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Abstract
Generative Topic Modeling in Image Data Mining and Bioinformatics Studies

Xin Chen
Xiaohua Tony Hu, Supervisor, Ph. D.

Probabilistic topic models have been developed for applications in various domains

such as text mining, information retrieval and computer vision and bioinformatics domain.

In this thesis, we focus on developing novel probabilistic topic models for image mining

and bioinformatics studies. Specifically, a probabilistic topic-connection (PTC) model is

proposed for co-existing image features and annotations, in which new latent variables are

introduced to allow for more flexible sampling of word topics and visual topics. A per-

spective hierarchical Dirichlet process (pHDP) model is proposed to deal with user-tagged

image modeling, associating image features with image tags and incorporating the user’s

perspectives into the image tag generation process. It’s also shown that in mining large

scale text corpora of natural language descriptions, the relation between semantic visual at-

tributes and object categories can be encoded as Must-Links and Cannot-Links, which can

be represented by Dirichlet-Forest prior. Novel generative topic models are also introduced

to meta-genomics studies. The experimental results show that the generative topic model

can be used to model the taxon abundance information obtained by the homology-based

approach and study the microbial core. It also shows that latent topic modeling can be

used to characterize core and distributed genes within a species and to correlate similari-

ties between genes and their functions. A further study on the functional elements derived

from the non-redundant CDs catalogue shows that the configuration of functional groups

encoded in the gene-expression data of meta-genome samples can be inferred by applying

probabilistic topic modeling to functional elements. Furthermore, an extended HDP model
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is introduced to infer functional basis from detected enterotypes. The latent topics esti-

mated from human gut microbial samples are evidenced by the recent discoveries in fecal

microbiota study, which demonstrate the effectiveness of the proposed models.
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1. INTRODUCTION

Probabilistic topic models have been developed for applications in various domains

such as text mining [95], information retrieval [15]and computer vision [2], [93]. In

bioinformatics domain, generative topic model has been previously used to learn protein-

protein relations from MEDLINE abstracts of biomedical literatures [9], [110]; it has

also been applied to identify gene relations from microarray profiles [36]; the generative

topic model is also used to describe the process of constructing mRNA module collections

[40].In this thesis, we will focus on developing novel probabilistic topic models for image

mining and bioinformatics studies.

The prevalence of digital imaging device, such as digital camera and digital video cam-

era, has generated an increasingly large amount of unlabeled multimedia data, especially

unlabeled image data. With nearly a million new images being added in a single day,

the Flickr.com, one of the most popular photo sharing websites, now hosts over 3 billion

shots of user-uploaded images. Manually annotating such a huge amount of image data is

time-consuming, laborious and prohibitively expensive.To face the challenge of enormous

explosion of unlabeled online image resources, it is very important to develop context-

sensitive robust automatic image annotation system.

In order to develop robust learning algorithm to achieve semantic image annotation, there

are four challenging research issues to be addressed: 1) achieve more robust and effec-

tive image representations to bridge over the semantic gap; 2)utilize image content and

the associated text descriptions; 3) integrate the user contextual information into the image
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annotation system;4) link image visual appearance to structured human knowledge in scal-

able image categorization / annotation. With this consideration, a set of novel probabilistic

topic models are proposed to leverage image, text and user-created tags to achieve high

performance image annotation and retrieval. The techniques and methods developed in

this thesis are built on the state-of-the-art methods in statistical learning, image processing,

social network analysis, content-based image retrieval and mining. The research will result

in improved understanding of the issues involved in designing robust statistical model to

integrate user context in image annotation and retrieval.

In the system biology community, there has been a long time focus on studying gene-

expression data in isolated organisms and cultures. However, relatively less effort has been

made to study the genome-wide gene-expression data from uncultured environment sam-

ples (like the ocean, soil and human body) and understand the underlying biological pro-

cesses. Recently, the development of new sequencing techniques and meta-genomics has

dramatically changed the way of genomics data acquiring and analyzing. Next generation

sequencing methods (such as Roche/454 Sequencing and Illumina Sequencing) are able to

extract very large amount (100∼ 1000 MB) of DNA fragment sequences from an environ-

mental sample (like the ocean, soil and human body) in only a single run (the acquired data

is also known a meta-genomic data). With the fast advancing sequencing techniques, large

amount of sequenced genomes and meta-genomes from uncultured microbial samples be-

comes available. Based on the meta-genome sequences, bioinformatics researchers have

done a lot of work to study the underlying biology process such as signal transduction,

translation, and molecular functions like the biochemical activity of gene product. How-

ever, our knowledge about the biological functions encoded in the meta-genome sequence
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is still limited. Current functional annotation (genome-level annotation of biological func-

tions) is still far from satisfied. The lack of high quality functional annotation of the major

functionality encoded in the gene-expression data of given genome/meta-genome posed a

great challenge in the task of interpreting the biological process of meta-genome.

The major objectives of analyzing and interpreting the large amount of meta-genomic data

involve answering two questions. The first question is, ‘Given a large number of genome

fragments from an environmental sample, what genomes are there?’ Answering this ques-

tion requires mapping the meta-genomic reads to taxonomic units (usually a homology-

based sequence alignment, this task is also known as taxonomic classification or taxo-

nomic analysis). The second question is, ‘What are the major functions of these genomes?’

The answers to this question involve annotating the major functional units (such as signal

transduction, metabolic capacity and gene regulatory) on the genome-level (a.k.a. func-

tional analysis). Toward these two questions, we present a set probabilistic topic models

to identify functional groups from microbial samples. The probabilistic topic models are

derived from either taxonomic or functional-element abundance data (such as high abun-

dance of specific functional group, high expression level of specific taxon, gene cluster, or

specific metabolic pathway) acquired from either composition-based genome classification

or homology-based alignment.

The remainder of this thesis is organized as follows. In Chapter 2, we review related works

in generative topic models. In Chapter3, we present a set of novel probabilistic topic mod-

els to leverage image, text and user-created tags in semantic image annotation and retrieval.

Chapter4 introduces probabilistic topic models for meta-genomic data analysis. We con-

clude the thesis in Chapter 5.
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2. BRIEF REVIEW OF GENERATIVE LATENT SPACE MODELS

In this chapter, I would like to introduce the background of Generative Latent Space

Models and review the related works on topic modeling.

2.1 GENERATIVE LATENT SPACE MODELS IN TEXT-MINING

The underlying assumption of generative latent space models in text-mining is that the

co-occurrence patterns of words in a document are related to some unseen latent topics,

which reflect different semantic context of words. During the last decade, several effec-

tive generative modeling approaches such as the Naive Bayesian model, probabilistic LSI

(pLSI) [44] and Latent Dirichelet Allocation (LDA) [15] have been proposed. The Naive

Bayesian model (Fig. 2.1a) assumes a fixed topic-word distribution over the whole data

collection. The topic assignment of words in a document is simply decided by the prior

probability of popic z and the Likelihood of word w given topic z. However, it’s not the

case that all the documents has the same topics, thus the PLSI model [44] is proposed.

The PLSI model (Fig. 2.1b)assumes that each document has a mixture of k topics. Fit-

ting the PLSI model involves estimating the topic specific word distributions p(wi|zk) and

document specific topic distributions p(zk|d j) from the data collection through maximum

likelihood estimation (MLE). In PLSI model, the topic mixture probability for documents

are fixed the model is estimated.It’s not clear how to assign topics to documents outside the

training dataset. For new coming document, the model needed to be re-estimated. There-

fore, the PLSI model is not scalable.
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Figure 2.1: Basic generative latent space model (a) Naive Bayesian model, (b) the proba-
bilistic latent semantic indexing (PLSI) model

The LDA model [15], initially proposed by Blei et al., has been popular with the text

mining community in recent years due to its solid theoretical foundation and promising

empirical retrieval performance. Application of LDA model involves text classification

[15], social annotation [111], joint modeling of text and citations [76], etc. Compared to

the PLSI model, the LDA model treats the probability of latent topics for each document

as latent ”random” variables which are subject to change when new document comes.

As illustrated in Fig. 2.2, the LDA model involves two stages, that is, generating the prior

probability of latent topics p(z) for each document and generating the conditional proba-

bility of words for each latent topic: p(w|z)(the sampling process of LDA model will be

introduced in the section 4.1.1). The model is estimated via Gibbs Sampling Monte Carlo

process [95].

2.1.1 Sampling Process of the LDA Model

In a multinomial distribution, there are n independent events. Each event has a fixed

finite number k of possible outcome, with probability: p1, · · · , pk(pi ≥ 0,∑k
i=1 pi = 1)

.If we denoted random variables xi(i = 1, ,k) as the times a certain outcome i was ob-

served , then the k-dimension X = (x1, ,xk) follows a multinomial distribution, in which
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Figure 2.2: The framework of LDA model

p(X) = n!
x1!···xk! px1

1 · · · p
xk
k (pi ≥ 0,∑k

i=1 pi = 1).

Assuming that each document can be represented as a mixture over latent topics and that

each topic is characterized by a distribution over words,given a corpus belong to certain

category, if we define the random variables xi(i = 1, ,k) as the times the i-th topic happen

in a certain document D in that corpus and the parameters pi(i= 1, ,k) as the prior probabil-

ity of the topics in the corpus, then we can represent the mixture over topics in a document

D by a k-dimension vector X = (x1, ,xk) which follows a multinomial distribution.

At this stage, only the dimensionality k of the distribution X ∼Multi(X |k; p1, , pk) is known

and fixed (as the number of topics can be predefined according to the labels in the training

dataset). We still need to predict the prior probability of hyper-parameters: p1, , pk .

Since the hyper-parameters of the multinomial distribution: p1, , pk are continuous real

numbers on the interval [0,1], a Dirichlet priori should be used. The Dirichlet distribution

(denoted as Dir(α) ), is a continuous multivariate probability distributions whose parame-

ter(vector α )is composed with positive real numbers [7]. The probability density function

of the Dirichlet distribution is illustrated in eq. (2.1), in which the symbol Γ() represent the

Gamma function (eq. (2.2)).The Gamma function is an extension of the factorial function
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to the real numbers. When n is a positive integer number, Γ(n) = (n−1)!.

p(θ) =
Γ(α1 + · · ·+αk)

Γ(α1) · · ·Γ(αk)
θ

α1−1
1 · · ·θ αk−1

k ,θ1, · · · ,θk > 0,
k

∑
j=1

θ j = 1 (2.1)

Γ(αi) =
∫

∞

0
tαi−1e−tdt (2.2)

In Bayesian statistics, a class of prior probability distributions p(θ) is regarded as conjugate

prior to likelihood functions p(x|θ) when the posterior distributions p(θ |x) are in the same

family as p(θ). Adopting a conjugate prior is for the algebraic convenience in calculation.

As pointed out in [7], the Dirichlet is the conjugate prior distribution for the parameters

of the multinomial distribution. For example, if X ∼ Dir(α) and β |X ∼ Multi(X), then

X |β ∼ Dir(α +β ) .

The expectation for Dirichlet distribution X ∼ Dir(α) is:

E(Xi) =
αi

α0
,α0 =

T

∑
i=1

αi (2.3)

Given a total of D documents; and assume that there are a total of T latent topics. In the

whole collection, supposing that there are a total of Nw text tokens, which belong to W

words. The sampling process of LDA model is as follows:

For the d-th document, sample θ d ∼ Dir(α), in which θ d is a T-dimensional vector for

topics in the document. For the t-th topic, sample: ϕt ∼Dir(β ). In each document, sample

word topics z j ∼Multi(θ d) (here z j means that the topic z = j). For each word wi, sample

p(wi|z j)∼Multi(ϕ j) .

The model is then estimated by the Gibbs Sampling Monte Carlo process [95], which
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involves iteratively estimating the posterior probability for topics from current word-topic

assignment, and adopting a Monte Carlo process to determine the assignment of word-

topic in the next round. During every iteration of the Gibbs Sampling process, the posterior

probability for word-topic is updated as:

p(zwi = j|wi,w−i,z−wi) ∝
β +nwi

−i, j

Wβ +nwi
−i, j
·

α +nd
−i, j

T α +nd
−i, j

(2.4)

In which nwi
−i, j is the total number of words assigned to topic j except for word wi, and nd

−i, j

is the total number of words in graph d assigned to topic j except for word wi.

2.1.2 Dirichlet Process and Hierarchical Dirichlet Process

In nonparametric Bayesian statistics,the Dirichlet Process (DP) are used to learn mix-

ture models whose number of components is automatically inferred from data. It is defined

as a distribution of random probability measure G0 ∼ DP(γ,H), in which is a concen-

tration parameter and H is a base measure defined on a sample space Θ. By its def-

inition, for any finite measurable partition of Θ : {A1, · · · ,Ar}, (G0(A1), · · · ,G0(Ar)) ∼

Dirichlet(γH(A1), · · · ,γH(Ar)). Due to discrete nature of DP [50], it can be constructed

by stick-breaking construction as follows (each θ1, · · · ,θk, · · · ,θ∞ is a distinct value on the

space Θ, they are also considered as the parameters of mixture components during model-

ing).

G0 = ∑
∞
k=1 βkδ (θk), in which βk = αk ∏

k−1
i=1 (1−αi),αk ∼ Beta(1,γ)

The weights of mixture components β = {βk}(k = 1, · · · ,∞) are also refer to as β ∼

GEM(γ).
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Figure 2.3: Stick-breaking construction of hierarchical Dirichlet process

The Hierarchical Dirichlet Process (HDP) considers G0 ∼ DP(γ,H) as a global proba-

bility measure across the corpora and defines a set of child random probability measures

G j ∼DP(α0,G0) for each document j, which leads to different document-level distribution

over semantic mixture components.

(G j(A1), · · · ,G j(Ar))∼ Dirichlet(α0G0(A1), · · · ,α0G0(Ar)) (2.5)

Each G j can also be constructed by stick-breaking construction as:

G j = ∑
∞
k=1 π jkδ (θk) , in which π j = {π jk}(k = 1, · · · ,∞) specifies the weights of integer

mixture component indicatork.

Now consider indicator variable set Kl = {k : θk ∈ Al}, l = 1, · · · ,r for l = 1, ,r; then

K1, · · ·Kr become a finite partition of integer indicators.

Substitute the stick-breaking construction of G0 and G j to Eq. (2.5), it follows that:
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( ∑
k∈K1

π jk, · · · , ∑
k∈Kr

π jk)∼ Dirichlet(α0 ∑
k∈K1

βk, · · · ,α0 ∑
k∈Kr

βk) (2.6)

Based on the aggregation properties of Dirichlet distribution and its connection with Beta

distribution, we can show that:

π jk = π
′
jk

k−1

∏
l=1

(1−π
′
jk),π

′
jk ∼ Beta(α0βk,α0(1−

k

∑
l=1

βl)) (2.7)

It follows that π j ∼ DP(α0,β ).

2.2 GENERATIVE LATENT SPACE MODELS FOR IMAGE DOCUMENTS

The Latent Dirichelet Allocation (LDA) model proposed by [15] is originally designed

to represent and learn topics from text documents. However, as will be introduced in Sec-

tion 3.2, with the help of image descriptor quantization technique which maps image de-

scriptors defined in continuous vector space to discretized code-words, we are able to rep-

resent an image document by text-like features (such as ‘bag of visual words’ derived from

affine invariant local image descriptors). Once an image document is represented as ‘bag-

of-visual word’, we will be able to achieve topic modeling from image documents in the

same way as text documents.

Early approaches of topic modeling in image documents including directly using LDA [2]

and using Spatial Latent Dirichlet Allocation (SLDA) [104] , in the following paragraph,

we will review both approaches and follow up with a discussion of their contributions and

limitations.

Fig. 2.4 demonstrates the LDA model for image documents proposed by [2]. In this
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Figure 2.4: LDA model for image documents [2]

model, the salient points are detected by Lowe’s difference-of-Gaussian (DoG) detector

[63], i.e. the image patches including the salient points are described by 128-dimension

SIFT descriptor. After that, the SIFT descriptors are quantized using a fixed ‘codebook’ of

visual words, which was pre-learnt by applying k-means clustering on a large collection of

detected patches from different categories of images.

Compared to the original LDA model, this model adds a category variable c for classi-

fication. θ is a matrix of size CK, in which C is the number of categories while K is the

number of topics. θc is a K-dimension Dirichlet parameters conditioned on the category c,

π is a K-dimension Dirichlet random variable: π ∼ Dir(π|θc). Given one of the N patches

in an image xn, choose a topic vector zn ∼ Multi(zn|π), in which zk
n = 1 indicate that the

k-th topic is selected. β is a matrix which represent the relation between a single code word

and a topic, in which βkt = p(xt
n = 1|zk

n = 1) represent the probability of the t-th codeword

is selected when the k-th topic is selected. Finally, the probability of xn is conditioned on
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β and zn:

p(xn|zn,β ) =
K

∏
k=1

p(xn|βk)
δ (zk

n,1) (2.8)

The learning process of this model is as follows. Given an unknown scene, the likelihood

function of x is learnt by margined out the latent variables:

p(x|θ ,β ,c) =
∫

p(π|θ ,c)(
N

∏
n=1

∑
zn

p(zn|π)p(xn|zn,β ))dπ (2.9)

In variational inference, the goal is to maximize the log likelihood by estimate θ and β .

Using the Jensen’s inequality, the lower bound of the log likelihood can be obtained. By

adopting EM algorithm to maximize the lower bound on the log-likelihood, the approxi-

mation of optimal parameter θ and β of the model can be obtained.

In this model, the frequency of visual words in images is equivalent to the term frequency

in the text documents. Therefore, this model can be an effective way to learn latent seman-

tic topics from the visual words that extracted from image documents. However, compared

to the textual word, the visual word has its unique characteristics. Since an image is a

2-dimension document, if we only focus on the frequency of visual word, we may fail to

take into account the spatial correlation among the visual words and lose in touch with the

spatial structure of the image.

Recently, Xiaogang et al. proposed the Spatial Latent Dirichlet Allocation (SLDA) model

[104] , which was based on the hypothesis that image patches of the same object class

should be close in space. Compared to LDA, the major improvement of SLDA is that it

is able to model the spatial structure among visual words. The SLDA model first divided

an image into local patches by a grid (unlike the SIFT descriptor in LDA model, the local
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patches in SLDA cover the whole image). Each local patch is then quantized into a visual

word. The codebook is created by clustering all the local descriptors in image collection

using K-mean.

The SLDA model has a unique definition of document. Rather than define the whole image

as a document, the SLDA model treats rectangle regions in an image as documents (Fig.

2.5 a), the rectangle regions are densely overlapped in the image and a certain image patch

(or visual word, marked by colored spots) can be covered by several rectangle regions (doc-

uments).

