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ABSTRACT

Alambo, Amanuel. Ph.D., Department of Computer Science and Engineering, Wright State Univer-
sity, 2022. Semantics-driven Abstractive Document Summarization.

The evolution of the Web over the last three decades has led to a deluge of scientific and

news articles on the Internet. Harnessing these publications in different fields of study is

critical to effective end user information consumption. Similarly, in the domain of health-

care, one of the key challenges with the adoption of Electronic Health Records (EHRs) for

clinical practice has been the tremendous amount of clinical notes generated that can be

summarized without which clinical decision making and communication will be inefficient

and costly. In spite of the rapid advances in information retrieval and deep learning tech-

niques towards abstractive document summarization, the results of these efforts continue

to resemble extractive summaries, achieving promising results predominantly on lexical

metrics but performing poorly on semantic metrics. Thus, abstractive summarization that

is driven by intrinsic and extrinsic semantics of documents is not adequately explored. Re-

sources that can be used for generating semantics-driven abstractive summaries include:

• Abstracts of multiple scientific articles published in a given technical field of study to

generate an abstractive summary for topically-related abstracts within the field, thus

reducing the load of having to read semantically duplicate abstracts on a given topic.

• Citation contexts from different authoritative papers citing a reference paper can be

used to generate utility-oriented abstractive summary for a scientific article.

• Biomedical articles and the named entities characterizing the biomedical articles

along with background knowledge bases to generate entity and fact-aware abstractive

summaries.

• Clinical notes of patients and clinical knowledge bases for abstractive clinical text

summarization using knowledge-driven multi-objective optimization.
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In this dissertation, we develop semantics-driven abstractive models based on intra-

document and inter-document semantic analyses along with facts of named entities re-

trieved from domain-specific knowledge bases to produce summaries. Concretely, we pro-

pose a sequence of frameworks leveraging semantics at various granularity (e.g., word,

sentence, document, topic, citations, and named entities) levels, by utilizing external re-

sources. The proposed frameworks have been applied to a range of tasks including:

1. Abstractive summarization of topic-centric multi-document scientific articles and

news articles.

2. Abstractive summarization of scientific articles using crowd-sourced citation con-

texts.

3. Abstractive summarization of biomedical articles clustered based on entity-relatedness.

4. Abstractive summarization of clinical notes of patients with heart failure and Chest

X-Rays recordings.

The proposed approaches achieve impressive performance in terms of preserving se-

mantics in abstractive summarization while paraphrasing. For summarization of topic-

centric multiple scientific/news articles, we propose a three-stage approach where abstracts

of scientific articles or news articles are clustered based on their topical similarity deter-

mined from topics generated using Latent Dirichlet Allocation (LDA), followed by extrac-

tive phase and abstractive phase. Then, in the next stage, we focus on abstractive summa-

rization of biomedical literature where we leverage named entities in biomedical articles to

1) cluster related articles; and 2) leverage the named entities towards guiding abstractive

summarization. Finally, in the last stage, we turn to external resources such as citation

contexts pointing to a scientific article to generate a comprehensive and utility-centric ab-

stractive summary of a scientific article, domain-specific knowledge bases to fill gaps in

information about entities in a biomedical article to summarize and clinical notes to guide
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abstractive summarization of clinical text. Thus, the bottom-up progression of exploring

semantics towards abstractive summarization in this dissertation starts with (i) Semantic

Analysis of Latent Topics; builds on (ii) Internal and External Knowledge-I (gleaned from

abstracts and Citation Contexts); and extends it to make it comprehensive using (iii) Inter-

nal and External Knowledge-II (Named Entities and Knowledge Bases).
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Introduction

”Perhaps the best test of a man’s intelligence is his capacity for making a summary.”

—Lytton Strachey, 1880 – 1932

1.1 Motivation

The birth of the World Wide Web [3] has enabled massive information generation and ex-

change among users. Within this spectrum of information, text is the most widely shared

form of information on the Web with varying types, size, and diversity. Scientific pub-

lications and news articles constitute a major proportion of textual data on the Web. To

overcome the consequent information overload and redundancy in different fields of study,

summarization of documents about a topic has become critically important for the users to

keep abreast of the changing landscape.

Based on the number of documents to summarize, document summarization can be

classified into single document summarization and multi-document summarization. Simi-

larly, based on the approach used, summarization can also be classified as extractive or ab-

stractive. While extractive summarization is mainly focused on extracting salient sentences

from source document(s) verbatim, abstractive summarization deals with abstracting and

paraphrasing the sentences in source documents while preserving semantics. Extractive

summarization is relatively well studied, particularly in the news domain. However, ab-

stractive document summarization has untapped potential because we are yet to explore
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semantically aligned abstraction techniques.

At the level of leveraging intrinsic semantics, clustering of scientific articles based

on semantic analysis of the topics in the articles and generating a topic-aware abstractive

summary for a cluster of articles is key to acquiring a summary of a set of documents on a

given topic. Further, another source of intrinsic semantics that can be used for abstractive

summarization constitutes named entities in a scientific article which give a high level view

of the “aboutness” [4, 5] of the article which can be leveraged for the task of abstractive

summary generation. Next, extrinsic sources of semantics such as citation contexts pointing

to a given scientific article, and facts curated by domain experts and stored in domain-

specific knowledge bases can be used to enhance abstractive summaries.

Named entity recognition has advanced natural language processing and text under-

standing, particularly in the biomedical domain [6, 7, 8, 9]. However, the use of named

entities and their semantics (i.e., information about related entities and relationships) for ab-

stractive summarization of documents has not been adequately explored. While there have

been recent efforts to leverage entity information for single document abstractive summa-

rization, these efforts are focused towards single document summarization of news articles

(e.g., NYT and CNN/Daily Mail corpora) and do not leverage entity semantics. Multi-

document abstractive summarization of biomedical literature driven by entity information,

while not studied yet, is crucial for the practice of a biomedical researcher.

In addition to producing an abstractive summary of a document or a set of documents

that are composed by the original authors driven by topical or entity information, abstrac-

tive summary generation using the views of authoritative sources is critical in the scientific

domain. To this end, citation sentences in scientometrics from multiple citing papers (au-

thors) have led to the applications of extractive summarization to produce a community-

based summary of a reference paper from citing papers. Citation-based summarization is

focused on producing a comprehensive and concise summary of a reference paper from

the perspectives of others. While the abstract of a scientific article provides the author(s)’
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perspectives, abstractive summaries synthesized from citation sentences citing a reference

paper provide a utility-driven highlight and terse perspective of the reference paper in view

of authoritative sources. A series of CL-SciSumm tasks in the past decade led to various

approaches to generating a summary of a reference paper from citation sentences. How-

ever, these approaches have been primarily extractive and hinge on the notion of identifying

target text spans in a reference paper corresponding to citing sentences and fusing the target

text spans to generate an extractive summary. Thus, abstractive summarization of a scien-

tific article by leveraging the metadata in citation networks and the semantics of citation

sentences has not been studied.

Although recent progress in natural language processing and deep learning has en-

abled novel approaches for abstractive document summarization in the contexts discussed

above, these approaches are limited to showing improvements in lexical metrics, and eval-

uations against semantic metrics have not been investigated.

In this dissertation, we set out four aims and develop a series of frameworks to conduct

abstractive document summarization at different levels of semantics for various tasks and

domains. Particularly, we apply and evaluate our proposed frameworks on four types of

datasets: 1) 20 fields of study from the Microsoft Academic Graph (MAG) [10]; 2) News

articles from the Document Understanding Conference DUC-2004 task-2 [11]; 3) Med-

line abstracts we curate from PubMed, and a benchmark dataset on biomedical literature

summarization; and 4) clinical notes of patients with heart failure and benchmark datasets

on Chest X-Ray radiology reports. Figure 1.1 and Figure 1.2 show the rapidly increasing

trend of scientific publications over the last 27 years and the adoption of Electronic Health

Records (EHRs) from 2004 - 2017, necessitating the need for automatic summarization.

Figure 1.3 illustrates the types of semantics, the domains, and the tasks used for the four

research aims in this dissertation characterizing our four-pronged approach to semantics-

driven abstractive summarization.
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Figure 1.1: Monthly data of scientific articles submitted to arXiv from Jan 1995 till Jan
2022.
Source: https://arxiv.org/stats/monthly_submissions

Figure 1.2: Rate of adoption of EHR from 2004 - 2017.
Source: https://bit.ly/3scspHs
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Figure 1.3: Exploring semantics at various levels for different domains and tasks.

Figure 1.4 illustrates the historical evolution of the task of text summarization in gen-

eral along with the most seminal works and situate our dissertation with respect to what

has been achieved and what gaps we have attempted to fill in.

The following are the research aims of this dissertation.

1.2 Research Aim I

We propose to build a topic-centric unsupervised multi-document abstractive summariza-

tion framework for scientific and news articles. The framework comprises a topical clus-

tering module for clustering topically related documents followed by a hybrid model that

consists of an extractive and an abstractive phase where salient language unit selection is

performed using the extractive phase, and the content abstraction and generation are per-

formed by the abstractive phase.
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Abstractive 
Summarization
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with Multi-sentence 
Compression

● Knowledge base 
augmented Transformers

Our Dissertation

Figure 1.4: Historical Evolution of Text Summarization and the direction of our disserta-
tion.

1.3 Research Aim II

Next, we propose to build a citation-driven abstractive summarization model to gener-

ate a summary of a scientific article using citation sentences from citing papers. These

summaries are called community-based abstractive summaries where authoritative citing

sources are used to compose a summary of a target scientific article based on the views of

other researchers.

1.4 Research Aim III

We utilize named entities in biomedical literature and facts retrieved from domain-specific

knowledge bases to build a multi-document abstractive summarization framework. The

documents are clustered based on entity-relatedness and content selection is determined

based on entity-informativeness to provide a comprehensive and coherent summary using

background knowledge.
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1.5 Research Aim IV

We build an abstractive summarization framework for clinical text using Multi-Objective

Optimization by jointly optimizing cost functions to minimize generative loss with respect

to ground truth summaries, named entity chain in ground truth summaries, and facts in

ground truth summaries.

1.6 Thesis Statement

Semantics-driven abstractive summarization of scientific articles, news articles, biomedi-

cal literature, and clinical text is crucial for efficient information consumption and effective

decision making. This can be attained through: i) Semantic analysis of topics in arti-

cles followed by topic-centric multi-document abstractive summarization; ii) Leveraging

crowd-sourced knowledge in the form of citation contexts for abstractive summarization

of a scientific article; iii) Entity-driven fact-aware abstractive summarization of biomed-

ical literature; and iv) Abstractive summarization of clinical text using knowledge-aware

multi-objective optimization.

1.7 Structure of the Dissertation

This dissertation is structured into six chapters.

Chapter 2 introduces a brief historical context on document summarization and the

various techniques proposed by researchers over the last three decades. Then, it goes onto

discuss related works corresponding to each of the research aims.

Chapters 3, 4, 5, and 6 present the motivation, problem statement and the proposed

approach for Research Aims I, II, III, and IV.

Chapter 7 wraps up the dissertation with conclusion, summary of contributions, future
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directions and major insights.

Table 1.1 outlines the Research Questions we address under each Research Aim.
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Research Aim Chapter Research Questions

Topic-Centric
Unsupervised
Multi-document
Summarization

3

RQ1: Can latent topics in document corpus be auto-
matically discovered and be used to 1) cluster articles
based on topical relatedness; and 2) guide abstractive
summarization?
RQ2: How can large language models such as GPT-2
be used to improve the task of abstractive summariza-
tion?
RQ3: How does the proposed framework whose
building blocks are GPT-2 and a novel Multi-
Sentence Compression algorithm perform with re-
spect to human summary evaluation metrics?

TransFuse for
Abstractive Sum-
marization of
Scientific Article
from Citation
Contexts

4

RQ1: Can multiple citation contexts citing a given
scientific article be used along with the content of the
article to generate a hybrid (i.e., integrating citation
contexts and the content of the article) summary for
the article?
RQ2: How can we amalgamate transformer-based
models and sentence fusion technique to improve ab-
stractive summarization and address neural text de-
generation (a phenomenon where generated text is
repetitive and non-sensical)?
RQ3: Will the amalgamation of a transformer-based
model and sentence fusion lead to better abstractive
summaries in terms of semantic equivalence and para-
phrasing?

Entity-driven
Fact Aware
Abstractive
Summarization
of Biomedical
Literature

5

RQ1: How can named entities be leveraged for ab-
stractive summarization of biomedical literature and
address entity hallucination?
RQ2: Can we use named entities to mine facts from
biomedical knowledge bases and use these facts along
with the named entities to guide abstractive summa-
rization?
RQ3: How does an abstractive summarization frame-
work augmented with knowledge bases perform with
respect to entity-level factual accuracy and semantic
equivalence?

Improving the
Factual Accuracy
of Abstrac-
tive Clinical
Text Summa-
rization using
Multi-Objective
Optimization

6

RQ1: Can we model the clinical practice of writing
an impression from a set of findings as the task of ab-
stractive summary generation?
RQ2: How can we use named entities and facts re-
trieved from domain-specific knowledge bases to de-
fine a multi-objective optimization cost function and
train end-to-end abstractive summarization models?
RQ3: Will a multi-objective optimization based ab-
stractive summarization model perform better than
single optimization based model on factual accuracy
metrics?

Table 1.1: Research Questions.
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Literature Review

We discuss the related research efforts in five segments: i) a historical overview of research

in document summarization and its progress over the last 70 years; ii) document summa-

rization in the context of summarizing multiple topically related scientific and news articles

which Research Aim I is focused on; iii) summarization of a scientific article using crowd-

sourced citation contexts which Research Aim II attempts to address; iv) the role of named

entities in summarization of scientific and news articles which is the focus of Research Aim

III; and v) research in summarization of clinical text which is the objective of Research Aim

IV.

2.1 A brief historical context

Early work on document summarization as applied to scientific literature dates back to the

1950’s [12, 13]. [12] proposed automatic abstract (auto-abstract) generation by scanning

a machine-readable scientific article for “significant” sentences based on sentence “sig-

nificance” criteria. [13] introduced the notion of determining sentence saliency based on

sentence position in a document. While there have been few efforts [14, 5, 15, 16] towards

automatic summarization of documents in the decades following the 1950s, recent advances

in document summarization are primarily or partly influenced by pioneering research in the

1990s.

Document summarization in the 1990s mainly focused on lexical and syntactic anal-
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yses of documents [17, 18, 19, 20, 21, 4, 22]. The resurgence of document summarization

in the 1990s was mainly influenced by the invention of the Web and progress in the field

of information retrieval. While efforts in the 1990s saw a dramatic progress in document

summarization, they were mainly extractive.
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The invention of Pagerank in the late 1990s [23] for web search engines brought

graph-based insights to document summarization. Graph-based approaches to document

summarization came to the spotlight in the 2000s with the introduction of LexRank [24],

and TextRank [[25] algorithms which proved successful at extractive summarization. Tech-

niques to fuse multiple sentences into one sentential unit were later proposed with sentence

fusion [26] and multi-sentence compression algorithms [27] paving the way for efforts

to generate paraphrased sentences as opposed to extracting sentences from source docu-

ment(s). The invention of multi-sentence compression (MSC) and word graph based ap-

proaches left a longstanding impact on abstractive summarization including the works of

[28, 29, 30].

With the advent of sequence to sequence deep learning models with or without atten-

tion [31, 32], new techniques to abstractive summarization emerged in the 2010s [33, 34,

35]. While sequence to sequence models achieved significant improvements in abstrac-

tive summarization, their application to long documents was limited as seq2seq models

suffer from long range dependency issues. The introduction of transformer models [36]

helped address the challenge of summarizing long documents while simultaneously cap-

turing deeper semantics of documents at different levels of granularity (words, entities,

sentences, and paragraphs).

The sections below discuss the related works appropriate to each of the four aims

proposed in this dissertation: topic-centric unsupervised multi-document abstractive sum-

marization, citation-driven abstractive single document summarization, entity-driven fact-

aware abstractive summarization, and abstractive summarization using knowledge-aware

multi-objective optimization.
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2.2 Research Aim I

This section discusses recent works related to Research Aim I: Topic-centric unsupervised

abstractive multi-document summarization of scientfic articles and news articles.

Broadly, approaches used for unsupervised abstractive document summarization can be

organized based on the techniques employed including sequence to sequence models [37,

38], neural attentive models [39, 40, 41, 42, 35, 43, 44], Abstract Meaning Representation

(AMR) [45, 46, 47], and centroid-based summarization [30, 48].

Recent advances in deep learning [36, 49, 50] enabled abstractive summarization of

multiple documents. [39] propose MeanSum which consists of two components: 1) an

autoencoder, which learns representations (for Yelp and Amazon reviews) followed by

2) a summarization module that produces abstractive summaries. The autoencoder and

summarization module components are based on LSTM encoder and decoder networks

and the summary generation is achieved via straight-through-gumbel-softmax trick. [48]

introduce ILPSumm which is based on Integer Linear Programming (ILP) and includes

modules for 1) Identification of informative content across documents using LexRank; 2)

Clustering similar sentences from the documents; and 3) Generating informative and lin-

guistically grounded sentences from different clusters using word-graph. [30] improved

upon the multi-document summarization approach proposed in [48] by introducing a para-

phrastic fusion model, which they call ParaFuse, based on context-aware paraphrasing of

words using PPDB 2.0 database [51] and a deep representation learning of sentences us-

ing Gated Recurrent Units (GRUs). The main improvement of ParaFuse over ILPSumm

is in paraphrasing of words in source documents using lexical substitution. While lexical

substitution enables the generation of novel words, it is limited when it comes to captur-

ing the context in the source document. [35] propose a Pointer Generator Network which

they evaluated on the CNN/Dailymail dataset. While the pointer does the task of preserv-

ing the information in source articles, the generator performs the task of generating novel

words that do not appear in the source documents. [43] extended the pointer generator
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network proposed in [35] by introducing a Hierarchical MMR-Attention Pointer-generator

(Hi-MAP) model for multi-document neural abstractive summarization. They used a Bidi-

rectional Long Short Term Memory (Bi-LSTM) network for sentence level encoding. In

addition to their Hi-MAP model, they also introduced Multi-News dataset, which consists

of 56k articles-summary pairs.

Further, there is a good deal of research in topic-oriented abstractive summarization.

[44] propose a neural encoder-decoder framework that takes an article and a topic of interest

and generates a summary specific to the topic. They conducted the summary generation for

all the topics a document discusses by training their neural network in such a way that it

gives more weight (attention) to parts of the input text that are deemed to belong to the topic

in question. They create a synthetic topic-centric training corpus where each document is

associated with a set of topics. They use the dataset of news articles tagged with topics

like politics, sports, and education released at the 2017 KDD Data Science + Journalism

Workshop. Their work, however, is supervised and thus relies on availability of human

generated training corpus to train their model, unlike our approach which is unsupervised.

The first aim of this dissertation builds upon the techniques on centroid-based summa-

rization [30, 48] by employing language unit identification using coreference dependencies

among sentences in an article and a novel bidirectional encoder and autoregressive text

generation model [52].

2.3 Research Aim II

This section discusses the related works on Research Aim II: TransFuse for Abstractive

Summarization of Scientific Articles using Citation Contexts.

While citations harbor valuable insights from authoritative sources, the use of citations

for the task of abstractive scientific article summarization is less explored. [53] address

the three sub-tasks of CL-SciSumm 2017 using structural correspondence learning (SCL),
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positional language modeling (PLM), and textual entailment (TE) for target span identifi-

cation of a reference paper for a citance [54]. Having identified the target spans, [53] ran

LambdaRank for ranking spans in an article, followed by picking the top three spans, and

sorting them to appear in the document to produce a summary. [55] conducted identifica-

tion of cited text spans in a reference paper corresponding to a citance in a citing paper using

a pre-trained BERT language model and then generated extractive summaries by combin-

ing the identified cited text spans. They experimented with two training configurations for

their summarization model on the CL-SciSumm 2019 shared task and Sci-SummNet. In

their first configuration, they used full paper sentences as input, and in their second config-

uration, they used a combination of the abstract and cited text spans. They observed that

using cited text spans along with the abstract yields better ROUGE-2 scores.

[56] propose an approach to improve the cohesion and readability of citation-based

summaries using a sequence of three steps: the preprocessing step that rules out noisy and

irrelevant fragments of sentences, the extraction step that selects citation sentences based

on coverage, and the postprocessing step that produces summaries by maximizing read-

ability. They built an SVM binary sentence classifier to classify sentences as suitable or

unsuitable in the preprocessing stage. [57] propose an approach to address inconsistency

in citation-based summaries by leveraging citation contexts (cited text spans) in a refer-

ence paper and document discourse structure of citations in a citing paper on the TAC2014

dataset. They extract citation contexts from the reference paper for each citation in a citing

paper using n-gram based vector space model similarity measure and rank sentences in the

citation contexts by maximizing novelty and informativeness to produce final summaries.

They report an improvement over baseline approaches by 30% in ROUGE scores. In this

dissertation, we use citation contexts to refer to the span of sentences including citances and

context sentences in a citing paper unlike [57]. The reason for our use of citation contexts

in this sense is because it directly and naturally refers to what is summarized by the citing

author in a citation, and hence citation contexts.
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[58] propose two approaches based on Graph Convolutional Networks to generate

a hybrid summary that integrates a reference paper’s abstract and the other researchers’

viewpoints of the reference paper. Just as in [57], [58] employ a technique to identify

cited text spans given a citation sentence. Their first approach combines the cited text

spans and the reference paper’s abstract to generate a summary while their second approach

augments the reference paper’s abstract, which the model takes as a clean summary, with

the salient cited text spans (i.e., the community’s views not covered in the abstract). They

consider citation counts of the reference paper and citing paper as an additional feature

to better reflect the authority of each work. They have released 1000 manually annotated

scientific documents along with their summaries which is useful for building supervised

methods. They report better ROUGE scores over existing work on the CL-SciSumm-2016

shared task. Their work, however, is still extractive and entirely based on data-driven neural

models.

