a new function. The control message is 

divided into two parts: schedule information and control information. The schedule 

part involves the identifier of the newly assigned function and the identifier of the 

application. Since we allow multiple applications share the many-core accelerator, 

we have to manage the application id in the control message. 

On the other hand, the control part contains the main information about the function 

code, data arguments, and check-pointing. Code information contains the code size 

and the shared memory address from which the slave tile can fetch the function 

code. Data information involves input data size and their location for the tile to 

fetch input data. Input date may be fetched from several distributed shared memory 

tiles. Lastly, check-point information is similar to data information.  

A report message, the second type of messages sent by a slave, contains only the 

schedule information to notify the master of what task has finished by the slave tile. 
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Figure 5.4 Message structure between processor tiles; (a) Master-initiated message 

and (b) slave-initiated message. 

 

5.4.3 Host Interface Layer 

The master tile communicates with the host processor through the host interface 

module. Since there is no operating system assumed in the master tile, the host 

interface module uses polling mechanism for communicating with the host 

processor. Note that the host processor may launch a new application to share the 

many-core accelerator, and change the voltage or frequency of processor tiles at 

run-time. And a resource failure is detected by the host controller and notified to the 

master in the middle of task execution. The host interface module monitors any 

command or signal from the host and delivers it to the task scheduling module. 

The necessary role of the host interface face module is to give the information of 

running applications and running environment to the master manager. As 

application information, application identifier and code sizes and shared memory 

addresses of tasks which can be known at compile-time should be given and sizes 

and start addresses of shared memory should be given as environmental information. 
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5.4.4 Memory Management Module 

The master tile manages the layout of the code and data of tasks in the shared 

memory tiles. In case there are multiple shared memory tiles, it should determine 

how to distribute the contents. A simple scheme is to copy the code and read-only 

data of tasks into all shared memory tiles to reduce the communication workload 

while positioning the channel data into a single shared memory tile for easy check-

pointing. Then the slave tile can fetch the code and the read-only data from the 

nearby shared memory tile.  

Suppose we adopt this simple scheme in the memory management module, the 

master sends the code of a newly launched task to all shared memory tiles at the 

same offset position. It is noteworthy that actual code delivery is performed by the 

communication interface module. The schedule information and the channel data 

structure is stored in a shared memory tile closest to the master tile. The shared 

memory tile becomes the check-pointing repository. Even though we assume that 

the shared memory tile is protected from transient and permanent error, the memory 

management module may use a software protection scheme in addition. 

In the current memory management module, basic and simple scheme is applied. 

All the running applications are assigned static size and position shared memory 

area since we should know all the static information to perform hybrid mapping. To 

implement more complex and efficient memory management scheme is left as a 

future work. 

5.4.5 Task Scheduling/Mapping Module 

The task scheduling module plays the key role of hybrid resource management. The 

pseudo-code of the task scheduling module that corresponds to steps ① and ② in 
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Figure 5.1 is described in Figure 5.5. Corresponding to the step ① in Figure 5.1, 

the master fetches the graph information and the scheduling information of all 

outstanding tasks, which are required for run-time processor allocation under the 

current workload in line 1. At first, it checks whether any notification arrives from 

slave tiles or any control information is received from the host in line 3. It should be 

checked by the master manager as soon as possible not to delay the progress of task 

execution.  

If all running applications are set to be mapped statically, static application mapping 

is performed only once as shown in line 5 of Figure 5.5. Otherwise, at every loop, 

the master checks whether there is any change in the system status that includes 

arrival and departure of a task and variation of resource availability (line 9). If such 

a status change is detected, application re-mapping is performed to handle the 

dynamisms in line 11. Afterwards, depending on the resource management policy of 

each task, executable functions are mapped in either the hybrid or dynamic way as 

depicted in line 12 and 15. Finally, an executable function is assigned to a slave tile 

following the scheduling/mapping decision and sends a control message to the slave 

tile in line 17. After proceeding schedules, the master repeats the above procedure. 

Run-time mapping of the proposed software platform has two phases; application 

mapping and task mapping. Static mapping is classified with other two mappings by 

the application mapping. Static mapping performs application mapping only once 

since the number of allocated processors are not changed and mapped. In hybrid 

mapping, all the available processors are allocated to all active applications to 

maximize average performance utilizing design-time analysis result similar to [14]. 

Hybrid mapping is similar to static mapping in that it also utilizes static scheduling 

information, but different from static mapping, the number of allocated processors 
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can be changed. Therefore, it needs new task mappings whenever new application 

mapping is invoked to handle the dynamisms. 