After that, each document is represented by the location of its centre point. Given the loca-

tion of visual words and documents, the probability that a visual word belongs to a certain

document is:

p((gi,xi,yi)|(gd
di
,xd

di
,yd

di
),σ) ∝ δgd

di
(gi)exp{−

(xd
di
− xi)+(yd

di
− yi)

σ2 } (2.10)

By introducing this additional probability to visual words, the SLDA was able to represent

the probability that a visual word belongs to a certain spatial group.

Although SLDA was able to represent spatial information of visual words, it still has some

problems. Firstly, the notion of document in SLDA seems ill-defined. Intuitively, an image

document, rather than a rectangle region, is the visual counterpart of a text document.

What’s more, since the visual words in a region are spatial closed to each other, according

to the author’s hypothesis, they are closed in semantic meaning and tend to belong to the

same object. Thus, if we treat a region as a document, then the number of topics in a

document would be very limited As a result, a rectangle region is not comparable to a text
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(a) Illustration of documents and visual words in a SLDA model

(b) The spatial relation between documents and visual words

Figure 2.5: Spatial Latent Dirichlet Allocation [104]

document, which is usually a mixture over latent topics. Secondly, in the SLDA approach,

the visual words are obtained by directly quantizing the local patches over the whole image

(rather than from the salient points). In other words, SLDA considers image patches with

salient points equally as the non-salient patches from homogeneous regions (which take up

a major part in image). Therefore, the algorithm becomes more computational intensive

than LDA with visual words and is less effective in representing the image content (unable

to account for the saliency).
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Figure 2.6: Multinomial mixture model and Correspondence LDA model [14]

2.3 GENERATIVE LATENT SPACE MODEL FOR IMAGE CONTENT AND TEXT

ANNOTATIONS

The explosive increase of image data on Internet has made it an important, yet very

challenging task to index and automatically annotate image data. One possible solution is

developing generative latent space models to learn the correlation between image content

and corresponding text annotations.

Toward that end, Blei et al. proposed the Gaussian Multinomial Mixture (GM-Mixture)

model and Correspondence LDA (Corr-LDA) model [14]to make image content associated

with the latent topics of caption words. As illustrate in Fig. 2.6, both models involve an

additional ‘branch’ to generate topics from image feature (which are commonly represented

by the mean (µ) and variance (σ ) of multidimensional Gaussians in the feature space)

besides the branch to generate text topics.
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2.3.1 Gaussian Multinomial Mixture (GM-Mixture) Model

For the GM-Mixture model, a single discrete variable z is used to represent a joint clus-

tering of an image and its caption. An image-caption pair is assumed to be generated by

first choosing a value of z, and then repeatedly sampling N region description rn and M

caption words wm conditional on the chosen value of z. The variable z is sampled once for

each image-caption pair, and is held fixed when generating other components. The joint

distribution of the hidden factor z and the image-caption pair (r̄, w̄) is:

p(z,~r,~w) = p(z|λ )
N

∏
n=1

p(rn|z,µ,σ) ·
M

∏
m=1

p(wm|z,β ) (2.11)

Given a fixed number of factors K and a collection of images-caption pairs, the parameters

of a GM-Mixture model can be estimated by using the EM algorithm [5]. This process will

end up with K Gaussian distributions over features and K multinomial distributions over

words which together describe a clustering of the images-caption pairs. Since each im-

age and corresponding caption are assumed to be generated conditional on the same latent

factor z, the resulting multinomial and Gaussian parameters will be corresponded. Image

content with high probability under a certain factor will likely have a caption with high

probability in the same factor.

Finally, the joint probability of an image-caption pair can be computed by simply marginal-

izing out the hidden factor z and the conditional distribution of words given the image con-

tent can be obtained based on the Bayesian rule (eq. (2.12)).

p(w|~r = ∑
z

p(z|~r)p(w|z)) (2.12)
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When modeling is finished, an image can be annotated by clustering pixel points into re-

gions, extracting feature vector (color and texture) from the regions, and then using the

GM-Mixture model to compute the probability of each word being assigned to the image

regions.

2.3.2 Correspondence LDA (CorrLDA) Model

The Correspondence LDA (CorrLDA) model [14], initially proposed by Blei et al. in

year 2003, provides a natural way to learn the correlation between text words and other

entities under an regular LDA model schema. In this model, topics generated from text

words are used to generate other entities (such as image features). As mentioned in Chap-

ter 3, the ‘bag of visual words’ feature is not only able to provide text-like features, which

brings computational conveniences, but also more information intensive than the global

image features (such as color and texture of image regions). Inspired by the success of

directly applying LDA model to latent topics from visual words [2], we may modify the

original Corr-LDA model by using the text-like ‘bag of visual words’ feature (which fits a

multinomial distribution) in stead of using the global image features, which are commonly

represented as the mean (µ) and variance (σ ) of multidimensional Gaussians in the feature

space.

The modified Corr-LDA model for visual words and image captions is illustrated in Fig.

2.7, which is followed up with a detailed Gibbs sampling process for the model estimation.

(a) Sampling hyper-parameters of Corr-LDA Model

Assuming that there are a total of D image-caption pairs in the data collection, and that

there are a total of T latent topics, Nw text tokens from W words, and a total of N̆w̆ visual
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Figure 2.7: Corr-LDA model for visual words and image captions

word entities from W̆ visual words. For the d-th image-caption pair, sample θ d ∼ Dir(α),

in which θ d is a T-dimensional vector for topics in the image-caption pair. For the t-th

topic, sample ϕt ∼Dir(β ) and ϕ̆t ∼Dir(β̆ ) . In each image-caption pair, sample word top-

ics z j ∼Multi(θ d) and visual word topics z̆ j ∼Uni f orm(z j) (here z j means that the topic

z = j , and z = j is equivalent to z̆ = j ). For each word wi, sample p(wi|z j)∼Multli(ϕ j),

for each visual word w̆i , sample p(w̆i|z̆ j)∼Multi(ϕ̆ j) .

(b) Update of the word-topic probability

Given the settings in Section 3.2, the posterior probability for word-topic is:

p(zwi = j|wi,w−i,z−wi) ∝ p(wi|zwi = j,w−i,z−wi) · p(z = j|w− j,z−wi) (2.13)

Recall that p(wi|z j) ∼ Multli(ϕ j) , by integrating over all the different value of ϕ j , we

have:

p(wi|zwi = j,w−i,z−wi) =
∫

p(wi|z = j,ϕ j,w− j,z−wi)p(ϕ j|w− j,z−wi)dϕ
j (2.14)
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In eq. (2.14), we have:

p(wi|z = j,ϕ j,w− j,z−wi) = ϕ
j, p(ϕ j|w−i,z−wi) ∝ p(w−i,z−wi|ϕ j) · p(ϕ j) (2.15)

in which p(ϕ j)∼ Dir(β ) and p(w−i,z−wi|ϕ j)∼Multi(ϕ j)

Since the Dirichlet is the conjugate prior distribution for the parameters of the multinomial

distribution, it follows that: p(ϕ j|w−i,z−wi)∼Multi(β +nwi
−i, j) , in which nwi

−i, j is the total

number of words assigned to topic j except for word wi.

Therefore, eq. (2.14) is in fact the expectation of ϕ j when we already know w−i,z−wi, thus

it equals to
β+nwi

−i, j

Wβ+nwi
−i, j

(recall that the expectation for Dirichlet distribution X ∼ Dir(α) is:

E(Xi) =
αi
α0
,α0 = ∑

T
i=1 αi ) Similarly, we get:

p(z = j|w−i,z−wi) =
∫

p(z = j|θ d) · p(θ d|w−i,z−wi)dθ
d (2.16)

it follows that: p(θ d|w−i,z−wi) ∝ p(w−i,z−wi|θ d) · p(θ d).

Since p(θ d)∼ Dir(α) and p(w−i,z−wi|θ d)∼Multi(θ d) , we have :

p(θ d|w−i,z−wi)∼ Dir(α +nd
−i, j) (2.17)

in which nd
−i, j is the total number of words in graph d assigned to topic j except for word

wi.

Similar to eq. (2.13), eq. (2.16) is simply calculating the expectation of θ d when w−i,z−wi

is already known. Therefore, eq. (2.16) should equal to
α+nd

−i, j

T α+nd
−i, j

.

Summing up, we get:
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p(zwi = j|wi,w−i,z−wi) ∝
β +nwi

−i, j

Wβ +nwi
−i, j
·

α +nd
−i, j

T α +nd
−i, j

(2.18)

In which nwi
−i, j is the total number of words assigned to topic j except for word wi , and nd

−i, j

is the total number of words in graph d assigned to topic j except for word wi.

Given the word-topic posterior probability, the Monte Carlo process becomes really straight-

forward, which is similar to throwing dice (based on the posterior probability) to determine

the assignment of topics to each words for the next round.

(c)Update of the visual word-topic probability

The posterior probability for visual word-topic is:

p(z̆i = j|w̆i = v, z̆−i, w̆−i,z, β̆ ) ∝ p(w̆i|z̆i = j, z̆−i, w̆−i,z, β̆ ) · p(z̆i) = j|z̆−i, w̆−i,z, β̆ )

(2.19)

We have p(w̆i|z̆i = j, z̆−i, w̆−i,z, β̆ )=
∫

p(w̆i|z̆i = j, ϕ̆ j, z̆−i, w̆−i,z, β̆ )· p(ϕ̆ j|z̆−i, w̆−i, β̆ )dϕ̆ j

Based on the Bayesian theorem, we have: p(ϕ̆ j|z̆−i, w̆−i, β̆ ) ∝ p(z̆−i, w̆−i|ϕ j|) · p(ϕ̆ j)

, in which p(ϕ̆ j ∼ Dir(β̆ ) and p(z̆−i, w̆−i|ϕ̆ j) ∼ Dir(β̆ + nw̆i
−i, j). It then follows that:

p(ϕ̆ j|z̆−i, w̆−i, β̆ )∼ Dir(β̆ +nw̆i
−i, j).

Therefore, we get:

p(w̆i|z̆i = j, z̆−i, w̆−i,z, β̆ ) ∝
β̆ +nw̆i

−i, j

W̆ β̆ +nw̆i
−i, j

(2.20)

Recall that z = j is equivalent to z̆ = j , so the prior probability of p(z̆i = j|z̆−i, w̆−i, β̆ )

simply equals to the ration of nz̆ over Nw , in which nz̆ is the total number of words assigned

to topic z̆ (because z̆ = j is equivalent to z = j ). So the posterior probability for visual
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word-topic is:

p(z̆i|w̆i = v, z̆−i, w̆−i,z, β̆ ) ∝
nZ̆
Nw
·

β̆ +nw̆i
−i, j

W̆ β̆ +nw̆i
−i, j

(2.21)

In which nz̆ is the total number of words assigned to topic z̆ ( z̆ = j is made equivalent to

z = j).

When the whole model is estimated from the data collection, we will be able to tell the

correlation between image content and image captions.
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3. TOPIC MODEL FOR IMAGE MINING

3.1 OVERVIEW AND OBJECTIVE

The prevalence of digital imaging device, such as digital camera and digital video cam-

era, has generated an increasingly large amount of unlabeled multimedia data, especially

unlabeled image data. With nearly a million new images being added in a single day,

the Flickr.com, one of the most popular photo sharing websites, now hosts over 3 billion

shots of user-uploaded images. Manually annotating such a huge amount of image data is

time-consuming, laborious and prohibitively expensive.To face the challenge of enormous

explosion of unlabeled online image resources, it is very important to develop context-

sensitive robust automatic image annotation system.

Early text-based image annotation approaches include using lexical chain analysis of the

nearby text descriptions on Web pages [89] and using WordNet to disambiguate descrip-

tion words [6]. Even though the text and tags surrounding the image do provide some

insight about the semantic meaning of image content, however, they are usually too noisy

to be directly used as the image annotation. It’s difficult for a purely text-based approach to

achieve effective image annotation and searching in a practical application. Therefore, its

important to annotate and retrieve images based on their visual content. With this consider-

ation, automatic image annotation approaches have been closely related to computer vision,

image processing and content-based image retrieval [6], [59]. During the last decade, we

have seen great progress in developing automatic image annotation systems, related works

involve considering image annotation as a clustering/categorization problem [60], [35],
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as an image searching problem [101], and as statistical modeling problem [15], [38], [8],

[18]. Despite the success of these works, however, researchers are still facing two ma-

jor difficulties in providing reliable and accurate annotation for images. One is lacking of

benchmark image dataset with clear image hierarchy and comprehensive text descriptions,

the other is lacking of effective ways to represent the image content and associate it with

the text descriptions.

Most existing algorithms and models for semantic image annotation are either the gener-

ative models (including mixture models and topic models) or the discriminative models

[41]. The mixture models usually define latent variables to encode the joint distribution

of image visual features and annotation words [38], [78], or encode the spatial relations

between labeled objects and parts [94] to improve the labeling accuracy. Therefore, this

approach can be considered as a non-parametric approach which estimates the density over

the concurrence of image and annotations.The topic models, such as latent Dirichlet al-

location [15], [52] and hierarchical Dirichlet process [79], represent image as mixture

of latent topics, in which each topic is a distribution over image features and annotation

words. The parameter estimation involves estimating the image-level topic mixture as well

as the topic-specific feature distribution. Topic models have been proposed to build corre-

spondence between text words and image features (both discrete and continuous) [8], [18].

The discriminative models, on the other hand, define a set of classifiers with respect to each

individual semantic category (corresponding to a set of annotation words). And use these

classifiers to predict whether a testing image belongs to the semantic category associated

with particular words. With sufficient positive/negative samples, the state-of-the-art image

classification methods (such as SVM classifier with non-linear kernel) has the strength to
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achieve perfect separation of the hyper-space of image and text features, however, the clas-

sifier cannot explicitly tell us which features is more informative and to which extend does

a set of visual features correlated with a particular annotation word.

Recently, Web 2.0 tools and environments have made collaborative tagging very popular;

in which any user can collaboratively assign open-ended text words, in the form of key-

words or category labels, to online shared resources for the purpose of organizing and re-

finding these resources. Flickr.com is such an example. As one of the most popular photo

sharing and online community platforms, Flickr.com allows photo submitters to describe

images using tags, which describe different aspect of the picture (such as location, time,

author/owner, etc) and allow users to re-find pictures using tags as queries. Even though

a number of Flickr images have user-created tags which provide valuable information and

metadata to be utilized for context sensitive information retrieval, however, these tags have

various functional purposes, some image tags tend tobe subjective in the sense that they

might be free-form text, thus not directly relate to the image content; and typically only a

few of many possible tags have been added to each image. So it casts a doubt on the im-

portance and usefulness of the image tags. Also, in Web 2.0 environment, the information

seeking process starts with the user, the usually missing part of information retrieval (IR)

systems is that manyusers not be able to express their information needs well. Thus, in

order to develop a context sensitive and user-friendly IR system, it is necessary to explore

users’ tagging and searching patterns in an online social tagging system.

Furthermore, in our daily life, a large amount of our verbal communication describes the

scene/environment around us. Also, recent years have seen increasing amount of online

visual resources (such as images and videos) with natural language descriptions. Such in-
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formation may potentially serve as a rich knowledgebase of how people construct natural

language to describe visual content. In order that an image annotation system facilitate ex-

tracting and understanding the knowledge encoded in the visual content, it is very important

to generate descriptive topic models that combines natural language descriptions with im-

age visual attributes. This work differs from conventional computer vision approaches such

as scene recognition and object classification. Instead, it will encode additional semantic

information such as the relation between object categories and different visual attributes,

which is linked to natural language descriptions of human knowledge (such as Wikipeida)

and then used to generate descriptive topic model regarding object with those visual at-

tributes.

In this chapter, four research questions are addressed. After that, robust statistic models

are proposed to leverage image, text and user-created tags to enhance the performance of

image annotation and retrieval. The four research questions are as follows.

How to achieve more robust and effective image representations to bridge over the

‘semantic gap’?

In automatic image annotation and retrieval, how to bridge over the ‘semantic gap’ [6]

between image features and high-level semantic meanings is a major challenge. As in-

troduced in Section 3.2, state-of-the-art image representation approaches either represent

image content by its global spatial layout [43], [80], [90], or represent image by saliency

model (such as salient part and key-points) [67], [91], [63], [3], [109], [51], [18], yet ei-

ther approach has its advantages and drawbacks. In our approach, instead of treating these

two approaches separately, we utilize the saliency model (salient regions and key-points)

as a complement part of spatial layout model. Our motivation comes from the fact that the
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mechanism of human visual perception allows for very rapid holistic image analysis to pro-

vide a coarse context of image scene (spatial layout model), yet it also gives rise to a small

set of candidate salient locations in a scene (saliency model) that needs to be intensively

studied.

How to utilize image content and the associated text descriptions?

High quality text descriptions of images play a vital role as training and benchmarking

data in developing and evaluating an automatic image annotation system. So the first issue

of this research question is concerned with building the benchmark dataset for the pur-

pose of training an automatic image annotation and retrieval system. In Section 3.3, we

propose to associate image captions in biomedical literatures with semantic concepts from

Unified Medical Language System (UMLS) and enrich image in ImageNet dataset by text

descriptions from Wikipedia. The second issue is proposing an effective model to study the

correlation between image and text descriptions, specifically, a hierarchical probabilistic

model with background distribution (HPB) and the probabilistic topic-connection (PTC)

model are introduced to enables more effective and robust modeling of the co-existing im-

age features and annotations.

How to integrate the user contextual information into the image annotation system?

After we establish the topic-connection model between image appearance and text descrip-

tions, we plan to further extend this model to the user-created tag information, in which

we propose to use a user-perspective model to simulate the generation of tags. In this user-

perspective model, one tag may be either derived from the consensus, in other words, the

‘standard text description’ associated with image appearance (i.e. the associated Wikipedia

text descriptions), or from users’ specific interests and background. In Section 3.4, the
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proposed user-perspective model will improve the over-all satisfaction of automatic tag

recommendation for specific users and make image retrieval more effective.

How to link image visual appearance to structured human knowledge in scalable im-

age categorization / annotation?