[59] propose a dataset of over 2M cited papers from arXiv and over 29M citation con-

texts from the Microsoft Academic Graph (MAG) spread over 1M citing papers. While

most datasets for citation-based summarization are limited in size (less than 100), the

dataset provided by [59] can be used to train supervised machine learning models for

citation-based summarization. [60] propose an unsupervised technique that leverages word

embeddings and domain knowledge (specifically, MeSH and Protein ontologies) to im-

prove identification of cited text spans given a citance in a citing paper. They enrich the

citation texts using the cited text spans and the domain knowledge for the purpose of con-

textualizing the citation texts. For injecting domain knowledge in the embedding-based

representation of words, they experiment with retrofitting [61] (a technique where word

representations are enhanced using lexicons) and language model interpolation. They con-

duct two sets of experimental evaluations: 1) they evaluate the relevance of the extracted

cited text spans using intrinsic measures; and 2) they evaluate the impact of citation con-

texts on citation-based summarization using external evaluation. They outperform strong
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baselines on the TAC 2014 benchmark dataset in intrinsic and external evaluation metrics.

Although all the aforementioned approaches propose different techniques for citation-

based summarization, they are 1) extractive, where sentences are lexically copied into final

summary without their semantic understanding or without performing abstraction; 2) do

not systematically capture the sentences surrounding a citance in a citing paper to scope

the boundary of a citation context, which is critical to understand the semantics of a citance

where similar motivation is used in the inverse cloze task (ICT) [62, 63]; and 3) they do not

leverage the topics of a reference paper’s abstract and introduction or the title of the refer-

ence paper in their experiments, while topics or titles of a scientific article offer a high-level

overview of the article that can be used to improve abstraction of summaries. Our approach

differs in that we propose abstraction of a group of related citation contexts using a coupling

of text generation, clustering and a variation of multi-sentence compression [27] algorithm.

Further, we use the reference paper topic to identify the span of a citation context in a cit-

ing paper. This enables to capture a citation context that is on-topic with respect to the

reference paper, generate more relevant words, and preserve the semantics of the citation

contexts, eventually leading to more abstractive community-based summaries. Further, we

conduct bi-directional evaluation of summaries against 1) the abstract of the reference pa-

per; and 2) the group of topic-aware citation contexts our citation-based summaries are

generated from.

The framework proposed in the second aim of this dissertation is evaluated against the

following four state of the art baseline abstractive summarization models.

• Text-to-Text Transfer Transformer (T5) [64] is a unified framework that casts every

natural language processing problem as a text-to-text problem. The framework is pre-

trained with the “Colossal Clean Crawled Corpus” and is tested on downstream tasks

including machine translation, question answering, and abstractive summarization.

The unified framework follows the same training procedures (e.g., teacher forcing

[65] hyperparameters, loss functions (e.g., denoising objectives during pre-training)
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and decoding strategies (e.g., greedy decoding) for each of the NLP tasks.

• BART [66] is a denoising autoencoder that consists of a bidirectional encoder to

encode a document and a left-to-right autoregressive decoder (GPT) to generate an

abstractive summary. The pre-training has two stages: 1) corruption of text with an

arbitrary noising function; and 2) a sequence-to-sequence model trained to recon-

struct the original document.

• Pegasus [67] is a transformer-based encoder-decoder model that proposes a new pre-

training objective to mask a certain number of tokens and important sentences in

an input document and learn to generate the important sentences from the context

of the remaining sentences. It is trained based on two objectives: 1) Gap Sentence

Generation (GSG); and 2) Masked Language Modeling (MLM). The Gap Sentence

Generation (GSG) pretraining objective aims at generating a set of sentences given

other context sentences in a document and is experimented using three variants: a)

random masking of n sentences; b) masking of first n sentences; and c) masking of m

high scoring sentences on ROUGE-1 metric with respect to the rest of the document.

• ProphetNet [68] is a sequence-to-sequence model that is pre-trained with a self-

supervised objective of simultaneous future n-gram prediction using n-stream self-

attention and mask-based autoencoder denoising task. The future n-gram prediction

enables the model to plan n-step ahead to future tokens, preventing the possibility of

overfitting to local n-grams correlations.

2.4 Research Aim III

This section discusses the related works on Research Aim III: Entity-driven Fact-Aware

Multi-document Abstractive Summarization of Biomedical Literature.

While abstractive summarization is well studied for summarization of news articles
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with success attributed to the availability of a massive amount of training data, their ap-

plicability to scholarly articles, particularly, in the biomedical domain is limited. Further,

although named entities have been extensively studied to convey the semantics of an article

(news, scientific, social media) and the saliency of individual sentences [69] within an ar-

ticle, they have not been widely used as part of modeling abstractive summarization. [70]

performed entity-aware single-document abstractive summarization using reinforcement

learning for training. Their pipeline-based approach consists of an entity-aware content

selection module and abstract generation module. They evaluate their approach on the

CNN/Daily Mail and NYT corpora. [69] perform entity-driven multi-document abstrac-

tive summarization of news articles (WikiSum, and Multi-News) using an encoder-decoder

framework augmented with Graph Attention Network (GAT). [71] proposed EntityRank,

an extension of the LexRank [24] graph-based algorithm, for entity-supported summariza-

tion of biomedical abstracts.

There have been a few recent efforts towards knowledge/fact-aware abstractive sum-

marization in different domains. [72] introduced a Fact-aware Abstractive Summarization

model called FaSum for improving the factual consistency of summaries in the domain

of news articles. However, their approach does not leverage named entities for fact re-

trieval. [73] extended a transformer-based abstractive summarization model using enti-

ties disambiguated and linked to Wikidata knowledge graph and attending to the entities

for summarization of news articles. Their approach, however, does not perform named-

entity based fact retrieval from the knowledge base constrained by the article to be summa-

rized and the named entities. [74] developed an unsupervised pipeline-based approach for

knowledge-infused abstractive summarization for condensing patient-to-clinician diagnos-

tic interviews based on Multi-Sentence Compression [27] and Integer Linear Programming

[75]. Nevertheless, their approach uses domain-specific lexicons as knowledge source for

filtering irrelevant utterances and for retroffiting language models [61] and, does not lever-

age named entities or facts as part of an end-to-end training of models. [76] proposed
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Biomed-Summarizer, a framework for extractive summarization of biomedical literature

in a multi-document setting and evaluated on PubMed abstracts. [77] built a model for

abstractive summarization of long documents using a discourse-aware encoder-decoder

framework and experimented on two large scale datasets including research articles col-

lected from PubMed. To address the challenge associated with the scarcity of large-scale

training data in the biomedical domain, [78] released MS2 (Multi-Document Summariza-

tion of Medical Studies). They experimented with BART [66] for abstractive summary

generation on the dataset they introduced in a traditional multi-doc-to-summary setting.

Though all the aforementioned studies conduct abstractive summarization of biomed-

ical literature or the use of facts mined from knowledge bases for a different domain, they

follow the well-established paradigm of source-document vs summary pairing during train-

ing/inference of models. Our approach is different in that we augment the state-of-the-art

abstractive summarization models with additional contextual signals during training/infer-

ence and apply them to the biomedical domain.

2.5 Research Aim IV

This section discusses the related works on Research Aim IV: Improving the Factual Ac-

curacy of Clinical Text Summarization using Multi-Objective Optimization.

We start with a motivation to demonstrate that multi-optimization of different cost

functions is important in the context of clinical text summary generation since the impres-

sion corresponding to a given set of findings may not necessarily be directly inferred from

the findings, partly because clinicians use their domain knowledge while composing an

impression for a set of findings. Consequently, it is imperative that findings-to-impression

mapping be tightly optimized. Figure 2.1 shows a case where there is not a significant over-

lap between the named entities in findings and impression, and thus the single optimization

objective investigated in the previous chapter will not have enough guidance to predict the
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The heart is mildly enlarged, similar to prior 
examination. The pulmonary vasculature is 
prominent. The trachea is midline. The thoracic 
aorta is within the normal limits. There are 
bilateral basilar opacities with alteration of the 
hemidiaphragms, which may represent a 
combination of pleural effusion with 
atelectasis/ edema. Negative for pneumothorax.

Findings

1.  Chest radiograph is negative for pneumothorax, 
as clinically questioned. 
2.  Findings suggestive of cardiac decompensation 
with cardiomegaly and vascular congestion. 
3.  Bilateral basilar opacities which may be a 
combination of pleural effusion with edema. 
Superimposed pneumonia should be excluded 
clinically. 

Impression

"pneumothorax | bilateral basilar opacities | 
Pneumothorax | right  Transbronchial Bx | mildly 
enlarged | Chest radiograph | XR Chest 1 View 
Frontal | edema | alteration of the 
hemidiaphragms | prior examination | 
EXAMINATION | atelectasis | pleural effusion"

Named Entit ies in Findings

"pneumothorax | cardiomegaly | vascular congestion 
| Superimposed pneumonia | Chest radiograph | 
cardiac decompensation | edema | Bilateral basilar 
opacities | pleural effusion"

Named Entit ies in Impression

Clinical Named 
Entity Recognit ion

Clinical Named 
Entity Recognit ion

Figure 2.1: Example findings-to-impression pair. It can be seen that there are named enti-
ties that appear in the impression but not in the findings. Single optimization with predict-
ing impression does not put more weights to these named entities since these entities are
treated just like other tokens in the impression. We show through experiments that trans-
former models in their vanilla training setting perform poorly in terms of recall of named
entities in ground truth summary/impression and semantic equivalencec.

target entities/facts. This is mainly because the training objectives are based on Maximum

Likelihood Estimation (MLE) and optimizing a single cost function will not be enough,

since every token in the target summary (whether it be a semantically important or not) is

equally considered from the vocabulary. We believe optimizing named entity generation

and facts describing named entities will boost recall with respect to named entities in im-

pressions. Further, since these named entities that appear in an impression, but not in the

findings can have significant semantics, we capture their related facts from the knowledge

bases. Our multi-objective optimization training approach enables to give more weights

to these named entities and the related facts rather than the MLE w.r.t just the impression.

The reason is because clinicians look at radiology image, in addition to the findings while

writing impression.
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The birth of Transformer encoder-decoder models [36, 79, 66, 67, 80] has led to signif-

icant advances in abstractive summarization in the domains of news articles [81, 82, 35, 41]

and scientific articles [77, 83, 58]. Nevertheless, their application to the summarization of

clinical notes has not been adequately explored. [84] proposed a model based on Pointer-

Generator-Networks [35] for abstractive summarization of radiology reports by linking en-

tities in a clinical note to domain-specific ontology from UMLS [85] and RadLex [86].

They use pairings of findings and impressions for the abstractive summarization task where

findings form the input sequences and impressions form the target summaries for training.

[87] propose a two-stage model consisting of a content selector and abstractive summa-

rizer for clinical abstractive summarization. The content selector identifies ontological

terms from the findings using a medical ontology (RadLex) and the summarizer is trained

to generate summaries (impressions). They use Bi-LSTMs to encode findings and use

LSTMs to encode the ontological terms followed by an LSTM-based decoder to generate

a summary. [88] built a model for extractive summarization of clinical notes of patients

with diabetes and hypertension to generate disease-specific summaries. They framed the

extractive summary generation problem as a sentence classification problem and experi-

mented on a clinical dataset consisting of 3,453 clinical notes collected for 762 patients.

[89] proposed a model comprised of syntax-based negation detection and semantic clini-

cal concept recognition for extractive summarization of clinical text. They conducted their

experiments on the MIMIC-III [90] dataset. While the aforementioned approaches em-

ploy different techniques for clinical text summarization, we show experimentally that our

proposed knowledge-aware Multi-Objective Optimization (MOO) improves the factuality

of the generated summaries when compared to strong state-of-the-art transformer-based

abstractive summarization models.
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Topic-Centric Unsupervised

Multi-document Summarization

”Everything in this world has a hidden meaning.”

—Nikos Kazantzakis, 1883 – 1957

In this chapter, we introduce an unsupervised framework for discovering intrinsic se-

mantics of a corpus of documents using latent topical analysis and use the latent topics

discovered to guide extractive and abstractive summarization pipelines. While the primary

domain of discourse is scientific articles, we also test the proposed approach on a bench-

mark news articles dataset.

3.1 Why (Motivation)

There is an increasing number of scientific articles in technical fields that share common

latent topics that describe the internal semantic structure of the articles. Automatically

identifying these hidden topics across scientific articles and clustering the scientific arti-

cles based on their topical relevance and generating a topic-centric summary improves the

process of harvesting scientific information.
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3.2 What (Problem Statement)

We propose extractive and abstractive approaches to topic-centric multi-document summa-

rization. Specifically, we devise unsupervised multi-document extractive and abstractive

summarization frameworks and apply to abstractive summarization of topically-clustered

scientific and news articles. The abstractive approach follows a sequence of extractive

phase and abstractive phase. We performed evaluation of the extractive summaries using

the Recall Oriented Understudy for Gisting Evaluation (ROUGE) metrics [91] and the ab-

stractive summaries by humans on five evaluation metrics (Coherence, Readability, Entail-

ment, Conciseness, and Grammar) and copy rate (paraphrasing). The proposed frameworks

are evaluated on two datasets: 1) MAG-20 (the 100-most cited articles across 20 fields of

study from the Microsoft Academic Graph); and 2) DUC-2004 (Document Understanding

Conference of 2004 - Task-2) benchmark dataset of news articles.

3.3 How (Approach)

3.3.1 Data Curation

For this aim, we queried the Microsoft Academic Graph (MAG) for the 100 most-cited

abstracts for each of the 20 Fields of Study (FoS) for scientific papers published in the

years 2016 - 2020. We refer to the dataset we build from MAG, the MAG-20 dataset, and

is made publicly available 1. In addition to MAG-20 dataset, we also use a benchmark

DUC-2004 dataset for comparing our proposed approach with two baseline approaches on

unsupervised multi-document abstractive summarization.

The 20 FoS we are focused on are:

• Artificial Intelligence

1https://github.com/AmanuelF/MAG-20-Abstractive_Summarization
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• Artificial Neural Network

• Big Data

• Case-Based Reasoning

• Cybernetics

• Cyberwarfare

• Data Mining

• Data Science

• Decision Support System

• Electronic Warfare

• Expert System

• Human-Machine Interaction

• Intelligent Agent

• Knowledge-Based Systems

• Machine Learning

• Multi-Agent System

• Prediction Algorithms

• Predictive Analytics

• Predictive Modeling

• Sensor Fusion
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DUC-2004 Corpus

MAG-20 Corpus

Core and 
Peripheral 

Articles 
Identification

Topics and 
Keywords

Topical 
Hierarchical 

Agglomerative 
Clustering

Core Article

Peripheral 
Articles

Extractive 
Language 

Unit 
Extraction

Core article ELU 
instantiated 

clusters

Core article ELUs

Peripheral article 
ELUs

Centroid-based 
Clustering

Clusters of MAG-20 
abstracts Cluster of ELUs

Word Graph

Multi-Sentence 
Compression

Extractive 
SummaryRanking

Figure 3.1: Extractive Phase

3.3.2 Proposed Framework

Extractive Phase

Figure 3.1 shows the extractive phase of the proposed framework where extractive language

units are extracted for MAG-20 and DUC-2004 datasets. DUC-2004 comes with news

articles that are topically clustered. Since MAG-20 is a dataset we build for this research

aim, we perform clustering of the 100 most cited scientific articles in each of the 20 fields

of study by first discovering latent topics using Latent Dirichlet Allocation (LDA) [92]

followed by clustering of topics and then clustering of the articles driven by their topic

membership.

Topic Modeling For each field of study (FoS) in the MAG-20 dataset, our first task is

to identify the dominant topics in the 100 most cited articles and perform clustering of the
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topics. To identify topics in the abstracts, we build an ensemble of Latent Dirichlet Al-

location (LDA) topic models by specifying the number of topics in the range of 2 to 92

(with increments of 10) and generate the most dominant topic for each article. The reason

for building different topic models corresponding to different number of topics is to deter-

mine the optimal number of topics from an ensemble of the LDA models that maximizes

topic coherence score [93]. Topical hierarchical clustering is conducted on the dominant

topics for all articles associated with the corresponding LDA models that give the highest

coherence score. A vector representation of a topic is generated by first embedding each

keyword in a topic using SciBERT [94] and concatenating the representations of the indi-

vidual keywords followed by dimensionality reduction using t-SNE [95]. Figure 3.2 shows

plots of number of topics vs coherence scores for selected fields of study. Higher topic

coherence is associated with better interpretability of topics generated. The motivation for

using HAC over embedded topics is that standard HAC is syntactic; consequently, in or-

der to enable semantics-based clustering, we form topics using similarity metric based on

semantics captured through SciBERT.

Figure 3.2: Number of topics vs Coherence Scores for selected sample fields of study.
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Topical Hierarchical Agglomerative Clustering Since keywords in different topics can

be semantically redundant, we cluster topics having high similarity among their keywords

using hierarchical clustering. For this, we encode a topic using the concatenation of the

SciBERT encodings of its constituent keywords. We then perform topical hierarchical

agglomerative clustering of the topics. To determine the optimal number of clusters to

cluster topics into, we run hierarchical clustering for several clusters ranging from 2 to

the total number of topics and the number of clusters that gives the highest Silhouette

coefficient is set as the optimal number of clusters.

We introduce a topical similarity metric (Equation 3.1) for measuring the similarity

between a pair of topics. As can be seen in the equation, each keyword in a topic is com-

pared with all the keywords in another topic, and the sum of highest similarity scores is

preserved. This similarity metric is inspired by Word Mover’s Distance proposed in [96].

sim(Topic-i, Topic-j) =
∑

i∈Topic-i
maxcos(i,Topic-j) (3.1)

where

maxcos(i,Topic-j) = maximum of cosine similarities between term i and terms in Topic-j

A MAG-20 abstract is associated with a topic that is the most dominant among all

topics the abstract addresses. Table 3.1 shows topical distribution among abstracts for a

field of study.

Figure 3.3 shows topics clustered together using agglomerative hierarchical clustering

applied to the topics discovered.

Core and Peripheral Articles Identification Since our proposed approach follows a

centroid-based summarization paradigm, we identify the article that is semantically the

closest to other articles in a cluster and designate it as the core article; other articles in the

cluster are similarly designated as peripheral articles. Equation 3.2 computes the Cross-
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Abstract
ID

Dominant
Topic

Dominant
Topic
Contribu-
tion(%)

Topic Keywords

9 12 0.99
radar, signal, communication, base, data,
challenge, scenario, model, detection, na-
ture

18 12 0.99
radar, signal, communication, base, data,
challenge, scenario, model, detection, na-
ture

17 14 0.95
assessment, processing, assess, forecast,
bandwidth, receiver, physical, accuracy,
technology, electronic warfare

11 14 0.88
assessment, processing, assess, forecast,
bandwidth, receiver, physical, accuracy,
technology, electronic warfare

5 18 0.99
classification, require, vehicle, overlap,
environment, application, snr, wacr, illus-
trate, commercial

23 18 0.32
classification, require, vehicle, overlap,
environment, application, snr, wacr, illus-
trate, commercial

6 19 0.87
inspire, state, device, accelerator, small,
size, high, power, ved, advantage

4 19 0.59
inspire, state, device, accelerator, small,
size, high, power, ved, advantage

Table 3.1: Topical distribution of abstracts. Abstract with ID 6 is about Topic-19 in 87% of
its content while Abstract with ID 4 is about the same topic in 59% of its content.
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asset, direct, 
influence, 
sphere, 

allocation, 
pheromone, 

optimal, 
optimization, 

swarm, fly

tactical, 
airborne, 
waveform, 
processor, 

architecture, 
block, 

composable, 
hardware, 

challenging, 
defense

process, 
critical, cost, 
functionality, 
attack, year, 

communication, 
environment, 

system,    
current

datum, dynamic, 
support, secure, 

autonomy, 
research,reality, 
ensure, evaluate,  

management

datum, 
dynamic, 

support, secure, 
autonomy, 
research, 

reality, ensure, 
evaluate, 

management

action, paper, 
autonomous, 

cognitive, 
principle, 

situation, lead, 
electromagnetic, 
share, ontology

action, paper, 
autonomous, 

cognitive, 
principle, 

situation, lead, 
electromagnetic, 
share, ontology

Cluster  of Topics

Topic-2 Topic-20 Topic-5 Topic-13 Topic-17 Topic-3 Topic-4

Figure 3.3: Sample topics clustered using hierarchical agglomerative clustering based on
semantics-based similarity metric. As can be seen, some topics have same top keywords
(e.g., topic-13 and topic-17 as well as topic-3 and topic-4. This is because each keyword
contributes different weights to different topics. For an intuitive description of this behavior
of LDA (i.e., topic-word distributions), refer to [1] §17.2

.

Article Similarity Score of an article in a cluster. An article with the highest cumulative

semantic similarity with other articles in a cluster is chosen as the core article. We consider

the rest of the articles in the cluster as peripheral articles. We use gensim’s implementation

of doc2vec2 to encode an article. Figure 3.4 shows a heatmap of cross-article similarities

among news articles in a DUC-2004 topic.

CASi =

∑
i,j∈C doc2vec sim(i, j)

N
(3.2)

2https://radimrehurek.com/gensim/models/doc2vec.html
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where i ̸= j

N - Number of articles in the cluster

C- The cluster of articles

doc2vec sim - doc2vec-based cosine similarity

articlecore = argmax{CASi; i ∈ C}

Figure 3.4: Cross-Article Similarity among articles in a topic in the DUC-2004 task. Mo-
mentary glance reveals news article 3 or 9 cannot be a core article. In this heatmap, it can
be seen that article 2 is the core article across all the articles in this topic. (Similarity scale
legend on the right - the darker the color, the more similar the documents).