In our hybrid resource management scheme, dynamic mapping is also supported. 

Performance improvement of data-parallelizable application by data-parallelization 

can be deviated when there exists large branch divergence in the data-parallelized 

tasks. In other words, task execution time can become much different from each 

invocation depending on the characteristic of input data. For example, in case of an 

application that detects corners for a given picture as in Figure 5.6 (a), the picture is 

partitioned into eight subsets that are processed by data-parallelized tasks, e.g., T1 to 

T8. The execution time of T1 becomes much shorter than that of T8, since there are 

much more cores in the input data of T8 than the input data of T1. 

main() { 

     initialize(); 

     while( true ) { 

          check_reportFromSlaves(); 

          if( do_static_mapping ) { 

               static_mapping(); // In case of static 

               do_static_mapping = false;  //Do mapping only once 

          } 

          else { 

              dynamisms_happen = check_dynamicBehaviors(); 

               if( dynamisms_happen )        static_task_mapping(); 

               if( do_dynamically )     dynamic_function_mapping(); 

               else         hybrid_function_mapping(); 

          } 

          proceed_schedules();  

     } 

} 
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Figure 5.5 Pseudo-code of the run-time manager on a master. 
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Figure 5.6 Dynamic task mapping for data-parallelized tasks; (a) Input data of an 

application partitioned for data-parallelization; (b) Task graph of the application; (c) 

Static task mapping of the application; (d) Dynamic task mapping of the application. 
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Different from hybrid mapping, dynamic task mapping is performed whenever a 

report message is arrived to master manager as shown in line 11 of Figure 5.5. This 

is natural in dynamic mapping because any task that is ready when all input data are 

prepared should be able to be launched at the moment of a task finish. To achieve 

better performance in dynamic task mapping, data-parallelized tasks can be 

assigned and launched in the slave tiles that are idle as soon as a task is finished if 

an application is set to be mapped with dynamic mapping. As a result, dynamic 

mapping can reduce slacks, increasing the utilization of allocated processors as 

shown in Figure 5.6 (d). 

5.4.6 Slave Manager 

The proposed software platform also defines the run-time system of a slave tile, 

called slave manager. The slave manager manages the actual execution of a function 

assigned to the slave tile from the master. All the steps performed in the slave 

manager are executed sequentially and atomically without interruption. 

1) Code migration and data loading 

On receiving the control message, the slave manager first fetches the task code and 

reads the input data from the designated memory tile. Remind that information 

required to perform code/data loading such as shared memory addresses and shared 

memory tile ids are extracted from the control message. To ensure correct execution 

and communication between the master and the slave, we adopt a non-preemptive 

task migration; task migration is performed after the current function finishes 

execution [4].  

In the baseline implementation, code and data fetching is not hidden since task 

execution begins only after all fetching is completed. In the future, we will 
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implement a prefetching scheme where a slave tile can be assigned the next function 

while it executes the current function. Note that, at task code migration, it is 

necessary to fetch the task code only if the slave tile does not have the task code in 

its local memory due to task re-mapping or memory capacity limitation. Since the 

local memory is a scarce resource, prefetching decision should be made carefully 

not to waste the available memory space of the local memory. It is necessary for the 

slave manager to manage the local memory in a smart way, which is left as a future 

work. 

2) Task execution, check-pointing, and reporting 

Similar to the migration policy, function execution is also assumed to be non-

preempted, e.g., executed atomically. The only exception of atomic execution 

occurs when processor failure occurs. In that case, though the function running on 

the failed processor nay be halted during execution unavoidably, the will be 

migrated to a new live processor without consistency problem since global states 

are check-pointed at each function boundary. 

After the assigned function finishes its execution, the slave manager sends the 

output data and check-pointing data to the destination shared memory tile. After 

check-pointing is finished, slave manager sends a message to master manager to 

report the completion of the assigned task. 

5.5 Software platform implementation 

This section describes the implementation details of the proposed software platform 

that is tailored for running on a generic NoC platform-based accelerator. However, 

the proposed software platform can be easily deployed to other many-core platforms 

with slight modifications, which is explained in the next section. As of now, we 
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have implemented the basic features of the platform, namely baseline 

implementation, and run it on two evaluation HW platforms.  