Due to the increasing need of linking visual appearance to structured human knowledge in

scalable image categorization/annotation, the extraction of semantic visual attributes has

received increasing research focus. By its literal definition, the term ‘attribute’ means ‘a

quality or characteristic inherent in or ascribed to an object’. Compared to low-level image

features, semantic visual attributes have much stronger relation to both object categories

and human knowledge. It should be noted that although various types of attributes can be

used to literally describe an object, however, only a small fraction of those attributes may

be visible from an object image. Moreover, the usage of textual attributes may differ in

different context. In order that the semantic attributes be useful for image annotation, these

attributes should be visible and discriminating among different object categories, also, the

union of semantic visual attributes should have sufficient coverage, which means that each

object category be covered by at least one attribute. In Section 3.5, an effective framework

is proposed to reliably extract both categorical attributes and depictive attributes. After

that, the obtained semantic associations between visual attributes and object categories are

combined in a text-based topic model for descriptive latent topics extraction from external

textual knowledge sources.
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3.2 IMAGE FEATURE REPRESENTATION TO BRIDGE OVER THE ‘SEMAN-

TIC GAP’

In the conventional view, an image scene is usually understood as a spatial configu-

ration of objects, and its semantic recognition needs to initially find the objects and their

exact locations. Most conventional image representation approaches are object-based [80],

[90]. In a realistic scenario, illuminate changes, dynamic backgrounds, and affine variation

usually make object-based image representation approaches less effective. Region-based

image representation approach represent image content by segmented image regions as well

as their configuration relationships. The blob-world approach [12] is a well-known region-

based mage representation approach. The major problem with region-based approach is

that it requires reliable region segmentations. The context-based (or holistic) image rep-

resentation approach, as it named, ignores most details, bypasses the traditional steps of

segmentation-recognition and considers the spatial layout of the whole image scene as one

individual object.

Recent years have also seen great advances in using saliency model as an intermediate step

to interpret the semantic meanings of images. Affine invariant saliency model such as the

SIFT descriptor [67], [91], [63] have exhibited very good performance in image cate-

gorization and semantic image retrieval across several well-known databases such as the

Caltech 101, the TRECVID and the Visual Object Classes (VOC) datasets [35], [60], [1],

[39], [66]. Comprehensive study indicates that the SIFT descriptor [63] outperforms other

affine invariant local descriptors due to its high robustness to image variations [71], [91],

[51], [3], [109], [18].
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3.2.1 The Context-based Image Representation

The context-based image representation involves color features, texture features and

other statistics that describe the overall distribution of visual contents in images. Typi-

cally, color components in RGB, HIS or LUV color space are used as color features; while

discrete wavelet transform (DWT) [22] and Gabor filters [23] are used to extract texture

features.

More specifically, Belongie and Carson introduced the ‘blobworld approach [12], which

bring global image features (color, texture) together and represent their spatial distributions

as a mixture of Gaussians. However, except for some favorable conditions, global features

are always sensitive to the change of light, color and point of view. Therefore, it cannot

well represent the highly varied images in the real world. What’s more, when the entire im-

age is represented as a whole using global features, we will lose in touch with the specific

characters of individual local structures in the image. Therefore, the global image features

suffers a significant information loss.

Color Space

In the HSI color space (in which ‘H’ means ‘hue’, ‘S’ stands for ‘saturation’, while ‘I’

represents ‘intensity’), the color information is represented in polar coordinates.

The LUV color components (eq. (3.1), in which ‘L’ stands for ‘Luminance’ while ‘U’ and

‘V’ represent ‘Chrominance’, ‘’hroma’, respectively ) have been proven to be more dis-

criminative than traditional RGB color components.



30

Figure 3.1: Comparison of HSI and LUV color space
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(3.1)

Discrete Wavelet Transform

The 2D discrete wavelet transform (DWT) [22] is intensely used in texture features ex-

traction. It separates an image into a lower resolution approximation image (LL) as well

as horizontal (HL), vertical (LH) and diagonal (HH) detail components. For an image, the

2-D filter coefficients can be expressed as

hLL(m,n) = h(m)h(n),hLH(k, l) = h(k)g(l),hHL(m,n) = g(m)h(n),hHH(k, l) = g(k)g(l)

(3.2)
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Figure 3.2: Scale 2-Dimensional Discrete Wavelet Transform, a Haar Wavelet transform is
applied to the L component (Luminance) of the image [22]

In which the first and second subscripts denote, respectively, the low-pass and high-pass

filtering along the row and column directions of the image.The process can then be repeated

to computes multiple ‘scale’ wavelet decomposition, as in the 2 scale wavelet transform

shown in Fig. 3.2.

Gabor Filters

A typical 2D Gabor filter is formulated in eq. (3.3), which is a product of a frequency

shift and a frequency rotation.

G(x,y) =
1

2πσβ
e
−π[

(x−x0)
2

σ2 +
(y−y0)

2

β2 ]
ei[ξ0x+v0y] (3.3)

Gabor filter is able to represent textures in different scale and orientation. Texture com-

ponents of different scales and orientations in a certain image block can be enhanced by a

convolution of image block and corresponding Gabor filter as in eq. (3.4).
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Figure 3.3: Results of convolution, each block represent the convolution of the image (up-
left) and a Gabor filter from the filter bank (which has5 scale levels in total and 8 orienta-
tions for each scale level)

hm,n(x,y) = f (x,y)∗Gm,n(x,y) (3.4)

Where hm,n(x,y) stands for the enhanced texture component; f (x,y) represents the image

block; Gm,n(x,y) is the corresponding Gabor filter and ‘* ’ denotes the discrete convolution.

Fig. 3.3 is an illustration of convolution of image block and corresponding Gabor filter, in

which a total of 40 Gabor filters form a so call ‘filter bank’, with 5 different scale levels

and 8 orientations for each scale level. In the convolution results, high amplitude blocks

indicated that the image has significant textual components in corresponding scale and

orientation.

The Blobworld Approach

The blobworld approach [12]models the feature space and the spatial distribution of an

image as a Gaussian mixture model (GMM) [13]. A simplest model which contains only

color and spatial information is presented as follows.
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Firstly, each pixel is represented by 5-dimensional normalized feature vector, including 3-

dimensional LUV color features plus 2-dimensional (x,y) position. In an image with m

pixels, a total of m feature vectors: y1, · · · ,ym(yi ∈ R5) will be obtained. Then, each im-

age is assumed to be a mixture of n Gaussians in the 5-dimensional feature space and the

Expectation-Maximization (EM) algorithm is used to iteratively estimate the parameter set

of the Gaussians. The parameter set of Gaussian mixture is: θ = {µi,∑i,αi}n
i=1 , in which

µi ∈ Rd is the mean of the i-th Gaussian; ∑i denotes the d×d covariance matrix; while αi

represents the prior probability of the i-th Gaussian.

At each E-step of the EM algorithm, we estimate the probability of a particular feature vec-

tor yi belonging to the i-th Gaussian according to the outcomes from the last maximization

step (eq. (3.1))

p(i| j,θt) = p(z j = i|y j,θt) =
p(y j|z j = i,θt)p(z j = i|θt)

∑
n
k=1 p(y j|z j = k,θt)p(z j = k|θt)

(3.5)

In which zi denotes which Gaussian yi comes from and θt is the parameter set at the t-th

iteration. At each M-step, the parameter set of the n Gaussians is updated toward maximiz-

ing the log-likelihood, which is:

Q(θ) =
m

∑
j=1

n

∑
i=1

p(z j = i|y j,θt)ln(p(y j|z j = i|θ)p(z j = i|θ)) (3.6)

When the algorithm converges, the parameter sets of n Gaussians as well as the probability

are obtained. Based on the estimated GMM model, an image can be decomposed into n

regions and will indicate which region a given pixel point most likely belongs to (Fig. 3.4).
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Figure 3.4: Input images and image modeling via Gaussian mixture model (GMM) [13]

3.2.2 Image Representation by Saliency Models

Recently, the ‘Bag of local Features (BoF) approach exhibits very good performance

in image categorization and semantic image retrieval across several well-known databases

such as theLabelMe, the TRECVID and the Visual Object Classes (VOC)datasets [51],

[3], [109], [16], [79]. The underlying assumption of this approach is that the visual

patterns of different image categories can be represented by different distributions of local

structures. Similar to the bag-of-words model in text mining, the BoF method represents

images as an unordered collection of salient parts, which help to categorize images.

The ‘bag of local features’ approach involves two major branches: one represents images

by sparse local features, while the other one represents images by dense local features.

The underlying assumption for sparse local features is that objects are composed by sev-

eral unique and salient ‘parts’, whereas the dense local features approaches assumes that,

the patterns of different image categories can be represented by different distributions of

key-points/microstructures, thus images should be represented as hundreds of key-points,

or ‘salient microstructures’. The difference for these two representation approaches are

illustrated in Fig. 3.5.

In sparse local features approaches, the Kadir-Brady (KB) saliency detector [54] is usu-
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Figure 3.5: Represent images as bag of local features

ally used to detect salient ‘parts’ from images. After that, image patches containing salient

‘parts’ are quantified by performing principal component analysis (PCA) on them. The

major problem with sparse local features is that objects may receive insufficient coverage

from the feature detector. What’s more, the sparse local features (salient parts) carry little

information about the background context of image (such as ‘open county’, ‘inside city’

and ‘beach’). In dense local features approaches, the key-points detection is achieved by

either Harris-Laplace detector [70], which estimates the affine neighborhood by the affine

adaptation process based on the second moment matrix, or Difference-of-Gaussian (DoG)

salient points detector [63], which detect the scale-space extreme points in the difference-

of-Gaussian images. The Harris-Laplace detector tend to extract corner points or corner-

like regions, which mainly locate around objects, while DoG salient point detector tends to

extract salient spots or blob-like regions from images.

Commonly, the Scale Invariant Feature Transform (SIFT) descriptor [63] is used to quan-

tify the detected key-points. The SIFT descriptor is a 128-dimensional feature vector which

captures the spatial structure and the local orientation distribution of a patch surrounding
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key-points. Mikolajczyk et al. evaluated several local image descriptors according to their

stability to rotation, scaling, affine transform and illumination change and found the SIFT

descriptor performs best [69], [72].

Maximally Stable Extremal Region(MSER)

The Maximally Stable Extremal Region(MSER) is a widely used image feature to rep-

resent regions. Unlike the SIFT descriptors, which is derived from key-points, the detected

MSER regions are local homogeneous parts in objects (Fig. 3.6). Although the MSER

detector output relatively smaller number of MSER features than SIFTdescriptors, their

distinctness is higher. Specifically, MSER detection begins with segmenting a set of im-

age regions whose inner intensity value is less than certain thresholds while all intensities

around the region boundary is greater than the same threshold. After that, a maximally

stable extremal region is obtained when the area of the segments changes the least with

respect to the threshold [67]. Extensive study reveal that the set of MSER regions is closed

under continuous geometric transforms, thus providing an efficient affine invariant region

detector for local image appearance [37].We also extend MSER detector to multiple scales

by constructing Gaussian pyramid and applying MSER detection separately in each reso-

lution level.

After MSER detection, each detected elliptical region is normalized to circular patch of

constant radius. In order to further improve its scale and affine invariant capability, each

patch can be we rectified to canonical orientation following the coordinate transform in

[37].In order that image patch representation be compact and highly distinctive, an addi-

tional principle component analysis (PCA) can be performed on normalized MSER patches
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Figure 3.6: Represent images as bag of local features

and provide a robust and compact representation of image regions. More specifically, a co-

variance matrix can be constructed for all the MSER normalized patches extracted from

training dataset. After that, a set of eigenvectors can be obtained by performing eigen-

decomposition on the covariance matrix. The first k principal components (i.e. eigenvec-

tors corresponding to k largest eigen-values)then compose the projection matrix, which

enables significant dimension reduction of the MSER features while not losing important

details (Fig. 3.6).

SIFT Salient Point Descriptor [63]

The Scale Invariant Feature Transform (SIFT) [63] is a widely used methodto detect

and describe the salient points in the image.The SIFT approach is composed of four steps:

scale-space extreme detection, key-point localization, orientation assignment and key-point

descriptor, in which the first and last step is most important.

In the detection part, a difference-of-Gaussian (DoG) function is used to detect the poten-

tial salient points. For the first octave in the scale space, images of different scales are



38

produced by repeatedly convolute the 2D Gaussian function to the input image (the value

of σ times 21/2 each time). The 2D Gaussian function is:

G(x,y,σ) =
1

2πσ2 e−[
(x2+y2)

2σ2 (3.7)

As shown in Fig. 3.7, the sets of scale space images are shown on the left, which are also

called the Gaussian images. After that, adjacent Gaussian images are subtracted to produce

the difference-of-Gaussian images which are shown on the right. For every next octave, the

Gaussian images are down-sampled by a factor of 2, and the process repeated.

In the scale space, by convolute image with a 2D Gaussian function, image structures of

spatial size smaller than σ will largely been smoothed away (the value of σ times 21/2 each

scale). Therefore, in the difference-of-Gaussian images, a local extreme represents that a

significant structure with spatial size σ has been smoothed away and eliminates in the next

scale level, in another word, the a local extreme in the difference-of-Gaussian images is

corresponding to a salient point. For each octave, the local extreme in the scale space can

be detected by comparing a pixel to its 26 neighbor pixels in current and adjacent scales

(Fig. 3.8). If one pixel is more extreme than its 26 neighbor pixels, it is marked as a poten-

tial salient point.

After detecting the local extremes in the scale space, the potential salient points are lo-

calized in the original image; their main orientations are also determined according to the

image gradients.After that, image patches containing the salient points are rotated to the

canonical orientation and divided into 4× 4cells. In each cell, the gradient magnitudes at

8 different orientations are calculated, which then form a 128-dimension SIFT descriptor
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Figure 3.7: The Gaussian images and the difference-of-Gaussian images [63]

Figure 3.8: Detection of local extreme in difference-of-Gaussian images [63]

(Fig. 3.9).

Compared to other local descriptors, the SIFT descriptor is more robust and invariable

to rotation and change in scale and luminance [69], [72]. In my research, each extracted

128-dimension SIFT descriptoris named as a ‘visual token’.

The SIFT approach is in essence an object-based image representation approach as it

strongly depends on the existence of reliable distinctive sub-structures, which may to some

extend be considered as objects [90]. It should be noted that the SIFT approach may be-
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Figure 3.9: The SIFT descriptor of salient points (2×2 cells) [63]

come inefficient when dealing with complex background with too much texture, because

the increased number of key-points in a complex background may take longer time to

process. Also, since SIFT descriptors are derived from clustering (categorizing) the key-

points, it may become less discriminative due to the quantification and increase of cluster

number [3]. It has been suggested that researcher may combine both point features (such as

SIFT descriptor) and region features (which are derived from local homogeneous parts in

objects) to improve the representation of image content [106], [61]. In particular, our study

[17] has shown that the Maximally Stable Extremal Region (MSER) [67], a widely used

region-based image saliency model, can be used as an effective complementary feature of

SIFT descriptors in providing robust representation of image scene.

Bag of Visual Words

Recently, the significance of dense local features has been greatly enriched as the con-

cept ‘bag-of-visual-words’ being introduced [91].

As mentioned, an image document can be constantly represented by hundreds of key-points
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Figure 3.10: An analogy between the visual tokens grouping and the text morphological
processing

or unique microstructures. Image patches containing key-points can then be quantified

based on affine invariant local descriptors [13], [54], [69], [63]. In an image document,

each unique descriptorcan be regarded as a ‘visual token’, which plays similar roles as its

textual counterpart (token) in a text document. Based on the extracted ‘visual tokens’, re-

searchers further proposed the idea of assigning all the patch descriptors into clusters (Fig.

3.10)and build a vocabulary/codebook of ‘visual words’ (Fig. 3.11) for a specific image

dataset [91], [2].Therefore, ‘visual words’ can be regarded as a visual analog of text words

in animage document.There is no consensus on the actual size of visual word vocabulary.

According to the size of image dataset, the visual word size used in existing works varies

from several hundred to thousands or tens of thousands [91], [3], [51].

Inspired by the success of vector-space model of the text document representation, the

‘bag-of-visual-words’ approach usually converts images into vectors of visual words (Fig.

3.12) based on their frequency [91], [3].Many effective text mining and information re-

trieval algorithms like tf-idf weighting, stop word removal and feature selection have been
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Figure 3.11: Codebook (partial) of visual words [2]

applied to the vector-space model of visual-words. Problems such as how vocabulary size

and term weighting schemes affect the performance of ‘bag-of-visual-words’ representa-

tion are also studied in recent research works [51], [3].

Despite the success of ‘bag-of-visual-words’ in recent studies, however, there are two

problems to be concerned. Firstly, since the ‘bag of visual words’ approach represents an

image as an unordered collection of local descriptors, the resulting vector-space model of-

fers us little insight about the spatial constitution of the image. Secondly, as most local

descriptors are based on the intensity information of images, no color information is used.

There have been some works aiming at incorporating spatial information and color infor-

mation in the ‘bag-of-visual-words’ model, such as dividing an image into equal-sized rect-

angular regions and computing visual word frequency from each region [3], using multi-

scale spatial grids for locally order-less description of visual words [58] and using Color

SIFT descriptors (Fig. 3.13, which has the same framework in the image intensity space

as SIFT, while in the color space, the gradient magnitude and orientation are replaced by

saturation and hue from HSI color space) [98]. However, to the best of our knowledge,
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Figure 3.12: (a) illustration of extracted visual words, (b) vector of visual word term fre-
quencies

there hasn’t been any study combining visual-word features with the spatial constitution of

image content.

3.2.3 Spatial Weighting for the ‘Bag-of-Visual-Words’

In summary, the context-based image representations are able to represent the spatial

constitution of image content. But they are sensitive to the change of light, color and point

of view and unable to represent the specific characters of individual local structures in im-

ages. The saliency models, on the other hand, are affine invariant, robust to the change

of light, color and point of view. However, they provide little insight about the spatial

constitution and color information of the image content. With this consideration, I have

developed a spatial weighting scheme for the ‘bag-of-visual-words’ image feature [107].

The ‘bag-of-visual-words’ feature represents a set of unique structural elements in images,
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Figure 3.13: The framework of color-SIFT [98]

which are robust to rotation, scaling and luminance changes; it has exhibited very good

performance in content-based image retrieval (CBIR). However, since the ‘bag of visual

words’ approach representsan image as an unordered collection of local descriptors which

only use the intensity information, the resulting model provides little insight about the spa-

tial constitution and color information of the image.

In my approach, I use Gaussian mixture model (GMM) to provide spatial weighting for

‘bag-of-visual-words’: the spatial constitution of image content is represented as a mixture

of n Gaussians in the feature space and decomposed the image into n regions (Fig. 3.14c).

The spatial weighting scheme is achieved by weighting the ‘bag-of-visual-words’ accord-

ing to the probability of each visual word belonging to each of the regions in the image.