Centroid based Clustering After core and peripheral articles in a cluster are identified,

we generate extractive language units from the core and each of the peripheral articles. Re-

cent studies on centroid based clustering approaches to summarization utilized sentences

in documents as standalone language units to initiate clusters and to quantify semantic re-

latedness with sentences in other documents [30, 48]. This approach, however, breaks the

interdependence among sentences in a document and eventually leads to incoherent sum-

maries. We address this limitation by identifying the sentences that are interdependent and
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preserve them as one extractive language unit [97, 98]. For this, we use neural coreference

resolution [99] to identify coreferents across sentences and to group these sentences into

one extractive language unit. We use an implementation of neural coreference resolution

from hugging face 3 for our study. Figure 3.5 shows an example of identifying sentences

that have coreference dependency and are grouped into one language unit. Sentences which

do not exhibit any dependency with other sentences form individual standalone language

units. The language units from the core article are used to instantiate (seed) clusters.

The demand for linear and highly efficient RF 
amplifiers has continued to rise without showing signs of 
stopping, as the world looks to the implementation of 5G. 
Modern communication signals gave rise to the demand, as 
the desire to efficiently utilize the limited electromagnetic 
spectrum led to widespread use of amplitude- and 
phase-modulated signals, e.g., LTE and LTE Advanced, that 
use carrier aggregation to achieve broader bandwidths.

The defense industry may provide even more 
applications, as electronic warfare techniques make use 
of multitone and sometimes noise-like signals that have 
statistics similar to communication signals.

Radars are required to limit emissions in 
adjacent bands, but traditional rectangular  
pulses have high out-of-band emissions.

ELU-1 ELU-2 ELU-3

Core abstract

Gaussian pulse shaping can be used 'to improve 
spectral efficiency, limiting emissions and sidelobes, 
while adding amplitude modulation [1]

ELU-4

Figure 3.5: Extractive Language Unit (ELU) identification using coreference resolution
and clusters initialization from core article. Segments of the article highlighted in blue
show coreference dependency and contribute to ELU-1. Thus, sentences having common
coreferents are kept together.

Once the extractive language units (ELUs) from the core article have instantiated clus-

ters, the language units from the peripheral articles are placed into a cluster based on the

cosine similarity between a language unit embedding of an ELU from the peripheral article

and the language unit embeddings of the ELUs from the core article. A language unit em-

bedding is constructed by concatenating the embeddings of the sentences using sentence-

3https://github.com/huggingface/neuralcoref
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BERT [100] in the language unit and performing dimensionality reduction using t-SNE.

The purpose of dimensionality reduction is to have a uniform dimension among language

units even when they contain different numbers of sentences so that cosine similarity can

be computed. We use 300 dimensions for representing an ELU for comparison with other

ELUs. Equation 3.3 shows the technique to perform dimensionality reduction to represent

an ELU.

ELUembd = t-sne300(
N⊕
i

sent−BERT (Si)) (3.3)

where Si ∈ Sentences in a Language Unit

N −Number of sentences in a language unit⊕
− Concatenation Operator

Multi-Sentence Compression The number of clusters formed in the centroid-based clus-

tering stage is the same as the number of extractive language units (ELUs) in the core arti-

cle. After clusters of Extractive Language Units (ELUs) are formed, we build word graphs

[28] for each cluster. We use Python’s NetworkX 4 to construct the word graph. Figure 3.6

shows a sample word graph constructed for a cluster consisting of the following ELUs:

ELU1 = ”Radars are required to limit emissions in adjacent bands, but traditional rectan-

gular pulses have high out-of-band emissions.”

ELU2 = ”Millimeter wave radars are popularly used in last-mile radar based defense sys-

tems.”

We develop an algorithm for extracting paths based on topical coverage and relevance.

A path is selected using an additional criterion that a candidate path should at least span

two ELUs in the cluster. Next, we generate topically informative and relevant paths from
4https://networkx.github.io/
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Figure 3.6: Word Graph for two ELUs using NetworkX. Tokens and PoS tags of the tokens
are used for a node.

the word graph while maintaining the 100-word summary (MAX LEN) limit. Topical cov-

erage (Equation 3.4) measures how well a path covers the dominant topics discussed by

the articles of the ELUs. Relevance (Equation 3.5) measures how relevant a path is to the

ELUs. The cumulative score of a path (Equation 3.6) is determined by a weighted sum of

topical coverage and relevance. We experimented with values of α in the range of 0 to 1.

Topical Coverage Formulation

Coverage(Cpath, Ctopics) =
1

|Cpath|

|Cpath|∑
tCpath

∈Cpath

1

|Ctopics|

|Ctopics|∑
Kc∈Ctopics

maxcos(tCpath
, Kc)

(3.4)

where, Cpath - Candidate path

Ctopics - Cluster of topics

tcpath - Term t in Candidate path Cpath

Kc - Topic K in cluster of topics Ctopics

Topical coverage is measured with respect to the cluster of topics.
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Topical coverage formulation given in Equation 3.4 is described below:

• Topical coverage is measured with respect to the cluster of the topics. A candidate

path with coverage 1.0 indicates the path fully covers all the dominant topics.

• Consider word graph WG1 built from a cluster C of some ELUs. Let this cluster C

have ELUs in the range ELU1, ELU2, · · · , ELUn.

• We know that these ELUs are extracted from different articles in the range Article1,

Article2, · · · , Articlen.

• We identified that there are dominant topics Topic1, Topic2, · · · , Topicm corre-

sponding to each of these articles. We also assert that these topics are clustered into

a cluster of topics using HAC.

• Consider a candidate path in the word graph that has words word1, word2, · · · ,

wordp.

• Next, we iterate through each word in the candidate path and compute its maximum

cosine similarity (as used in Equation 3.1) with each of the dominant topics in the set

of dominant topics Topic1, Topic2, · · · , Topicm; thus, for each word, we generate

maxcos scores as many as the number of the dominant topics. We then determine

the score of the word as the average of these maxcos scores (inner summation in

Equation 3.4).

• Finally, the topical coverage of the candidate path is computed as the average of the

scores of the words (outer summation in Equation 3.4).

Path Relevance Formulation

Relevance(Cpath, CELU) =
v⃗(Cpath) · v⃗(CELU)

|v⃗(Cpath)| · |v⃗(CELU)|
(3.5)
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where, Cpath - Candidate Path

CELU - Cluster of ELUs

v⃗(Cpath) - Vectorial Representation of Candidate Path

v⃗(CELU) - Vectorial Representation of Cluster of ELUs

Path relevance is measured with respect to the ELUs.

Cumulative Score

Scorecumulative(Cpath) = α · Coverage(Cpath, Ctopics) + (1− α) · Relevance(Cpath, CELU)

(3.6)

A path is selected from the word graph 1) if the path is longer than the average min-

imum length of a sentence in an FoS or DUC-2004 topic and smaller than the average

maximum length of a sentence; 2) if the combined topical coverage and relevance for the

path meets or exceeds a threshold τ of 0.5. If a path picked from the word graph is se-

mantically similar to an already selected path by an order of threshold δ of 0.8 or more, we

compare the combined topical coverage and relevance of the two paths and keep the one

with a higher score and remove the other. The selection of 0.8 is based on empirical obser-

vations. Algorithm-1 outlines the path ranking and selection algorithm which is inspired

by Maximal Marginal Relevance (MMR) [101].

Abstractive Phase

Figure 3.7 shows a pipeline of the abstractive phase of the proposed framework. A headline

generation component is included for the DUC-2004 part since DUC-2004 news articles do

not come with headlines while MAG-20 abstracts have titles which we use in the abstractive

phase.
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Algorithm 1: Path Ranking algorithm
procedure RankPaths (τ , δ, MAX LEN )

Initialization
pathsselected← ∅
pathscandidate← ∀p ∈ P | P: the set of all paths in the word graph
langUnits← ∀l ∈ L | L: language units forming the word graph
for ∀cpath ∈ pathscandidate do

Scorecumulative(cpath) =
α · Coverage(cpath, Ctopics) + (1− α) · Relevance(cpath, CELU)

if Score(cpath) ≥ τ then
if cpath ̸∈ langUnits then

semSim = maxspath ∈ pathsselectedcosSim(cpath, spath)
spath = argmax

s ∈ pathsselected

cosSim(cpath, s)

if semSim ≥ δ then
pathmax = max

path ∈ {cpath,spath}
(Score(cpath), Score(spath))

pathmin = min
path ∈ {cpath,spath}

(Score(cpath), Score(spath))

Size = |Tokenize(pathsselected)|
if Size ≤MAX LEN then

do ADD(pathsselected, pathmax)
do DELETE pathmin

end
else

return pathsselected
end

end
else

do ADD(pathsselected, cpath)
end

end
end

end
return pathsselected

end
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Figure 3.7: Abstractive Phase. Since each ELU is derived from an abstract, we use the
abstract to query for the title of the paper from MAG. We use the combination of the title
and ELU to generate candidate ALUs.

Abstractive Language Unit (ALU) Generation We start our abstractive phase with a

pragmatic assumption that the title/headline of an article is an abstraction of the individ-

ual extractive language units (ELUs) within the same article. We propose a method to

generate an ALU for an ELU using the ELU and title/headline as prompts for generating

text. Combining bidirectional encodings of the title/headline with an ELU enables gen-

erating abstractive text. For ELUs consisting of two or more sentences, we encode each

sentence using sentence-BERT [100] and then we concatenate these representations. Next,

we perform dimensionality reduction using t-SNE to encode an ELU. For encoding a title/-

headline, we use sentence-BERT without dimensionality reduction. We fine-tune a GPT-2

model (architecture shown in Figure 3.8) for an FoS (Figure 3.9) and use the fine-tuned

GPT-2 model to generate ALUs given a concatenation of the bidirectional encodings of the
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ELU and the title/headline of an article. We fine-tune a GPT-2 model [52] such that it has

124M parameters and generates 10 candidate ALUs.

GPT-2 is one of the class of Generative Pre-Trained Transformer (GPT - transformer

decoder) models that is originally pretrained in a self-supervised manner with a language

modeling loss for an autoregressive text generation task using millions of web pages (Web-

Text dataset). Figure 3.8 shows the architecture of GPT-2 adapted from [50]. We use GPT-2

to specifically prompt generation of absractive version of an extractive language unit. As

stated in [52] under §3.6 pp.6, we add the text ”TL;DR” following an extractive language

unit to generate abstractive language units.

Figure 3.8: Architecture of GPT-2. Et is the embedding of a token in a sequence at position
t. Tt is the output token to be predicted.

The language modeling loss used to train GPT-2 follows Equation 3.7.

LLM = −
∑
t

log p(xt|x1:t−1) (3.7)

While fine-tuning, we set the temperature to 0.7, number of generated samples to 10,

top k random sampling to 2 to generate more abstractive ALUs and minimize redundancy

[52]. We train the GPT-2 for 10 epochs with a batch size of 10 and attain a loss of 2.16. We

select an ALU that maximizes semantic similarity and minimizes syntactic similarity with

the ELU used for generation. We use the normalized sum of ROUGE-1(R1) and ROUGE-2
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(R2) for syntactic similarity. We introduce an abstractiveness score for an ALU, as shown

in Equation 3.8.

We use BART [66] for headline generation for each DUC-2004 article that is later

used for ALU generation along with an ELU.

Figure 3.9: ALUs generation using GPT-2.

Scoreabstractive(ALU, ELU) = cossimd-BERT(ALU, ELU)−
[R1(ALU, ELU) +R2(ALU, ELU)]

[R1(ALU, ALU) +R2(ALU, ALU)]

(3.8)

where

ALU - Abstractive Language Unit

ELU - Extractive Language Unit

cossimd-BERT - Cosine similarity on d-dimension BERT embeddings

We select an ALU that gives the highest abstractiveness score (Equation 3.8) from

candidate ALUs since one of the things abstraction entails is higher semantic similarity,

and lower lexical similarity (i.e., paraphrasing).

ALUselected = argmax
ALU∈ALUs

Scoreabstractive(ALU,ELU) (3.9)

where ALUs - set of sample ALUs generated for an ELU by the fine-tuned GPT-2 model.
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Table 3.2 shows a sample ELU and sample ALUs generated from which will be de-

termined the ALU with the highest semantic similarity and lowest lexical similarity.

Multi-Sentence Compression After generating ALUs for a cluster, we build a word

graph and run our MSC algorithm for each cluster as used in the extractive phase; i.e.,

the same ranking formulation and path selection algorithm are used for selecting infor-

mative, and topically relevant paths from a word graph built, this time from a cluster of

ALUs. Figure 3.10 shows a cluster of ALUs and the generated fused paths that form the

final abstractive summary.

The decision comes after two months of 
acrimonious negotiations between the 
two parties and Hun Sen's ruling 
Cambodian People's Party (CPP) over 
the country's future. The two sides have 
been at loggerheads for months over 
the course of the political standoff, with 
the opposition demanding that Hun Sen 
step down from the top post. 

The country's political landscape is 
a maelstrom of political tension, and 
the new parliament will not be without 
its share of political intrigue.

The agreement is a major step toward 
ending a decade-long political 
stalemate, which has left the country in 
a state of political uncertainty

The country's political landscape is 
a maelstrom of political 
uncertainty. 
The agreement is a major step toward 
ending a decade-long political 
standoff, with the opposition 
demanding that Hun Sen step down 
from the top post.

Figure 3.10: Fusing ALUs into final paths. This is for the DUC-2004 dataset.
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Extractive LU Source title Abstractive LUs
Radars are required
to limit emissions in
adjacent bands, but
traditional rectangular
pulses have high out-
of-band emissions.

The Various Angles
of Outphasing PAs:
Competitiveness of
Outphasing in Efficient
Linear PA Applications

1. The best approach to reduce out-of-band emissions is
to use an out-of-band pulse to generate a pulse of high-
frequency power.
2. The pulse of high-frequency power is proportional to the
pulse width and pulse length. This is known as the Linear
PA approach.
3. The high-frequency pulse is derived from the resonant
frequency of the pulse.
4. The out-of-band pulse is a 2-dimensional wave that is not
a 2-dimensional wave in the linear PA.

With the now
widespread availability
of software-defined
radio technology for
wireless networks, the
distinction between
jamming in the original
electronic warfare
sense and wireless
cybersecurity attacks
becomes hazy.

A communications
jamming taxonomy

1. The problem is that jamming is an inherently insecure
practice, because it requires that a computer or device be in
close proximity to a transmitting signal and that the signal
be encrypted and then broadcast over the Internet.
2. To be a successful jammer, one needs to be able to locate
a specific target, but in order to do that, it is necessary to
have some level of control over the target.
3. With the now widespread availability of software-defined
radio technology for wireless networks, the distinction be-
tween jamming in the original electronic warfare sense and
wireless cybersecurity attacks becomes hazy. A communi-
cations jamming taxonomy is presented that includes both.
4. A communications jamming taxonomy is useful to dis-
tinguish the types of hacking that can be performed by a
single hacker, the attack that can be performed by multiple
hackers working in parallel, and the attack that can be per-
formed by a team of hackers working in parallel.
5. In the case of wireless jamming, the term ”jamming” has
been used to refer to the intentional interruption of a wire-
less network in order to prevent or degrade its performance.
The term ”jamming” can also refer to a deliberate and delib-
erate attempt to cause a network to malfunction or become
inaccessible.

A taxonomy delineates
these concepts in the
rapidly expanding field
of wireless security,
classifying commu-
nication jammers’
theoretical behaviors
and characteristics.

A communications
jamming taxonomy

1. A communications jamming taxonomy is a practical tool
to classify wireless communications jammers, with the goal
of making the use of jammers less dangerous and more ef-
ficient.
2. A communications jamming taxonomy is also useful for
identifying the vulnerabilities of wireless systems and their
prevention or mitigation strategies.
3. Operational communications jamming is a class of wire-
less communication jammers that uses a variety of methods
to confuse, disrupt, or spoof a communications channel.
4. A communications jamming taxonomy for the wireless
security field is developed, which is based on the fundamen-
tal research of the recent years.
5. The proposed taxonomy is based on the physical prop-
erties of wireless communication jammers, which are based
on their overall physical design and configuration. The pro-
posed taxonomy is not a definition of the behavior of a com-
munications jammer, but rather a description of the charac-
teristics of jammers.

Table 3.2: Abstractive Language Units generated using fine-tuned GPT-2.

42



3.3.3 Experiments and Results

Our proposed framework is compared with two baseline approaches which are also on the

same task of unsupervised multi-document summarization. The baseline approaches were

evaluated on news articles. We evaluate the baseline approaches and our approach on the

benchmark dataset and our MAG-20 curated dataset. Tables 3.3 through 3.6 show compar-

ison of our proposed approach and the baseline models on extractive, copy rate, and human

evaluation metrics. Equations 3.10 - 3.15 show the formulation for computing the Recall

Oriented Understudy for Gisting Evaluation (ROUGE). We use three variants of ROUGE,

as used in the literature for quantifying the lexical overlap of a generated summary w.r.t a

reference summary. The first two variants which are formalized as ROUGE-N are based

on n-gram overlap and specifically are 1) ROUGE-1 (which measures the unigram overlap

between a generated summary and the reference summary); and 2) ROUGE-2 (which mea-

sures the bigram overlap between a generated summary and a reference summary). The

third ROUGE metric called ROUGE-L is a measure of the longest sub-sequence shared be-

tween a generated summary and a reference summary. ROUGE evaluation for MAG-20 is

done against the source articles as the reference summaries since our task is unsupervised

and we do not have human-written summaries, while for DUC-2004, evaluation is con-

ducted against the human-written summaries as the reference summaries. Equation 3.16

formalizes copy rate which quantifies paraphrasing in terms of novel tokens generated. In

this dissertation, all the ROUGE scores reported are the harmonic mean of ROUGE preci-

sion and ROUGE recall.

ROUGE-N-recall =

∑
S∈ReferenceSummaries

∑
gramn∈S Countmatch(gramn)∑

S∈ReferenceSummaries

∑
gramn∈S Count(gramn)

(3.10)
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ROUGE-N-precision =

∑
S∈ReferenceSummaries

∑
gramn∈S Countmatch(gramn)∑

S′∈CandidateSummaries

∑
gramn∈S′ Count(gramn)

(3.11)

ROUGE-N-F-1 = 2 · ROUGE-N-recall · ROUGE-N-precision
ROUGE-N-recall + ROUGE-N-precision

(3.12)

Similarly, ROUGE-L is formulated as follows.

ROUGE-L-recall =
LCS(ReferenceSummary, CandidateSummary)

|ReferenceSummary| (3.13)

ROUGE-L-recall =
LCS(ReferenceSummary, CandidateSummary)

|CandidateSummary| (3.14)

ROUGE-L-F-1 = 2 · ROUGE-L-recall · ROUGE-L-precision
ROUGE-L-recall + ROUGE-L-precision

(3.15)

Model DUC-2004 Evaluation MAG-20 Evaluation
R-1 R-2 R-L R-1 R-2 R-L

ILPSumm 39.24 11.99 9.34 43.37 16.72 11.26
ParaFuse 40.07 12.04 11.28 46.78 18.93 12.47

Ours (Proposed Method) 39.58 11.36 9.83 47.43 17.28 10.58

Table 3.3: MAG-20 and DUC-2004 Extractive Evaluation

Copy Rate =
|Summarytokens ∩ Referencetokens|

|Summarytokens|
(3.16)
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Task Model Copy Rate

DUC-2004
ILPSumm 0.99
ParaFuse 0.76

Our framework 0.68

MAG-20
ILPSumm 0.96
ParaFuse 0.88

Our framework 0.72

Table 3.4: Copy Rate Evaluation. Small copy rates mean more novel words are generated
in the final abstractive summaries.

The generated abstractive summaries were evaluated by human evaluators using the

following guidelines:

• Our co-author linguists independently reviewed the DUC-2004 and MAG-20 results

generated using our approach, ILPSumm, and ParaFuse. Thus, three copies of the

same results were shared with the human evaluators. Each of the abstractive sum-

maries generated using the three approaches, for both DUC-2004 and MAG-20, is

coupled with the source articles the summaries were synthesized from.

• For each abstractive summary, the linguists read the source articles in the order in

which they were listed. While reading the source articles, they kept note of keywords

– names of places, people, countries, events, or dates.

• When determining the rating for each criterion, they used the source articles to vali-

date the summary. Then, they used their own compiled summaries to compare to the

resulting abstractive summary. The closer the abstractive summary was to the details

in their notes, the higher the Entailment.

• Grammar and Coherence did not influence each other in their rating, as grammar is its

own separate criterion. Each human evaluator judged Coherence by sentence struc-

ture (subject, verb, predicate) and whether the sentences showed logical progression.

Thus, they found it easy to differentiate Coherence and Grammar because they were

looking past errant punctuation and focusing on the structure of the sentences and the
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paragraph as a whole.

• When examining Conciseness, they looked for areas of the abstractive summary that

were repeated. They also noted whether the following sentence carried the logical

progression of the paragraph, backtracked, or added nothing.

• For Readability, just as with Coherence, our human evaluators did not take grammar

or spacing into consideration. They looked for sentence fragments, word order, took

note of instances of missing subjects or verbs that were essential to the meaning of

the sentence or paragraph as a whole. If the omission or error impacted the overall

meaning of the sentence/summary, a lower mark was assigned for Readability.

• When rating Grammar, our human evaluators gave the abstractive summary a lower

rating for comma splices or extra spacing than if there were fragments or inappropri-

ate punctuation that made it difficult to determine meaning.