5.5.1 Scheduling Information 

The proposed software platform is based on a hybrid resource management scheme 

[14] that may use the pre-determined mapping decision to select the slave tile to 

map each task at run-time. In the hybrid resource management technique, the 

mapping and scheduling of a given dataflow graph is determined at compile-time 

for a given number of processors. The mapping and scheduling information is 

specified by a pair of functions: M(τ, N) =  , 1 ≤  ≤ 𝑁 and S(τ, N) = 𝑘, 1 ≤ 𝑘 ≤ 𝑁 

where 𝑁 is the number of assigned processors to the task. M(τ, N) represents on 

which processor function τ is mapped and S(τ, N) represents the scheduling order 

of function τ on the mapped processor. If no mapping decision is made at compile 

time, M(τ, N) is set to 0 meaning that mapping decision is made at run-time. 

Similarly, if no scheduling decision is made at compile time, S(τ, N) is set to 0 

meaning that which function to schedule next is determined at run-time. 

Note that the number of processors assigned for a given task, 𝑁, may vary at run-

time within a range denoted by (𝑁𝑚𝑖𝑛 , 𝑁𝑚𝑎𝑥). Therefore, a set of mapping and 

scheduling information is constructed and stored for a varying number of assigned 

processors at compile time. The mapping and scheduling information is saved in a 

shared memory tile and delivered to the many-core accelerator when dispatching the 

task.  

In case the number of assigned processors is fixed and not varying during execution 

and the static mapping and scheduling decision is preserved at run-time, it is 

nothing but a static resource management scheme, which is an extreme case of the 

hybrid resource management scheme. In case no mapping decision is made at 
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compile time and the number of assigned processors can vary at run-time, it is a 

fully dynamic mapping scheme. A true hybrid mapping lies in between, where the 

number of assigned processors is determined at run-time while the static mapping 

result of tasks onto a selected number of processors is used by the master processor.  

By supporting a generic hybrid resource management scheme, the proposed 

software platform can perform a full spectrum of resource management scheme, 

static mapping to dynamic mapping. Which resource management scheme is 

realized is determined by the user at compile time. 

In the software platform, the scheduling information is expressed as follows: 

𝑆 = (𝑁𝑝, *𝑀+, 𝑃) 

𝑀 = ( , 𝑁𝑡, *𝑇+) 

𝑇 = * 𝑡 |𝑡 = 𝑡𝑎𝑠𝑘  𝑑  𝑎𝑝𝑝𝑒𝑑 𝑡  𝑝𝑟 𝑐𝑒𝑠𝑠 𝑟   + 

𝑃 = * 𝑆𝑡𝑎𝑡 𝑐, 𝐷𝑦𝑛𝑎  𝑐, 𝐻𝑦𝑏𝑟 𝑑 + 

A schedule 𝑆 has three tuples: 𝑁𝑝 is the number of allocated processors to 𝑆; 𝑀 

denote the mapping of the allocated processor; 𝑃 is the scheduling policy. In the 

mapping 𝑀,  , 𝑁𝑡, and 𝑇 indicates the identifier of the allocated processor, the 

number of mapped tasks, and the set of identifiers of the mapped tasks, respectively.  

5.5.2 Function Migration and Execution 

To make task code migration efficiently, our current implementation restricts the 

code binary of a task to be a single data chunk on a shared memory tiles. To do this, 

we make a task have a single function only. Sharing libraries between tasks will be 

considered in future work. Note that code migration needs to be omitted to reduce 

run-time overhead if we can execute a task on the same slave tile as shown in 
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Figure 5.7 (a). 

After code migration is finished in slave manager, data loading can be followed if 

there are input data from precedent tasks. And then task execution can be performed 

by the jump to the function pointer of the migrated task binary as shown in line 4 of 

Figure 5.7 (b). The function pointer indicates the local address where the migrated 

task binary is allocated. Then, check-pointing can be performed if required. 

main() { 

     while( true ) { 

          if( STATUS == ready ) {   

               ExecutionInfo info = readControlInfo(); 

               if( info.code_addr != before_code_addr; 

                    code_loading( info.codeLoading ); 

               execute_task( info ); 

               STATUS = idle; 

               report(); 

          } 

     } 

} 
 

(a) (b) 

execute_task( ExecutionInfo info ) { 

     typedef void (*jmpPtr)(void); 

     jmpPtr jmp;  

     jmp = (jmpPtr) (info.exec_addr); 

     (*jmp)( info ); 

} 

1 
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4 
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2 

3 
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Figure 5.7 Pseudo-code of slave manager; (a) Main function; (b) Task execution 

function. 