Assuming that local descriptors obtained from the salient point set { j1, j2, · · · , jM} have

been assigned to visual word V, then the summation of p(i| jk),k = 1, · · · ,M will indicate

the contribution of visual word V to region i. Therefore, the weighted term frequency of V

with regard to region i can be defined as:
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Figure 3.14: The framework for spatial weighting [18] (a) original image, (b) extracted
visual words, (c) GMM modeling result, (d) spatial weighted visual word frequencies

t fV =
M

∑
k=1

p(i| jk) (3.8)

Supposing that di and d j are two D-dimensional (D equals the vocabulary size of visual

words) vectors of spatial weighted visual word frequencies (Fig. 3.14d), which come from

region i and region j, respectively. Then the most natural way to measure the similarity

between vectors di and d j is using the cosine similarity (eq. (3.9)).

Simcosine(di,d j) =
dt

id j

‖di‖‖d j‖
(3.9)

Assuming that Iq is the query image and Ir is an image from the retrieval set. For each

region in image Iq, we find its closest region in image Ir based on eq. (3.9). After that, the
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Figure 3.15: Proposed image representation framework

image-level similarity is obtained by taking the average of the pair-wise similarity between

regions in Iq and their closest regions in Ir.

3.2.4 An Integrated Image Representation Framework

In our approach, we proposed an integrated image representation framework, in which

we utilize the saliency model (including SIFT descriptors and MSER feature) as a comple-

ment part of context-based image representations. Our motivation comes from the fact that

the mechanism of human visual perception allows for very rapid holistic image analysis to

provide a coarse context of image scene (special layout model), yet it also give rise to a

small set of candidate salient locations in a scene (saliency model) that needs to be inten-

sively studied.

According to the comprehensive studies of human vision perception [43], the human
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visual processing system is able to make decision to focus its attention on a small set of in-

teresting (salient) parts in the view field within a very short time (less than 200ms). During

the same period, it also extracts enough visual information to accurately recognize func-

tional and categorical properties of the scene. Such a biological mechanism (in which a

very rapid holistic image analysis gives rise to a small set of salient parts in a scene) moti-

vates us to develop an integrated image representation framework as Fig. 3.15. The context

of image scene and salient parts are two complementary components in image represen-

tation. Computing contextual image representation involves accumulating image statistics

over the entire scene, while finding salient parts requires finding image regions that stand

out significantly different from their neighbors. In our framework, we choose to enrich

the contextual image representation by two different saliency models, i.e. the region-based

image saliency model the Maximally Stable Extremal Region (MSER) features and point-

based image saliency model - SIFT features.

Specifically, an input image is filtered and down-sampled to produce four spatial scales.

Then, for each spatial scale, we extract information from a set of low-level visual feature

channels (orientation channel, color channel and grayscale channel). Within the low-level

feature processing procedure, as suggested in [90], we extract the contrast information

from the color channel as it is more robust and show better invariance under different light-

ing conditions. For the orientation channel, we employ Gabor filters to the image intensity

and extract orientation information at four different angles. After that, three low-level

image feature channels are merged to produce the image context representations. In our

framework, we proposed to use the GIST feature [90] for image context representations.

The GIST feature is a low dimensional holistic representation of image content. Specifi-
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cally, we divide each image into a 4 by 4 grids. For each grid, we incorporate all the image

feature channels to generate a vector representation of that location. By merging all local-

ized vector together, we obtain a raw gist feature vector for the whole scene. Finally, we

will perform principal component analysis to reduce the dimension of gist feature vectors

to a more practical number.

In our framework, we represent the region-based image saliency model by the Maximally

Stable Extremal Region (MSER) features. Specifically, we extend MSER detector to mul-

tiple scales by constructing Gaussian pyramid and applying MSER detection separately

in each resolution level. After MSER detection, each detected elliptical region is normal-

ized to circular patch of constant radius. In order to further improve its scale and affine

invariant capability, we rectify each patch to canonical orientation following the coordi-

nate transform in [37]. Specifically, we chose to perform principle component analysis

(PCA) on MSER normalized patches toprovide a robust and compact representation of im-

age regions.More specifically, we construct covariance matrix for a total of 140,000 MSER

normalized patches extracted from training dataset, each of which is a 21×21 dimensional

vector of image intensity. Then, we perform eigen-decomposition on the covariance matrix

to obtain the eigenvectors. We then obtain the projection matrix which is composed of first

k principal components, i.e. eigenvectors corresponding to k largest eigen-values. In this

way, we build the eigenspace for all the MSER normalized patches in our training dataset.

To representa new MSER patch, we simply multiply its 21× 21 dimensional vector with

the projection matrix to obtain its k dimensional projection. After extensive testing, we set

k=50 (which means that all the MESR features are represented as 50-dimensional vectors).

Reconstruction result in Fig. 3.6 shows that, when using the first 50 principle components,
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we are able to achieve significant dimension reduction of the MSER features without losing

important details.

We represent the point -based image saliency model by SIFT features. Specifically, we

extract and index SIFT features as follows. Firstly, we employ the Difference-of-Gaussian

(DoG) salient point detector [63] to detect salient points from images. The detection is

achieved by locating scale-space extreme points in the difference-of-Gaussian images and

the main orientations of salient points are determined by image gradient. Then, image

patches containing the salient points are rotated to a canonical orientation and divided into

44cells. In each cell, the gradient magnitudes at 8 different orientations are calculated.

Consequently, each salient point is described by a 128-dimensional SIFT descriptor. In this

way, each image in the training dataset is represented as a set of SIFT descriptors. After

that, the K-mean clustering is performed to quantize all the extracted SIFT descriptors and

produce a finite dictionary of appearance patterns called ‘code-book of visual words’, with

each cluster center as a unique ‘visual word’. Finally, the indexing of SIFT features is ac-

complished by computing the term frequency of visual words with respect to each image

document.

3.3 PROBABILISTIC TOPIC MODEL FOR CO-EXISTING IMAGE FEATURE

AND ANNOTATION

High quality text descriptions of images play a vital role as training and benchmarking

data in developing and evaluating an automatic image annotation system. So the first is-

sue of this research problem is to build a benchmark dataset for the purpose of training an

automatic image annotation and retrieval system. We propose we propose to associate im-
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age captions in biomedical literatures with semantic concepts from Unified Medical Lan-

guage System (UMLS) and enrich image in ImageNet dataset by text descriptions from

Wikipedia. The second issue of this research problem is proposing an effective model to

study the correlation between image and text descriptions. In the data mining and infor-

mation retrieval community, there are many studies focusing on probabilistic topic models

to study the correlation between image and text descriptions such as the Correspondence

LDA (CorrLDA) model [14], [77]. In my research, a hierarchical probabilistic model with

background distribution (HPB) and the probabilistic topic-connection (PTC) model are in-

troduced to enables more effective and robust modeling of the co-existing image features

and annotations.

3.3.1 Probabilistic Models for Topic Learning from Images and Captions in Online

Biomedical Literatures

Recent researches in biomedical and life sciences produce hundreds of thousands of

digital publications each year. Although there are several online digital archives (such

as PubMed Central) available for full-text biomedical literatures retrieval, however, it’s

still very difficult for users to query and retrieve biomedical figures from online publica-

tions. Although the CorrLDA model [14] provides a way to learn semantic topics from

the co-occurrence patterns of caption words and extracted image features, however, exten-

sive studies of Corr-LDA model show that the discovered topics of CorrLDA model can

be overwhelmed by several background words that frequently appear in the database. With

this consideration, a hierarchical probabilistic topic model with background distribution is

presented, in which there is a switch variable that allows the model to decide whether a
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word is generated by the background topic of or one of the individual topics.

In this section, I will firstly describe the procedure of preprocessing and indexing of biomed-

ical figures. After that, I will present the extended CorrLDA model and the hierarchical

probabilistic topic model with background distribution. Finally, I willprovide the collapsed

Gibbs sampling algorithms for inference and learning the proposed probabilistic models.

Preprocessing of Biomedical Figures

In our research, we deal with biomedical figures downloaded from the PubMed Central

web pages. Generally, a biomedical figure involves two parts, a single image composed

with one or multiple image panels (sub-images) and the corresponding captions. Therefore,

the preprocessing section of biomedical figures has two parts, the image processing part and

the caption processing part.

Within the downloaded biomedical figures, images are segmented into several individual

image panels. It should be pointed out that there are image panels which contain flow charts

or diagrams. These image panels do not carry substantial visual content. Therefore, they

are filtered out using basic region segmentation method.

In caption texts, there are some parenthesized expressions refer to specific image panels.

Most of them are simply composed of single letter such as (A), (b) or letters connected by

conjunction, such as (a and b), (b,c) and (a-c). We refer to these parenthesized expressions

as image pointers (as marked by red color in Fig. 3.16 b). We develop a set of rules to

extract these regular image pointers in captions, which is similar to the HANDCODE2

method in [100].

Image pointers are commonly placed in some important positions (such as upper left and
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Figure 3.16: Biomedical figures preprocessing

lower left corner) of image panels. Therefore, we apply the Asprise OCR Java SDK toolkit

for optical character recognition (OCR) in sub-images of image corners (Fig. 3.16 a).

The OCR toolkit achieved a moderate precision in our image pointer extraction, which

is sufficient for our research. We check the image pointer extraction results and make

necessary manual corrections.

In a figure with multiple image panels, instead of replicating the entire caption to each

image panel, we develop a restricted caption scanner to identify restricted captions (Fig.

3.16b) with regard to the image pointer of each image panel. The association of texts and

image pointers are determined according to different cases, such as image pointers locate

at the beginning of a sentence, preceded by preposition and noun phrases, followed by a

clauses, etc. Generally, the undergoing image pointer(s) for captions are disabled when

the scanner meets another image pointer or reaches the end of a clause or a sentence. All
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the texts that don’t have any assigned image pointers are regarded as global captions (Fig.

3.16b).

The image panel and captions associated with the same image pointer are named as an

image-caption pair. In an image-caption pair, the final caption words are generated via a

linear combination of restricted captions and global captions. The combination avoids the

over-representation problem and preserves the uniqueness of each individual image panel.

Each image-caption pair is assigned a unique ID like ‘bcr1011-1a’ , in which ‘bcr1011’ is

the PubMed Central article ID, ‘1’ is the number of figure in the article, while ‘a’ is the

name of image pointer of a given image panel.

Image-Caption Pairs Indexing

During the indexing stage, we choose to represent the image content in each image-

caption pair as a ‘bag-of-visual-word’. First, we adopt the Difference-of-Gaussian (DoG)

salient point detector [63] to detect salient points from images. The detection is achieved

by locating scale-space extreme points in the difference-of-Gaussian images. The main

orientations of salient points are determined by image gradient. Image patches containing

the salient points are then rotated to a canonical orientation and divided into 4× 4 cells.

In each cell, the gradient magnitudes at 8 different orientations are calculated. Conse-

quently, each salient point is described by a 128-dimensional SIFT descriptor. Compared

to other local descriptors, the SIFT descriptor is more robust and invariable to rotation and

scale/luminance changes [69].

The SIFT descriptors extracted from training images are clustered into 1000 clusters using

k-mean clustering to establish a codebook of ‘visual words’, with each cluster center as a
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Figure 3.17: The workflow for image-caption pair indexing

‘visual word’. As shown in Fig. 3.17, the image indexing is achieved by computing the

term frequency and building index of visual words for each image panel. The indexing of

captions results in two parts, the term index and the concept index (Fig. 3.17). The term

index is simply obtained by calculating the term frequency of caption words after lemma-

tizing and stop-word removal. In our approach, the Van Rijsbergen’s stop-word lists [99]

and the UMLS biomedical stop-word list [10] are used to remove non-content-bearing

terms.

The concept index is achieved by calculating the term frequency of concepts according

to the results of concept extraction. In biomedical ontology, a concept carries a unique

meaning and represents a set of synonymous terms. For example, C0006149 is a concept

about the benign or malignant neoplasm of the breast parenchyma in Unified Medical Lan-

guage System (UMLS) [10]. It represents a set of synonyms including Breast Neoplasm,



55

Breast Tumor, tumor of the Breast and Neoplasm of the Breast. Compared to individual

words and multiple word phrases, a concept is more meaningful, therefore, used as in-

dexing terms in large-scale biomedical literatures. In our approach, we adopt MaxMatcher

[112], a dictionary-based biological concept extraction tool, to extract UMLS concept from

captions.

Topic Modeling from Biomedical Image-caption Pairs

This section focuses on the problem of learning latent topics from biomedical image-

caption pairs. The underlying philosophy is that, an image-caption pair may deal with mul-

tiple topics; and the co-occurrence patterns of caption words, visual words and biomedical

concepts in this image-caption pair are related to some unseen latent semantic variables,

which indicate the presence/absence of specific topics.

In this section, we will present two probabilistic models, one is the extended Correspon-

dence LDA (CorrLDA) model and the other is our proposed hierarchical probabilistic topic

model with background distribution (HPB). For clarity of the notations, we name each

image-caption pair as a document. Some notations to be used in the two probabilistic mod-

els are list as follows: D is the number of documents, T is the anticipated number of latent

topics, Nd is the total number of text words in document d, Nd
c denotes the total number of

extracted biomedical concepts in document d, while Md represents the total number of ex-

tracted visual words in document d. As mentioned, the Corr-LDA model provides a natural

way to learn latent topics from text words and other entities. Therefore, the topic learn-

ing problem can be addressed by extending the entities in the Corr-LDA model to visual

words and ontology-based biomedical concepts (Fig. 3.18). The differences between our
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Figure 3.18: The extended Corr-LDA model, yellow cycles represent the observation of
words, concepts and visual words

extension and the original Corr-LDA model are two-fold. First, we combine visual words,

text captions and ontology-based concepts in one single model. Second, the original model

only takes use of global image features such as color and texture, while our extension deals

with visual words which are more robust than global image features and have similar sta-

tistical properties with text words (which are assumed to fit multinomial distributions).

The sampling process for the extended Corr-LDA model is as follows.
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1. For the dth(d = 1 · · ·D) document, sample θd ∼ Dir(α)

2. For the tth(t = 1 · · ·T ) topic, sample ϕt ∼ Dir(β ),ϕ ′t ∼

Dir(β ′),ϕ ′′t ∼ Dir(β ′′)

3. For each of theNd words wi in document d:

a) Sample a topic zi ∼Multi(θd)

b) Sample wi|zi ∼Multi(ϕzi)

4. For each of the Nd
c concepts ci in document d:

a) Sample a topic y′i ∼Uni f orm(zw1, · · · ,zwNd )

b) Sample ci|y′i ∼Multi(ϕ ′y′i
)

5. For each of the Md visual words in document d:

a) Sample a topic y′′i ∼Uni f orm(zw1 , · · · ,zwNd )

b) Sample vi|y′′i ∼Multi(ϕ ′y′i
)

In the first step, a T-dimensional topic-prior vector θd is sampled for each document d,

with the t-th dimension of the vector represents the prior probability of the t-th topic in

d. For each document d, the generative process of the Nd words is achieved by sampling

topics from the document-topic multinomial distribution (with Dirichlet prior θd) and sam-

pling words from the topic-word multinomial distribution (with Dirichlet prior ϕt). The

generative process of the Nd
c concepts and Md visual words are similar with that of the

Nd words; the only difference is that only the topics that associated with the Nd words in

document d are used to generate concepts and visual words. Parameters α,β ,β ′,β ′′ are

hyper-parameters for the Dirichlet priors. In our approach, we assume symmetric Dirichlet

priors, with α,β ,β ′,β ′′ being scalar parameters.

Although the Corr-LDA model is able to learn latent topics from the image-caption pairs



58

and establish direct correlation among words, visual words and concepts, however, after

looking into the discovered topics from the data collection, we found several background

words appear at the top ranked terms of most discovered topics due to their high frequency.

For example, when we use image-caption pairs from online journal: ‘Breast Cancer Re-

search’ as training data and learn topics using the Corr-LDA model, we found ‘breast’,

‘cancer’, ‘mammary’ are among the top-tanked words of many topics. These words, which

we named as ‘background words’, appear frequently in many topics and take the places of

the topic-specific key words. Its necessary to discover these ‘background words’ from the

dataset, otherwise, the topic learning would be less effective.

It should be note that during the caption indexing stage, we have removed the non-content-

bearing stopwords according to the Van Rijsbergen’s stopword lists [99] and the UMLS

stopword list [10]. Obviously, the ‘background words’ do not belong to regular stopwords.

As we have seen, these words carry some contextual information which is shared by most

image captions in a biomedical journal. As such ‘background words turn to be different

from one journal to another, it’s better to discover them automatically rather than manually

specifying them for each journal.

In [77] the ‘SwitchLDA’ model is proposed, in which a switch variable is introduced to

control the fraction of entities in topics. With similar consideration, we develop a hierar-

chical probabilistic model with background distribution (HPB model) to capture the back-

ground topic z0. In this model, an additional Binomial distribution λ (with a Beta prior of

γ1 and γ2) was incorporated to control the switch variable x (Fig. 3.19), which decides

whether a term should be drawn from a background topic z0 or a regular latent topic zi. At

this stage, we are not clear whether the background topics (Fig. 28) are related to certain
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Figure 3.19: The hierarchical probabilistic model with background distribution (HPB), the
red dash line denotes a variation of HPB model

image content. Therefore, we also present a variation of the HPB model (HPB2) for testing.

The generative process is as follows:
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1. For the dth(d = 1 · · ·D) document, sample θd ∼Dir(α) and λd ∼

Beta(γ1,γ2)

2. For the tth(t = 1 · · ·T ) topic, sample ϕt ∼ Dir(β ),ϕ ′t ∼

Dir(β ′),ϕ ′′t ∼ Dir(β ′′);for background topic, sample Ω ∼

Dir(β2) and Ω′ ∼ Dir(β ′2)

Variation(for HPB2 model):

For background topic,sample Ω′′ ∼ Dir(β ′′2 )

3. For each of the Nd words wi in document d:

a) Sample a switch xi ∼ Bernoulli(λd)

b) If xi = 0, Sample wi|z0 ∼Multi(Ω)

c) if xi = 1, sample a topic zi ∼ Multi(θd) and sample wi|zi ∼

Multi(varphizi)

4. For each of the Nc concepts ci in document d:

a) Sample a topic y′i ∼Uni f orm(zw1 , · · · ,zwNd )

b) if y′i = z0, Sample ci|y′i ∼Multi(Ω′)

c) if y′i = zi(i = 1, · · · ,T ), sample ci|y′i ∼Multi(ϕ ′y′i
)

5. For each of theMd visual words vi in document d:

a) Sample a visual topic y′′i ∼Uni f orm(zw1, · · · ,zwNd )

b) if y′′i = z0, repeat (a),

c) if y′′i = zi(i = 1, · · · ,T ), sample vi|y′′i ∼Multi(ϕ ′′y′i
)

Variation(for HPB2 model):

a) Sample a topic y′′i ∼Multi(θd)

b) if y′′i = z0, sample vi|y′′i ∼Multi(Ω′′)

c) if y′′i = zi(i = 1, · · · ,T ), sample vi|y′′i ∼Multi(ϕ ′′y′i
)
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Figure 3.20: Top-ranked words and concepts in background topic of journal ‘Breast Cancer
Research’

In the proposed model, λ is the Bernoulli parameter for switch variable x. In our experi-

ment, we assume symmetric priors and set α = 0.1,β = β ′ = β ′′ = 0.01,γ1 = γ2 = 0.5 .