Across 2 human evaluators, we achieve an inter-rater agreement Cohen Kappa score

of 68%. In addition to the five human evaluation metrics, we also adopt copy rate [30]

for evaluating abstractive summaries. Copy Rate is inversely proportional to the rate of

novel word generation in an abstractive summarization task. As shown in Table 3.4, our

framework achieves the lowest copy rate indicating that we are able to generate more novel

words in the final summaries.

Human Evaluator Model Entailment Coherence Conciseness Readability Grammar

Evaluator-I
ILPSumm 0.60 0.26 0.22 0.20 0.20
ParaFuse 0.62 0.47 0.55 0.46 0.53
Ours 0.66 0.52 0.63 0.50 0.60

Evaluator-II
ILPSumm 0.50 0.38 0.34 0.34 0.40
ParaFuse 0.64 0.51 0.50 0.45 0.51
Ours 0.66 0.54 0.55 0.48 0.57

Table 3.5: DUC-2004 Human evaluation results
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Human Evaluator Model Entailment Coherence Conciseness Readability Grammar

Evaluator-I
ILPSumm 0.89 0.63 0.71 0.53 0.38
ParaFuse 0.82 0.64 0.79 0.61 0.56
Ours 0.85 0.70 0.77 0.65 0.59

Evaluator-II
ILPSumm 0.84 0.71 0.70 0.65 0.47
ParaFuse 0.83 0.79 0.76 0.68 0.60
Ours 0.80 0.77 0.81 0.70 0.67

Table 3.6: MAG-20 Human evaluation results

Figure 3.11: Comparison of abstractive summaries.
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For DUC-2004, our proposed approach consistently performs better than ILPSumm or

ParaFuse on the 5 human evaluation criteria. ILPSumm and ParaFuse show better results in

entailment. In contrast, our approach generally performs comparably across the 5 criteria.

Thus, we can clearly infer generating summaries that are entailed by source articles is easier

than generating summaries that are coherent, concise, readable, and grammatical. This is

because if summaries have words copied from the source articles, it is highly likely that

they are entailed by the source articles. Since the baseline approaches (ILPSumm, and

ParaFuse) have higher copy rate, they do well in entailment. However, with our approach,

having a low copy rate and generating summaries that are entailed by the sources articles is

difficult; yet, our proposed approach still has the best entailment score for task DUC-2004.

For MAG-20, our approach performs better than the baseline approaches in coher-

ence, conciseness, readability, and grammar across two of our human evaluators, while

marginally losing to the baselines according to one of our evaluators. As for entailment,

ILPSumm performs the best which is attributed to the high copy rate by ILPSumm. Even

though our approach generates significantly more novel words than ILPSumm or ParaFuse,

we lose to the best entailment score by only 4%. Further, ILPSumm, ParaFuse, and our pro-

posed approach perform generally better on MAG-20 than on DUC-2004. We surmise this

is due to the headline generation task for DUC-2004, while we use author-provided titles

for MAG-20.

3.4 Conclusion

We proposed an unsupervised multi-document abstractive summarization framework that,

when given a set of documents from MAG, automatically clusters the documents and then

generates summaries for each cluster. Our framework consists of extractive and abstrac-

tive phases. In the extractive phase, we use coreference resolution to extract groups of

inter-dependent sentences from source articles and centroid-based clustering followed by
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an enhanced multi-sentence compression algorithm to generate topically informative and

relevant summaries. In the abstractive phase, we use text generation technique to generate

abstractive language units that are synthesized into an abstractive summary. The num-

ber of summaries in our proposed method is adaptively determined based on the semantic

analysis of the topics discussed in the documents. We introduce MAG-20, a dataset of

topically-clustered groups of scientific articles across 20 Fields of Study and their abstrac-

tive summaries. Results show that our proposed approach performs better than state-of-

the-art centroid-based summarization techniques on 5 human evaluation metrics and copy

rate. In the future, we plan to use additional knowledge and metadata such as citation

relationships among scientific articles for document summarization.
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Generating Abstractive Summaries for a

Scientific Article using Citation Contexts

”Under the right circumstances, groups are remarkably intelligent, and are often smarter

than the smartest people in them.”

—James Surowiecki, 1967 –

In the previous chapter, we discussed how multiple articles (scientific or news) can

extractively or abstractively be summarized by utilizing their intrinsic semantic structure

obtained from latent topical analysis. However, the content used for summarization was

created by the original authors of the article. In this chapter, we investigate how expert-

crowd-sourced knowledge in the form of citation contexts can be used in conjunction with

the article to generate abstractive summaries that are comprehensive.

4.1 Why (Motivation)

A key source of knowledge curated by humans in the scientific literature is a summary

(presented in the form of a citation context) of reference paper written by researchers while

citing the reference paper. Citation contexts pointing to a scientific article can be leveraged

to produce a comprehensive summary (overview) of the article that can include additional

perspectives and information in the utility of the article. A hybrid summary of a scientific
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article that is produced by integrating the abstract of the article (which the original authors

produce) and the citation contexts (specified by other researchers) is crucial in bibliometric

analysis of scientific literature.

4.2 What (Problem Statement)

In this research aim, we introduce an approach for citation-driven Abstractive Summa-

rization of a scientific article using the abstract of an article and citation contexts (from

papers citing the article) pointing to the article. The proposed approach consists of 1) a

pipeline to retrieve an appropriate span of a citation context (that consists of citances [54]

and sentences surrounding citances) from a citing article using the primary latent topic of

a reference article; and 2) a model to fuse the citation contexts and the abstract of a scien-

tific article to generate an abstractive summary of the article. We conducted evaluation of

the generated citation-driven abstractive summaries against automated evaluation metrics

(lexical and semantic metrics), and human evaluation metrics.

4.3 How (Approach)

4.3.1 Data Curation

For data collection, we focus on three fields of study from the Microsoft Academic Graph

(MAG) [[10]: Artificial Intelligence, Data Mining, and Machine Learning. The reason

for focusing on these fields of study is that these have papers with the highest number of

citations per cited paper and we can acquire full texts of the citing papers from arXiv repo

1. Further, we can access a sizeable number of citations for the three fields of study. Since

MAG provides titles and abstracts of research papers, we use these to query arXiv for their

1https://arxiv.org/help/bulk_data
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full texts. As we are interested in authoritative papers, we consider the top-ranked citing

papers corresponding to each cited paper when querying arXiv. For this, we use the Rank

2 metadata from MAG to determine the highest ranked citing papers for each of the cited

papers. The cited and citing papers used in this study are papers published in the years

2005 - 2020. To minimize noise, we focus on citances that appear in one of the following

sections of a citing paper: 1) Introduction; 2) Related Work; or 3) Background. The reason

for focusing on these sections is that authors of scientific papers normally summarize other

papers in one of these sections while they focus on their own work in other sections. We

report in Table 4.1 the statistics of MAGSumm-3000, a dataset we prepare for Research

Aim-II. We use PDFMiner 3 and a LaTeX parser 4 to map each citance to its parent text and

section in a full text citing article. Then, we extract citances that appear in Introduction,

Related Work, or Background. We also note that a single citance may point to multiple cited

papers, as reflected in Table 4.1 under column # citation linkages, and thus, the same citance

is used for summarizing different reference papers if the citance has multiple citations.

Field of Study # Reference Papers # Citing Papers # Unique Citances # Citation Linkages
Artificial Intelligence 1000 11837 14765 17392

Data Mining 1000 9264 12583 13638
Machine Learning 1000 9736 12375 14739

TOTAL 3000 30837 39723 45769

Table 4.1: Dataset sizes for the three fields of study

We refer to the scientific article to be summarized as the reference paper (RP), and

the article citing the RP as the Citing Paper (CP). Also, we call the primary topic of the

combined abstract and introduction of the reference paper as RP topic. A citance [[54] is

a sentence in a citing paper with explicit citation to the reference paper. Context sentences

are sentences surrounding the citance. A citation context is a contiguous span of citance

and zero or more context sentences in the citing paper.

2https://bit.ly/3bqSrPp
3https://pypi.org/project/pdfminer/
4https://github.com/alvinwan/TexSoup
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Figure 4.1 shows the data curation pipeline for a reference paper in a field of study

(FoS).

Azure

Cited Abstract 
(Full Article to summarize)

<=100 Citing Articles
● Rank
● Citation Count

MAG Postgres

Cited .tex files 
(Full text)

Citing .tex files 
(Full Text)

arXiv API

arXiv API

Cited ID Citing ID

Cited Abstract Citing Abstract

Citation Context
(Citance)Latex Parser

Latex Parser

Cited ID

\section

\subsection

\subsection

\subsection
\section

PDFMiner

Full Text .txt file
Parsed .tex

\section

\section
(Citance_1, Parent_Text_1, Section_1)
(Citance_2, Parent_Text_2, Section_2)

…..
(Citance_n, Parent_Text_n, Section_n)

PDF of full text

Figure 4.1: Data Preparation Pipeline. Querying for citation contexts corresponding to a
reference (cited) paper. Data are stored in distributed system consisting of Postgres DB,
and Microsoft Azure.

4.3.2 Proposed Framework

In this section, we discuss the components of the proposed framework.

In this research aim, we propose TransFuse, a framework built by amalgamating a

Transformer-based encoder-decoder model and a sentence Fusion pipeline and apply it

to abstractive summarization of reference papers using citation contexts. Our proposed

framework, which consists of two stages of abstraction, is inspired by the limitations of

encoder-decoder models which degenerate and produce bland and repetitive text, a phe-

nomenon known as neural text degeneration. Figure 4.2 shows our proposed framework

(TransFuse) along with TaCC retrieval module. The sub-sections below discuss the com-
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Figure 4.2: TaCC Retriever with TransFuse.

ponents (labeled A, B, C, D) in Figure 4.2.

Topic-aware Citation Context Retrieval In addition to citances, we consider context

sentences surrounding citances based on how strongly a contiguous span of the context

sentences and the citance reflects RP topic. For this, we perform topic-aware convolu-

tion over a sequence of explicit and implicit citing sentences in citing papers. Thus, for

each field of study (FoS), we build a topic model using Latent Dirichlet Allocation (LDA)

[[92] for a corpus composed of the abstract and introduction of all reference papers for

the same FoS and produce the most dominant topic discussed by the RP abstract and in-

troduction. Once we identify the most dominant topic and its constituent keywords for an

RP abstract+introduction, we perform topic-aware citation context (TaCC) retrieval using

a convolving kernel whose window size is within blocks of 0, ±1, and ±2 units (i.e., in

terms of sentences spanned) from a citance. A moving kernel within a block of 0 unit
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from the citance represents a kernel that spans only the citance as a citation context, while

a moving kernel within a block of ±2 units from the citance slides over three candidate

citation contexts: 1) with the citance as the rightmost sentence preceded by two context

sentences; 2) with the citance in the middle and a single context sentence on either side of

the citance; and 3) with the citance as the leftmost sentence followed by two context sen-

tences. The selection of a max block size of ±2 from a citance is based on the arguments

provided in [102]. For constructing the convolving kernel, we embed each keyword in the

RP topic using SciBERT [94], and the sentences in a citation context to be convolved over

using sentence-BERT [100]. We then perform ranking of citation contexts based on how

strongly they reflect the RP topic and retrieve the citation context that scores the highest in

cosine similarity across all the keywords as the TaCC for a citance. This operation is akin

to extracting feature maps in convolutional neural networks [103]. The SciBERT model

we use for embedding the RP topic keywords is the scivocab, uncased model. Similarly,

the sentence-BERT model we use is the base model with the same hyperparameters as the

SciBERT model. We show the steps to retrieve TaCC in algorithm 2. CC represents a

Citation Context span whose topical rank is being computed. For a sequence of sentences

that is centered around the citance with two units to the leftmost sentence and two units to

the rightmost sentence, the index of the citance is at position pos=2. For the first iteration

of a given kernel size w, the sliding kernel’s start index points at a sentence that is located

w units to the left while its end index points at the location of the citance. Similarly, for

the last iteration of kernel size w, start index points at the citance while index end points

at the context sentence w units to the right of the citance. In the algorithm, v⃗(k) is a SciB-

ERT embedding of a keyword in the RP topic, and v⃗(CC[start,end]) is a sentence-BERT

representation of a citation context.

Abstractive Citation Context Generation Once we identify the topic-aware citation

context for each citance in a CP, we pass each TaCC into the first component of TransFuse
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Algorithm 2: TaCC retrieval algorithm
Initialize scoremax← 0.0
Initialize W ← 2
Initialize pos← 2
T - set of keywords in the RP topic
v⃗(·) - Embedded representation of a sequence or keyword
Function retrieve TaCC

for w = 0 to W do
for offset = 0 to w do

start← pos− w + offset
end← pos+ offset
scoreCC[start,end]

← 1
|T |

∑|T |
k∈T cossim(v⃗(k), v⃗(CC[start,end]))

if scoreCC[start,end]
> scoremax then

scoremax ← scoreCC[start,end]

TaCC ← CC[start,end]

end
end

end
end

where we perform abstraction of the topic-aware citation contexts. The rationale for inde-

pendently abstracting the topic-aware citation contexts by generating multiple abstractive

citation contexts is to minimize the generation of repetitive phrases which is one of the main

problems with neural text generation models, especially with beam search decoding, since

they are mainly optimized on Maximum Likelihood Estimation as pointed out in recent

studies by [104] and [105]. Motivated by the work of [58], we experiment with generat-

ing Abstractive Citation Contexts (ACCs) using two input settings: 1) topic-aware citation

contexts only; 2) topic-aware citation contexts and RP abstract. For the second (i.e., hy-

brid) configuration, we concatenate the RP abstract and all incoming TaCC, embed them,

and feed their combination into an autoregressive decoder. We use special token [SEP]

to separate RP abstract and TaCC in the hybrid setting. The use of [SEP] as a separator

token is similar to that in [106]. We did not explore independently encoding each compo-

nent of the input, combine the encodings and feed them into the autoregressive decoder.

Our inspiration was based on [106] where [106] experimented with both approaches and
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[2] Localization: A close relationship exists between 
localization and recognition. 
[3]Networks trained solely on image-level, 
classi?cation-based losses nevertheless learn to 
localize objects of interest. 
[4] These learned localizations can act as useful data 
annotation, including for the original recognition task. 

Learning deep features for discriminative 
localization

Topic-aware Citat ion 
Context

RP Tit le

Abstract ive Citat ion Contexts

?

GPT-2

Bidirectional 
Encoder

Autoregressive 
Decoder

-The present study was designed to provide a realistic example of 
how to incorporate deep learning into a large-scale, image-based 
classification task.

-A simple way of making the learning problem more tractable is 
to pre-train a deep convolutional network on the original image. 
The training set is then used to generate a subset of the original 
image that is localizable.

Figure 4.3: Sample Abstractive Citation Contexts.

found that the first approach gives better results. Since a topic-aware citation context could

span a single sentence, or multiple sentences, we perform dimensionality reduction using

t-SNE to 768 hidden units when TaCC is composed of a citance and context sentences in

our experiment. The Transformer encoder-decoder part of TransFuse is fine-tuned on the

arXiv dataset as the baseline models are fine-tuned on (details in section on the Domain and

Task-specific fine-tuning). We use GPT-2 [52] with trigram blocking as our auto-regressive

decoder. We set the hyperparameters of the decoder as: number of samples generated to 5,

maximum length of a sample to 50, batch size to 5, and temperature to 0.7 to generate more

coherent abstractive citation context. Abstractive citation context generation is performed

in parallel across the Topic-aware Citation Contexts. Figure 4.3 shows sample abstractive

citation contexts generated given a TaCC and an RP title.
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Abstractive Citation Contexts Clustering The Transformer component of TransFuse

generates multiple ACCs for each reference paper since each reference paper has multi-

ple incoming citances, and hence multiple TaCCs. Further, for each TaCC, there are five

corresponding Abstractive Citation Contexts (ACCs) generated. A certain number of these

ACCs generated from different TaCCs are semantically similar or redundant. Therefore,

we propose clustering ACCs to identify similar ACCs and separate them from others. We

use K-means clustering where we dynamically determine the optimal number of clusters

K by maximizing Calinski-Harabasz score. We use Calinski-Harabasz index because it is

good at identifying dense and well separated clusters 5. We find the same optimal number

of clusters when we use Silhouette Coefficient 6. We experimented with agglomerative

clustering and obtained similar results.

Multi-Sentence Compression Each cluster of ACCs generated consists of ACCs with

significant semantic overlap. Thus, we propose to project the sentences in each ACC onto

a word graph and select paths from the word graph based on their thematic centrality and

authoritative score of the ACCs the paths span. The intuition is that the path selected should

be central to the theme of ACCs in a cluster and that a path that spans ACCs that are asso-

ciated with higher authoritative sources [107] are ranked higher. We embed each ACC in a

cluster using sentence-BERT followed by dimensionality reduction using t-SNE and then

we compute the average of all ACC embeddings. We then traverse each word graph and

pick paths that span at least two sentences in different ACCs and embed each path using

sentence-BERT. Once each path is embedded using sentence-BERT, we compute its cosine

similarity with the average of the ACC embeddings in a cluster and sort all the paths in non-

ascending order of their cosine similarity score. Paths that are closest to the central theme

of the ACCs in a cluster are ranked higher. The intuition is that we want to maximize infor-

mation coverage or representativeness of paths per cluster. This is done for each cluster of

5https://bit.ly/3au3y7Q
6https://bit.ly/2MjMWIa
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ACCs. Once candidate paths from each cluster are sorted based on their combined thematic

centrality and authoritative score, we select paths into the final summary. We propose to

have more informative sentences at the beginning and less informative sentences towards

the end. Moreover, we assume each cluster is equally significant for the summary genera-

tion and thus, we sort paths based on their representativeness in their respective cluster to

form the final summary. The purpose of the selection of paths from different clusters is to

achieve better diversity in the final summary. There are as many word graphs as there are

clusters of ACCs, and we want a certain number of paths selected from each word graph to

meet our 250-word summary target. The 250-word summary target is determined by fol-

lowing the same guide as the CL-SciSumm shared tasks. To determine the average number

of paths selected per word graph, we first estimate the average length of a path (which is

essentially the same as the average length of an English sentence in number of words), the

number of clusters of ACCs, and the expected number of words in the final summary. We

assume the average number of words in an English sentence to be 20 as pointed out in

[108]. Thus, given the 250-word summary target, the average number of words in an En-

glish sentence as 20, and the number of word graphs K, we compute the average number

of paths per word graph as in Equation 4.1. The purpose is to have nearly equal number of

paths from each cluster of ACCs, so one cluster does not dominate others.

nPathswg =
250

K ∗ 20
(4.1)

where K - number of clusters of ACCs

For the purpose of maximizing diversity, the path selection technique selects paths

into the final summary so long as their semantic similarity with an already selected path

is no more than 0.8 [29] on cosine similarity. If a path selected from the word graph is

semantically similar by an order of 0.8 or more to an already selected path, and has a

higher authoritative centrality score than the path in the summary, we replace the already
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selected path with the new path, at the same location in the summary. This ensures that 1)

more informative paths are at the beginning of the final summary; and 2) multiple runs of

the path selection algorithm generate the same summary. Thus, the path selection algorithm

optimizes between authoritative centrality of a path within a cluster and similarity with an

already selected path. This approach is motivated by Maximal Marginal Relevance (MMR)

as proposed in [101] and its variant is presented in chapter 3 algorithm 1. Further, a path

is selected if its length is at least 8 words [24] and at most 25 words. For computing

the authoritative centrality of a path, we first compute the normalized Ranks of the citing

papers associated with the ACCs the path spans. Equation 4.2 computes the normalized

Rank of a citing paper, which each ACC inherits from the CP. Since Ranks in MAG are

sorted in ascending order with lower numbers associated with higher authoritativeness, we

normalize the rank of each citing paper with respect to the citing papers whose ACCs are

clustered together, and subtract from 1 as shown in Equation 4.2.

nRank(CPi) = 1− RankCPi

max{Rankcpr : r = 1 · · ·N}
(4.2)

where N - # unique CPs associated with ACCs.

Each ACC associated with a CP is assigned the same normalized rank computed for

the CP. Let the set of abstractive citation contexts C = {ACC1, ACC2, ACC3, · · · , ACCM}

be abstractive citation contexts spanned by path P . We formulate the Rank of P as in Equa-

tion 4.3.

Rank(P ) =
1

M

M∑
i=1

nRank(ACCi) (4.3)

where M - number of ACCs spanned by path P

We compute Authoritative Centrality of a path from a word graph using Equation 4.4

which optimizes the average normalized Rank of a path, which captures its authoritative-
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ness [107] and the proximity of the path to the mean of the embeddings of the ACCs in the

cluster. The intuition for using the mean of the embeddings of entities in a cluster to de-

cide a representative path based on proximity is similar to the approaches used in [39, 109]

albeit for different tasks.

Let all the ACCs that are spanned by path P in a cluster be C. We compute Authori-

tative Centrality, AC of path P as in Equation 4.4.

AC(P ) = α ·Rank(P ) + (1− α) · cossim(Embed(P ), Embedavg(C)) (4.4)

The first term represents the average Rank of the ACCs a path spans while the second

term reflects the thematic centrality of the path. α varies from 0.1 to 0.9 in increments

of 0.1 for each path under consideration and we pick the value of α that maximizes the

authoritative centrality of the path.

Figure 4.4 shows sample word graph constructed given two ACCs in a cluster. Further,

to preserve syntax, every token from the ACC is appended with its Part of Speech (PoS) tag

when projected onto the word graph and two tokens share a node if their lowercase form

and POS tag are the same.

ACC1 = ”The present study was designed to provide a realistic example of how to

incorporate deep learning into a large-scale, image-based classification task.”

ACC2 = ”A simple way of making the learning problem more tractable is to pre-train

a deep convolutional network on the original image.”