 

5.5.3 Function Mapping and Scheduling 

In our platform, task mapping and scheduling is implemented with control queues 

(CQ). When task mapping and scheduling is finished, control messages are 

organized and put into corresponding control queues. The master maintains a 

control queue for each slave tile to manage the execution of slave tiles. A CQ 

contains a list of tasks ready to run according to the schedule policy. In case a 

hybrid task mapping is applied, static mappings of tasks are applied at run-time if 
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the number of allocated processors of a running application is determined after the 

allocation step of application mapping. Assume that application G𝐴 in Figure 5.8 (a) 

enters and three processors are allocated and static mappings of schedule 2-A in 

Figure 5.8 (c) prepared at compile time is selected for G𝐴. Then three processors are 

bound after task mapping at three tiles of which control queues are CQ1, CQ2, and 

CQ3, respectively. After line 17 of Figure 5.7, the three control queues are updated 

as Figure 5.9 (a). 
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Figure 5.8 (a) Example of an application G_A; (b) Performance of static schedules 

of G_A; (c) Gantt chart representation of static schedules; (d) Control queue status 

after hybrid task mapping. 

 

After task mapping finishes, master manager proceeds the schedules by checking 

iteration progress of the execution-completed task notified by report messages. This 

corresponds to line 3 and line 14 of Figure 5.7. Once a report message comes from a 

slave after a task execution and checked in line 3, control queues of running 

applications are updated at line 14. In case the number of received report messages 

becomes the same as the number of tasks of the application, master manager checks 
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whether the application finishes or not. If so, the end flag of the application is set so 

that the control queues of the allocated tiled are empty as in Figure 5.9 (b). run-time 

mapping can be invoked and performed with running applications except the 

finished application. Otherwise, simply control queue of the related slave tile is re-

filled following the selected schedule. 

When remapping is performed in the middle of an application execution due to 

dynamic behaviors of the system, the control messages in the control queues are re-

distributed following the new mapping decision. The example of re-distribution of 

control queues are shown in Figure 5.9 (c). Application G𝐵 arrives during the 

execution of task A1 and schedule A-2 is selected for G𝐴. As a result, CQ2 and CQ3 

are updated following the result of run-time mapping. 
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(a) (b) 
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          queue 
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Figure 5.9 Control queue status (a) After hybrid task mapping of application 𝐆𝑩; (b) 

When 𝐆𝑩 finishes; (c) When processor failure occurs the tile managed by CQ3 

during task B1; (d) When new application arrives. 
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When a processor failure occurs, we reallocate processors for the application that 

were allocated a faulty processor. In other words, we migrate tasks running on the 

faulty processor to live processors allocated by new application mapping, following 

corresponding new static schedule. For example, in Figure 5.9 (d), if a processor 

failure occurs at the tile associated with CQ3 during the execution of task A1, new 

application mapping is invoked after A1 finishes. If G𝐵 is allocated two processors 

by the remapping, and schedule A-1 is applied, task A4 is migrated to another live 

tile controlled by CQ2. 

And to evaluate the SoPHy implementation, we consider two platforms, SystemC-

based NoC simulator and Intel-Xeon Phi-based many-core platform. 

5.6 Virtual Prototyping System 

We built the virtual prototyping system on top of HSIM, a cycle-level SystemC 

simulator [16]. We also integrated Noxim, an open-source NoC simulator [73] into 

our virtual prototyping system. The overall structure of the virtual prototyping 

system is shown in Figure 5.10. HSIM consists of simulation backbone and 

wrappers that connect Instruction Set Simulators (ISSs) to the backbone. The 

simulator backbone gathers request accesses to shared memory tiles from processor 

simulators and orders the requests in order to guarantee functional correctness of 

simulation. At the same time, the backbone also evaluates the latency of memory 

accesses through cycle-level simulation of the underlying communication 

architecture. The integrated NoC simulator serves the purpose. As an ISS, we adopt 

ARMulator, a processor simulator for ARM processors [75]. 

To enable shared memory access through cycle-level Noxim simulation, we connect 

HSIM and Noxim. To do this, we combine processor wrapper (PW) module in 
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HSIM and processing element (PE) module inside Tile module of Noxim. Since the 

PE module communicates with router module, another module inside the Tile 

module of Noxim, read/write accesses to shared memory tiles from ARMulator 

received the PW modules can be transferred to the router module. As a result, the 

shared memory access requests can be transferred to memory wrapper (MW) 

modules in shared memory tiles through NoC interconnections. 