For clarity, we call the variation of HPB model (in gray color) as HPB2 model. In the HPB

model, visual words has nothing to do with the background topic, while in HPB2 model,

the presence of background topic z0 in the caption words of document d is used to generate

visual words, which results in direct correlation between visual words and the background

topic.
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Collapse Gibbs Sampling for Proposed Topic Models

The model estimation is achieved via the Collapse Gibbs Sampling procedure [95],

which iteratively estimates the posterior probability conditioned on current entity-topic as-

signment and adopts a Monte Carlo process to determine the assignment of entity-topic in

the next iteration.

Some notations to be used in Collapse Gibbs Sampling are list as following: W accounts

for the vocabulary size of indexed words in the testing dataset; NW denotes the total num-

ber of indexed words while W’, N′W and W”,N′′W represent the vocabulary size and the total

number of concepts and visual words, respectively.

Given the generative process, the next step is to compute the word-topic posterior probabil-

ity, which is: p(zwi = j|wi,w−i,z−wi) ∝ p(wi|zwi = j,w−i,z−wi) · p(z = j|w−i,z−wi). This

probability is intractable, however, it can be approximated by integrating out (collapsing)

all the latent variables ϕ j and θd separately, which is:

p(wi|zwi = j,w−i,z−wi) =
∫

p(wi|z = j,ϕ j,w−i,z−wi)p(ϕ j|w−i,z−wi)dϕ j

∝ E(p(ϕ j|w−i,z−wi)∼ Dir(β +nwi
−i, j)) =

β +nwi
−i, j

Wβ +nwi
−i, j

(3.10)

p(z = j|w−i,z−wi) =
∫

p(z = j|θd) · p(θd|w−i,z−wi)dθd

∝
α +nd

−i, j

T α +nd
−i, j

(3.11)
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Therefore, posterior probability for current word wi is:

p(zwi = j|wi,w−i,z−wi) ∝
β +nwi

−i, j

Wβ +nwi
−i, j
·

α +nd
−i, j

T α +nd
−i, j

(3.12)

In which nwi
−i,i (-i denotes that current word wi is removed) is the total number of times

word wi being assigned to topic j except for current one,n−i,i is the summation of nwi
−i,i , and

nd
−i,i is the total number of words in document d assigned to topic j except for current word.

Based on sampled topic variables for each word wi, the posterior probabilities for visual

word-topic and concept-topic can be approximated in similar formations. For simplicity,

we give their posterior probabilities in a uniform expression, which is:

p(z̆i = j|w̆i = v, z̆−i, w̆−i,z, β̆ ) ∝
n j

Nw
·

β̆ +nw̆i
−i, j

W̆ β̆ +nw̆i
−i, j

(3.13)

In which n j is the total number of words in document d assigned to topic j; Nd is the total

number of words in document d;nw̆i
−i,i is the total number of entities (concepts /visual words)

assigned to topic j except for current entity: w̆i . For concepts, we have: W̆ =W ′, β̆ = β ′,

while for visual words, W̆ =W ′′, β̆ = β ′′ .

Similar to the Gibbs sampling procedure in Section 4.1, we derive the sampling equation

for proposed HPB model as follows, which allow for joint sampling of the topic variables

and the switch variable x for each word wi:

p(xwi = 0,zwi = 0|wi,w−i,z−wi,x−wi) ∝
N0

d,−i + γ

Nd,−i +2γ
·

β2 +nwi
−i,0

Wβ2 +nwi
−i,0

(3.14)
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p(xwi = 1,zwi = j|wi,w−i,z−wi,x−wi) ∝
N1

d,−i + γ

Nd,−i +2γ
·

β +nwi
−i, j

Wβ +nwi
−i, j
·

α +nd
−i, j

T α +nd
−i, j

(3.15)

In which N0
d,−i and N1

d,−i are the total number of words (except for current word wi) as-

signed to background topic and regular latent topics in document d. In eq. (3.14), nwi
−i,0

denotes the number of times word wi being assigned to background topic except for current

one, while n−i,0 is the summation of nwi
−i,0 . In eq. (3.15), nwi

−i,i is the total number of times

word wi being assigned to topic j except for current one, n−i,0 is the summation of nwi
−i,i

,and nd
−i,i is the total number of words in document d assigned to topic j except for current

word. The sampling equations or concept and visual words have two different cases. For

the HPB model, we have:

p(xi = 0,y′i = 0|ci,c−i,y′−i,w,z) ∝
N0

d
Nd
·

β ′2 +nci
−i,0

W ′β ′2 +nci
−i,0

(3.16)

p(xi = 1,y′i = j|ci,c−i,y′−i,w,z) ∝
N1

d
Nd
·

n j

N1
d
·

β ′+nci
−i, j

W ′β ′+nci
−i, j

(3.17)

p(y′′i = j|vi,v−i,y′′−i,w,z) ∝
n j

N1
d
·

β ′′+nvi
−i, j

W ′′β ′′+nvi
−i, j

(3.18)

In which N0
d and N1

d are the total number of words assigned to background topic and regular

latent topics in document d. nci
−i,i is the total number of times concept ci being assigned to

topic j except for current one, while nvi
−i,i is the total number of times visual word vi being

assigned to topic j except for current one. For the variation of HPB model (i.e. the HPB2

model), we have a uniform expression of posterior probabilities for both concept and visual
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words:

p(xi = 0, z̆i = 0|w̆i, c̆−i, w̆′−i,w,z, β̆ ) ∝
N0

d
Nd
·

β̆ ′2 +nw̆i
−i,0

W̆ ′β̆ ′2 +nw̆i
−i,0

(3.19)

p(xi = 1, z̆i = j|w̆i, c̆−i, w̆′−i,w,z, β̆ ) ∝
N1

d
Nd
·

n j

N1
d
·

β̆ ′+nw̆i
−i, j

W̆ ′β̆ ′+nw̆i
−i, j

(3.20)

3.3.2 Probabilistic Topic-Connection Model for Co-existing Image Features and An-

notations

In automatic image annotation, how to bridge over the ‘semantic gap’ [6]between

user and image features is a major challenge. Specifically, its important to identify sets

of image features that show strong semantic correlations with textual image descriptions.

With this consideration, probabilistic Topic-Connection (PTC) model in this section. We

also describe the procedure of enriching the text description by 3rd party knowledge base

(Wikipedia). The collapse Gibbs sampling algorithms for inference and learning proposed

probabilistic models are presented at the end of this section.

ImageNet Textual Description Enrichment

The Labeled image datasets such as Caltech 101/256 Categories [1], [39], PASCAL [66],

LabelMe [87] have been popular with the computer vision community as training datasets.

The recently established ImageNet dataset [25] provides large scale ontology of image that

is built upon the WordNet Structure [20]. Organized in a hierarchical structure, images in

the ImageNet dataset are grouped into sets of cognitive synonyms (synsets), each express-

ing a distinct semantic concept. Due to its completeness and accuracy, the ImageNet dataset

may also serves as a benchmark image dataset. One problem with ImageNet dataset is that
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it still lacks of comprehensive text descriptions for image data. Therefore, in our research,

we utilize Wikipedia as external knowledge source and enrich the ontology structure of Im-

ageNet database with comprehensive and highly-reliable text descriptions from Wikipedia

articles.

According to its latest release, ImageNet hosts a total of 15589 synsets(sets of cognitive

synonyms, each expressing a distinct semantic concept) of WordNet, with an average of

50-500 images under each synset [25]. The fact that a majority of synsets coincide with

Wikipedia entries inspires us to enrich the image hierarchy in ImageNet dataset with high

quality text descriptions from Wikipedia articles to provide benchmarking data set for au-

tomatic image annotation. Wikipedia is one of the most comprehensive and well-formed

electronic knowledge repositories on the web with millions of articles contributed collab-

oratively by professional subjects. Because of its reliability, accuracy and neutral point of

view, Wikipedia has been exploited as external knowledge source in many application of

text mining [46], [103], [47]. Although Wikipedia is different from standard WordNet

ontology, which is backed up by structured thesaurus, however, each article in Wikipedia

only describes one single concept under a hierarchical categorization system. Therefore,

the title of each article (which is a succinct phrase) still resembles an ontology term. This

feature makes it possible to map an ImageNet synset to a Wikipedia article (Fig. 3.21),

which in turn provides text descriptions for images under this synset.

In learning unambiguous semantic topics from text descriptions, polysemies and synonyms

are the major barrier. In our previous work [18], we use both ontology-based biomedical

concepts and single-word features to overcome the polysemy and synonym problems in

biomedical literatures. In public domain, where ontology-based concept is not available
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Figure 3.21: Graphical illustration of mapping a WordNet synset to a Wikipedia article

and domain knowledge is rare, we propose to use multiword phrases in conjunction with

unigram features. The multiword phrases usually have unchanged meanings, thus reduce

the ambiguity in unigram ‘bag-of-word’ document model. Therefore, the indexing of text

descriptions involves two parts, i.e. the term indexing and the phrase indexing. The term

indexing is simply achieved by calculating the term frequency of each word after lemma-

tizing and stop-word removal. In our approach, we propose to use the Van Rijsbergen’s

stop-word list [99] to remove non-content-bearing terms, and the statistical extraction tool

Xtract [92] to identify frequent multiword phrases from the text description.

Probabilistic Topic Connection (PTC) Models for Automatic Image Annotation

We begin this section with the introduction of extended CorrLDA model, which is the

state-of-the-art in modeling image and associated text description [8] [18]. By presenting

the generative process of CorrLDA model, we make explicit its problem of topic replicat-
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ing from text to image. Then, we show how we address the problem in CorrLDA model by

introducing new latent semantic variables and relations to thegenerative process.

The CorrLDA model is commonly used by the data mining community to extract latent

semantic topics from the co-occurrence patterns of image and text descriptions. A closer

look into the generative process of extended CorrLDA model reveals that, the topic com-

position of image-text pairs is solely decided by the primary entities (such as single-word

feature), even though other entities such as the image appearance also serve as a part of

description. As a result, in the CorrLDA model, the image topics are made equivalent with

the word topics. However, as we know, each word topic may be related to multiple visual

topics, enforcing word topics to image features may ignore such a relation and make topic

modeling results inconsistent with the underlying image patterns.

To better explain this problem, lets consider a simple image-text modeling problem in Fig.

3.22, for simplicity, we name the entity topic of image feature as ‘visual topics’. Assuming

that we have a vocabulary of 6 words (branch, tree, leaf, species, animal and ground) and

a total of 5 word topics each has a unique distribution of generating words (Fig. 3.22a).

Take word topic 3 for example, it has high probability generating branch, tree and leaf

while low probability generating ‘species’, ‘anima’ and ‘ground’, so it may be related to

the concept of forest. As a comparison, topic 5, which has high probability of generating

‘branch’, ‘species’ and ‘animal’, may represent concept of branch splitting during animal

species evolution. Now suppose that we have an image about needle-leaf forest and a piece

of text description that explain the needle-leaf forest, and that we choose to represent image

content by visual code-words that are derived from SIFT descriptors. As we can see in Fig.

3.22, in the sense of single-word features, this example is almost ‘uniform topic, which is
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mainly composed of topic 3 (Fig. 3.22b). However, in the sense of image feature represen-

tation, this example is not really a ‘uniform topic’ case. Although the image purely depicts

the scene of needle-leaf forest, however, it still have multiple visual topics corresponding

to different image regions such as trunks, leaves, path, grass, etc (Fig. 3.22c). For example,

the visual topic ‘trunks’ may favor some visual code-words that occur more frequently in

trunks (e.g. vertical lines); similarly, visual topic ‘leaves’ may in turn privilege other visual

code-words such as blob-like structures. Since each region takes up similar portion of area

in the image, there is no evidence that any of these visual topics be dominant in the entire

image. Therefore, the shifting from word topic to visual topics is not as transparent as as-

sumed in CorrLDA model.

With this consideration, in our new model we allow each word topic to connect to multiple

visual topics, with different prior probabilities. We call our new model Probabilistic Topic-

Connection (PTC) model. This model also allow for different number of word topics and

visual topics. For clarity, we name each image-text pair as one document. Some notations

to be used in the two topic models are listed as follows: D is the number of documents, T is

the anticipated number of latent topics, Nwd is the total number of text words in document

d,Nd
p denotes the total number of extracted multiple-word phrases in document d, while Nd

v

and Nd
r represents the total number of extracted visual words and MSER regions in docu-

ment d, respectively. In the model, parameters α,βw,βp,βv are fixed hyper-parameters for

the Dirichlet distributions. In our approach, we assume symmetric priors, with α,βw,βp,βv

being scalar parameters.

Similar to CorrLDA model, we assume that the observed data is generated by some param-

eterized random variable known as ‘latent topics’. Specifically, a ‘word topic’ (denotes by
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Figure 3.22: Graphical illustration of mapping a WordNet synset to a Wikipedia article

‘z’) is used to derive the generation of the text words from a topic-specific word distribution

(e.g. for a word topic that is related to the concept of forest, the corresponding word distri-

bution will have high probability generating words like ‘branch’, ‘tree’ and ‘leaf’). In a text

document, the word topics (which usually relate to some semantic concepts) play an inter-

mediate role between basic elements (words) and high level semantic meanings.The ‘visual

topic’ (denotes by ‘y’) is a visual counterpart of the word topic, each had a unique distribu-

tion over image features. Specifically, each visual topic is formalized as cluster of features
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that represent similar image appearance or fit the same distribution in the image feature

space. For example, the visual topic ‘trunks’ may favor some image patterns that occurs

more frequently in trunks (e.g. vertical lines), while visual topic ‘leaves’ may privilege

some blob-like image patterns. After identifying latent topics and assigning topic labels to

each entity in a document, each document may in turn be represented by a document-level

mixture of latent topics. The document-level topic mixture is defined as a probability dis-

tribution of latent topics with respect to each document, specifying which word topics are

most likely to be generated from observed text description, or which kind of visual topics

are most likely to be generated from observed image features.

In Fig. 3.22, we present the graphical representations of the model, in which we highlight

the innovation part of proposed model by dashed line. Following the convention in de-

picting graphical representation of topic models, we use round nodes to represent random

variables, in which the white nodes stand for latent random variables, while the gray nodes

denote observed ones during the model training. The rounded boxes are used to represent

fixed hyper-parameters of the model, while the edges illustrate the conditional dependency

underlying the generative process. Detailed explanations of notations used in Fig. 3.23 and

following discussions are summarized in Table 3.1.

The generative process for the Probabilistic Topic-Connection (PTC) Model in Fig. 3.23

is:
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Table 3.1: Notations in Proposed Topic Model

Symbol Descriptions
d,w, p,v,r Instances of variables: d for document, wfor word, pfor phrase, v

for visual word, r for MSER region
D,W,P,V Total number of documents, vocabulary size of words, phrases,

visual words
z,z′,y,y′ Indicator for word topics (z, z) and visual topics(y, y)
T 1,T 2 The selected number of word topics and visual topics.
Nd

w,N
d
p .N

d
y ,N

d
r The number of word tokens, phrases, visual words and MSER

regions contained in document d
CT1D

kd ,CT1D
kd,−i The number of times that word topic k has occurred in document

d, with/withoutcounting the current instance
CWT

wk ,CWT
wk,−i The number of times that word w is assigned to word topic k,

without counting the current instance.
CPT

pk ,C
PT
pk,−i The number of times thatphrase p is generated from word topic k,

with/without counting the current instance.
CV T2

v j ,CV T2
v j,−i Number of times that visual word v is generated from visual topic

j, with/without counting the current instance.
CT2T1

jk ,CT2T1
jk,−i The number of times thatword topic k connects to visual topic j,

with/without counting the current instance.
CRT2

r j The number of times that MSERregion r is generated from visual
topic j, except current assignment;

θ A D×T matrix that indicates the document-topic distribution.
α,βv,βu,βr,γ Hyper-parameters of Dirichlet distributions.
λ A T 1×T 2 matrix that indicates theconnection from word topic

to visual topic
µ j,n,σ

2
j,n Parameters of the nth Gaussian distribution with respect to visual

topic j
ū j,n Sample mean ofthe nth Gaussian distribution with respect to vi-

sual topic j
s2

j,n Sample variance ofthe nth Gaussian distribution with respect to
visual topic j
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1. For the dth(d = 1 · · ·D) document, sample θd ∼ Dir(α)

2. For the kth(k = 1 · · ·T ) text topic, sample ϕk ∼ Dir(βw),ϕ
′
k ∼

Dir(βp),λk ∼ Dir(γ)

3. For the jth( j = 1 · · ·T2) visual topic, sample ψ j ∼ Dir(βv)

4. For each of the Nd
w words wi in document d:

a) Sample a text topic zi ∼Multi(θd)

b) Sample wi|zi = k ∼Multi(ϕk)

5. For each of the Nd
p phrasespiin document d:

a) Sample a text topic z′i ∼Multi(θd)

b) Sample pi|z′i = k ∼Multi(ϕ ′k)

6. For each of theNd
v visual words viin document d:

a) Sample an indicator si ∼Multi(θd)

b) Sample a visual topic yi|si = k ∼Multi(λk)

c) Sample vi|yi = j ∼Multi(ψ j)

7. For each of the Nd
r MSER region feature riin document d:

a) Sample an indicator s′i ∼Multi(θd)

b) Sample a visual topic y′i|s′i = k ∼Multi(λk)

c) For the n-th dimension of the MSER feature r(n)i

i. Sample r(n)i |y′i = j ∼ N(µ j,n,σ
2
j,n)

In the generative process, a T-dimensional topic-prior vector θd is sampled for each doc-

ument d, with the k-th dimension of the vector represents the prior probability of the k-th

topic in d. For each document d, the generative process of the Nd
w words is achieved by sam-

pling topics from the document-topic multinomial distribution (with prior θd) and sampling
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Figure 3.23: Graphical representation of the Probabilistic Topic-Connection (PTC) model

words from the topic-word multinomial distribution (with prior ϕk). After that, instead of

being sampled from their own topics, all the other entities (phrases, visual words, etc) are

sampled from the same topic as words. Different from Corr-LDA model, new latent vari-

ables are introduced to allow for more flexible sampling of word topics and visual topics.

