247 research outputs found

    Probabilistic models for topic learning from images and captions in online biomedical literatures

    Full text link
    Biomedical images and captions are one of the major sources of information in online biomedical publications. They often contain the most important results to be reported, and provide rich information about the main themes in published papers. In the data mining and information retrieval community, there are a lot of research works on using text mining and language modeling algorithms to extract knowledge from the text content of online biomedical publications; however, the problem of knowledge extraction from biomedical images and captions has not been fully studied yet. In this paper, a hierarchical probabilistic topic model with background distribution (HPB) is introduced to uncover the latent semantic topics from the co-occurrence patterns of caption words, visual words and biomedical concepts. With downloaded biomedical figures, restricted captions ar

    Data fusion techniques for biomedical informatics and clinical decision support

    Get PDF
    Data fusion can be used to combine multiple data sources or modalities to facilitate enhanced visualization, analysis, detection, estimation, or classification. Data fusion can be applied at the raw-data, feature-based, and decision-based levels. Data fusion applications of different sorts have been built up in areas such as statistics, computer vision and other machine learning aspects. It has been employed in a variety of realistic scenarios such as medical diagnosis, clinical decision support, and structural health monitoring. This dissertation includes investigation and development of methods to perform data fusion for cervical cancer intraepithelial neoplasia (CIN) and a clinical decision support system. The general framework for these applications includes image processing followed by feature development and classification of the detected region of interest (ROI). Image processing methods such as k-means clustering based on color information, dilation, erosion and centroid locating methods were used for ROI detection. The features extracted include texture, color, nuclei-based and triangle features. Analysis and classification was performed using feature- and decision-level data fusion techniques such as support vector machine, statistical methods such as logistic regression, linear discriminant analysis and voting algorithms --Abstract, page iv

    Semantics-driven Abstractive Document Summarization

    Get PDF
    The evolution of the Web over the last three decades has led to a deluge of scientific and news articles on the Internet. Harnessing these publications in different fields of study is critical to effective end user information consumption. Similarly, in the domain of healthcare, one of the key challenges with the adoption of Electronic Health Records (EHRs) for clinical practice has been the tremendous amount of clinical notes generated that can be summarized without which clinical decision making and communication will be inefficient and costly. In spite of the rapid advances in information retrieval and deep learning techniques towards abstractive document summarization, the results of these efforts continue to resemble extractive summaries, achieving promising results predominantly on lexical metrics but performing poorly on semantic metrics. Thus, abstractive summarization that is driven by intrinsic and extrinsic semantics of documents is not adequately explored. Resources that can be used for generating semantics-driven abstractive summaries include: • Abstracts of multiple scientific articles published in a given technical field of study to generate an abstractive summary for topically-related abstracts within the field, thus reducing the load of having to read semantically duplicate abstracts on a given topic. • Citation contexts from different authoritative papers citing a reference paper can be used to generate utility-oriented abstractive summary for a scientific article. • Biomedical articles and the named entities characterizing the biomedical articles along with background knowledge bases to generate entity and fact-aware abstractive summaries. • Clinical notes of patients and clinical knowledge bases for abstractive clinical text summarization using knowledge-driven multi-objective optimization. In this dissertation, we develop semantics-driven abstractive models based on intra- document and inter-document semantic analyses along with facts of named entities retrieved from domain-specific knowledge bases to produce summaries. Concretely, we propose a sequence of frameworks leveraging semantics at various granularity (e.g., word, sentence, document, topic, citations, and named entities) levels, by utilizing external resources. The proposed frameworks have been applied to a range of tasks including 1. Abstractive summarization of topic-centric multi-document scientific articles and news articles. 2. Abstractive summarization of scientific articles using crowd-sourced citation contexts. 3. Abstractive summarization of biomedical articles clustered based on entity-relatedness. 4. Abstractive summarization of clinical notes of patients with heart failure and Chest X-Rays recordings. The proposed approaches achieve impressive performance in terms of preserving semantics in abstractive summarization while paraphrasing. For summarization of topic-centric multiple scientific/news articles, we propose a three-stage approach where abstracts of scientific articles or news articles are clustered based on their topical similarity determined from topics generated using Latent Dirichlet Allocation (LDA), followed by extractive phase and abstractive phase. Then, in the next stage, we focus on abstractive summarization of biomedical literature where we leverage named entities in biomedical articles to 1) cluster related articles; and 2) leverage the named entities towards guiding abstractive summarization. Finally, in the last stage, we turn to external resources such as citation contexts pointing to a scientific article to generate a comprehensive and utility-centric abstractive summary of a scientific article, domain-specific knowledge bases to fill gaps in information about entities in a biomedical article to summarize and clinical notes to guide abstractive summarization of clinical text. Thus, the bottom-up progression of exploring semantics towards abstractive summarization in this dissertation starts with (i) Semantic Analysis of Latent Topics; builds on (ii) Internal and External Knowledge-I (gleaned from abstracts and Citation Contexts); and extends it to make it comprehensive using (iii) Internal and External Knowledge-II (Named Entities and Knowledge Bases)