Noxim (NoC interconnection) 

HSIM (processor simulator) 

ARMulator (ISS)  ARMulator (ISS)  

Processor 

wrapper 

Memory 

wrapper 

 

Figure 5.10 Overall structure of the virtual prototyping system. 

 

5.7 Xeon Emulation System 

The virtual prototyping system benefits from being a generic platform of the 

accelerator and allowing us to observe detailed internal behavior such as 

communication overheads. However, it suffers from long simulation time as the 

system grows. To this end, we take an approach to use an Intel Xeon Phi [15] as an 

emulation platform for evaluating the software platform implementation with 

workloads big enough to make the virtual prototyping based evaluation impractical. 

An Intel Xeon Phi
TM

 coprocessor “Knights Corner” architecture features 57 in-order 

cores on a single die. Each core has two levels of cache, which is globally coherent 

via directory-based MESI coherence protocol.  Communication between the host 
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CPU and Xeon Phi is done explicitly through message passing. However, unlike 

many other coprocessors, it runs a complete Linux-based operating system, with full 

paging and virtual memory support, and features a shared memory model across all 

threads and hardware cache coherence.  

Since the underlying architecture of Xeon Phi differs from that of the virtual 

prototyping system, we made slight modifications to the software platform 

implementation for the emulation. In Xeon Phi emulation system, slave managers 

are implemented as threads. And shared memory is assigned as a global variable 

and can be accessed the threads. Code migration and execution can be performed by 

accessing the code in the shared memory. The task code to execute is copied into the 

cache of the slave tile. And data loading and check-pointing are also performed in 

similar way.  

5.8 Experiments 

5.8.1 Setup 

In experiment, we use FAST circular corner detection [76][77][78] algorithm as an 

example. It is well known that feature extraction of image corners and their tracking 

are computationally intensive, but its acceleration using a GPGPU (General Purpose 

Graphic Processing Unit), which is the most widely used many-core accelerator, 

does not give significant speedups compared to non-accelerated CPU execution [2]. 

This is because in GPGPU, the parallelized functions that finish earlier should wait 

until the end of the longest parallelized function. Such computation intensive and 

data adaptive algorithms, however, can also be leveraged well on the proposed 

software platform. 

All the experiments are performed in 4x4 NoC which has a master tile, two shared 
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memory tile, and 13 slave tiles shown in Figure 2.2 (a). And with respect to target 

architectures, the clock rates of processor, local memory, shared memory, and NoC 

link are set to 500, 250, 800, and 800 MHz, respectively. 

5.8.2 Experiments on Virtual Prototyping System 

We measure the proportions of various overheads in our virtual prototyping system 

to evaluate the viability of the proposed resource management scheme. The results 

varying the size of an input picture from 200x144 to 1280x720 sizes are shown in 

Figure 5.11. We observe that code migration, data loading, and check-pointing 

overheads are relatively small, i.e., 2.7-8.5% of a function execution time on 

average. Also, the overheads for the run-time management by the master, which 

includes proceeding schedules between two consecutive functions, are acceptable. 

They are 1.6-21% of the function time execution time and almost constant, meaning 

that the portion of run-time management overhead becomes smaller as the function 

execution time grows. As the input data size grows, the ratio of run-time overheads 

decreases since the function execution time grows more rapidly than the overheads. 

As expected, the ratios of data loading and check-point depend on input data size 

while the ratios of code migration overhead decreases as input size increases. This is 

because the code migration overhead is almost constant regardless input data size. 

The second experiment evaluates speed-up in throughput by the data-level 

parallelization of the FAST application. Figure 5.12 shows speed-ups varying the 

number of allocated processors for executing the eight functions with the hybrid and 

the dynamic mappings. The result of static mapping is the same with hybrid 

mapping unless processor re-mapping occurs at run-time, thus omitted in the figure. 
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Figure 5.11 (a) Ratio of various overheads and function execution time; (b) 

breakdown of the run-time overheads. 

 

Speed-ups are linearly proportional to the number of allocated processors in both 

mappings. Dynamic mapping shows similar or maximum 17% better performance 

than hybrid mapping except the case that only a function is mapped to a processor. 

This is because dynamic mapping has much more degree of freedom in the function 

mapping so that it can reduce slacks better than hybrid mapping. If the number of 
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functions in a task is the same as the number of allocated processors, both mappings 

have similar mapping decisions. Since dynamic mapping has additional overhead 

for run-time decision, the performance of hybrid mapping becomes 17% better than 

dynamic mapping in that case. Therefore to provide both dynamic and hybrid 

mapping is meaningful since the affordance of mapping is different from each 

situation. 
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Figure 5.12 Speed-up of throughput performance in hybrid and dynamic mapping. 