Specifically, latent variable s and s′ play the role as word topic indicators, while latent vari-

able λk serves as the prior probabilities of word topic k connecting to any visual topics.

For a given image feature, the model first sample a word topic indicator, then sample the

visual topic according to the priori distribution of corresponding word topic connecting to

different visual topics.

Collapse Gibbs Sampling For Proposed Topic Model

In recent years, several methods have been developed for estimating the latent variable

in topic model, such as the variational expectation maximization, expectation propagation,
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and Collapse Gibbs sampling [95]. Compared to the other two methods, Gibbs sampling

is less computationally intensive, and often yields relatively simple algorithms for approx-

imate inference [95]. With this consideration,we perform the Collapse Gibbs Sampling

procedure for model estimation. In the Gibbs Sampling process, a Markov chain is con-

structed and converges to the posterior distribution on latent topics. The transition between

successive states in the Markov chain is modeled by repeatedly drawing a topic for each

observed entity from the conditional probability. Due to the space limit, we only introduce

our implementation of the Gibbs Sampling for proposed PTC model. For the extendedCor-

rLDA model, our implementation is similar with that outlined in [8]and [18]. Given the

generative process in previous section, our objective is to compute the entity-topic posterior

probability and sample topic for each entity from posterior probability. Thus, we derive the

posterior sampling equations as follows, in which we follow the standard notations detailed

in Table 3.1. Sampling a word topic ( zi) for a given word (wi )

p(zi = k|wi = w,z−i,w−i,z′,α,βw) ∝
CT1D

kd,−i +α

∑k′C
T1D
kd,−i +T1α

·
CWT

wk,−i +βw

∑w′CWT
wk,−i +Wβw

(3.21)

The above posterior probability is obtained by integrating out (collapsing) all the latent

variables ϕk and θd separately. Sampling a word topic (z′i ) for a multiple word phrase (pi )

p(z′i = k|pi = p,z′−i,p−i,z,α,βp) ∝
CT1D

kd,−i +α

∑k′C
T1D
kd,−i +T1α

·
CPT

pk,−i +βp

∑p′CPT
p′k,−i +Pβp

(3.22)
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Sampling a visual topic (yi ) for a visual word feature (vi )

p(yi = j,si = k|v′i = v,y−i,v−i,y′,z′,z,γ,βv) ∝
CT1D

kd
Nd

w

CT2T1
jk,−i + γ

∑ j′C
T2T
j′k,−i +T2γ

·
CV T2

v j,−i +βv

∑v′C
V T2
v′ j,−i +V βv

(3.23)

Sampling a visual topic (y′i ) for a MSER region (ri ), in which ri = r =(r(1), · · · ,r(n), · · · ,r(50))T

.
p(y′i = j,s′i = k|ri = r,y′−i,r−i,y′,z′,z,γ)

∝
CT1D

kd
Nd

w

CT2T1
jk,−i + γ

∑ j′C
T2T
j′k,−i +T2γ

·∏
n

t
CRT2

r j,−i−1
(r(n)|ū j,n,s2

j,n/CRT2
r j,−i)

(3.24)

In eq. (3.23), the term in the form of tn−1(r(n)|ū,s2/n) is the student-t density with mean

ū , variance s2/n and n-1 degree of freedom. As we place a non-informative prior over the

Gaussians, the mean and variance of each Gaussian are purely determined by their suffi-

cient statistics (i.e. the sample mean ū and sample variance s2 , respectively). As a result,

the student-t density function in eq. (3.23) provides the confidence of drawing the value

of r(n) from a topic-specific Gaussian distribution (please refer to section 3.3 for detailed

derivation of this conclusion).

During the Gibbs Sampling processes based on above posterior distributions calculations,

we may also update single latent variablesin the following manner:
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E[θkd|z,z′,α] =
CT1D

kd +α

∑k′C
T1D
kd +T1α

E[ϕwk|z,w,βw] =
CWT

wk +βw

∑w′CWT
w′k +Wβw

E[ϕ ′pk|z′,p′,βp] =
CPT

pk +βp

∑p′CPT
pk +Pβp

E[ψv j|y,v,βv] =
CV T2

v j +βv

∑v′C
V T2
v′ j +V βv

E[λ jk|z,z′,y,y′,γ] =
CT2T1

jk + γ

∑ j′C
T2T
j′k +T2γ

(3.25)

3.4 UTILIZING SOCIAL ANNOTATION FOR USER IMAGE TAGGING

To face the challenge of enormous explosion of unlabeled online image resources, it

is important to achieve automatic image tagging for online image resources. The desir-

able image tagging system should not only be able to interpret the image content but also

be able to integrate users’ contextual information. Breakthroughs in automatic image tag-

ging algorithms will help with organizing the massive amount of online image resources,

promote developing and studying of image storage and retrieval systems, and serve for

applications such as interest sharing among online image resource users. The recently es-

tablished Web 2.0 tools and environments have made collaborative tagging very popular.

Take Flickr.com for example, any user can collaboratively assign open-ended text words,

in the form of keywords or category labels, to online shared resources for the purpose of

organizing and re-finding the images. Moreover, due to its social annotation nature, the

tags created by user provide valuable information and metadata which can be utilized to
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achieve context sensitive information retrieval. With this consideration, it is very impor-

tant to explore users’ tagging patterns in describing the image content. In this section, we

propose a robust statistic model to leverage image, text and user-created tags and integrate

user context into the image retrieval system.

3.4.1 Background of Social Annotation and Image Tagging Studies

Due to its social annotation nature, Flickr image tags have various functional purposes

(Fig. 3.24). For example, the topic tags may refer to any object or person displayed in

the picture, such as sky, lake, plant life; the time tags indicate the time when a picture was

taken; the location tags provide information about sights, like which country it is from; the

type tags include camera settings and photographic styles; the usage context tags suggest

the context the picture was collected in, while the self-reference tags contain highly per-

sonal information for the tagger himself, such as ‘diamond class photographer’. Study on

different tag categories suggests that topic and location are two most intensively used tag

categories in Flick.com [53].Further study in social tagging behavior suggests that the fac-

tual tags [88] (or the first five tag categories identified in [53]) are more closely related to

resource content, while the subjective tags and personal tags are more influenced by users’

perspectives [64]. Generally speaking, compared to subjective and personal tags,factual

tags are more relevant to image content. The subjective and personal tags, on the other

hand, are usually free-form texts, but they also provide valuable contextual information of

users’ tagging preference which can be utilized to customize automatic image tagging for

different users.

Study of social tagging in web-based applications has gained increased popularity in the
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data mining community. Specifically, several probabilistic generative models have been

proposed to study users’ tagging patterns [82], [111], [64]. In [82], a Conditionally-

independent LDA (CI-LDA) model is proposed to infer the generation process of both

content word and tags. However, it assumes that tag is purely generated from the textual

content of document, while users’ impact on the tags generation process is ignored. [111]

proposes a social annotation model that considers the impact of both document topic and

user interest on tag generation, yet it assumes that words and tags are both generated from

the same topics shared by documents and users. In [64], a topic-perspective (TP) model

is proposed to infer how both users’ perspective and the resource content relate to the gen-

eration of social annotations. It improves the generative process of social annotations by

separating the tag generation process from the generation process of the resource content.

While the resource content (such as text words) is only generated from resource topics, the

social tags are generated by both resource topic and user perspective. In this model, the

user perspective not only refers to the user’s interest, but also covers the users expertise,

motivation, language and other personal factors.

On automatic image tagging, another major task is to identify semantic mixture com-

ponents from the co-existing image content and text descriptions. In the data mining and

information retrieval community, there has been a long time focus on using probabilistic

topic models to study the correlation between image and text descriptions. Specifically, the

Correspondence LDA (CorrLDA) model [14],which imposes correspondence between text

word and other semantic entities, provides a natural way to learn latent semantic compo-

nents(topics) from image features and associate them with text descriptions. Many recent

studies, including sophisticated topic models that associate image features with multiple
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Figure 3.24: Illustration of Flickr image tags and the mapping to different social tagging
classification schemas

types of semantic entities (such as protein entities [8], ontology-based biomedical con-

cepts [18]), still follow a similar generative process to the prototype CorrLDA model. In

CorrLDA model, each image document has different distribution over semantic mixture

components; this feature provides the model a flexibility of adapting to different image

contents. However, the CorrLDA model requires specifying the exact number of mixture

components, which is fixed for each image document and remains unchanged during the

model estimation. In practice, in order to get an optimal number, the researchers have to

try out different mixture components numbers and make a choice by comparing the log-

likelihood, perplexity and other criteria that indicate how good the model fits the data. The

Hieratical Dirichlet Process (HDP) model [108], is a nonparametric extension of the La-
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tent Dirichlet Allocation (LDA)-based topic models, it enables modeling documents with

countable infinite mixture components, thus provides the flexibility of modeling images

whose actual semantic component numbers are unknown.

3.4.2 Perspective HDP Model for Online User-tagged Image

In this section, we introduce the perspective HDP (pHDP) model for user-tagged im-

ages. We present graphical representation of pHDP model in Fig. 3.25. Following the

convention in depicting graphical representation of topic models, we use round nodes to

represent random variables, in which the white nodes stand for latent random variables,

while the gray nodes denote observed ones during the model training. The rounded boxes

are used to represent fixed hyper-parameters of the model, while the edges illustrate the

conditional dependency in the generative process.

For clarity, we name each tagged image as a document. Some notations to be used in the

two models are listed as follows: J is the number of image documents, K and K′ (both are

countable infinite) indicate the number of semantic mixture components; when K is a finite

number, the models become LDA-like models. To represent the image content, we utilize

the saliency features (including visual code-words [91] and MSER feature [67]) as a com-

plement part of the holistic GIST features [90]. Our motivation comes from the fact that

the mechanism of human visual perception allows for very rapid holistic image analysis to

provide a coarse context of image scene (special layout model), yet it also gives rise to a

small set of candidate salient locations in a scene (saliency model) that needs to be inten-

sively studied [43]. In Fig. 3.25, Nt
j is the number of tags in document j, while Nv

j and Nr
j

represent the total number of extracted visual code-words and MSER regions in document
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j, respectively. In the model, the holistic representation of an image is replicated 10 times

to enable the posterior sampling, so Nh
j denoted the h-th replication of the holistic image

representation in document j. In both models, we assume fixed value for Dirichlet process

concentration parameters α0 and γ . We also assume symmetric priors αu,ξv,ξt ,ηandζ for

Dirichlet distributions in the models. Detailed explanations of notations in following dis-

cussions are summarized in Table 3.2.

As shown in Fig. 3.25, this model primarily comprises of two parts split by the dash

line. The part on the right hand side is essentially the standard HDP model. The genera-

tive process of this part begins with drawing a global probability measure G0 ∼ DP(γ,H)

and for each document j, draw a child Dirichlet process G j ∼ DP(α0,G0). Following the

stick-breaking construction, it is equivalent to firstly drawing a global weight β ∼GEM(γ)

for semantic component indicators k, then for each document j, draw the document-level

weights of semantic component indicators π j ∼DP(α0,β ). The data observations in docu-

ment j are generated by repeatedly drawing semantic component indicator z ji and z jl from

π j and then draw each data observation (i.e. each MSER region and each visual code-word)

from the conditional probability of the sampled semantic component.

The left half of the model is for the generation of image tags. As mentioned in previ-

ous section, image tags have various functional purposes. For example, some tags (like

most factual tags) are closely related to the contents displayed in images, while other tags

(including location tags, subjective tags and personal tags) indicate user’s contextual infor-

mation as well as his/her subjective feelings and preferences, which we refer to as ‘user’s

perspectives’. Accordingly, the generative process of user-tagged images should be able to

take into account both user’s perspectives and semantic components from image contents.
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Table 3.2: Notations in Proposed Perspective HDP Model

Symbol Descriptions
t, p,v,r,h Instances of variables: t for tags, pfor users perspective, v for visual

word, r for MSER feature, h for GIST feature
J,T,U,L Number of documents, tags, users, users perspectives
zp,z ji,z jl,s j Indicators for semantic components.
K,K′ The number of components at a certain time point.
Nv

j ,N
r
j ,N

t
j,N

h
j Number of visual words, MSER regionsand tags, plus the replication

number of GIST features in document j
CV Z

vk ,CV Z
vk,−i Number of times visual word vwas assigned to semantic component k,

with/withoutcounting the current instance
CRZ

rk ,CRZ
rk,−i Number of MSER feature vectors being assigned to component k,

with/withoutcounting the current instance
CHS

hk′ ,C
HS
hk′,−i Number of GIST feature vectors being assigned to component k′,

with/without counting current instance.
CPU

pu,−q The number of times that perspective p is adopted by user u, except
current instance;

n̆ j,−q The number of tagsin document d=j generated from users perspectives
(x jt = 2), except current instance;

n j,−q,n′j,−q The number of tags in document d=j generated from semantic compo-
nents (x jt = 0,1), except current instance

CT P
t p,−q The number of times that tag t=q is generated from users perspective p,

except current instance;
CT Z

tk,−q,C
T S
tk′,−q The number of times that tag t=q is generated from semantic component

k,k′, except current instance;
α0,γ Concentration parameters of Dirichlet process.
ϕ t

k,ϕ
′t
k The tag distribution of semantic component k, k′

ϕv
k The visual word distribution of semantic component k

π j The document-level weights of semantic component indicators for doc-
ument j

αu,ξv,ξt ,η ,ζ Hyper-parameters of Dirichlet distributions

µ
(n)
k ,σ

(n)
k

2
Parameters of the n-th Gaussian distribution with respect to the k-th
semantic component

ūk,n,s2
k,n Sample mean and sample variance ofthe nth Gaussian distribution with

respect to the kth semantic component
θu,ψp The perspective distribution of user u, and thetag distribution of per-

spective p.
x,λ j Switch variable that decides the source of each tag and the document-

level distribution of different x values
β The global weight of semantic component indicators across the corpora
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Figure 3.25: Graphical representation of the topic-perspective model for image tagging
system (the gray nodes represent the observations from tagged images)

In pHDP model, each tag t created by user u for document j can be either drawn from the

semantic components associated with j’s image content or from u’s perspectives. To decide

the source of each tag, a switch variable x is introduced. For each tag t in document j, the

value of x jt (which takes values 0-2) is sampled from a multinomial distribution λ j (with a

Dirichlet prior ζ ). When the value of x jt equals 0 or 1, the topical indicator of tag t is draw

uniformly from the semantic components learned from the image contents(the red dashed

arrows in Fig. 3.25 show this process). When x jt equals 2, a user perspective p will be

sampled from the perspective distribution θu for user u, and tag twill be drawn from the tag

distribution ψp of perspective p (the blue arrows in Fig. 3.25 illustrate this procedure). The

switch variable x plays a critical role in the pHDP model; it is a personalized factor that
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indicates in which extent the user’s perspectives influence the tagging results. It provides

the model a flexibility to determine if a specific image tag relates to the semantic compo-

nents displayed in an image, or it relates to user’s context information as well as his/her

subjective feeling and preference (users perspective). Overall, the generation process of

user-tagged image in the perspective HDP model can be described as in Table 3.3.

3.4.3 Gibbs Sampling for the Model Estimation

In this section, we describe the Gibbs sampling scheme for the proposed pHDP model.

The sampling scheme consists of two steps. The first step is sampling for semantic compo-

nent indicators z as well as the corresponding HDP hyper-parameters β . In order to sample

a HDP-like model,one may either follow the Chinese restaurant franchise (CRF) or use

direct assignment [108]. In our work, the direct assignment is used( Table 3.4 ).

3.4.4 Topic Level Image Retrieval Model Using Social Annotation

The discovery of user perspective in image tagging process is one major contribution of

our model. In image retrieval, we may expect better performance if we are able to remove

those subjective and personal tags in advance based on the discovered user perspective.

Traditional language model (LM) based text document retrieval method considers the gen-

eration of a query as a process of independent drawing from a probabilistic distribution

associated with the users. Typically, the user first choose a query θq, then formulate the

query q from the query θq with the probability p(q|θq). Similarly, the documents are gen-

erated word by word from a document θd .