    Generative topic modeling in image data mining and bioinformatics studies

    Get PDF
    Probabilistic topic models have been developed for applications in various domains such as text mining, information retrieval and computer vision and bioinformatics domain. In this thesis, we focus on developing novel probabilistic topic models for image mining and bioinformatics studies. Specifically, a probabilistic topic-connection (PTC) model is proposed for co-existing image features and annotations, in which new latent variables are introduced to allow for more flexible sampling of word topics and visual topics. A perspective hierarchical Dirichlet process (pHDP) model is proposed to deal with user-tagged image modeling, associating image features with image tags and incorporating the user’s perspectives into the image tag generation process. It’s also shown that in mining large scale text corpora of natural language descriptions, the relation between semantic visual attributes and object categories can be encoded as Must-Links and Cannot-Links, which can be represented by Dirichlet-Forest prior. Novel generative topic models are also introduced to meta-genomics studies. The experimental results show that the generative topic model can be used to model the taxon abundance information obtained by the homology-based approach and study the microbial core. It also shows that latent topic modeling can be used to characterize core and distributed genes within a species and to correlate similarities between genes and their functions. A further study on the functional elements derived from the non-redundant CDs catalogue shows that the configuration of functional groups encoded in the gene-expression data of meta-genome samples can be inferred by applying probabilistic topic modeling to functional elements. Furthermore, an extended HDP model is introduced to infer functional basis from detected enterotypes. The latent topics estimated from human gut microbial samples are evidenced by the recent discoveries in fecal microbiota study, which demonstrate the effectiveness of the proposed models.Ph.D., Information Systems -- Drexel University, 201

    Current Challenges in the Application of Algorithms in Multi-institutional Clinical Settings

    Get PDF
    The Coronavirus disease pandemic has highlighted the importance of artificial intelligence in multi-institutional clinical settings. Particularly in situations where the healthcare system is overloaded, and a lot of data is generated, artificial intelligence has great potential to provide automated solutions and to unlock the untapped potential of acquired data. This includes the areas of care, logistics, and diagnosis. For example, automated decision support applications could tremendously help physicians in their daily clinical routine. Especially in radiology and oncology, the exponential growth of imaging data, triggered by a rising number of patients, leads to a permanent overload of the healthcare system, making the use of artificial intelligence inevitable. However, the efficient and advantageous application of artificial intelligence in multi-institutional clinical settings faces several challenges, such as accountability and regulation hurdles, implementation challenges, and fairness considerations. This work focuses on the implementation challenges, which include the following questions: How to ensure well-curated and standardized data, how do algorithms from other domains perform on multi-institutional medical datasets, and how to train more robust and generalizable models? Also, questions of how to interpret results and whether there exist correlations between the performance of the models and the characteristics of the underlying data are part of the work. Therefore, besides presenting a technical solution for manual data annotation and tagging for medical images, a real-world federated learning implementation for image segmentation is introduced. Experiments on a multi-institutional prostate magnetic resonance imaging dataset showcase that models trained by federated learning can achieve similar performance to training on pooled data. Furthermore, Natural Language Processing algorithms with the tasks of semantic textual similarity, text classification, and text summarization are applied to multi-institutional, structured and free-text, oncology reports. The results show that performance gains are achieved by customizing state-of-the-art algorithms to the peculiarities of the medical datasets, such as the occurrence of medications, numbers, or dates. In addition, performance influences are observed depending on the characteristics of the data, such as lexical complexity. The generated results, human baselines, and retrospective human evaluations demonstrate that artificial intelligence algorithms have great potential for use in clinical settings. However, due to the difficulty of processing domain-specific data, there still exists a performance gap between the algorithms and the medical experts. In the future, it is therefore essential to improve the interoperability and standardization of data, as well as to continue working on algorithms to perform well on medical, possibly, domain-shifted data from multiple clinical centers

    Cognitive Foundations for Visual Analytics

    Get PDF
    In this report, we provide an overview of scientific/technical literature on information visualization and VA. Topics discussed include an update and overview of the extensive literature search conducted for this study, the nature and purpose of the field, major research thrusts, and scientific foundations. We review methodologies for evaluating and measuring the impact of VA technologies as well as taxonomies that have been proposed for various purposes to support the VA community. A cognitive science perspective underlies each of these discussions

    Visualization methods for analysis of 3D multi-scale medical data

    Get PDF
    [no abstract

    Proceedings of the 1st Doctoral Consortium at the European Conference on Artificial Intelligence (DC-ECAI 2020)

    Get PDF
    1st Doctoral Consortium at the European Conference on Artificial Intelligence (DC-ECAI 2020), 29-30 August, 2020 Santiago de Compostela, SpainThe DC-ECAI 2020 provides a unique opportunity for PhD students, who are close to finishing their doctorate research, to interact with experienced researchers in the field. Senior members of the community are assigned as mentors for each group of students based on the student’s research or similarity of research interests. The DC-ECAI 2020, which is held virtually this year, allows students from all over the world to present their research and discuss their ongoing research and career plans with their mentor, to do networking with other participants, and to receive training and mentoring about career planning and career option
    • …
    corecore