 

We also organize an execution scenario that involves a processor failure and several 

tasks to evaluate the correctness of the proposed run-time management scheme. We 

use two more tasks, Needleman-Wunsch (NW) from Rodinia [79] and Fast Fourier 

Transform (FFT) from SPLASH2 benchmark [80] to organize the scenario with 

various granularities of tasks. The scenario and Gantt-chart representation of 

mapping results with the scenario are shown in Table 5.1 and Figure 5.13. At the 

beginning, the three tasks are mapped to 13 slave processors in 4x4 NoC (event ①). 

When a processor failure (event ②) occurs on the first execution of the FAST 

function 1, the number of allocated processors in FAST is changed from 5 to 4. 

After NW and FFT finish (event ③, ④), FAST uses 8 processors for running 8 
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functions to achieve best performance by run-time task re-mappings. Note that one 

can omit code migration when the same functions are mapped successively to the 

same slave tiles. The example is the FAST function 0 mapped to P1. The second 

execution bar of the FAST function 0 becomes much shorter than the first execution 

due to skipped code migration. 

 

Table 5.1 Execution scenario involving a processor failure and task arrivals/ends. 

Remapping event 
① Beginning 

on 4x4 NoC 

② 1 processor 

failure on FAST 

③ Task 

NW end 

Allocated 

proc. 

FAST (T8) 5 4 8 

NW (T4) 4 4 N/A 

FFT (T4) 4 4 4 

P1 

P2 

P3 

P4 

P5 

P6 

P7 

P8 

P9 
P10 

P11 

P12 

P13 

: Failed function : Failure occurrence 

event① event③ event② 

: Task arrival/end 

: Functions of FFT (notation omitted for simplicity) : Functions of FAST : Functions of NW 

F-8-2 
F-7-1 

F-2-1 
F-6-3 
F-3-3 

F-4-3 
F-5-2 

F-1-1 F-1-2 
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F-1-2 : Second execution of FAST function 1 
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Figure 5.13 Gantt-chart representations of mapping results with the execution 

scenario involving a processors failure in Table 5.1. 

 

5.8.3 Experiments on Xeon Emulation System 

In the Xeon emulation system, we compare throughput performance between hybrid 

and dynamic function mapping with large numbers of task functions and allocated 
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processors. The result of average throughput for iterations is shown in Fig. 5.14. 

Since static mapping is the same with hybrid mapping unless task re-mapping 

occurs, the result of static mapping is omitted. As the number of functions increases 

in a task, the size of input picture also increases so that the execution times of all 

functions become similar.  

In cases of 30 and 50 functions in a task, dynamic mapping shows maximum 40% 

better performance than hybrid mapping except the case that only one function is 

mapped to a processor. This is because dynamic mapping has much more degree of 

freedom in the function mapping so that it can reduce slacks better than hybrid 

mapping. If the number of functions in a task is the same as the number of allocated 

processors, both mappings have the same mapping decision. Since dynamic 

mapping has additional overhead for run-time decision, the performance of static 

mapping becomes better than dynamic mapping. When there are 100 functions in a 

task, static mapping also shows similar or better performance in most cases with 

similar reason. 
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Figure 5.14 Comparisons of average throughput performance between hybrid and 

dynamic function mapping. 
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As a last experiment, we compare throughput performance of H264 decoder varying 

the number of allocated processors used in the experiments in Section 4.5.3. The 

task graph of H264 decoder with two operation modes is shown in Figure 5.15 and 

the processor allocation information is shown in Table 5.2. We use a QCIF size 

(176x144) of a movie composed of 40 frames to test the functionality of the decoder. 

The movie format is transformed to .yuv after decoding. In Case 1, we allocate only 

one processor to each operation mode. In other two cases, the number of allocated 

processors is increased to evaluate the throughput performance improvement. The 

result of executions of the three cases and scheduling information related to Table 

5.2 is shown in Figure 5.16 and Figure 5.17, respectively. Throughput is measured 

as the number of frames processed in a second. 

P-frame mode 

I-frame mode 
 

Figure 5.15 Task graph of H264 decoder with two operation modes. 
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Table 5.2 Number of allocated processors of three execution cases for H264 decoder. 