In our approach, because of the ‘semantic gap’ between image documents and text queries,
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Table 3.3: The Generative Process of Proposed Models

1. Draw a global weight β ∼ GEM(γ)
2. For each semantic component k, draw λk ∼ Beta(1,ζ ),ϕv

k ∼
Dirichlet(ξv),ϕ

t
k ∼ Dirichlet(ξt)

3. For each semantic component k, sample Gaussian-parameters
µkh,σkh,µkr,σkr from sample mean and sample variance;

4. For each of the U users u, sample perspective distribution θ
(u)
u ∼

Dirichlet(αu), for each of the L user perspectives l, sample ψl ∼Dirichlet(η)
5. For the jth document, draw π j ∼ DP(α0,β ),π

′
j ∼ DP(α0,β

′)

6. For the holistic scene representation of the jth tagged image ,
a. sample scene component indicator s j = k ∼ Discrete(π ′j)
b. for the nth dimension of the GIST feature vector hj

i. sample h(n)j ∼ N(µ
(n)
kh ,σ

(n)
kh

2
)

7. For the ith of the Njvvisual code-words in the jth document
a. sample object component indicator z ji = k ∼ Discrete(π j)
b. sample its texton id v ji ∼Multinomial(ϕv

k )
8. For the lth of the NjrMSER salient regions in the jthdocument

a. sample object component indicator z jl = k ∼ Discrete(π j)
b. for the nth dimension of MSER feature vectorrjl

i. sample r(n)il ∼ N(µ
(n)
kr ,σ

(n)
kr

2
)

9. For each document j, sample λ j ∼ Dirichlet(ζ )
10. For each tag t in document j created by user u;

a. sample a switch variable x∼Multinomial(λi)
b. if (x = 0)

i. Sample semantic component indicator zt ∼ Discrete(π j)
ii. Sample a tag t ∼Multinomial(ϕ t

k)
c. if (x = 1)

i. Sample semantic component indicator zt ∼ Discrete(π ′ j)
ii. Sample a tag t ∼Multinomial(ϕ

′t
k )

d. if (x = 2)
i. Sample a perspective pt ∼Multinomial(θu)
ii. Sample a tag t ∼Multinomial(ψpt)
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Table 3.4: The Posterior Sampling of Semantic Components

Preliminaries:
Suppose that at current stage of the sampling, only K of L→∞ semantic com-
ponents have been assigned to the observations, define: βu = ∑

∞
k=K+1 βk,γr =

γ/L,γu = γ(L−K)/L , then we get:
β = {β1, · · · ,βk,βu} ∼ Dirichlet(γr, · · · ,γr,γu)
Repeat for each data observation: Sampling z (may either equals to an existing
k or knew = K +1 )
Firstly, integrate out jto get the marginal probability p(z|β ):

p(z|β ) =
∫

π j

p(π j|α0,β )dπ j

=
J

∏
j=1

∫
π j

K

∏
k=1

π
n jk+α0βk−1
jk ·

Γ(∑K
k=1)α0βk

∏
K
k=1 Γ(α0βk)

dπ j

=
J

∏
j=1

[
Γ(α0)

Γ(α0 +n j)
·

K

∏
k=1

Γ(α0 +βk +n jk)

Γ(α0 +βk)
]

Secondly, get the posterior probability of zji given the data observations (not
counting the current observation v ji)
p(z ji = k|v ji,z− ji,v− ji,β ) ∝ p(z ji = k|z− ji,β )p(v ji|z ji,z− ji,v− ji,β )

∝ {(α0βk +n− ji
jk ) f−v ji

k (v ji)

(α0βk) f−v ji
k (v ji)

For visual word v ji, f−v ji
k (v ji) ∝

CV Z
vk,−i+ξv

∑
V
v′=1 CV Z

v′k,−i
+V ξv

f−v ji
knew

(v ji) ∝
ξv

V ξv

For both MESR feature vector and GIST feature vector,
f−r ji
k (r ji) ∝ ∏n tCRZ

rk,−i−1(r
(n)|µ̄k,n,s2

k,n/CRZ
rk,−i)

f−r ji
knew

(r ji) ∝ ∏n tCRZ
−i−1(r

(n)|µ̄n,s2
n/CRZ

−i )

in which tn−1(r(n)|ū,s2/n) denotes the student-t density with mean ū , vari-
ance s2/n and n−1 degree of freedom. Sampling m (feasible when n jk < 200)
For each j, the auxiliary variable m is sampled as:
p(m jk = m|m− jk,z,β ) = Γ(α0βk)

Γ(n jk+α0βk)
s(n jk,m)(α0βk)

m

in which s(n,m) is defined as: s(0,0) = s(1,1) = 1,s(n,0) = 0,s(n,m) = 0 for
m > n,s(n+1,m) = s(n,m−1)+ns(n,m)
Sampling β : accumulate m jk for all document j to get m1,m2, · · · ,mK , then
draw β ∼ Dirichlet(m1,m2, · · · ,mK,γ)
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we cannot directly compare them using the word-level language models, instead, we seek

to build our image retrieval framework upon the topical information we previously gen-

erate from the tagged images. In a conventional query language model, the θq is just the

empirical word distribution in the queryq = {w1,wn}. In our approach, to meet the needs

of image retrieval using social tags, we modify the original language model to a higher

level, i.e. the topical level. Thus, we consider the semantic categorical c variable uncov-

ered from the tagged image in the previous section, and use such topical information to

determine the relevance between tagged images and queries. Recall that in the proposed

topic-perspective model, each semantic category/topic c is corresponding to as well as a dis-

tribution over image appearance as well as a distribution over tags: t j∼Multinomial((t)c j).

Therefore, we are able to estimate the conditional probability that a tag token in a query

correspond to the semantic categorical variable c, say p(c|tq). Over all topics, we have a

vector vc|t = p(c1|tq), , p(cn|tq). In this manner, we formulate the probability distribution

over semantic categories/topics. Finally, we combine all the topical distributions in a query

with respect to each tag token to produce a query-level topic distribution (i.e. the topical

query LM).

The topical document θd can be obtained using maximum log-likelihood estimation from

the observed examples from all the tagged images in the dataset, using the framework in-

troduced in the previous section. After that, the closeness between a given query and a

given document is simply the Kullback-Leibler (KL) divergence between them:

DKL(d,q) = ∑c p(c|θq)log p(c|θq)
p(c|θd)

.
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3.5 MODELING SEMANTIC RELATIONS BETWEEN VISUAL ATTRIBUTES

AND OBJECT CATEGORIES

In our daily life, a large amount of our verbal communication describes the scene / en-

vironment around us. Also, recent years have seen increasing amount of online visual re-

sources (such as images and videos) with natural language descriptions. Such information

may potentially serve as a rich knowledge base of how people construct natural language to

describe visual content. In order that an image annotation system facilitate extracting and

understanding the knowledge encoded in the visual content, it is very important to generate

descriptive topic models that combines natural languages descriptions with image visual

attributes. This work differs from conventional computer vision approaches such as scene

recognition and object classification. Instead, it will encode additional semantic informa-

tion such as the relation between object categories and different visual attributes, which is

then linked to natural language descriptions of human knowledge (such as Wikipeida) to

generate descriptive topic model regarding object with those visual attributes (Fig. 3.26).

Image annotation was conventionally solved as nearest-neighbor problem [57], [105].

Similar approaches range from studying the relevance between visual similarity and se-

mantic similarity [26], using language entities to construct visual ontologies [102] or

jointly modeling images and tags [62]. Most recently, [56] proposed to use conditional

random field (CRF) to predict image based potential of how likely the object categories, vi-

sual attributes and preposition relationships present in images. However, those approaches

are infeasible when labeled reference exemplars are not available. An alternative way is to

rely on structured knowledge bases of natural language descriptions (such as Wikipedia).
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Figure 3.26: Illustration of lexical concept, narrative natural language description and vi-
sual attributes

Due to the increasing need of linking visual appearance to structured human knowledge in

scalable image categorization/annotation, the extraction of semantic visual attributes has

received increasing research focus. By its literal definition, the term ‘attribute’ means ‘a

quality or characteristic inherent in or ascribed to an object’. Compared to low-level image

features, semantic visual attributes have much stronger relation to both object categories

and human knowledge. It should be noted that although various types of attributes can be

used to literally describe an object, however, only a small fraction of those attributes may

be visible from an object image. Moreover, the usage of textual attributes may differ in

different context. For example, in addition to color, texture, shape, body parts, semantic

attributes of an animal may also involve its behavior, nutrition, activity, habitat and charac-

ters; on the contrary, the attributes about a plant may involve its cultivation and uses, which

may be related to botany study. In order that the semantic attributes be useful for image
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annotation, these attributes should be visible and discriminating among different object cat-

egories, also, the union of semantic visual attributes should have sufficient coverage, which

means that each object category be covered by at least one attribute.

In our research, we focus on the automation of attribute identification process and semantic

relation learning between visual attributes and external textual knowledge sources. The

contribution is two-fold, firstly, we provide uniform framework to reliably extract both cat-

egorical attributes and depictive attributes. Secondly, we incorporate the obtained semantic

associations between visual attributes and object categories into a text-based topic model

and extract descriptive latent topics from natural language knowledge base. Specifically,

we show that in mining large scale knowledge base of natural language descriptions, the

relation between semantic visual attributes and object categories can be encoded as Must-

Links and Cannot-Links, which can be represented by Dirichlet-Forest prior. To reduce

the amount of manual supervision and labeling in large-scale image categorization, we

introduce a semi-supervised training framework using soft-margin semi-supervised SVM

classifier (Fig.3.27). We also show that the large-scale image categorization results can be

significantly improved by combining automatically acquired visual attributes.

In this section, firstly we will introduce the preliminary task in providing reliable source

for attribute learning. We then introduce our approach for image attribute classification.

We also present the framework of associate semantic visual attributes with text-based topic

models via Dirichlet Forest prior and provide the Gibbs sampler for model estimation.
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Figure 3.27: Bounding boxes as reliable source for attribute learning

3.5.1 Semi-Supervised Large-Scale Multiclass Object Classification

ImageNet dataset [25] is a recently established large scale image ontology (over 15

million images from more than twenty thousand synsets) built upon the WordNet Struc-

ture, covering a subset of the nouns of WordNet. In ImageNet dataset, bounding boxes are

available for over 3000 popular synsets. For each synset, there areon average 150 images

with bounding boxes.The bounding boxes are manually annotated and verified through

Amazon Mechanical Turk (AMT) workers. Comparing to attribute learning from full im-

age (FI), the advantage of attribute learning in bounding boxes is obvious, the concept is

much cleaner than the full image, no background clutter and other unrelated objects. Re-

lated researches have shown that image visual recognition algorithms significantly benefit

from explicitly localizing category instance in the image [26]. Moreover, the association

between image categories and visual attributes can alsobe significantly strengthen when us-
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ing bounding box annotation. While high-quality manual labeled bounding boxes have led

to impressive object recognition results, however, the main drawback of this approach is

that it requires labor-intensive manual labeling and is not scalable to new object categories.

In our approach, we proposed to robustly classify object categories and learn visible se-

mantic attributes from automatically detected bounding boxes in ImageNet images (Fig.

3.27).

Bounding Box Detection in ImageNet Images

In our approach, we extract the HOG-LBP feature [105] for bounding box detection.

We follow the settings in [57] to train the preliminary non-linear SVM classifiers, in which

the kernel of categorical classification is the sum of individual X2 kernel SVM of each fea-

tures. We use 80% image data for training and remaining 20% for validation. Achieves av-

erage multi-class classification accuracy of 38.5%. Specifically, we densely sample multi-

scale detection windows W T
j (x,y,s) in whole-image range and then perform the 3D mean-

shift [19] mode seeking algorithm (in both spatial and scale dimension) on the density

map of SVM decision scores across the image to effectively locate the bounding boxes of

objects. Given an detected window x( j−1) = (x,y,s), the 3D mean-shift is calculated as:

m j (x) =
∑

M
i=1 xiw(xi)k

(
‖ xi−x

h ‖
2
)

∑
M
i=1 w(xi)k

(
‖ xi−x

h ‖
2
) −x j−1 (3.26)

In which{xi}M
i=1 are locations corresponding to sliding windows within the neighborhood of

x j−1,w(xi) is the SVM decision score associated to each location xi , and k(x) is the profile

of kernel K, which satisfiesK(x) = k(‖x‖2) ). We begin with x0 = (x0,y0,s = 0), iteratively
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compute j-th mean shift vector m j(x) and move the estimation window by m j(x) repeat

until convergence. We choose a set of kernel scales around the original image scale as

{σs = σ0 ∗1.17s,−n≤ s≤ n} , in which n=2 use the Gaussian kernel K(x) = exp{−‖xi−

x‖2/(2σ2
s )} for the spatial dimension x,y, use flat kernel for scale dimension s, with its

shadow kernel H(s) = 1− (s/n)2 .

Optimized Kernel Function for Soft-margin Semi-supervised Support Vector Ma-

chine

Given the relatively low accuracy (38.5%) in preliminary bounding box detection, di-

rectly assigning hard labels to the detected bounding boxes is sub-optimal. Instead, it

is reasonable for us to consider the bounding box data as high-quality ‘unlabeled’ data

with balanced positive and negative samples (i.e. accurate bounding boxes and inaccurate

bounding boxes, respectively). In order to achieve optimal performance in object catego-

rization, we propose to use soft-margin semi-supervised classifier in training (Fig. 3.27).

However, one of the major challenges is how to appropriately involve unlabeled examples

and efficiently update the discriminative model in an online semi-supervised setting. In

our approach, we focus on exploring the intrinsic manifold structure of data marginal dis-

tribution and studying its role in kernel function optimization. As shown in [11], general

SVM training problem can be extended by considering the ambient space and the marginal

distribution of the target function, thus two appropriate penalty terms can be introduced to

reflect both the ambient space and the intrinsic structure of the data marginal distribution
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Px. Specifically, the target function could be estimated by:

f ∗ = arg min
f∈Hk

1
l

l

∑
i=1

C (xi,yi, f (xi))+ γA‖ f‖2
Hk

+ γI‖ f‖2
I (3.27)

The ‖ f‖2
I can be estimated as the weighted Laplace-Beltrami operator associated with Px :

‖ f‖2
I =

∫
x∈M ‖∇M f (x)‖2dPx. Its shown in [65] that given a set of l labeled examples

{(xi,yi)}l
i=1 and a set of u unlabeled examples{x j}l+u

j=l+1, the Laplace-Beltrami operator on

the manifold M⊂ RN can be approximated by the graph Laplacian L on the basis of labeled

and unlabeled data i.e. ‖∇M f (x)‖2 :=< f,Lf >, in which f = [ f (x1), · · · , f (xl+u)]
T . L is

the graph Laplacian given by L = D−W , in which Wi j is similarity between xi and x j

calculated by kernel function k, D = diag(D1,1, · · · ,Dl+u,l+u) is a diagonal matrix with the

entryDi,i = ∑
l+u
j=1Wi j . The optimization problem (3.27) becomes:

f ∗ = arg min
f∈Hk

1
l

l

∑
i=1

C (xi,yi, f (xi))+ γA‖ f‖2
Hk

+ γIfT Lf (3.28)

By Representer theorem, the solution is an expansion of kernel functions over both labeled

and unlabeled data:

f ∗ =
l+u

∑
i=1

αi ∗ k (xi,x) (3.29)

According to Riesz Representation theorem, define the Gram kernel matrix K with its en-

tries Ki, j = k(xi,x j),we have:

‖ f ∗‖2
HK

=< f ∗, f ∗>HK=∑
l+u
i=1 ∑

l+u
j=1 α∗i α∗j k(xi,x j)=αT Kα . Similarly, f∗T Lf∗=< f∗,Lf∗>=

αT KLKα . By substituting into (3.28) the hinge loss function(1− y f (xi))+ = max(0,1−

y f (xi)), the optimization problem can be re-written as:
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f ∗ = arg min
α∈Rl+u,ξi∈R

1
l

l

∑
i=1

ξi + γAα
T Kα + γIα

T KLKα (3.30)

subject to the relaxed separation constraint:

yi(∑
l+u
j=1 α∗j k(xi,x j) + b) ≥ 1− ξi,ξi ≥ 0, i = 1, · · · , l The above constraint optimization

problem (3.30) can be solved by introducing the Lagrangian in which two Lagrange multi-

pliers βi,ζi ≥ 0 are defined for either constraint:

L(α,ξ ,b,β ,ζ ) =
1
l

l

∑
i=1

ξi +α
T (γAK + γIKLK)α

−
l

∑
i=1

βi

(
yi

(
l+u

∑
i=1

α j ∗ k
(
xi,x j

)
+b

)
−1+ξi

)
−

l

∑
i=1

ξiζi

(3.31)

Vanishing the derivative of L with respect to b and ξi leads to: ∑
l
i=1 βiyi = 0,1/l−βi−

ζi = 0,0≤ βi ≤ 1/l. Substituting them into (3.31) with b and ξi removed, it gives:

LR (α,β ) = α
T (γAK + γIKLK)α−α

T KJTY β +
l

∑
i=1

βi (3.32)

In which J = [I 0]l∗(l+u),Y = diag(y1, · · · ,yl).

Taking derivative of (3.33) with respect to leads to: ∂LR

∂α
= (γAK+γIKLK)α−αT KJTY β =

0, which implies that the l+u expansion coefficients α1, · · · ,αl+u can be obtained by solv-

ing the following quadratic dual program:

{
α∗ = (γAI + γILK)−1 JTY β ∗

β ∗ = argmaxβ∈Rl ∑
l
i=1 βi−β T Qβ

(3.33)
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subject to ∑
l
i=1 βiyi = 0 ,0≤ βi ≤ 1/l, i = 1, · · · , l. in which: Q =Y JK(γAI+ γILK)−1JTY .

(3.33) is a standard restricted quadratic program which can be solved via conjugate gradient

descent in Ch. 6 of [11]. During training, the labeled data {(xi,yi)}l
i=1 and unlabeled

data {(x j)}l+u
j=l+1 are used for solving α∗,β ∗ by conjugate gradient descent, where yi ∈

{−1,+1} . By substituting the solution α∗,β ∗ of quadratic program (3.32) to (3.29), we

obtain the expansion of kernel function over both labeled data {(xi,yi)}l
i=1 and unlabeled

data {(x j)}l+u
j=l+1 . At the stage of detection, the decision function classified new samples

into class +1 or -1 by y(x) = sign( f ∗(x)) .

3.5.2 Descriptive Visual Attribute Extraction and Relation Links

Previous studies on descriptive visual attributes have shown beneficial to improve the

performance of object categorization and text description generation [86]. The depictive

visual attributes involves color attributes, texture attributes (such as furry, wooden, rough),

pattern attributes (spotted, striped) and shape attributes (long, round, rectangle). The at-

tributes may also be associated to the visual similarity with known object classes (for ex-

ample, giant panda and polar bear both have bear-like attribute). Ideally, these attributes

should be able to discriminate between object classes (being associated to some but not all

of them), provide sufficient coverage (all classes have at least a single attribute association),

and be correlated to visual object class properties that can be observed in images. In our

approach, three types of features are used for attribute extraction, i.e. GIST feature [90],

densely sampled SIFT [63] and HOG-LBP feature [105]. Each of the three feature types is

normalized independently to unit length, then a histogram intersection kernel SVMs [86]

is performed to train the attribute classifier. For each classifier, we fit a sigmoid function
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[81] to the SVM decision score and convert the output to a probability. The probability

p(Attribute|Category) can be aggregated across the whole dataset and eventually build the

semantic relations (such as Must-link and Cannot-link) between visual attributes and object

categories.

Attributes as Unique Signatures of Object Categories

Given images of an object category, some visual attributes may be presented while

some may not, which results in unique attribute signatures associated with each category.

Let ay = (ay
1, · · · ,a

y
M) be a vector of binary associations p(am|y)∈ {0,1} between attributes

am and trained object category y. An aggregation of all results (in which p(am|y) = 1 for

positive samples and 0 for negative samples) from binary classifier of attribute am can pro-

vide an estimation of the conditional probability p(am|y) of that attribute being present

in category y. By assuming mutual independence among attributes, we have (a|y) =

∏
M
m=1 p(am|y) .

Following the idea of Direct Attribute Prediction model (DAP) in [57], For an image

x with M=K attributes a1, · · · ,aK where each attribute corresponds to exactly one condi-

tional probabilityp(am|y), the posterior probability of image x belong to object category y

is given as

p(y|x) ∝

K

∏
k=1

(
p(ak|y)
p(ak)

)
(3.34)

Our experiment results show the performance of object categorization can be significantly

improved when the categorization results are smoothed by (3.34), with K=10 most relevant
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attributes used (Fig. 3.47 ). By aggregating the results of binary attribute classifiers for all

the object categories, we obtain an aggregated attribute-category concurrence map. From

which we threshold the aggregation score to produce both Must-Link and Cannot-Link

relations for each attribute-category pair (a,y) .