4.3.3 Experiments and Results

Domain- and Task-specific Fine Tuning Since our task is long document scientific ar-

ticle summarization, we fine tune all the pre-trained baseline models and the transformer
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Figure 4.4: Nodes exclusively from ACC1 are marked with a purple color and nodes exclu-
sively from ACC2 are marked with blue color. Common nodes between ACC1 and ACC2

are marked with green color.

part of TransFuse on the arXiv dataset [77] since this dataset is on scientific domain and

the task is also abstractive summarization. We train each baseline model and the encoder-

decoder component of TransFuse for 5 epochs with the following hyperparameter setting:

learning rate of 5e-5, batch size of 16, optimization using Adam optimizer [110] and a

drop out rate of 10%. For each model we achieve an average loss within the range 2.0

and 2.3 on the hold-out test set. The size of train/validation/test sets are such that there

are 50,000 training instances, 6,000 validation instances and 6,000 testing instances. Since

transformer-based models are designed to work with a maximum of 512 tokens of input

sequence, for each baseline model, and for the transformer component of TransFuse, we

split an input sequence into smaller chunks of 512 tokens each and encode each chunk fol-

lowed by concatenation and then a linear transformation is applied to reduce the dimension

back to 768 units. This approach of reducing long input sequence in transformer models

62



using chunking is explored in a recent study by [78]. Maximum decoded sequence length

is set to 210 tokens as used in [77]. Similar to the way the baseline models are trained, the

Transformer part of TransFuse is trained in such a way that the encoder part is initialized

with BERT [50] where an input sequence is split into chunks of a maximum of 512 tokens,

followed by separately encoding each chunk and then concatenating the encodings. The

concatenated encoding is then passed to a feed forward layer with output dimension of

768. The decoder is initialized with GPT-2 [52]. During inference, a group of TaCCs (w/

or wo/ RP abstract) is passed to a trained baseline model in chunks of 512 tokens, while

for TransFuse, each TaCC (w/ or wo/ RP abstract) is passed to the Transformer component

to generate multiple ACCs as discussed in the Methods section. All baseline models and

the transformer component of TransFuse are built and trained using PyTorch on NVIDIA

Tesla T4 GPU.

Baseline Approaches

• Text-to-Text Transfer Transformer (T5) [64] is a unified framework that treats a text

processing problem as a text-to-text problem. It is pre-trained on the ”Colossal Clean

Crawled Corpus” (C4) corpus, a 750GB corpus crawled from the Web. The pre-

training is done using fill-in-the-blank style denoising objective and fine-tuning is

performed for tasks including abstractive summarization.

• BART [66] is a denoising autoencoder consisting of a bidirectional encoder and a

left-to-right autoregressive decoder (GPT) to generate an abstractive summary. The

pre-training has two stages: 1) corruption of text with an arbitrary noising function;

and 2) a sequence-to-sequence model trained to reconstruct the original document.

• Pegasus [67] is a transformer-based model that proposes a pre-training objective to

mask a number of tokens and important sentences in an input document and learn to

generate the important sentences from the context of the remaining sentences. It is

trained based on Gap Sentence Generation and Masked Language Modeling.
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For fair comparison with the SOTA, the transformer component of TransFuse is fine-

tuned on the arXiv dataset as the baseline models are. We use the base variant of each

baseline model and also of the building blocks in our framework. A similar approach was

taken in a study by [111] while comparing different models for abstractive summarization.

Experiments and Results We design our experiments using the two input configurations.

We use Hugging Face 7 implementation of models T5, BART, and Pegasus to fine-tune on

arXiv dataset and generate summaries with maximum length of 250 words for the different

inputs at test time. Tables 4.2 and 4.3 show our results on the benchmark SciSummNet-

1000 dataset while Table 4.4 shows results on MAGSumm-3000 dataset. As can be seen,

we do not evaluate novelty w.r.t ground truth summaries. Formally, we define Novelty as

in Equation 4.5.

NoveltyTaCC =
||summaryngrams − TaCCngrams||

||summaryngrams||
∗ 100 (4.5)

where ngrams - set of unigrams, bigrams, and trigrams.

Due to the limitations of lexical based metrics to text generation tasks such as abstrac-

tive summarization, there has been a significant effort to quantify the semantic equivalence

between a generated summary and a ground truth summary as extensively studied in a re-

cent work by [2]. In our study, for computing semantic equivalence between a summary

and a group of TaCCs, we experiment with a pretrained model for encoding the gener-

ated summaries, the ground truth summaries, and the citation contexts. We use SPECTER

[106] which is based on a transformer model [36] and specifically pretrained on scien-

tific documents by using citation networks as an additional feature. After the generated

summary, a ground truth summary, and the group of citation contexts are embedded using

7https://huggingface.co/transformers/
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SPECTER, we compute cosine similarity between the generated summary and the group

of TaCCs and the generated summary and human-written summaries (for SciSummNet-

1000). We also use an independent evaluation metric Diversity, which is less explored in

document summarization. We posit that an abstractive summary should be diverse across

its constituent sentences, at which beam search based decoding techniques [112, 105] do

not perform well. For this, we leverage a variant of a self-BLEU metric as proposed in

[113]. Specifically, we measure Diversity by computing the average pairwise cosine simi-

larity among sentences in a summary, normalizing them and subtracting the result from 1.

Tables 4.2, 4.3, and 4.4 show experimental results using different input configurations, and

metrics. While ROUGE constitutes lexical evaluation, Novelty, and Semantic Equivalence

represent abstractive metrics. Since our objective is not to maximize novelty of generated

summaries with respect to ground truth summaries for SciSummNet-1000, we do not report

novelty w.r.t the ground truth summaries in the experimental results.

Equation 4.6 formalizes Diversity.

Diversity = [1− 2

|S| · (|S| − 1)

|S|−1∑
i=1

|S|∑
j=i+1

cossim(v⃗(i), v⃗(j))] · 100 (4.6)

where S - set of sentences in a summary

v⃗(p) - Sentence BERT embedding of sentence at location p

Model ROUGE-1-F ROUGE-2-F ROUGE-L-F Semantic Equivalence
CC CC/w Abstract CC CC/w Abstract CC CC/w Abstract CC CC/w Abstract

T5 23.80 46.70 8.43 37.22 22.20 47.97 31.26 25.37
BART 28.55 50.99 10.34 38.03 26.12 49.9 35.64 26.59

Pegasus 13.38 32.40 4.21 22.33 12.42 31.71 24.76 21.73
TransFuse 26.50 48.06 7.66 35.61 21.61 48.32 37.58 28.38

Table 4.2: SciSummNet-1000 evaluation w.r.t. human summaries.

We report the ROUGE-F measure which is the harmonic mean of ROUGE precision

and ROUGE recall. While ROUGE is based on n-gram overlap, Novelty metric measures
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Model ROUGE-1-F ROUGE-2-F ROUGE-L-F Novelty (N-grams) Semantic Equivalence
CC CC/w Abstract CC CC/w Abstract CC CC/w Abstract CC CC/w Abstract CC CC/w Abstract

T5 32.05 22.71 21.56 9.1 31.61 21.5 28.85 43.41 34.21 31.85
BART 39.38 29.40 25.98 14.37 38.53 27.86 42.75 45.58 37.81 27.84

Pegasus 13.69 13.5 7.31 3.98 13.28 12.55 18.74 42.23 29.18 25.69
TransFuse 32.01 18.07 15.4 5.83 30.32 17.11 44.78 47.79 38.62 32.74

Table 4.3: SciSummNet-1000 evaluation w.r.t. citation contexts.

Model ROUGE-1-F ROUGE-2-F ROUGE-L-F Novelty (N-grams) Semantic Equivalence
CC CC/w Abstract CC CC/w Abstract CC CC/w Abstract CC CC/w Abstract CC CC/w Abstract

T5 27.99 18.04 20.28 6.42 27.68 16.83 30.28 56.89 23.91 18.35
BART 29.93 21.57 18.75 8.97 29.11 20.12 38.87 58.82 27.38 22.47

Pegasus 12.06 11.73 6.56 2.72 11.71 10.71 26.62 52.92 18.36 15.73
TransFuse 24.86 16.37 18.36 6.03 25.37 13.84 42.27 59.21 31.68 25.37

Table 4.4: MAGSumm-3000 evaluation wrt topic-aware citation contexts.

Model Diversity

TaCC
TaCC/w
Abstract

T5 0.29 0.33
BART 0.62 0.42

Pegasus 0.53 0.39
TransFuse

(Ours)
0.58 0.42

Table 4.5: Diversity with different input configuration.

novel n-gram generation. The limitation of ROUGE metrics for evaluating abstractive sum-

maries is highlighted in previous studies [35, 114, 40]. With regards to using a hybrid input

configuration, we generally see lexical measures improve with the inclusion of RP ab-

stract. In addition to the automatic evaluation, we also perform human evaluation of 20

randomly selected reference papers’ summaries generated using the baseline models and

our approach. The human evaluation was conducted by our three linguists who are native

English speakers. The three linguists evaluated the summaries on two criteria: 1) Readabil-

ity and 2) Coherence, each on a scale of 1 to 5. On Readability, the average scores are 2.31,

3.57, 2.68, and 2.61 for T5, BART, Pegasus, and TransFuse respectively. On coherence, the

average scores are 2.17, 3.26, 2.21, and 2.11 for T5, BART, Pegasus, and TransFuse respec-

tively. We compute inter-annotator agreement among the human evaluators and achieve a

substantial kappa score [115] of 0.73.
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"YOLO and SSD divide images into 
gr ids and regress object bounding 
boxes based on the gr id cells. 
Bounding box coordinate 
regression is a common design 
shared in second type of object 
proposal frameworks. Inspired by 
object proposals, we adopt 
temporal regression in act ion 
proposal generat ion task."                                                                       
"These include Faster  R-CNN, SSD, 
KDNT, or  pose-based detectors. We 
use OpenPose which has shown 
good per formance."                                                                          
"The abil ity to train a system that 
detects objects in cluttered scenes 
by only naming the objects in the 
training images, without specifying 
their  number  or  their  bounding 
boxes, is understood to be of major  
impor tance. Then it  becomes 
possible to annotate very large 
datasets or  to automatically collect 
them from the web. Most current 
methods to train object detect ion 
systems assume strong 
supervision."                                           
"Visual recognit ion of 
human-object interact ions (HOI) 
(e.g., ?r iding a horse?, ?eating a 
sandwich?) is a fundamental 
problem in computer  vision. 
Successful HOI recognit ion could 
identify not only objects but also 
the relat ionships between them, 
providing a deeper  understanding 
of the semantics of visual scenes 
than just object recognit ion or  
object detect ion."                                                              
"Several CNN-based face and object 
detectors have been introduced 
which achieve good detect ion 
per formance and speeds. Each of 
these detectors learns a different 
representat ion. This leads to 
generat ion of different types of 
bounding boxes for  faces."

T5

BART

Pegasus

TransFuse

YOLO and SSD divide images into gr ids and regress object bounding 
boxes based on the gr id cells. we adopt temporal regression in act ion 
proposal generat ion task. these include Faster  R-CNN, SSD , KDNT, or  
pose-based detectors. the abil ity to train a system that detects objects 
in cluttered scenes is understood to be of major  impor tance. it  
becomes possible to annotate very large datasets or  automatically 
collect them from the web. most current methods 'd....? y e d' s images 
& i 's o r  x rays to the object in an object proposal,! and an mrs., faster  
t  neo and the c. 16 and 16 to l ' '  and other  objects to get the same b -

YOLO and SSD divide images into gr ids and regress object bounding 
boxes based on the gr id cells. These include Faster  R-CNN, SSD, KDNT, 
or  pose-based detectors. We use OpenPose 17 which has shown good 
per formance. Successful HOI recognit ion could identify not only 
objects but also the relat ionships between them. This would provide a 
deeper  understanding of the semantics of visual scenes than just 
object recognit ion or  object detect ion. The abil ity to train a system 
that detects objects in cluttered scenes by only naming the objects in 
the training images is understood to be of major  impor tance. Then it  
becomes possible to annotate very large datasets or  to automatically 
collect them from the web. We adopt temporal regression in act ion 
proposal generat ion task. 

In this paper , we introduce two new approaches to train object 
detect ion systems by regressing object bounding boxes based on the 
gr id cells of YOLO and SSD. YOLO and SSD divide images into gr ids and 
regress object bounding boxes based on the gr id cells. The abil ity to 
train a system that detects objects in cluttered scenes by only naming 
the objects in the training images, without specifying their  number  or  
their  bounding boxes, is understood to be of major  
impor tance.Several CNN-based face and object detectors have been 
introduced which achieve good detect ion per formance and 
speeds.Several CNN-based face and object detectors have been 
introduced which achieve good detect ion per formance and 
speeds.Several CNN-based face and object detectors have been 
introduced which achieve good detect ion per formance and speeds. 
Several CNN-based face and object detectors have been introduced 
which achieve good detect ion per formance and speeds.

most current methods to identify objects in the environment can only 
be used to identify objects in motion in the visual environment . the 
solut ion is presented to the proposal frameworks as object proposal 
framework , which can be used to identify objects . the same is true for  
all shapes of the face . the results are determined by the shape of the 
lips and determined by the shape of the face.  in the first approach to 
face detect ion depends on the shape of the face with visual recognit ion 
system. if it  has an average of the two shapes, the second approach to 
face detect ion depends on the shape of the face using bounding 
boundar ies . we then compare the results are determined by the shape 
of the face of the bounding boundar ies.

Topic-aware Citat ion 
Contexts Model Summary

Figure 4.5: Comparison of abstractive summaries generated using the baseline models and
TransFuse.
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Convolutional networks are powerful visual models that yield hierarchies of 
features. We show that convolutional networks by themselves, trained 
end-to-end, pixels-to-pixels, improve on the previous best result in semantic 
segmentation. Our key insight is to build ?fully convolutional? networks that 
take input of arbitrary size and produce correspondingly-sized output with 
efficient inference and learning. We define and detail the space of fully 
convolutional networks, explain their application to spatially dense prediction 
tasks, and draw connections to prior models. We adapt contemporary 
classification networks (AlexNet, the VGG net, and GoogLeNet) into fully 
convolutional networks and transfer their learned representations by 
fine-tuning to the segmentation task. We then define a skip architecture that 
combines semantic information from a deep, coarse layer with appearance 
information from a shallow, fine layer to produce accurate and detailed 
segmentations. Our fully convolutional networks achieve improved 
segmentation of PASCAL VOC (30% relative improvement to 67.2% mean IU on 
2012), NYUDv2, SIFT Flow, and PASCAL-Context, while inference takes one 
tenth of a second for a typical image.

Reference Paper  Abstract

Representation learning and transfer learning now permeate computer vision as 
engines of recognition.', 'The simple fundamentals of compositionality and 
differentiability give rise to an astonishing variety of deep architectures. The rise of 
convolutional networks as the backbone of many visual tasks, ready for different 
purposes with the right task extensions and data has made architecture search a 
central driver in sustaining progress.

Topic-aware Citat ion Context

the paper proposes a new 
technologies and aims to 
understand the composition of 
visual tasks and how visual cortex 
works . the vnf is designed to 
facilitate the development of new 
networks. the convolutional and 
recurrent networks are often used 
for semantic segmentation and the 
model learn domain state 
features. the convolutional 
network model - learning 
principle , which provides high - 
performance , scalable , efficient , 
and to provide a richer a deep 
convolutional networks. although 
the difficulty is that semantic 
segmentation model, 
convolutional network is 
differentiable and learn image 
predictions.  

Hybr id Abstract ive Summary 
using TransFuse

Figure 4.6: Sample Hybrid Abstractive Summary synthesized from the abstract of the ref-
erence paper and a topic-aware citation context.

4.4 Conclusion

In this chapter, we introduced TransFuse, a framework built by inserting a sentence Fusion

pipeline on top of a Transformer-based model for abstractive summarization and applied

to the task of scientific article summarization using citation contexts. Using experiments,

we showed TransFuse outperforms in abstraction of generated summaries, and is compara-

ble to strong abstractive approaches in ROUGE metrics and human evaluation. Figure 4.5

shows comparision of TransFuse with baseline models in terms of the qualities of the sum-

maries generated while Figure 4.6 shows a sample hybird abstractive summary generated

using TransFuse when the abstract of a reference paper and a topic-aware citation context

are fed as input to the model during inference.

The key takeaway from this chapter, in terms of technical contribution, is that while

the SOTA transformer encoder decoder models perform reasonably good enough on lexical

metrics, one of their major limitations continues to be generating repetitive, non-sensical

text (a result of what is known as neural text degeneration). TransFuse enables to generate
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less repetitive, more novel words (i.e., paraphrasing source text), while preserving seman-

tics. With respect to the problem the proposed model is applied to, abstractive merging of

citation contexts (expert-crowd-sourced) and abstract of a scientific article (author-sourced)

leads to generating an abstractive summary that is more comprehensive. On the other hand,

we still believe there is a lot of room for improvement for this task in terms of coherence

and readability of generated summaries.
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Entity-driven Fact-aware Abstractive

Summarization of Biomedical Literature

”We know very little, and yet it is astonishing that we know so much, and still more aston-

ishing that so little knowledge can give us so much power.”

—Bertrand Russell, 1872 – 1970

We explore how expert-curated knowledge bases can be used to guide abstractive

summarization. While the previous chapter focused on what authoritative sources have

to say about an article, which may or may not be factual, in this chapter, we leverage

knowledge bases containing facts about named entities in an article to guide abstractive

summarization and apply to the task of biomedical article summarization. The proposed

approach is evaluated on entity-level factual accuracy and semantic equivalence metrics.

5.1 Why (Motivation)

There are over 2 million biomedical articles published and available on PubMed. These

plethora of biomedical articles are related to one another in terms of their named entities

and the relationships between the named entities (semantics). Named entities in biomedical

literature can be leveraged to cluster multiple biomedical articles based on their entity-level

relatedness and use the named entities as part of modeling abstractive summarization of
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biomedical literature. The semantics of named entities can be made explicit and enhanced

by using expert-curated domain-specific background knowledge bases. Concretely, named

entities in biomedical literature can be used to retrieve relevant facts (i.e., facts related to the

article the named entities appear in) from knowledge bases. Leveraging named entities and

expert-curated facts in knowledge bases can improve abstractive summarization in terms of

factual accuracy and semantic equivalence which are metrics not captured by widely used

lexical metrics such as ROUGE, BLEU, and METEOR.

To this end, the World Health Organization (WHO) introduced the International Clas-

sification of Diseases (ICD), a catalog for the systematic study of human diseases. The ICD

is organized into different chapters in such a way that diseases that share certain character-

istics belong to a common ICD chapter. There have been different editions of ICD, the most

recent one being the ICD-11. On the other hand, part of the class of biomedical literature

being published by the biomedical community constitutes articles about human diseases

such as the articles curated for the publicly available NCBI disease [116] and BC5CDR

[117] disease corpora. While the NCBI-disease and BC5CDR corpora have extensively

been used for NLP tasks including named entity recognition and relation extraction, there

are no large scale equivalent dataset on diseases for biomedical articles summarization.

With several biomedical articles about related or common diseases being published, it is

important that biomedical articles with common disease mentions be grouped and a sum-

mary of the grouped articles be generated to help a biomedical researcher learn more about

published works about related diseases. Consequently, we leverage the ICD-11 classifi-

cation of diseases to query PubMed for abstracts (specifically, abstracts with disease men-

tions), cluster the abstracts into their corresponding ICD-11 chapter and guide the summary

generation based on named entities about the diseases. Table 5.1 shows the ICD-11 Special

Groups Catalog 1.

1https://icdcdn.who.int/icd11referenceguide/en/html/index.html#
icd-chapter-structure
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ICD Chapter Chapter Title
1 Certain infectious or parasitic diseases
2 Neoplasms
3 Diseases of the blood or blood-forming organs
4 Diseases of the immune system

18 Pregnancy, childbirth, or the puerperium
19 Certain conditions originating in the perinatal period
20 Developmental anomalies
22 Injury, poisoning or certain other consequences of external

cause

Table 5.1: ICD-11 special groups chapters and corresponding titles.

5.2 What (Problem Statement)

In this chapter, we devise a unified end-to-end model for Entity-driven Abstractive Sum-

marization of biomedical articles where named entities and facts retrieved from biomedical

knowledge bases are used for guiding abstractive summarization. The proposed approach is

composed of two stages: 1) Entity-driven knowledge retriever, and 2) Knowledge-guided

abstractive summarizer trained end-to-end. We evaluated the proposed approach against

the state-of-the-art abstractive summarization models on semantic and lexical metrics.

5.3 How (Approach)

5.3.1 Data Curation

We use two datasets for this task: 1) 60,000 randomly selected article-to-summary pairs

from benchmark PubMed dataset [77] which we refer to as PubMed-50k and use the 50,000

samples to train our models, and the remaining 10,000 for inference, and 2) ICD-11-Summ-

1000 which we curate and use to test the trained baseline models and our model. Curation

of ICD-11-Summ-1000 follows a data preparation pipeline that consists of: 1) ICD-11

disease lexicon (for each ICD-11 chapter) curation for querying PubMed for abstracts cor-
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responding to each ICD-11 chapter; and 2) Entity-aware pseudo-document generation for

a collection of semantically related PubMed abstracts collected using the keywords in the

lexicon built for an ICD-11 chapter. Thus, for querying PubMed for abstracts for an ICD-

11 chapter, we first query the biomedical knowledge bases for “disease” keywords using

the names of each ICD-11 chapter and build a lexicon of diseases corresponding to each

chapter. Figure 5.1 shows what a lexicon build-up for an ICD-11 chapter looks like. Once

the disease related keywords are identified for an ICD-11 chapter, we use these keywords

to query PubMed via the Bio Entrez parser 2 to capture the first 1000 abstracts (PMIDs)

spanning a period of last 90 days from the moment we initiated the query. We do this for

each of the eight special groups ICD-11 chapters.