Operation mode I-frame P-frame 

Number of  

allocated processors 

Case 1 1 1 

Case 2 2 2 

Case 3 3 4 

    Operation mode 

    I-frame P-frame 

Allocated 

tasks 

Case 1 Processor 1 All All 

Case 2 

Processor 1 ReadFileH, Decode 
ReadFileH, Decode, 

InterPredY 

Processor 2 

InterPredY/U/V, 

IntraPredY/U/V, 

Deblock, WriteFileH 

InterPredU/V, 

Deblock, WriteFileH 

Case 3 

Processor 1 ReadFileH ReadFileH, Decode 

Processor 2 Decode InterPredY 

Processor 3 

InterPredY/U/V, 

IntraPredY/U/V, 

Deblock, WriteFileH 

InterPredU/V, 

Deblock 

Processor 4 WriteFileH 
 

Figure 5.16 Scheduling information of three execution cases of H264 decoder. 
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Figure 5.17 Comparisons of average throughput performance varying the number of 

allocated processors to H264 decoder. 



 

 １１５ 

In the result, it can be shown that the throughput performance becomes better as the 

number of allocated processors increases. In case of I-frame operation, Case 2 and 3 

shows 1.78 and 2.26 times better performance than the single processor execution, 

respectively. And in P-frame operation, Case 2 and 3 shows 1.96 and 3.3 time better 

performance than Case 1. Though the absolute performance in I-frame operation is 

at most 33 frames per second, the performance of H264 decoder can be acceptable 

since most part of executions can be performed as P-frame and the performance of 

P-frame operation reaches 140 frames per second. 
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Chapter 6 

Conclusion 

In this thesis, we proposed three techniques of fault-aware task scheduling/mapping 

for a multi-processor accelerator. The first technique is to tolerate permanent 

processor failure for reliable multi-core embedded systems that have real-time 

constraints on the latency. By assuming that the fault is detected at a task boundary, 

we can make finite the number of fault scenarios in the proposed technique. And we 

determine the compile-time schedule that maximizes the throughput of the live 

processors while also satisfying a given latency constraint for each failure scenario. 

In this technique, two basic migration policies, preemptive and non-preemptive, and 

a hybrid policy are proposed to obtain better performance. In the experiment, the 

viability of the proposed technique through experiments with real-life applications 

as well as randomly generated graphs is validated. 

As a second technique, we proposed a run-time resource management scheme that 

maps tasks to processors in response to the dynamic change of system status at run-

time. We aim at minimizing the overall energy consumption satisfying the 

throughput constraints for all applications. Unlike the previous hybrid mapping 
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techniques, the proposed technique changes the task mapping and the processor 

speed during execution when the system status is changed. To support task 

migration during execution, we perform check-pointing after each task execution. It 

has a side benefit to tolerate processor failures. As experimental results show, the 

proposed technique outperforms the state-of-the-art hybrid and static mapping 

techniques with respect to energy reduction, showing better adaptability to the 

system status change.  

Finally, a software platform for efficient resource management in response to 

dynamic behaviors of the system at run-time is presented. The software platform is 

assumed to be run on a many-core accelerator and describes applications with SDF 

model. And at application and architecture level, the dynamisms can be handled by 

the proposed software platform with application and task mapping. The software 

platform supports static, dynamic, and hybrid mapping and implemented as virtual 

prototyping system and Intel Xeon Phi emulation. As a result, various run-time 

overheads such as code migration and check-pointing and a rich set of quantitative 

estimation of system performance can be obtained through the proposed software. 

Experimental results show the viability of the proposed resource management 

scheme since various dynamisms are efficiently handled and various statistics for 

performance estimation are provided.  

As a future work, in the fault-aware techniques, we plan to perform various 

optimizations. At first, better heuristics for run-time processor allocation and 

processor binding will be explored to reduce communication overheads and 

increase the performance of task mappings when task granularities are not large. 

Moreover, processor sharing can be considered to increase processor utilization. At 

last, the performance of the proposed techniques when failures occur may be 

analyzed with various failure scenarios. 
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And the modules in the proposed software platform will be improved. The code 

translator for generating API code from user-given information needs to be 

developed in the application API module. More complicated and efficient memory 

management schemes can be implemented and tested. If the sizes of local memories 

are limited, to implement prefetching techniques may be required. In case of host 

interface module, formalized communications between host processor and master 

manager inside of many-core accelerator will be developed. As a result, we can 

expect to run data-parallel tasks to achieve better performance rather than executing 

whole applications in the accelerator. After improving modules of the software 

platform, it will be applied to various hardware platforms to evaluate the 

effectiveness and to find week points to be improved of the software platform. 
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요약  
 

요약 내용 

기술이 발전함에 따라 하나의 칩 안에 집적되는 프로세서의 갯수가 점점 

증가하게 되었다. 또한, 응용들의 보다 높은 연산 능력에 대한 요구로 

인해 매니코어 가속기는 시스템-온-칩에서 중요한 연산 장치가 되었다. 

