379 research outputs found

    On quantifying fault patterns of the mesh interconnect networks

    Get PDF
    One of the key issues in the design of Multiprocessors System-on-Chip (MP-SoCs), multicomputers, and peerto- peer networks is the development of an efficient communication network to provide high throughput and low latency and its ability to survive beyond the failure of individual components. Generally, the faulty components may be coalesced into fault regions, which are classified into convex and concave shapes. In this paper, we propose a mathematical solution for counting the number of common fault patterns in a 2-D mesh interconnect network including both convex (|-shape, | |-shape, ý-shape) and concave (L-shape, Ushape, T-shape, +-shape, H-shape) regions. The results presented in this paper which have been validated through simulation experiments can play a key role when studying, particularly, the performance analysis of fault-tolerant routing algorithms and measure of a network fault-tolerance expressed as the probability of a disconnection

    Design and implementation of NoC routers and their application to Prdt-based NoC\u27s

    Full text link
    With a communication-centric design style, Networks-on-Chips (NoCs) emerges as a new paradigm of Systems-on-Chips (SoCs) to overcome the limitations of bus-based communication infrastructure. An important problem in the design of NoCs is the router design, which has great impact on the cost and performance of a NoC system. This thesis is focused on the design and implementation of an optimized parameterized router which can be applied in mesh/torus-based and Perfect Recursive Diagonal Torus (PRDT)-based NoCs; In specific, the router design includes the design and implementation of two routing algorithms (vector routing and circular coded vector routing), the wormhole switching scheme, the scheduling scheme, buffering strategy, and flow control scheme. Correspondingly, the following components are designed and implemented: input controller, output controller, crossbar switch, and scheduler. Verilog HDL codes are generated and synthesized on ASIC platforms. Most components are designed in parameterized way. Performance evaluation of each component of the router in terms of timing, area, and power consumption is conducted. The efficiency of the two routing algorithms and tradeoff between computational time (tsetup) and area are analyzed; To reduce the area cost of the router design, the two major components, the crossbar switch and the scheduler, are optimized. Particularly, for crossbar switch, a comparative study of two crossbar designs is performed with the aid of Magic Layout editor, Synopsys CosmosSE and Awaves; Based on the router design, the PRDT network composed of 4x4 routers is designed and synthesized on ASIC platforms

    Networks on Chips: Structure and Design Methodologies

    Get PDF

    Aging-Aware Routing Algorithms for Network-on-Chips

    Get PDF
    Network-on-Chip (NoC) architectures have emerged as a better replacement of the traditional bus-based communication in the many-core era. However, continuous technology scaling has made aging mechanisms, such as Negative Bias Temperature Instability (NBTI) and electromigration, primary concerns in NoC design. In this work, a novel system-level aging model is proposed to model the effects of aging in NoCs, caused due to (a) asymmetric communication patterns between the network nodes, and (b) runtime traffic variations due to routing policies. This work observes a critical need of a holistic aging analysis, which when combined with power-performance optimization, poses a multi-objective design challenge. To solve this problem, two different aging-aware routing algorithms are proposed: (a) congestion-oblivious Mixed Integer Linear Programming (MILP)-based routing algorithm, and (b) congestion-aware adaptive routing algorithm and router micro-architecture. After extensive experimental evaluations, proposed routing algorithms reduce aging-induced power-performance overheads while also improving the system robustness

    Network-on-Chip

    Get PDF
    Limitations of bus-based interconnections related to scalability, latency, bandwidth, and power consumption for supporting the related huge number of on-chip resources result in a communication bottleneck. These challenges can be efficiently addressed with the implementation of a network-on-chip (NoC) system. This book gives a detailed analysis of various on-chip communication architectures and covers different areas of NoCs such as potentials, architecture, technical challenges, optimization, design explorations, and research directions. In addition, it discusses current and future trends that could make an impactful and meaningful contribution to the research and design of on-chip communications and NoC systems