2https://biopython.org/docs/1.75/api/Bio.Entrez.html
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Figure 5.1: ICD-11 based lexicon construction and querying for abstracts from PubMed
using Bio Entrez parser. For illustration purpose, we show the pipeline for ICD-11 chapter
2 (i.e., Neoplasms)

Figure 5.2 shows our ICD-11-Summ-1000 dataset preparation pipeline. Once we have

obtained the 1000 PubMed abstracts for an ICD-11 chapter through the querying process,

we conduct named entity recognition (NER) on each of the abstracts within a chapter using

the SciSpacy NER model trained using the BC5CDR corpus [118]. Since we are inter-

ested in entity-level clustering of PubMed abstracts within an ICD-11 chapter, we first

conduct clustering of the named entities using agglomerative clustering as used in [69].

We use BioBERT [119] for named entity representation followed by agglomerative clus-

tering. Once the named entities pertaining to an ICD-11 chapter are clustered into different

bins, our next task is to cluster the PubMed abstracts into a bin based on how the named

entities within the abstracts are related to the entities within a cluster. We use cosine simi-

larity between named entities identified in a PubMed abstract and entities characterizing a

cluster to determine an entity-aware cluster the abstract belongs to. Next, for each cluster,

we perform named entity-aware salient content selection to produce an extractive pseudo-

document for each cluster. This paradigm of reducing a multi-document corpus (i.e., a

cluster consisting of PubMed abstracts grouped based on entity-relatedness) into an ex-

tractive pseudo-document is explored for different tasks in other studies [120, 121, 122].

As part of the NER task, we use coreference resolution [99, 49] after named entities are

extracted using SciSpacy to cluster the biomedical named entities and their coreferenced
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mentions spanning the multiple abstracts within an ICD-11 chapter.

PubMed abstracts for an 
ICD-11 Chapter

Biomedical 
NER

BioBERT on 
Named 
Entities

Abstracts and their named entities

Feature vectors of named entities

Agglomerative 
Clustering

Entity-driven 
abstracts 
clustering

Entity-aware content selector

Extractive 
pseudo-doc 1

Extractive 
pseudo-doc 2

Clustered Named Entities

Figure 5.2: Entity-aware content selection to produce extractive pseudo-documents. The
light blue and light lavender colored documents in the final bins represent abstracts whose
named entities are semantically similar to one another.

During entity-aware content selection to produce an extractive pseudo-doc for a clus-

ter of PubMed abstracts that are clustered based on named entity relatedness, we preserve

the positioning of sentences within an abstract. We also use the following heuristics while

constructing the extractive pseudo-doc: 1) a sentence shall have at least one named en-

tity identified using SciSpacy-BC5CDR NER model; and 2) the selected sentences from

an abstract are placed in the same order as they appear in the abstract. Further, we also

take into account abstracts’ relative importance scores where abstracts with higher docu-

ment importance scores [48] have their sentences precede sentences from abstracts with

less document importance scores while generating the extractive pseudo-document. Docu-

ment importance Dimp of target abstract di is determined using pairwise cosine similarity

between the BioBERT [119] embedding of di and other abstracts within the same cluster

C. Formally, document importance is defined as in Equation 5.1

Dimp =

∑
di,dj∈C cossim(di, dj)

|C| − 1
, (i ̸= j) (5.1)
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For all tasks throughout this chapter involving initializing of networks or for represen-

tation learning, we use BioBERT [119].

5.3.2 Proposed Framework

Our proposed approach is a two-stage framework consisting of 1) an entity-driven knowl-

edge retriever, and 2) a knowledge-guided abstractive summarizer. In this section, we

discuss both modules in detail.

Entity-driven Knowledge Retriever For each extractive pseudo-document generated in

the data preparation stage for ICD-11 or input article for PubMed-50k designated byD, we

identify the named entities in the input document. The identified named entities are then

used to retrieve facts from biomedical knowledge bases (UMLS, ICD-10, and SNOMED-

CT). We use PyMedTermino [123] to work with the entire dump of UMLS [85] available

at 3. For m named entities (and their coreferenced mentions), we have a set of pairs of en-

tities {(ei, ej) | 0 ≤ i < j < m} extracted fromD, where each pair (ei, ej) is used to query

for c candidate facts F1, F2, F3, . . . , F|c| denoted collectively by F i,j
D from the background

knowledge bases K using full text search. The complete set of facts retrieved for all pairs

of named entities in source document D is denoted by FD.

The reason we use a pair of named entities to perform lexical query from K is to

capture the relationship between a pair of named entities as it appears in a knowledge base

to capture their semantics and assist in disambiguation. After the candidate facts FD are

retrieved from the knowledge basesK, we embed the candidate facts using BioBERT. Then,

we perform efficient vector similarity search using Maximum Inner Product Search (MIPS)

[124] implemented in the FAISS library 4 to query for the top-k facts among the candidate

facts (FD) using the input document D as the query. Formally, we define the similarity

between fact Fi ∈ FD and document D as in Equation 5.2.
3https://bit.ly/3E0zrll
4https://github.com/facebookresearch/faiss
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sim(Fi,D) = V⃗(Fi)
T V⃗(D) (5.2)

where V⃗(Fi) - Vector representation of Fact Fi;

V⃗(D) - Vector representation of document D

Thus, after the knowledge retrieval task, we have 1) the input document D which is

obtained during the data preparation phase for ICD-11 and readily available for PubMed-

50k; 2) the named entity chain (i.e., chain of named entities extracted from the pseudo-doc)

E [125]; and 3) top-k facts F1, F2, F3, . . . , F|K| retrieved from the background knowledge

bases collectively represented as FK ⊆ FD. We set the value of K to 3 following the study

by [126]. We experiment with different values of K as detailed in the ablation studies sec-

tion. The combination of these contextual signals will be used to guide the summarization

model at training/inference time. The rationale for using maximum inner product search for

knowledge retrieval is inspired by the works of [127, 128, 129, 130, 131], albeit they used

it mainly for open domain question answering [132, 133]. [126] use a similar approach

for exemplar retrieval in their RetrievalSum model which is based on contrastive learning

[134] using a Siamese network [135] to learn representations for an input document and

the exemplars and guide their summary generation. Our problem of retrieving the most

relevant facts from the background KB, however, is framed as a dense passage retrieval

problem. Named entities from the input document are extracted using the SciSpacy NER

model trained on the BC5CDR corpus [118]. Table 5.2 shows the named entities based

statistics of ICD-1000-Summ dataset we curate and Table 5.4 shows sample facts, as they

appear and retrieved from UMLS KB for an input article with a given pair of named entities

identified.

Knowledge-guided Abstractive Summarizer The backbone component of our knowledge-

guided abstractive summarizer, which is a transformer encoder-decoder model, is based on
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ICD Chapter Chapter Title Disease Related Named Entities Statistics
Max Min Avg Std Total Unique Count Total Count

1 Certain infectious or parasitic diseases 49 0 7.0 5.8 2486 6448
2 Neoplasms 28 0 7.0 5.3 1729 6110
3 Diseases of the blood or blood-forming organs 40 0 8.0 5.9 2585 7467
4 Diseases of the immune system 40 0 7.4 5.3 2387 6929

18 Pregnancy, childbirth, or the puerperium 40 0 8.1 6.3 2774 7667
19 Certain conditions originating in the perinatal period 52 0 8.9 6.9 2774 8630
20 Developmental anomalies 40 0 9.5 6.9 3749 9248
22 Injury, poisoning or certain other consequences of external cause 38 0 7.9 6.5 3045 7544

Table 5.2: Statistics of Disease-related Named Entities for ICD-Summ-1000 Dataset. Note
that these statistics are for the total 1000 raw abstracts queried using the lexicons built. That
is why some abstracts do not have named entities (based on SciSpacy NER) (as reflected
by Min = 0 in each ICD-11 Chapter. The extractive psuedo-docs, however, are guaranteed
to have at least three entities. Keywords are not necessarily the same as named entities

ICD Chapter Chapter Title Disease Related Named Entities Statistics
Max Min Avg Std Total Unique Count Total Count

1 Certain infectious or parasitic diseases 357 3 94.8 135.0 332 569
2 Neoplasms 378 4 136.5 169.0 315 546
3 Diseases of the blood or blood-forming organs 400 3 75.5 138.9 387 680
4 Diseases of the immune system 199 3 43.4 71.5 218 347

18 Pregnancy, childbirth, or the puerperium 171 5 55.7 65.4 251 390
19 Certain conditions originating in the perinatal period 130 3 45.0 53.9 172 270
20 Developmental anomalies 132 3 48.0 65.1 214 288
22 Injury, poisoning or certain other consequences of external cause 168 3 44.2 54.8 240 354

Table 5.3: Statistics of Disease-related Named Entities for Extractive Pseudo-doc Dataset.

Named Entity Pair Entity-driven Facts from UMLS KB
(iron, anemia) Iron deficiency anemia secondary to inadequate dietary iron in-

take.
Iron deficiency anemia in mother complicating childbirth.

(dementia, depression) Primary degenerative dementia of the Alzheimer type, presenile
onset, with depression.
Arteriosclerotic dementia with depression.

(diabetes, hypertension) Hypertension in chronic kidney disease due to type 1 diabetes
mellitus.
Hypertension concurrent and due to end stage renal disease on
dialysis due to type 2 diabetes mellitus.

Table 5.4: Pairs of named entities and sample facts mined from UMLS for each pair. The
maximum number of facts extracted is discussed in the experiments section.
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the work by [136]. Figure 5.3 shows the proposed end-to-end model architecture. We

use this architectural setup for all the models we experiment with. We designate a model

augmented with one of the knowledge signals as model-EFAS. We train the models on the

50k samples obtained from PubMed abstractive scientific summarization dataset [77] using

different combinations of signals (with and without named entities and facts). The top-k

facts retrieved by the biomedical knowledge retriever, corresponding to each pair of named

entities in an input extractive pseudo-doc or input article, are separated by a special token

[SEP]. The input article is passed as one input document prepended with [CLS] and ap-

pended with [SEP] token. The named entity chain is passed as one segment prepended with

[CLS] and appended with [SEP] token. There have been different approaches to combining

different signals such as concatenating the different pieces to prime the generation compo-

nent such as the one proposed in Fusion-in Decoder [130] and [131]. The top-k retrieved

facts are initialized using BioBERT and the concatenated encoding is then passed through

a sequence of transformer layers to be projected onto a 768- dimension vector to later be

attended to by the autoregressive decoder. Similarly, the named entity chain is initialized

with BioBERT and passed through a sequence of transformer encoders. Each transformer

encoder layer is composed of self-attention and feed forward sub-layers. At training time, a

batch of input-output pairings is passed to the encoder and decoder respectively in the form

⟨x, y⟩. The encoder undergoes the following transformations to the input sequence x which

in this formalism is used to represent the first hidden layer h0 of the stacked sequence of l

transformer encoder layers.

h̃l
x := LayerNorm(hl−1

x +MHAtt(hl−1
x ))

hl
x := LayerNorm(h̃l

x + FFN(h̃l
x))

The decoder component, which is trained using teacher forcing [65] at training time,

consists of two cross-attention sub-layers to attend to: 1) the input source article; and 2)

79



Top-k Facts
Input source 

article

Multi-Head 
Self Attention

Add & 
N orm

Feed 
Forward

Add & 
N orm

Multi-Head 
Self Attention

Add & 
N orm

Feed 
Forward

Add & 
N orm

Ground Truth 
Summary

M asked 
Multi-Head Self 

Attention

Add & N orm

Encoder-decoder 
Cross Attention

Add & N orm

Encoder-decoder 
Cross Attention

Add & N orm

Feed Forward

Add & N orm

Linear

Softmax

Output Text

Multi-Head 
Self Attention

Add & 
N orm

Feed 
Forward

Add & 
N orm

N amed Entity Chain

FFN N

Softmax over Vocabulary

Concatenate

Training Architecture

Embedding 
Layer

N  *  N  *  N  *  

*  N  

Figure 5.3: The Proposed Framework. The encoder networks have their parameters shared.
The two cross attention sub-layers in the decoder attend to the input source article, and a
linear transformed projection of encodings of facts, and the chain of named entities. This
architecture best represents the three traditional transformer models. For BigBird, and
LED, the full self attention layer gets replaced with sparse attention.

the affine transformed concatenation of facts and named entity chain’s encodings. The fol-

lowing formulations show the transformations in the decoder component where the ground

truth output sequence y is passed to the sequence of transformer decoder layers and is used

to initialize the first hidden layer h0 of the decoder network. Note that we have a Masked

Multi-head Self-Attention in the decoder network denoted by MMHAtt.

h̃l−2
y := LayerNorm(hl−3

y +MMHAtt(hl−3
y ))

h̃l−1
y := LayerNorm(h̃l−2

y + CrossAtt(h̃l−2
y , FK , E)

h̃l
y := LayerNorm(h̃l−1

y + CrossAtt(h̃l−1
y , x))

hl
y := LayerNorm(h̃l

y + FFN(h̃l
y))
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5.3.3 Experiments and Results

Model Training All models are trained with a cross-entropy loss using backpropagation

formally defined in Equation 5.3:

Lθ = −
1

n

n∑
k=1

P(tk|t<k, X, E , FK ; θ) (5.3)

Where X - the input sequence to be summarized;

E - the named entities chain in the input sequence X;

FK - top-k facts extracted from biomedical KB;

θ - model parameters.

We train each model using cross entropy loss to generate the ground truth summaries

for the PubMed-50k dataset. We use the following hyperparameters setting: number of

epochs is 5, fixed learning rate is set to 5e-5 with Adam optimizer [110], batch size to 8,

beam size to 5 with a length penalty [137] α between the range of 0.6 and 1 [41], at in-

ference time. To deal with long-document summarization using the traditional transformer

encoder-decoder models, we split the source article into chunks of a maximum of 512 to-

kens and independently encode each chunk, after which we concatenate and project back to

768 dimension using a linear layer. The approach of splitting the long input sequence into

smaller chunks of 512 tokens and then embedding independently is motivated by the recent

work to [78]. For Longformer-Encoder-Decoder (LED) [138] and BigBird [139], however,

we set the maximum length of the input sequence to 8192 tokens since they can deal with

long input sequences without having to truncate; maximum output sequence length is set

to 210 tokens following the experiments by [77]. To mitigate redundancy in the generated

summaries, we enable trigram blocking [140] during inference. For each backbone model,

we use its base variant with 12 encoder and 12 decoder layers. The train/validation/test

sizes for PubMed-50k are 50,000/5,000/5,000 and each model is trained using early stop-

ping. A checkpoint of the model that performs the best (in terms of validation loss) on the
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validation set across different epochs is saved to the file system. All models are built and

trained using PyTorch on NVIDIA Tesla T4 GPU. We perform model training experiments

with different input guidance settings as shown in Table Table 5.5:

Training Setting Training Configuration
TC-I Input document only
TC-II Input document + named entities chain
TC-III Input document + named entities chain + knowledge facts

Table 5.5: Training Configuration.

For our base summarization model, we experiment with five transformer-based encoder-

decoder models and show that our entity-driven knowledge-aware approach enables us to

achieve the best performance in entity-level factual consistency, N-gram novelty, and se-

mantic equivalence while performing comparably on the commonly used ROUGE metrics.

At inference time, we experiment with two settings (w/o named entities, and w/ named

entities).

Experiments While all models are trained using the PubMed-50k corpus, they are eval-

uated using a hold-out test set from the original PubMed dataset as well as the ICD-11-

Summ-1000 corpus we curate. The experimental results are shown in Table 5.6 through

Table 5.13. Results of evaluation w.r.t source articles reported are average results for both

the ICD-11-Summ-1000 and PubMed corpora since the ICD-11 pseudo-extractive docu-

ments do not have a ground truth summary. For lexical (ROUGE) evaluation, we report

ROUGE F1 scores [141]. Similarly, for evaluation conducted w.r.t source articles, the

results reported are average across the PubMed and ICD-11-Summ-1000 corpora. Entity-

level factual accuracy [142] is measured in terms of precision, and recall w.r.t ground truth

summary (for PubMed), and w.r.t source articles (for both PubMed and ICD-11-Summ-

1000). Entity-level precision and recall w.r.t ground truth summaries are denoted with

precision-target and recall-target; similarly, entity-level precision, and recall w.r.t the source
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article are designated with precision-source, and recall-source, respectively. The F1 score

is the harmonic mean of the precision and recall for either case.

Equations 5.4 - 5.9 formalize recall-target, precision-target, precision-source, recall-

source as well as their harmonic sums.

Recalltarget =

∑
S∈TargetSummaries

∑
entities∈S Countmatch(entities)∑

S∈TargetSummaries

∑
entities∈S Count(entities)

(5.4)

Precisiontarget =

∑
S∈TargetSummaries

∑
entities∈S Countmatch(entities)∑

S′∈CandidateSummaries

∑
entities∈S′ Count(entities)

(5.5)

F-1target = 2 · Recalltarget · Precisiontarget

Recalltarget + Precisiontarget
(5.6)

Recallsource =
∑

S∈SourceArticles

∑
entities∈S Countmatch(entities)∑

S∈SourceArticles

∑
entities∈S Count(entities)

(5.7)

Precisionsource =

∑
S∈SourceArticles

∑
entities∈S Countmatch(entities)∑

S′∈CandidateSummaries

∑
entities∈S′ Count(entities)

(5.8)

F-1source = 2 · Recallsource · Precisionsource

Recallsource + Precisionsource

(5.9)

For measuring semantic equivalence between generated summaries and ground truth

summaries, we leverage BERTScore as proposed by [2]; specifically, we use BioBERT for

representing each token in a generated summary and in the ground truth summary after

which we perform pairwise cosine similarity as proposed in [2]. All experimental results

are reported in percentages. The average full text length of input source articles in PubMed-
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50k is 3,224 words and the average abstract length is 218 words, while for ICD-11-Summ-

1000, the average length of an extractive pseudo-doc (i.e., input source article) is 4816

words.

Backbone Model Model Variant (K=3) Training Config R-1 R-2 R-L

T5
T5 Vanilla (Baseline) TC-I 31.333 12.821 29.018

T5 w/ named entities (Ours) TC-II 29.915 11.352 27.667
T5 w/ named entities /w facts - EFAS (Ours) TC-III 28.643 11.286 26.591

BART
BART Vanilla (Baseline) TC-I 34.214 13.830 31.545

BART w/ named entities (Ours) TC-II 32.377 11.733 29.910
BART w/ named entities /w facts - EFAS (Ours) TC-III 31.283 10.528 28.174

Pegasus
Pegasus Vanilla (Baseline) TC-I 28.851 11.274 26.859

Pegasus w/ named entities (Ours) TC-II 30.365 11.483 28.003
Pegasus w/ named entities /w facts - EFAS (Ours) TC-III 30.872 12.031 28.263

BigBird
BigBird Vanilla (Baseline) TC-I 35.426 13.801 32.537

BigBird w/ named entities (Ours) TC-II 33.491 12.362 30.184
BigBird w/ named entities /w facts - EFAS (Ours) TC-III 31.936 13.162 28.730

LED
LED Vanilla (Baseline) TC-I 36.218 14.173 32.862

LED w/ named entities (Ours) TC-II 33.734 13.825 30.614
LED w/ named entities /w facts - EFAS (Ours) TC-III 33.283 13.582 29.038

Table 5.6: Lexical (ROUGE) Evaluation w.r.t Ground Truth Summary (vanilla input @
inference time). The input in this experimental setting is the raw input article to be summa-
rized (i.e., w/o named entity chain). It can be seen that ROUGE scores are generally higher
with the vanilla setting except for Pegasus.

Backbone Model Model Variant (K=3) Training Config Entity-level Factual Consistency
Precision-target Recall-target F1 score-target

T5
T5 Vanilla (Baseline) TC-I 27.008 21.175 23.738

T5 w/ named entities (Ours) TC-II 27.564 19.246 22.666
T5 w/ named entities /w facts - EFAS (Ours) TC-III 27.329 19.136 22.510

BART
BART Vanilla (Baseline) TC-I 28.315 20.404 23.718

BART w/ named entities (Ours) TC-II 27.949 19.105 22.695
BART w/ named entities /w facts - EFAS (Ours) TC-III 27.241 18.792 22.241

Pegasus
Pegasus Vanilla (Baseline) TC-I 17.911 20.212 18.992

Pegasus w/ named entities (Ours) TC-II 22.950 21.335 22.113
Pegasus w/ named entities /w facts - EFAS (Ours) TC-III 23.572 22.956 23.260

BigBird
BigBird Vanilla (Baseline) TC-I 16.523 19.384 17.840

BigBird w/ named entities (Ours) TC-II 23.273 21.831 22.529
BigBird w/ named entities /w facts - EFAS (Ours) TC-III 25.317 23.839 24.556

LED
LED Vanilla (Baseline) TC-I 17.830 20.173 18.929

LED w/ named entities (Ours) TC-II 24.528 22.573 23.510
LED w/ named entities /w facts - EFAS (Ours) TC-III 26.827 25.322 26.053

Table 5.7: Entity-level Factual Consistency Evaluation w.r.t Ground Truth Summary
(vanilla input @ inference time). The input in this experimental setting is the raw input
article to be summarized (i.e., w/o named entity chain). We see that entity-level factual
consistency metrics improve for Pegasus, BigBird, and LED as we inject intrinsic and ex-
trinsic semantic signals during training. On the other hand, since we are using vanilla input
during inference for this experimental setting, we also see the vanilla-trained versions of
T5, and BART perform well when tested with vanilla input.
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Backbone Model Model Variant (K=3) Training Config Entity-level Factual Consistency
Precision-source Recall-source F1 score-source

T5
T5 Vanilla (Baseline) TC-I 55.076 7.976 13.934

T5 w/ named entities (Ours) TC-II 54.015 7.232 12.756
T5 w/ named entities /w facts - EFAS (Ours) TC-III 53.284 6.275 11.228

BART
BART Vanilla (Baseline) TC-I 58.592 5.623 10.261

BART w/ named entities (Ours) TC-II 60.422 5.361 9.848
BART w/ named entities /w facts - EFAS (Ours) TC-III 61.593 4.739 8.801

Pegasus
Pegasus Vanilla (Baseline) TC-I 33.821 7.401 12.144

Pegasus w/ named entities (Ours) TC-II 46.757 7.743 13.286
Pegasus w/ named entities /w facts - EFAS (Ours) TC-III 48.387 8.263 14.116

BigBird
BigBird Vanilla (Baseline) TC-I 34.288 9.261 14.583

BigBird w/ named entities (Ours) TC-II 48.283 8.625 14.636
BigBird w/ named entities /w facts - EFAS (Ours) TC-III 48.572 9.583 16.008

LED
LED Vanilla (Baseline) TC-I 59.361 6.731 12.091

LED w/ named entities (Ours) TC-II 62.479 6.382 11.581
LED w/ named entities /w facts - EFAS (Ours) TC-III 63.731 6.821 12.323

Table 5.8: Entity-level Factual Consistency w.r.t source article. The input in this experi-
mental setting is the raw input article to be summarized @ inference time (i.e., w/o named
entity chain). From this table, we see that injecting named entity chain and facts during
training generally enables the transformer models to hallucinate less as evidenced by the
precision-source scores.