시스템의 상태가 여러가지 요인에 의해 동적으로 변하기 때문에, 시스템 

수행중에 그러한 가속기를 효과적으로 다루는 것은 매우 어려운 

문제이다. 시스템 수준에서는 응용들이 사용자의 요구에 따라 시작 또는 

종료가 되고, 응용 레벨에서는 응용 자체의 동작이 입력 데이타나 수행 

모드에 따라 동적으로 변하게 된다. 아키텍처 수준에서는 프로세서의 

영구 고장으로 인해 하드웨어 컴포넌트의 사용 가능한 상황이 변하게 

된다. 

본 학위논문에서는 가속기를 다루는데 있어서의 위와 같은 어려움들을 

해결하기 위해 세가지 기법을 제시하였다. 첫번째 기법은 프로세서의 

영구 고장이 발생하였을 때, 전체 응용들을 시간 제약 하에 처리량의 

저하를 최소화하며 재스케쥴을 하는 것이다. 최적의 재스케쥴 결과들은 

진화 알고리즘을 이용하여 컴파일 시에, 각각의 프로세서 고장 상황에 

따라 준비가 된다. 수행 시간에 프로세서 고장이 감지되면, 정상적으로 

동작하는 프로세서들이 저장된 스케쥴을 가지고 태스크 이주를 수행한 

후 태스크들의 나머지 수행을 지속한다. 이 기법에서는 또한 더 좋은 

성능을 얻기 위해, 선점, 비선점 및 융합 이주 정책이 제안되었다. 

제안된 기법의 가능성은 실제 디지털 신호처리 응용들과 임의로 생성된 

응용들에 대해 시간제약과 다양한 프로세서 고장 상황에 대해 

검증되었다. 

두 번째로 제안된 기법은 복합 자원 관리 기법으로, 첫번째 기법에서 

다룬 프로세서 영구고장 뿐만 아니라, 동기화 데이타-흐름 그래프로 

기술된 여러 응용들과 응용들의 동적 양상을 다루는 것까지로 확장이 된 

것이다. 제안된 기법에서는, 우선 설계 수준에서 할당되는 프로세서의 

갯수를 변화시켜가면서 동기화된 데이타-흐름 그래프들의 처리량이 

최대로 얻어지는 매핑 결과들을 얻는다. 그리고나서 수행 시간에는 미리 
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계산된 매핑 정보들을 가지고 수행중인 응용들의 매핑을, 동적인 시스템 

변화가 발생할 때마다 적용하게 된다. 제안된 자원 관리 기법은 

Noxim이라는 네트워크-온-칩 시뮬레이터 위에서 구현이 되었으며, 

실험 결과들은 제안된 기법이 최신의 다른 기법들과 비교하여 더 좋은 

성능을 보였다. 

마지막으로는, 시스템의 성능을 시스템-온-칩 제작 이전에 보다 

정확하게 평가하기 위해서, 두 번째 기법을 구현한 소프트웨어 플랫폼이 

매니코어 아키텍처를 대상으로 제안되었다. 기존의 매니코어 아키텍처를 

대상으로 한 연구들은 주로 상위 수준의 시뮬레이션 모델을 사용하여 

성능을 측정하였기 때문에, 실제 성능과 시뮬레이션 성능이 얼마나 

차이가 날지를 정확하게 알 수가 없었다. 이러한 한계를 극복하기 위하여 

소프트웨어 플랫폼과, 가상 프로토타이핑 시스템 및 제온 에뮬레이션 

시스템에서의 플랫폼 구현 방법이 제안이 되었다. 이러한 실제 시스템 

구현을 통하여 제안된 복합 자원 관리 기법에서의 다양한 동적 비용들이 

정확하게 추산이 될 수 있었다. 실험에서는 제안된 소프트웨어 기법이 

태스크들의 동적 매핑과 체크-포인팅을 통한 프로세서 영구 고장을 

효과적으로 감내할 수 있음을 보였다. 
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