    Adaptive Routing Approaches for Networked Many-Core Systems

    Get PDF
    Through advances in technology, System-on-Chip design is moving towards integrating tens to hundreds of intellectual property blocks into a single chip. In such a many-core system, on-chip communication becomes a performance bottleneck for high performance designs. Network-on-Chip (NoC) has emerged as a viable solution for the communication challenges in highly complex chips. The NoC architecture paradigm, based on a modular packet-switched mechanism, can address many of the on-chip communication challenges such as wiring complexity, communication latency, and bandwidth. Furthermore, the combined benefits of 3D IC and NoC schemes provide the possibility of designing a high performance system in a limited chip area. The major advantages of 3D NoCs are the considerable reductions in average latency and power consumption. There are several factors degrading the performance of NoCs. In this thesis, we investigate three main performance-limiting factors: network congestion, faults, and the lack of efficient multicast support. We address these issues by the means of routing algorithms. Congestion of data packets may lead to increased network latency and power consumption. Thus, we propose three different approaches for alleviating such congestion in the network. The first approach is based on measuring the congestion information in different regions of the network, distributing the information over the network, and utilizing this information when making a routing decision. The second approach employs a learning method to dynamically find the less congested routes according to the underlying traffic. The third approach is based on a fuzzy-logic technique to perform better routing decisions when traffic information of different routes is available. Faults affect performance significantly, as then packets should take longer paths in order to be routed around the faults, which in turn increases congestion around the faulty regions. We propose four methods to tolerate faults at the link and switch level by using only the shortest paths as long as such path exists. The unique characteristic among these methods is the toleration of faults while also maintaining the performance of NoCs. To the best of our knowledge, these algorithms are the first approaches to bypassing faults prior to reaching them while avoiding unnecessary misrouting of packets. Current implementations of multicast communication result in a significant performance loss for unicast traffic. This is due to the fact that the routing rules of multicast packets limit the adaptivity of unicast packets. We present an approach in which both unicast and multicast packets can be efficiently routed within the network. While suggesting a more efficient multicast support, the proposed approach does not affect the performance of unicast routing at all. In addition, in order to reduce the overall path length of multicast packets, we present several partitioning methods along with their analytical models for latency measurement. This approach is discussed in the context of 3D mesh networks.Siirretty Doriast

    Framework for Simulation of Heterogeneous MpSoC for Design Space Exploration

    Full text link
    Due to the ever-growing requirements in high performance data computation, multiprocessor systems have been proposed to solve the bottlenecks in uniprocessor systems. Developing efficient multiprocessor systems requires effective exploration of design choices like application scheduling, mapping, and architecture design. Also, fault tolerance in multiprocessors needs to be addressed. With the advent of nanometer-process technology for chip manufacturing, realization of multiprocessors on SoC (MpSoC) is an active field of research. Developing efficient low power, fault-tolerant task scheduling, and mapping techniques for MpSoCs require optimized algorithms that consider the various scenarios inherent in multiprocessor environments. Therefore there exists a need to develop a simulation framework to explore and evaluate new algorithms on multiprocessor systems. This work proposes a modular framework for the exploration and evaluation of various design algorithms for MpSoC system. This work also proposes new multiprocessor task scheduling and mapping algorithms for MpSoCs. These algorithms are evaluated using the developed simulation framework. The paper also proposes a dynamic fault-tolerant (FT) scheduling and mapping algorithm for robust application processing. The proposed algorithms consider optimizing the power as one of the design constraints. The framework for a heterogeneous multiprocessor simulation was developed using SystemC/C++ language. Various design variations were implemented and evaluated using standard task graphs. Performance evaluation metrics are evaluated and discussed for various design scenarios

    Resilient Routing Implementation in 2D Mesh NoC

    No full text
    With the rapid shrinking of technology and growing integration capacity, the probability of failures in Networks-on-Chip (NoCs) increases and thus, fault tolerance is essential. Moreover, the unpredictable locations of these failures may influence the regularity of the underlying topology, and a regular 2D mesh is likely to become irregular. Thus, for these failure-prone networks, a viable routing framework should comprise a topology-agnostic routing algorithm along with a cost-effective, scalable routing mechanism able to handle failures, irrespective of any particular failure patterns. Existing routing techniques designed to route irregular topologies efficiently lack flexibility (logic-based), scalability (table-based) or relaxed switch design (uLBDR-based). Designing an efficient routing implementation technique to address irregular topologies remains a pressing research problem. To address this, we present a fault resilient routing mechanism for irregular 2D meshes resulting from failures. To handle irregularities, it avoids using routing tables and employs a few fixed configuration bits per switch resulting in a scalable approach. Experiments demonstrate that the proposed approach is guaranteed to tolerate all locations of single and double-link failures and most multiple failures. Also, unlike uLBDR it is not restricted to any particular switching technique and does not replicate any extra messages. Along with fault tolerance, the proposed mechanism can achieve better network performance in fault-free cases. The proposed technique achieves graceful performance degradation during failure. Compared to uLBDR, our method has 14% less area requirements and 16% less overall power consumption
    corecore