Backbone Model Model Variant (K=3) Training Config R-1 R-2 R-L

T5
T5 Vanilla (Baseline) TC-I 29.837 11.386 27.493

T5 w/ named entities (Ours) TC-II 32.183 13.725 29.398
T5 w/ named entities /w facts - EFAS (Ours) TC-III 29.372 9.682 28.275

BART
BART Vanilla (Baseline) TC-I 34.762 12.592 29.387

BART w/ named entities (Ours) TC-II 35.281 12.938 31.276
BART w/ named entities /w facts - EFAS (Ours) TC-III 33.731 11.923 30.285

Pegasus
Pegasus Vanilla (Baseline) TC-I 26.592 10.052 24.386

Pegasus w/ named entities (Ours) TC-II 32.562 13.864 30.174
Pegasus w/ named entities /w facts - EFAS (Ours) TC-III 33.824 13.841 30.639

BigBird
BigBird Vanilla (Baseline) TC-I 28.174 11.371 25.692

BigBird w/ named entities (Ours) TC-II 32.281 14.263 31.863
BigBird w/ named entities /w facts - EFAS (Ours) TC-III 34.728 13.264 31.752

LED
LED Vanilla (Baseline) TC-I 34.265 10.826 26.173

LED w/ named entities (Ours) TC-II 36.840 13.773 32.156
LED w/ named entities /w facts - EFAS (Ours) TC-III 34.927 14.003 30.851

Table 5.9: Lexical (ROUGE) Evaluation w.r.t Ground Truth Summary (input article +
named entity chain @ inference time); i.e., the input in this experimental setting is the
raw input article to be summarized with the named entities (i.e., w/ named entity chain).
Here, we mostly see that ROUGE scores (evaluated with named entities included during
inference) are higher with the inclusion of named entities during training. This is expected
as named entities used during training are similarly used during inference.
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Backbone Model Model Variant (K=3) Training Config Entity-level Factual Consistency
Precision-target Recall-target F1 score-target

T5
T5 Vanilla (Baseline) TC-I 26.194 19.759 22.526

T5 w/ named entities (Ours) TC-II 29.826 22.952 25.941
T5 w/ named entities /w facts - EFAS (Ours) TC-III 28.582 20.738 24.036

BART
BART Vanilla (Baseline) TC-I 26.581 18.381 21.733

BART w/ named entities (Ours) TC-II 27.949 19.105 22.696
BART w/ named entities /w facts - EFAS (Ours) TC-III 27.241 18.792 22.241

Pegasus
Pegasus Vanilla (Baseline) TC-I 15.386 19.382 17.154

Pegasus w/ named entities (Ours) TC-II 24.638 23.529 24.071
Pegasus w/ named entities /w facts - EFAS (Ours) TC-III 25.498 24.374 24.923

BigBird
BigBird Vanilla (Baseline) TC-I 15.942 19.873 17.692

BigBird w/ named entities (Ours) TC-II 26.315 24.728 25.497
BigBird w/ named entities /w facts - EFAS (Ours) TC-III 26.638 24.163 25.340

LED
LED Vanilla (Baseline) TC-I 17.284 20.692 18.835

LED w/ named entities (Ours) TC-II 28.173 25.866 26.970
LED w/ named entities /w facts - EFAS (Ours) TC-III 26.116 26.830 26.468

Table 5.10: Entity-level Factual Consistency w.r.t Ground Truth Summary. The input in this
experimental setting is the raw input article to be summarized with the named entities (i.e.,
w/ named entity chain) @ inference time. We see that precision-target and recall-target of
models improve when they are trained with the inclusion of the additional semantic signals.

Backbone Model Model Variant (K=3) Training Config Entity-level Factual Consistency
Precision-source Recall-source F1 score-source

T5
T5 Vanilla (Baseline) TC-I 52.183 5.792 10.427

T5 w/ named entities (Ours) TC-II 56.803 10.816 18.172
T5 w/ named entities /w facts - EFAS (Ours) TC-III 55.728 8.629 14.944

BART
BART Vanilla (Baseline) TC-I 56.611 5.031 9.241

BART w/ named entities (Ours) TC-II 62.385 7.284 13.045
BART w/ named entities /w facts - EFAS (Ours) TC-III 61.938 6.382 11.572

Pegasus
Pegasus Vanilla (Baseline) TC-I 31.492 6.792 11.174

Pegasus w/ named entities (Ours) TC-II 48.389 8.396 14.309
Pegasus w/ named entities /w facts - EFAS (Ours) TC-III 48.964 9.491 15.900

BigBird
BigBird Vanilla (Baseline) TC-I 31.882 8.177 13.016

BigBird w/ named entities (Ours) TC-II 48.733 9.267 15.573
BigBird w/ named entities /w facts - EFAS (Ours) TC-III 50.373 11.274 18.424

LED
LED Vanilla (Baseline) TC-I 58.316 6.472 11.651

LED w/ named entities (Ours) TC-II 63.722 8.537 15.057
LED w/ named entities /w facts - EFAS (Ours) TC-III 65.180 8.374 14.841

Table 5.11: Entity-level Factual Consistency w.r.t input source article (input article +
named entity chain @ inference time); i.e., the input in this experimental setting is the raw
input article to be summarized with the named entities (i.e., w/ named entity chain). In this
experimental setting, we see that precision-source and recall-source consistently improve
when a model is trained and tested with the inclusion of semantic signals, which means the
models is less prone to hallucinating irrelevant entities while generating summaries.
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Backbone Model Model Variant (K=3) Training Config N-gram Novelty
w/o named entities w/ named entities

T5
T5 Vanilla (Baseline) TC-I 52.930 49.699

T5 w/ named entities (Ours) TC-II 50.079 50.967
T5 w/ named entities /w facts - EFAS (Ours) TC-III 53.817 52.841

BART
BART Vanilla (Baseline) TC-I 54.816 54.997

BART w/ named entities (Ours) TC-II 54.959 57.811
BART w/ named entities /w facts - EFAS (Ours) TC-III 57.360 61.370

Pegasus
Pegasus Vanilla (Baseline) TC-I 51.260 50.035

Pegasus w/ named entities (Ours) TC-II 52.558 51.269
Pegasus w/ named entities /w facts - EFAS (Ours) TC-III 54.621 52.702

BigBird
BigBird Vanilla (Baseline) TC-I 49.783 51.374

BigBird w/ named entities (Ours) TC-II 52.729 54.836
BigBird w/ named entities /w facts - EFAS (Ours) TC-III 53.661 53.827

LED
LED Vanilla (Baseline) TC-I 53.732 53.288

LED w/ named entities (Ours) TC-II 55.826 58.637
LED w/ named entities /w facts - EFAS (Ours) TC-III 59.283 61.482

Table 5.12: N-gram Novelty w.r.t source articles w/o and w/ named entity chain during
inference. As can be seen, the models’ capability of paraphrasing a source article improves
when we include semantic signals during training and inference. Particularly, training the
models with both intrinsic and extrinsic semantic signals and using the intrinsic signals
during inference enables us to achieve high N-gram novelty (paraphrasing).

Backbone Model Model Variant (K=3) Training Config BioBERTScore
w/o named entities w/ named entities

T5
T5 Vanilla (Baseline) TC-I 52.269 51.682

T5 w/ named entities (Ours) TC-II 51.868 52.739
T5 w/ named entities /w facts - EFAS (Ours) TC-III 53.162 54.164

BART
BART Vanilla (Baseline) TC-I 51.799 50.283

BART w/ named entities (Ours) TC-II 51.783 53.618
BART w/ named entities /w facts - EFAS (Ours) TC-III 52.072 51.472

Pegasus
Pegasus Vanilla (Baseline) TC-I 53.168 51.381

Pegasus w/ named entities (Ours) TC-II 53.401 55.761
Pegasus w/ named entities /w facts - EFAS (Ours) TC-III 54.382 55.263

BigBird
BigBird Vanilla (Baseline) TC-I 55.271 53.620

BigBird w/ named entities (Ours) TC-II 56.813 54.271
BigBird w/ named entities /w facts - EFAS (Ours) TC-III 56.372 55.088

LED
LED Vanilla (Baseline) TC-I 53.732 52.427

LED w/ named entities (Ours) TC-II 54.163 55.791
LED w/ named entities /w facts - EFAS (Ours) TC-III 53.814 57.284

Table 5.13: Semantic Equivalence (BioBERTScore [2]] w.r.t ground truth summaries w/o
and w/ named entity chain during inference. Since we are using BioBERT for representa-
tion learning, we refer to the metric as BioBERTScore, a variant of BERTScore. As can
be seen, we obtained the best semantic equivalence scores when the models are trained
with the inclusion of the semantic signals during training and the semantic signals included
during inference.
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Figure 5.4: Precision-source for different values of K.

Ablation Studies To assess the impact of facts mined on the quality of summaries gen-

erated, we conduct an ablation study where we experiment with different values of K in

top-k for the backbone models. Figure 5.4 and Figure 5.5 shows results of ablation to assess

precision-source, and recall-target. Since we want to minimize entity hallucination which

is measured in terms of precision-source and want to maximize the number of entities in the

ground truth summary that are retrieved in the generated summary as measured by recall-

target, we report the impact of different values of K for these two metrics. As shown in

the two plots, precision-source and recall-target consistently improve as we retrieve more

relevant facts from the biomedical knowledge bases and train our models.

Discussion of Results From the results reported in the previous section, we generally see

entity-level factual consistency (particularly, precision-source, and recall-target) improve

when a model is trained with named entities and/or facts included as an additional sig-

nal in the training with the same objective of generating the ground truth summary using
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Figure 5.5: Recall-target for different values of K.

cross-entropy loss. The addition of more facts further improves entity-level factual consis-

tency as shown in Figure 5.4 and Figure 5.5. Further, we notice N-gram novelty improves

with our proposed framework for the five backbone models. Semantic equivalence gener-

ally improves when named entities and/or facts are included during training for all models.

Thus, the corresponding entries for the various models and training configurations show

improvement in semantic based scores. The ROUGE scores, however, drop slightly from

when there is no additional context at training or inference time. The drop in ROUGE is

a result of augmenting the models with facts from background knowledge bases which in

turn leads to higher N-gram novelty. Thus, the proposed framework enables us to achieve

better abstractive scores in terms of entity-level factual consistency, paraphrasing and se-

mantic equivalence. With regards to evaluation across the ICD-11 chapters, while there is a

slight variation among the chapters, we did not notice a significant difference in evaluation

metrics (semantic equivalence, entity-level factual consistency, and N-gram novelty).
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PubMed Ar t icle Abstract/ Ground Truth Summary: cigarette smoke is considered a major risk factor for 
vascular diseases .   there are many toxic compounds in cigarette smoke , including acrolein and other 
,-unsaturated aldehydes , which are regarded as mediators of inflammation and vascular dysfunction .   
furthermore , recent studies have revealed that acrolein , an ,-unsaturated aldehyde in cigarette smoke , 
induces inflammatory mediator expression , which is known to be related to vascular diseases . in this study , 
we investigated whether korean red ginseng ( krg ) water extract suppressed acrolein - induced 
cyclooxygenase ( cox)-2 expression in human umbilical vein endothelial cells ( huvecs ) .   acrolein - induced 
cox-2 expression was accompanied by increased levels of phosphorylated p38 in huvecs and krg inhibited 
cox-2 expression in huvecs .   these results suggest that krg suppresses acrolein - induced cox-2 expression via 
inhibition of the p38 mitogen - activated protein kinase signaling pathway .   in addition , krg exhibited an 
inhibitory effect on acrolein - induced apoptosis , as demonstrated by annexin v    propidium iodide staining 
and terminal deoxynucleotidyl transferase - mediated dutp nick end - labeling assay .   consistent with these 
results , krg may exert a vasculoprotective effect through inhibition of cox-2 expression in acrolein - 
stimulated human endothelial cells . 
--------------------------------------------------------------------------------------------------------------------------------------
BART-vanilla summary: backgroundive. the objective of our study was to investigate the vascular 
protective effect of korean red ginseng ( krg ) in human umbilical vein endothelial cells ( huvecs ). methods. 
we examined the effects of krg on the expression of cox-2 and apoptosis in acrolein - stimulated peripheral 
blood vessels ( pgs ). results. in addition, in vitro evidence suggests that krg may play an important role in the 
pathogenesis of vascular diseases such as hypertension, stroke, and and/ or decreased vasodilation. 
conclusions. the results suggest that the effect of bg on endothelial damage is not due to bg alone.
--------------------------------------------------------------------------------------------------------------------------------------
BART-EFAS summary: the aim of this study was to investigate the effect of cyclooxygenase ( cox ) on the 
expression of cox-2 in human umbilical vein endothelial cells ( huvecs ). [ subjects and methods ] forty - four 
huvec cells were cultured in acrolein - stimulated human cells ( ash 2.5%, total crude saponin 70  mg /  g, and 
total ginsenosides 20  mg/  g. [ results ] the results of our study suggest that krg acts as a cytoprotective agent 
of inflammation and atherosclerosis. [ conclusion ] the present study suggests that the anti - inflammatory 
effect of krg powder may be due to the inhibition of the signaling pathway and may be related to the 
development of vascular diseases.

Figure 5.6: Sample Generated Summaries using BART vanilla and our proposed variants
of BART.

5.4 Conclusion

In this chapter, we proposed a framework to integrate named entities in a source article and

facts extracted from biomedical knowledge bases pertaining to the named entities using

transformer-based encoder-decoder models and applied to the task of abstractive summa-

rization of biomedical literature. Through extensive experiments, we showed the proposed

approach improves the reliability and coverage of generated summaries in terms of entity-

level factual consistency and semantic equivalence w.r.t ground truth summaries while gen-

erating novel words w.r.t source articles.
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Improving the Factual Accuracy and

Interpretability of Abstractive Clinical

Text Summarization

”I don’t know what’s the matter with people: they don’t learn by understanding; they learn

by some other way - by rote, or something. Their knowledge is so fragile!.”

—Richard Feynman, 1918 – 1988

In chapter 5, we looked at how abstractive summarization can be improved by utilizing

intrinsic semantics in the form of named entities and extrinsic semantics in the form of facts

retrieved from external knowledge bases. However, the named entities and associated facts

obtained were used as additional contextual input signals with the objective still being

generating a summary as semantically close as possible to a ground truth summary. In

this chapter, we go one step further, and jointly optimize three objectives: ground truth

summary given an input sequence, named entities in ground truth summary given named

entities from the input sequence, and entity-relevant facts in ground truth summary given

entity-relevant facts in an input sequence. Thus, while the previous chapters dealt with

single-objective optimization, in this chapter, we propose multi-objective optimization and

apply it to the task of abstractive summarization of clinical text. Further, in this chapter,

we investigate how semantically sound summaries can be explained in terms of entity-level
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factual accuracy. In other words, we study the relationship between semantic equivalence

and entity-level factual accuracy to assess if improvement in entity-level factual accuracy

could lead to improved semantic equivalence.

6.1 Why (Motivation)

Recent advances in sequence to sequence models [31] have led to progress in abstractive

summarization of news articles, scientific articles, and social media data. However, these

models have not been well investigated in the healthcare domain where automated clinical

summary generation [143] for a set of findings in clinical notes can be helpful to clinicians

for timely and effective clinical decision making. One of the clinical practices entails the

task of recording findings of diagnosis, treatment or procedures followed by manually sum-

marizing the findings into a form called impressions. Inspired by recent efforts in modeling

findings-to-impression as summarization [144, 145, 84] , we propose to automate this pro-

cess of writing an impression from findings to assist clinicians with their practice, making

the clinical workflow more efficient. As part of the task of abstractive clinical text summa-

rization, two of the critical aspects of informative summary generation are 1) preserving

semantics; and 2) discovering portions of an input clinical note that have led to semanti-

cally informative summaries, motivated by a modeling paradigm known as interpretability

[146].

6.2 What (Problem Statement)

In the previous chapter, we introduced an approach for leveraging named entities and as-

sociated facts mined from medical knowledge bases to model abstractive summarization

of biomedical articles. In this chapter, we propose an end-to-end training framework using

multi-objective optimization for the task of abstractive summarization of clinical text, pre-
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sented as findings and assess the entity-level factual accuracy of generated summaries and

the interpretability of the quality of semantics in terms of factual accuracy.

Concretely, we propose an abstractive clinical text summarization framework based

on multi-objective optimization where we jointly optimize three cost functions in our pro-

posed architecture during training: generative loss, entity loss, and knowledge loss. We

evaluate the proposed architecture on three different datasets. We experiment with three

transformer encoder-decoder architectures and demonstrate that optimizing different loss

functions leads to improved performance in terms of entity-level factual accuracy and se-

mantic equivalence. We also evaluate how entity-level factual accuracy relates to seman-

tically sound summaries in a fundamental attempt to explainability of abstractive clinical

text summarization.

6.3 How (Approach)

6.3.1 Data Collection

We collect clinical notes of 1200 patients with heart failure (HF) from the University of

Illinois Hospital & Health Sciences System (UI Health) for our study. Among the clinical

notes collected for the 1200 patients, there are a total of 15183 de-identified procedure

notes spanning a period of over 4 years (5/2016 - 8/2020). Out of the total 15183 notes, we

filtered the ones with no Findings or Impressions since our research aim is to generate an

impression from a set of findings. The findings play the role of input text to be summarized

and the impression serves as the ground truth summary. After pre-processing the data, we

have 6182 notes consisting of findings-to-impression pairings along with other metadata.

In addition to our Heart Failure data, we evaluate the proposed approach for Research

Aim-4 on two benchmark datasets. The benchmark datasets are 1) radiology reports from

the Indiana Network for Patient Care [147]; and 2) 50000 randomly selected chest x-ray
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reports from the MIMIC-III-CXR dataset [148] originally curated by Beth Israel Deaconess

Medical Center. Figure 6.1 illustrates what a typical clinical note (a record) for a patient

with HF in our cohort looks like.

6.3.2 Proposed Framework

The sections below discuss the components in the proposed framework.

Clinical Knowledge Retriever Since our goal is to use named entities and entity-aware

facts (from knowledge bases) for modeling abstractive summarization, our first task is to

conduct named entity recognition on the findings and impression of the clinical notes. For

this, we use an off-the-shelf Stanza package from Stanford for clinical named entity recog-

nition (NER) [9]. Specifically, the Stanza model we use is the one trained on the i2b2

clinical text dataset. The knowledge bases to query for facts using the named entities are

composed of UMLS, SNOMED-CT, and ICD-10. Figure 6.2 shows named entities and

entity-aware facts for a given set of findings and impression, apiece, from the heart failure

data. The fact retrieval module follows the same Maximum Inner Product Search using

FAISS approach implemented in chapter 5.

For each named entity identified from a set of findings/impression, we perform full-

text lexical query of the KBs and return the top-k facts where we set the value of K to 5

[126].

Model Training using Multi-Objective Optimization We experiment with three state-

of-the-art transformer encoder-decoder models pretrained using different self-supervised

objectives. We propose to train these models using a loss function that optimizes summary

generation, named entity chain generation, and fact generation where our task is not only to

auto-regressively generate the target summary, but also to generate the named entities in the
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Procedure_name: 
[PERSONALNAME] Abd and Pelv w/ o [PERSONALNAME] cont
------------------------------------------------------------------------------------------------------------
Indicat ion: 
64-year-old female with history of incarcerated hernia, concern for small bowel obstruction
------------------------------------------------------------------------------------------------------------
Technique: 
Multidetector multiplanar noncontrast [PERSONALNAME] images through the abdomen and 
pelvis were obtained.
------------------------------------------------------------------------------------------------------------
Compar ison: 
[PERSONALNAME] examination of the abdomen and pelvis
------------------------------------------------------------------------------------------------------------
Findings:
Lack of intravenous contrast limits exam interpretation.  LUNG BASES: There is a moderate 
right pleural effusion.  There is dependent atelectasis in the lung bases.  The heart is slightly 
increased in size compared to prior examination. There is atherosclerotic calcification of the 
coronary arteries.  LIVER: The liver demonstrates cirrhotic morphology with nodular surface 
contours.  GALLBLADDER AND BILIARY SYSTEM: There are no calcified gallstones.  SPLEEN: 
The spleen is borderline enlarged measuring up to 13 cm in length.  PANCREAS: Evaluation of 
the pancreas is suboptimal in the absence of [PERSONALNAME] contrast.  ADRENAL GLANDS: 
There is a low attenuating lesion in the left adrenal gland measuring approximately 2.2 cm 
(series 2 image 22) that appears slightly enlarged since February 27, 2018 when it measured 
approximately 1.9 cm. This is favored to represent an adenoma.  KIDNEYS: In the inferior pole 
cortex of the left kidney there is a 1.2 cm simple cyst, more conspicuous than the prior study.  
STOMACH: The stomach is mildly distended with air and debris.  BOWEL: Postsurgical 
changes with bowel sutures are again seen in the right lower quadrant. There is mild small 
bowel dilatation adjacent to the suture line, probably within normal limits postsurgical. 
There is a focally dilated loop of small bowel in the left mid abdomen measuring up to 4.2 cm 
(series 2 image 30) with passage of oral contrast distally, suspicious for partial small bowel 
obstruction. There is passage of oral contrast to the level of the terminal ileum. There is 
amorphous soft tissue in the mid abdomen (series 2 images 53, 54) which likely represents 
unopacified small bowel loops rather than mass. There is scattered stool in the colon.  
PERITONEUM AND RETROPERITONEUM: There is mild to moderate volume ascites. There is 
no intraperitoneal free air. The abdominal aorta is normal in course and caliber with 
atherosclerotic calcifications throughout its abdominal course extending into the common 
iliac arteries.There is no mesenteric or retroperitoneal lymphadenopathy.  PELVIS: The 
urinary bladder is well distended and unremarkable.  There is no pelvic lymphadenopathy. 
Multiple phleboliths are again seen.  BONES: There are mild degenerative changes of the 
spine with a diffuse disc bulges at L4-L5 and L5-S1. Sclerosis of L4-L5 appears unchanged since 
prior examination.  SOFT TISSUES: There is anasarca in the subcutaneous soft tissues. A 
midline laparotomy scar is again seen.
------------------------------------------------------------------------------------------------------------
Impression:
1.  Findings suspicious for a proximal, partial small bowel obstruction. 
2.  Moderate right pleural effusion. 
3.  Cirrhotic liver morphology. 
4.  Moderate volume ascites. 
5.  Postsurgical changes of small bowel resection in the right lower quadrant. 
6.  Slight increase in size of left adrenal nodule favored to represent an adenoma.  These 
images were reviewed and interpreted with attending radiologist Dr. [PERSONALNAME] 
before dictation of this final report by resident Dr. [PERSONALNAME].

Figure 6.1: Example de-identified clinical record for the heart failure data collected through
the Center for Clinical and Translational Science, University of Illinois, Chicago.
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EXAMINATION: XR Chest 1 View Frontal.  
[PERSONALNAME]:   2/ 19/ 2018 7:46 AM   
COMPARISONS: February 15, 2018  
[PERSONALNAME]: wheezing and sob   
TECHNIQUE: Portable semiupright frontal 
view  FINDINGS: The cardiac silhouette 
remains enlarged. The aorta is tortuous 
with calcifications. The pulmonary 
vasculature remains engorged. There is 
suggestion of left retrocardiac focal 
opacities. Platelike atelectasis versus 
scarring again noted within the mid lungs. 
There is a probable small left pleural 
effusion. No definite pneumothorax. The 
osseous structures are demineralized.

Findings

1. Persistent cardiomegaly and 
pulmonary venous congestion. Probable 
small left pleural effusion. 2. Left 
retrocardiac opacities may represent 
atelectasis and/ or consolidation.

Impression

Named Entit ies in Findings

engorged | pneumothorax | 
Portable semiupright frontal view | 
left retrocardiac focal opacities | 
tortuous | scarring | calcifications | 
sob | XR Chest 1 View Frontal | 
Platelike atelectasis | 
EXAMINATION | wheezing | a 
probable small left pleural effusion

Named Entit ies in 
Impression

Left retrocardiac opacities | 
Persistent cardiomegaly | small left 
pleural effusion | consolidation | 
atelectasis | pulmonary venous 
congestion

Entity-aware Facts in UMLS 
(Findings)

1.Diagnostic radiologic examination 
with fluoroscopy of chest.

2.Extensive congenital erosions, 
vesicles and reticulate scarring.

3.Hypertrophic scarring of skin 
donor site

Entity-aware Facts in UMLS 
(Impression)

1.Atelectasis AND/ OR obstructive 
pneumonitis of entire lung 
associated with direct extension of 
malignant neoplasm.

2.Lung tumor of any size associated 
atelectasis or obstructive 
pneumonitis of the entire lung.

3.Primary atelectasis, in perinatal 
period

Figure 6.2: Named entities and entity-aware facts for findings and impression.

impression and to generate the facts associated with the named entities in the impression.

Figure 6.3 shows the proposed end-to-end architecture where three networks, with shared

parameters, are jointly trained using the loss functions stated in Equation 6.1.

We optimize the total aggregate loss function during the training phase for the pro-

posed model in use. We use Bayesian optimization [149] to search for the best combina-

tion of generative and regularization hyperparameters. The generative hyperparameter is

denoted in the formulation using λgen while the knowledge and entity-based regularization

hyperparameters are denoted using λk, λE . Each of the hyperparameters takes on values

in the range of [0.1, 0.9] with increments of 0.3 and we evaluate the validation loss in

each epoch during training to save the model checkpoint with the least validation loss. We

experiment with three optimization configurations: i) with generative loss alone; ii) with

generative loss and entity chain loss (Dual Multi-Objective Optimization - Dual MOO);

and iii) with generative loss, knowledge loss, and entity chain loss (Triple MOO).
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Figure 6.3: The proposed training architecture.

Ltotal = λgen · Lgen + λk · Lk + λE · LE (6.1)

Each of the loss functions is based on cross-entropy criterion (Equation 6.2).

Lθ = −
1

n

n∑
k=1

P(tk|t<k, χ; θ) (6.2)

Where χ - the input sequence (i.e., finding, or named entity chain in a finding, or a

sequence of facts retrieved from the knowledge bases associated with named entities in a

finding). The proposed models are trained with the objective of minimizing the aggregate

loss function defined in Equation 6.1. All models are built and trained using PyTorch on

Google Cloud NVIDIA Tesla T4 GPU.
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6.3.3 Experiments and Results

Table 6.1 shows the statistics of the datasets and Table 6.2 shows the results of evalua-

tion against the impressions (ground truth summary). Our experimental results show that

jointly optimizing the task of traditional language modeling with task-specific objectives

such as preserving entity-aware factual accuracy improves performance of a model. Specif-

ically, we demonstrate this by leveraging three pre-trained abstractive summarization mod-

els and fine-tuning on our datasets using multi-objective optimization. It can be seen from

Table 6.2 that Precision-target, and Recall-target increase with our training objective as

compared to the language modeling training objective used with the baseline models. As

extensively discussed in the literature [150, 145], we also argue that lexical measures (i.e.,

ROUGE) do not fully quantify the factual accuracy of a generated summary while a met-

ric that measures entity-level overlap between a ground truth summary (impression) and

a model-generated summary better reflects the extent to which semantics are preserved in

abstractive summarization since named entities constitute significant semantics in a clinical

text. As investigated in the preceding research aims, one quantitative measure of abstrac-

tive summarization is the rate of novel word generation (i.e., paraphrasing). We report in

Table 6.3 the N-gram novelty of the generated summaries (corresponding to different base

models and different variants of training configuration) measured w.r.t. findings. It can be

seen from Table 6.3 that training with Multi-Objective Optimization leads a model to gen-

erate more novel words than a vanilla setting for the three backbone models. Further, we

also measure the semantic equivalence between 1) findings and generated summary; and

2) impression and generated summary using the approach we pursued in chapter 5 (i.e.,

BERTScore). Unlike BioBERTScore, in this chapter, we use Clinical BERT [151] to en-

code the tokens in findings, impression or the generated summary. Tables 6.4 and 6.5 show

semantic equivalence measured w.r.t findings and impression respectively.

A key limitation of our proposed approach is that it is computationally more expen-

sive and takes longer to train than with customary single task objective training. Another
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limitation we observed is that the proposed model training approach can be sensitive to

hyperparameter initialization.

Dataset Train Validation Test Avg # tokens per Findings Avg # tokens per Impression
Heart Failure (HF) 4000 1091 1091 142 48

IU X-Ray 2200 593 593 33 12
MIMIC-CXR 40000 5000 5000 52 18

Table 6.1: Statistics of the experimental datasets.

Model R-1 R-2 R-L Entity-level Factual Accuracy
Precision-target Recall-target F1 score-target

T5 Vanilla (Baseline) 35.113 19.503 34.921 25.150 42.577 31.621
T5 w/ named entities
(dual MOO) - Ours 32.628 18.361 33.827 29.672 46.581 36.252

T5 w/ named entities /w facts (triple MOO) - Ours 28.761 17.382 30.599 29.327 48.148 36.451
BART Vanilla (Baseline) 22.951 16.283 22.657 18.321 29.679 22.656

BART w/ named entities (dual MOO) - Ours 19.827 13.693 19.792 20.629 33.839 25.632
BART w/ named entities /w facts
(triple MOO) - Ours 15.721 12.173 16.582 23.182 34.159 27.620

Pegasus Vanilla (Baseline) 28.193 11.387 28.079 21.739 28.593 24.699
Pegasus w/ named entities (dual MOO) - Ours 27.370 9.728 25.372 22.058 29.781 25.344

Pegasus w/ named entities /w facts
(triple MOO) - Ours 24.263 7.836 22.174 25.661 25.349 25.504

Table 6.2: Experimental results. Dual MOO refers to dual multi-objective optimization
where only the generative loss and entity chain loss are jointly optimized during training.
Triple MOO refers to modeling where the three loss functions are jointly optimized. Due
to space constraints, we report average scores across the three datasets.

Backbone Model Training Configuration (K=5) N-gram Novelty
w/o named entities w/ named entities

T5
T5 Vanilla (Baseline) 5.753 7.319

T5 w/ Dual MOO (Ours) 15.431 12.824
T5 w/ Triple MOO (Ours) 37.165 36.817

BART
BART Vanilla (Baseline) 24.313 23.182

BART w/ Dual MOO (Ours) 26.724 25.182
BART w/ Triple MOO (Ours) 41.278 41.255

Pegasus
Pegasus Vanilla (Baseline) 17.382 16.118

Pegasus w/ Dual MOO (Ours) 22.735 22.347
Pegasus w/ Triple MOO (Ours) 29.813 28.601

Table 6.3: Generated summaries N-gram Novelty w.r.t. findings w/o and w/ named entity
chain during inference.
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Findings: Density in the left upper lung on PA XXXX XXXX represents 
superimposed bony and vascular structures. There is calcification of the 
first rib costicartilage junction which XXXX contributes to this 
appearance. The lungs otherwise appear clear. The heart and pulmonary 
XXXX appear normal. In the pleural spaces are clear. The mediastinal 
contour is normal. There are degenerative changes of thoracic spine. 
There is an electronic cardiac device overlying the left chest wall with 
intact distal leads in the right heart. 
-------------------------------------------------------------------------------------------
Impression: 1. Irregular density in the left upper lung on PA XXXX, 
XXXX artifact related to superimposed vascular bony structures. Chest 
fluoroscopy or XXXX would confirm this 2. Otherwise, no acute 
cardiopulmonary disease.
-------------------------------------------------------------------------------------------
BART-vanilla summary: 1. No acute radiographic cardiopulmonary 
process. 2. Hiatal leads in the left upper lung which XXXX represents the 
first rib costicartilage junction XXXX contributes to this appearance. 3. No 
evidence of pulmonary edema. No definite pleural effusion or 
pneumothorax. No typical appearance of pulmonary XXXX..
-------------------------------------------------------------------------------------------
BART-Dual-MOO summary: Cardiopulmonary heart disease. The 
heart and pulmonary heart disease are normal. The pulmonary heart is 
normal. There is no heart disease in the right heart. The left heart is 
healthy. The right heart is stable. The lungs are normal and the 
pulmonary heart and lungs are stable. There are no heart and lung 
diseases. The lung is stable and stable.
-------------------------------------------------------------------------------------------
BART-Tr iple-MOO summary: superimposed bony and vascular 
structures in the right heart. The heart and pulmonary heart are normal. 
The cardiopulmonary heart is normal. There is an electronic cardiac 
device overlying the left chest wall with intact distal leads. The right 
heart is healthy. The left heart is stable. The pulmonary heart is fine. The 
lungs are normal and the heart is good. The lung is healthy and stable. 
There are no complications in the left heart.

Figure 6.4: Sample summaries generated using vanilla, and knowledge-augmented opti-
mization objectives.

100



Backbone Model Training Configuration (K=5) Clinical BERT Score
w/o named entities w/ named entities

T5
T5 Vanilla (Baseline) 49.481 50.824

T5 w/ Dual MOO (Ours) 48.628 49.271
T5 w/ Triple MOO (Ours) 52.602 53.183

BART
BART Vanilla (Baseline) 53.793 52.337

BART w/ Dual MOO (Ours) 51.694 52.825
BART w/ Triple MOO (Ours) 59.792 62.278

Pegasus
Pegasus Vanilla (Baseline) 47.581 49.744

Pegasus w/ Dual MOO (Ours) 48.291 47.763
Pegasus w/ Triple MOO (Ours) 51.382 51.803

Table 6.4: Generated summaries’ Semantic Equivalence w.r.t findings w/o and w/ named
entity chain during inference.

Backbone Model Training Configuration (K=5) Clinical BERT Score
w/o named entities w/ named entities

T5
T5 Vanilla (Baseline) 48.173 46.379

T5 w/ Dual MOO (Ours) 47.862 48.921
T5 w/ Triple MOO (Ours) 51.364 53.061

BART
BART Vanilla (Baseline) 50.372 51.741

BART w/ Dual MOO (Ours) 51.702 54.273
BART w/ Triple MOO (Ours) 50.391 52.286

Pegasus
Pegasus Vanilla (Baseline) 46.992 47.630

Pegasus w/ Dual MOO (Ours) 47.251 48.379
Pegasus w/ Triple MOO (Ours) 50.772 49.402

Table 6.5: Generated summaries Semantic Equivalence w.r.t impression w/o and w/ named
entity chain during inference.

Discussion of Results From the experimental results reported, we can infer that optimiz-

ing three cost functions leads to improved performance in terms of semantic equivalence

and paraphrasing w.r.t source clinical notes (findings) across all model variants. With re-

gards to entity-level factual accuracy w.r.t the ground truth summaries (impressions), we

see improved performance is observed with double optimization or triple optimization. One

limitation of the proposed cost minimization strategy is each of the loss functions is based

on cross entropy and it is possible to extend the approach using other cost functions such

as KL divergence, and euclidean distance to name a few.

To better understand and explain the models we experimented with, we select the

top-5 semantically sound summaries generated using BART w/Triple MOO variant (w/-

named entity chain during inference) and analyzed how entity-level factual accuracy and

semantic equivalence relate to each other. Table 6.6 shows the semantic equivalence scores

w.r.t findings and entity-level factual accuracy for BART based models for the top-5 (based
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on semantic equivalence for summaries generated using BART w/ Triple MOO) clinical

notes. Table 6.7 shows semantic equivalence w.r.t impressions vs entity-level factual accu-

racy. From both tables, we generally see that for the top semantically sound summaries,

their entity-level factual accuracy is also high and that as the entity-level factual accuracy

goes down, semantic equivalence also shows a trend of going down. While not fully con-

clusive, from this observation, we can infer that entity-level factual accuracy and semantic

equivalence are positively correlated.

Heart Failure Clinical Note Record ID BART model variant Semantic Equivalence w.r.t Findings Entity-level Factual Accuracy (F1-target)

2176
BART vanilla 58.31 29.63

BART w/ Dual MOO 63.27 32.85
BART w/ Triple MOO 68.43 34.69

1305
BART vanilla 59.74 30.82

BART w/ Dual MOO 64.39 31.72
BART w/ Triple MOO 67.25 33.81

1938
BART vanilla 59.27 28.13

BART w/ Dual MOO 65.91 31.29
BART w/ Triple MOO 65.48 34.16

2406
BART vanilla 57.33 26.38

BART w/ Dual MOO 63.81 29.41
BART w/ Triple MOO 65.13 32.05

926
BART vanilla 60.82 25.73

BART w/ Dual MOO 61.03 27.61
BART w/ Triple MOO 63.94 30.15

Table 6.6: Correlation between semantic equivalence w.r.t findings and entity-level factual
accuracy. Note that the boldfaced numbers are to show the non-ascending order of semantic
equivalence for BART w/ Triple MOO and is not meant to compare with other model
variant.

Thus, the proposed multi-objective optimization of cost functions enables for better

explainability of summaries whose semantics are preserved since the informativeness of

summaries can be better explained by the context in which named entities appear in find-

ings and/or impressions. In other words, named entities enable us to capture features that

contribute positively to the summary generation as certain tokens contribute higher than

other tokens in regular deep learning classification tasks [152]. Since preserving semantics

is the heart of abstractive summarization, we selected the top semantically sound (as mea-

sured by Clinical BERT Score) representative summaries generated using the vanilla, dual

MOO, and tripe MOO model variants and show that tokens that are identified as named

entities contribute positively to good summary generation. This is the result of the fact
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Heart Failure Clinical Note Record ID BART model variant Semantic Equivalence w.r.t impression Entity-level Factual Accuracy (F1-target)

269
BART vanilla 57.83 34.83

BART w/ Dual MOO 59.29 35.92
BART w/ Triple MOO 61.37 37.21

2738
BART vanilla 56.11 35.66

BART w/ Dual MOO 59.72 36.86
BART w/ Triple MOO 61.03 36.27

79
BART vanilla 58.25 33.17

BART w/ Dual MOO 60.31 34.02
BART w/ Triple MOO 60.26 35.97

683
BART vanilla 58.07 31.2

BART w/ Dual MOO 57.31 33.15
BART w/ Triple MOO 58.39 33.78

1847
BART vanilla 57.93 31.84

BART w/ Dual MOO 58.61 32.62
BART w/ Triple MOO 58.22 30.19

Table 6.7: Correlation between semantic equivalence w.r.t impression and entity-level fac-
tual accuracy. Note that the boldfaced numbers, as in Table 6.6, show the non-ascending
order of semantic equivalence for BART w/ Triple MOO and is not meant to compare with
other model variants.

that the summary generation model puts more weights on named entities than other tokens

in the findings and/or impressions. This attempt of explaining the black box generative

models is inspired by the works of [152, 146, 153].

6.4 Conclusion

In this chapter, we proposed a framework based on a transformer encoder-decoder net-

work and transfer learning for clinical text summarization using knowledge-aware multi-

objective optimization. We experimentally demonstrated that jointly optimizing generative

loss, knowledge loss, and entity-based loss functions significantly improves the quality

of generated summaries in terms of entity-level factual accuracy which is critical but less

explored in the healthcare domain.

In addition to improving the factual accuracy and semantic equivalence of summaries

in abstractive clinical text summarization, we have also made an attempt to go one step

further and assess the role named entities play for the task of semantically sound summary

generation. Particularly, we empirically analyzed how the semantics of summaries gener-

ated using the generative models in this chapter could be interpreted w.r.t named entities.

We believe our work lays the foundation for interpretability [153, 152] of generative models
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in the context of clinical text summarization.
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Summary of Contributions

In this dissertation, we introduced a semantics-driven abstractive document summarization

paradigm by exploring document semantics at various levels of granularity and investigated

across four domains/tasks. The key contributions of the dissertation can be summarized as

follows:

• A framework for utilizing intrinsic semantics of documents (scientific articles, biomed-

ical literature, and clinical notes) for guiding abstractive summarization models in

unsupervised and supervised settings for single document as well as multi-document

summarization tasks.

• An approach for retrieving extrinsic semantics of documents from domain-specific

knowledge bases in the form of related facts and amalgamating the intrinsic seman-

tics (named entity chain) and the extrinsic semantics (facts) into abstractive summa-

rization models during training and inference phases.

• A model that augments supervised sequence to sequence models with unsupervised

graph based technique for addressing the classic neural text degeneration problem in

neural decoding algorithms.

• A supervised abstractive summarization technique based on knowledge-aware multi-

objective optimization driven by intrinsic and extrinsic semantics of documents.

• Datasets, lexicons, codes, and trained model checkpoints to be publicly released.
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Future Research Directions

While we explored how intrinsic semantics and extrinsic semantics (derived from knowl-

edge bases) can be used for the task of abstractive document summarization for different

domains and tasks, a possible extension of this work is to integrate symbolic knowledge

(e.g., logical rules governing a given domain) into the deep learning frameworks used. Fur-

ther, whereas we focused on a single modality (text), in the future, we plan to investigate

the application of multi-task learning (explored in chapter 6) along with logic-based rules

derived from expert-curated knowledge bases for learning from multi-modal data in the

domain of healthcare for multi-modal abstractive summarization. To achieve this, we aim

to investigate multi-modal neuro-symbolic modeling in conjunction with the Mixture-of-

Experts (MoE) architecture [154, 155, 156].

Further, even though different evaluation metrics have been investigated and used in

this study for evaluating the quality of summaries generated, these metrics are still limited

in terms of whether semantics and factual accuracy are respected in summarization. The

factual accuracy metrics quantify entity-level precision and recall with respect to source ar-

ticles or ground truth summaries. A plausible extension to these metrics is to evaluate how

relationships between a pair of named entities are preserved during summary generation.

Similarly, while we employ semantic matching (equivalence) metric using domain- and

task-specific transformer encoder-decoder models, a potential avenue of deep semantic-

based metrics can be explored that reflect whether pragmatics, in addition to semantics are
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respected as well.
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