3.5.3 Descriptive Topic Modeling via Dirichlet Forest Prior

In this section, we introduce a novel topic model to infer depictive latent topics from

both text corpora and attribute-category relations (Fig. 3.28). Recent studies of large-

scale visual classification in ImageNet [24], [26]suggest that visual classification across

semantically-defined class boundaries is feasible. In [83], the author proposed to in-

fer object class-attribute association by text-based semantic relatedness on WordNet and

Wikipedia.The WordNet is a large scale lexical database of English Language, in which

English words are organized into concepts (synonym sets or synsets) according to syn-

onymy and various lexical and semantic relations between lexicalized concepts.

Wikipedia is one of the most comprehensive and well-formed electronic knowledge repos-

itories on the web with millions of articles contributed collaboratively by volunteers. Be-

cause of its reliability, accuracy and neutral point of view. Wikipedia has been exploited

as external knowledge source in various data mining applications [83], [47]. Although

Wikipedia is different from standard WordNet ontology, which is backed up by structured

thesaurus, however, each article in Wikipedia only describes one single concept under a hi-

erarchical categorization system. We have found a large amount of Wikipedia articles share

the same lexicalized entry as ImageNet synsets, which makes mapping between ImageNet

synset to a Wikipedia articles possible.(In our study, about 75% of the ImageNet synsets



100

have corresponding Wikipedia articles). In our approach, the semantic relations between

attribute-category pairs (i.e. Must-Links and Cannot-Links) are encoded as Dirichlet For-

est prior in the proposed topic model. In order to effectively encode the semantic relations,

we explore the WordNet synonym set and extend Must-Links and Cannot-Links between

attribute-catry terms (i.e. the lexical word of both attribute and object) to their synonyms.

Preliminary of Dirichlet Tree Distribution and the Modeling of Must-Links

The Dirichlet Tree Distribution [73] is a generalization of Dirichlet distribution that

allows to break the mutual independence in word generation process, makes the genera-

tive process controlled by word-link such as Must-Link (u,v). The Dirichlet-tree distri-

bution is a tree with the words as leaf nodes; let r(k) be the Dirichlet tree edge leading

into node k, let c(k) be the immediate children of node k in the tree, L the leaves of the

tree, I the internal nodes, and L(k) the leaves in the subtree under k, to generate a sam-

ple Φ ∼ DirichletTree(r) , one first draws a multinomial at each internal node s ∈ I from

Dirichlet(rc(s)), i.e. using the weights from s to its children as the Dirichlet parameters.

The probability Φk of a word k ∈ L is then simply the product of the multinomial parame-

ters on the edges from k to the root.

It can be shown that, the above procedure gives

DirichletTree(r) ≡ p(Φ|r) = (∏k∈L Φ
r(k)−1
k )(∏s∈I

Γ(∑k∈c(s) r(k))

∏k∈c(s) Γ(r(k))
(∑k∈L(s)Φk)

∆(s)) In which

Γ(·) is the gamma function, and the notation ∏
L
k means ∏k∈L; the function ∆(s) ≡ r(s)−

∑k∈c(s) r(k) is the difference between the in-degree and the out-degree at internal nodes.

(When the difference ∆(s) = 0, for all internal nodes, the Dirichlet tree reduces to a Dirich-

let distribution).
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Like the Dirichlet distribution, the Dirichlet tree distribution is conjugate to the multino-

mial. Its possible to integrate out Φ to get a distribution over word counts directly, similar

to the multivariate Polya distribution (a.k.a. Dirichlet-Multinomial) in [74]:

p(w|r) = ∏s∈I(
Γ(∑

c(s)
k r(k)

Γ(∑
c(s)
k (r(k)+n(k))

·∏k∈c(s)
Γ(r(k)+n(k))

Γ(r(k))
) in which n(k) is the number of word

tokens in w that appear in L(k), L(k) is the leaves in the subtree under k. c(s) is the im-

mediate children of node s. The definition of Must-Link is transitive. Must-Link (u,v)and

Must-Link (u,w) define a transitive closure of Must-Link (u,v,w). In Dirichlet Tree for

Must-Links, each transitive closure is subtree, in which words are leaves nodes with sym-

metric uniform base measure η ,β from one internal nodes and each of the internal node s

is connected to the root node with weight |L(s)β |, in which |L(s)|β is the size of leavens

in sub-tree under s. If η = 1, then in-degree equals out-degree for any internal nodes(both

are |L(s)β ), and the tree reduces to a Dirichlet distribution with symmetric prior β . When

we take η = |L(s)|, it will re-distributethe probability mass at nodes. Which results in

increased concentration, and re-distribute the mass evenly in the transitive closure s.The

independence (which is enforced in Dirichlet distribution) among Must-Link words is thus

eliminated and allows for similar but not identical probabilities for the Must-Link words.

Dirichlet Forest Prior and Cliques of Cannot-Links

From the aggregated concurrence map of attribute-category relations, we are able to

assign both Must-Links and Cannot-Links to an object category. It should be noted that,

given the presence of an object category in an image, the Must-Links and Cannot-Links cor-

responding to that category should be simultaneity observed, therefore, such Must-Links

and Cannot-Links should be encoded in the same latent topic. With this consideration, we
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Figure 3.28: Graphical representation of the proposed method

propose a clique-based topic sampling process as follows .

In our approach, each ‘clique’ is associated with one single object category, it is composed

of two parts: the first part is a Dirichlet sub-tree corresponding to Must-Links of that object

category, the second parts is all other words (other than words in Must-Links) that are al-

lowed to simultaneously have large probability without violating the Cannot-Links of that

object category (Fig. 3.28 b). Each clique is also a Dirichlet tree.

For each object category r, we generate a total of Q(r) = Q cliques q = 1, · · · ,Q(r) , in

this way, we create a mixture model of Q(r) Dirichlet subtrees, one for each of the Q(r)

cliques. In generating the latent topics, the cliques are sampled according to their probabil-

ity p(q),q = 1, · · · ,Q(r).

The cliques root node connects to an internal nodes(root node of Must-Link sub-tree) with

weight η · |L(s)| ·β , the node s then connects to words in Must-Links with weight β .The

cliques root also directly connects to words that is not in Must-Links (but not violating the
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Cannot-Links of that object category) with weight β . This structure will send majority

probability mass down to s and then re-distribute it among words in Must-Links. Which

results in strong association among Must-Link words.

Let R be the number of object categories. Our Dirichlet Forest prior β ,η will consist

of ∏
R
r=1 Qr possible Dirichlet trees (cliques), each Dirichlet tree has R branches under

the root, one for each connected component, for the r-th branch, there are Q(r) possible

Dirichlet subtrees corresponding to Q(r) cliques, which leads to ∏
R
r=1 Qr different Dirich-

let trees. Therefore, a Dirichlet tree in the forest is uniquely identified by an index vector

q = (q(1), · · · ,q(R)) , where q(r) ∈ {1, · · · ,Q(r)}.

In generating a Dirichlet Forest model (Fig. 3.28a), let n(d)j be the number of word tokens

in document d assigned to topic j, integrating out θ ,z can be generated as:

p(z|α) = (Γ(T α)
Γ(α)T )

D ·∏D
d=1

∏
T
j=1 Γ(n(d)j +α)

Γ(n(d)+T α)

For each topic j=1,,T, we sampled a Dirichlet tree q j = (q(1)j , · · · ,q(R)j ) from the Dirichlet

Forest prior (β ,η)

p(q j) = ∏
R
r=1 p(q(r)j )

In which each q(r)j ,r = 1, · · · ,R is sampled by:q(r)j ∝ |clique
q(r)j
|(r = 1, · · · ,R)

Finally, the model can be gented by:

p(w,z,q1:T |α,β ,η) = p(w|q1:T ,z,β ,η) · p(z|α) ·∏T
j=1 p(q j)

Gibbs Sampling For Model Estimation

In this section, we introduce the Markov Chain Monte Carlo and Gibbs sampling pro-

cess of the proposed topic model. Let n(d)−i, j be the number of word tokens in document

assigned to topic j, excluding the word wi . Let n(k)−i, j denotes the number of word tokens in
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the corpus that are under node k in topic j’s Dirichlet tree q j, excluding the word at position

i. For candidate topic labels t = 1, · · · ,T , we have:

p(zi = t|z−i,q1:T ,w) ∝ (n(d)−i,t +α)∏
Parenti
s

r(ct (s))
t +n(ct (s))

−i,t

∑
ct (s)
k (r(k)t +n(k)−i,t)

In which Parenti denotes the subset of internal nodes in topic v Dirichlet tree that are an-

cestors of leaf wi and c(s)t is the unique node that is s’s immediate child and is also an

ancestor of wi (including wi itself). Since the R branches (each corresponding to an object

category, featured by both Must-Links and Cannot-Links) are independent, sampling the

Dirichlet tree q j is factorized to sampling the cliques for each q(r)j . For candidate cliques

of connected component r : q′ = 1, · · · ,Q(r) we have:

p(q(r)j = q
′|z,q− j,q

(−r)
j ,w) ∝ (∑

|clique
q
′(r)
j
|

k βk)∏
I j,r=q′
s (

Γ(∑
c j(s)
k (r(k)j )

Γ(∑
c j(s)
k (r(k)j +n(k)j )

·∏
c(s)j
k

Γ(r(k)j +n(k)j )

Γ(r(k)j )
)

In which I j,r=q denotes the internal nodes below the r-th branch of tree q j when clique q(r)j

is selected.

3.6 EXPERIMENT RESULTS

3.6.1 Spatial Weighting for the ‘Bag-of-Visual-Words’

In order to evaluate the effectiveness of the proposed image representation method, we

carry outcontent-based image retrieval (CBIR) experiment over different image represen-

tation methods. In this experiment, we use the 15-scene Benchmark database [35], from

which we select 8 outdoor categories, consist of a total of 2,689 outdoor images from the

LabelMe dataset [87].In our experiment, we randomly select 1/6 images from each image

category to build the lexicon of visual words. In total, we extract 175,535 visual tokens.

At the retrieval stage, we use the selected 1/6 images as query images to retrieve images
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from the remaining 5/6 images in the data set. The retrieval results are ranked according to

the similarity between the query image and all the images in the retrieval set following the

similarity measurement in Section 3.2.3.

In the experiment, we compare the performance of our approach (i.e. spatial weighting for

the bag-of-visual-words) with the performance of SIFT features and the ‘blobworld’.

For SIFT features, we will adopt its latest variation, i.e. the ‘bag-of-visual words’ by tf-idf

term weighting [51]. In recent study, there has been an intense focus on applying term

weighting schemes (like tf, idf) to the bag-of-visual-words feature vectors [91], [3]. Ex-

tensive study in [51] suggests that when the vocabulary size of visual words is around 1000,

the tf-idf weighting performs best. Recall that in our approach, we also use SIFT features

to make the experimental results comparable, we choose to compare our image representa-

tion approach with the tf-idf weighted ‘bag-of-visual-words’ approach [3] under the same

visual words vocabulary size. As a region-based image representation method that encodes

color, shape and texture information by multivariate Gaussians, the ‘blobworld’ approach

is essentially the same as the Gaussian Mixture Model (GMM). It represents image content

by the parameter sets of Gaussian mixture components. Following the method in [12],

each coherent region is modeled as a multivariate Gaussian. After learning the parameters

sets (that is, the mean vector µi and the covariance matrix ∑i .) of Gaussians, the KL-

divergence for multivariate Normal densities is used as the similarity measurement. The

performance will be evaluated by the averaged precision-recall of the content-based image

retrieval across all the 8 outdoor categories.

Fig. 3.29 represents the over-all precision-recall of our approach, the ‘bag-of-visual-

words’ approach and the ‘blobworld’ approach. As expected, our approach achieves high
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Figure 3.29: Comparison of over-all precision-recall of our approach and comparative ap-
proaches.

semantic consistency in CBIR and outperforms both two comparative approaches. Since

the contents of different image categories are widely different, it is helpful to compare the

performances in individual categories (a briefly description of the three selected categories

is represented in Table 3.5.)

The precision-recalls of our approach (spatial weighting, short for S), the ‘bag-of-visual-

words’ approach (short for V) and the ‘blobworld’ approach (short for B) in selected cate-

gories are shown in Fig. 3.30. In categories whose image compositions are highly varied

and thus more complicated (such as ‘coast’ and ‘tall-building’), our approach is about 10-

20 percentage points better than the ‘bag-of-visual-word’ approach, while in the category

whose image compositions are relatively uniform (like ‘forest’), the ‘bag-of-visual-word’

approach performs as well as our approach. Compared to the other two approaches, the

‘blobworld’ approach works well only when the colors and image compositions are uni-

form.
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Table 3.5: Description of Three Selected Categories

Conclusions

The experiment results suggest that, visual words from different kinds of regions may make

the ‘bag of visual words’ noisy and thus less differentiable. Take the ‘coast’ images for ex-

ample, the ‘primary’ information about sea and sand beach may be ‘contaminated’ by vi-

sual words from other ‘inessential’ parts like boats, buildings and coconut trees. Therefore,

the significant improvement in our approach can be explained by the introducing of spatial

weighting, which weights visual words according to actual spatial constitution of regions

in images. Moreover, the experiment results also suggest that the Gaussian mixture model

alone is insufficient to distinguish images which are highly varied in colors and composi-

tions. However, the Gaussian mixture model is still able to provide enough information

about the spatial constitutions of images.



108

Figure 3.30: Precision-recall in different image categories

3.6.2 Probabilistic Models for Topic Learning from Images and Captions in Online

Biomedical Literatures

In this section, we apply the proposed HPB model to topic learning and compare the

performance of HPB model with that of the extended Correspondence LDA (Corr-LDA)

model under the same biomedical image annotation scenario using cross-validation. For

topic learning, we look into the average log-likelihood of two models and visualize the

discovered latent themes. The performance of automatic image annotation is evaluated by

perplexity and annotation accuracy.

Data Collection and Settings

The data used in our experiment is from the online journal ‘Breast Cancer Research’ in

the publicly available PubMed Central database (http://www.pubmedcentral.nih.gov/). In

this journal, all the research articles (in digital version) between year 2002 and 2008 are

downloaded and parsed. After that, a total of 2320 image-caption pairs are extracted from
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the original biomedical literatures and make up the dataset for experiment. As introduced

in Section 3.3.1, words, visual words and ontology-based biomedical concepts are indexed

from image-caption pairs. In total, we indexed 132,978 text tokens which belong to 4113

unique words, 379,526 visual words from a vocabulary size of 1000, and 53,825 concepts,

with 1938 unique concepts appear. The original dataset is divided into 5 subsets with equal

size. Of the 5 subsets, one subset (20%) is retained as the validation data for testing the

model, and the remaining 4 subsets (80%) are used as training data. For image annotation

evaluation, the cross-validation process repeats 5 times, with each of the 5 subsets used

once as the validation data. After that, we take the average results for evaluation.

Topic Learning and Representation

The topic learning process of the proposed probabilistic model is achieved by running the

collapse Gibbs sampling process over training dataset until converge (basically, it takes less

than 100 iterations to converge in model estimation). When the topic model is estimated

from the training dataset, we will be able to visualize the uncovered latent themes and tell

the correlation among words, visual words and biomedical concepts.

Likelihood Comparison

Log-likelihood is a standard criterion for generative models. It can be calculated by in-

tegrating out the topic variables after the convergence of Gibbs sampling. Generally, the

higher log-likelihood the model assigned to the data, the better predictive power and gen-

eralization ability the model has.

The average word likelihood of the extended Corr-LDA model and the HPB model is com-

pared. The marginal likelihood p(w|z) of the extended Corr-LDA model can be calculated

by integrating out latent variables ϕ:
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Figure 3.31: The comparison of the extended Corr-LDA model and the HPB model

p(w|z) =
T

∏
t=1

[
∫

ϕzt

p(w|zt ,ϕzt )p(ϕzt |zt)]dϕzt

=
T

∏
t=1

[
Γ(Wβ )

Γ(β )w

∫
ϕzt

W

∏
i=1

pn(wi)
t +β−1

wi ]dϕzt

= [
Γ(Wβ )

Γ(β )w ]T ·
T

∏
t=1

∏wi(n
(wi)
t +β )

Γ(n(wi)
t +Wβ )

The average word likelihood can be obtained by taking the logarithm of p(w|z) and aver-

aging the resulting summation by W.

For the HPB model, the marginal likelihood p(w|z) is as follows:

p(w|z) = [Γ(Wβ )
Γ(β )w ]

T ·∏T
t=1

∏wi(n
(wi)
t +β )

Γ(n(wi)
t +Wβ )

· Γ(Wβ2)
Γ(β2)w ·

∏wi(n
(wi)
0 +β2)

Γ(n(wi)
0 +Wβ2)

The average word likelihood of the HPB2 model is the same as the HPB model.

As illustrated in Fig. 3.31a, for both models, the likelihood increase as the number of topic

increase, which means that a relatively larger topic numbers may potentially result in better

modeling of testing data. However, it should be noted that there is a trade-off between

topic numbers and convergence time of models. And, as we would see, the increase of
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Figure 3.32: Perplexity over the iterations (number of topics equals 100)

topic number does not always lead to the improvement of predictive results.

In general, the log-likelihood of the extended Corr-LDA model and the HPB model are

close, the difference between two models can be explained by the introduction of back-

ground topic in the HPB model.

Illustration of Discovered Latent Themes

One major objective of the proposed models is to uncover the latent topics from image-

caption pairs and facilitate knowledge organization and understanding in online biomedical

literatures. With this consideration, we visualize the discovered latent topics by providing

the top-ranked words, top-ranked concepts (Fig. 3.20 and 3.33) and most related images

(Fig. 3.33, with probability under each image). For this example, the latent topics are learnt

by the HPB model, in which the topic number is 125. As illustrated in Fig. 3.20, the back-

ground topic depicts the contextual information of the biomedical journal, such as breast

cancer, human body and tumor. The regular latent topics, on the other hand, reveal some
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Figure 3.33: Illustration of discovered latent themes by HPB model

domain specific knowledge. As illustrated in Fig. 3.33, the top-ranked words, concepts

and images of the uncovered latent topics have high semantic consistency. The top ranked

words and concepts not only contain domain specific terms such as receptor, carcinomas,

breast adenocarcinoma and Immunohistochemical, which help users to interpret the topics,

but also provide many protein names and gene names that are related to the uncovered la-

tent topic.
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Image Annotation and Evaluation

The proposed probabilistic models are able to establish direct correlation among caption

words, visual words and biomedical concept in biomedical image-caption pairs. Therefore,

given the image content, a good model should be able to predict the missing captions. Next

we automatically annotate caption words and concepts for images in the testing dataset

based on the uncovered latent topics from training dataset, with both captions and concepts

in testing dataset regarded as unknown (missing). The performance of automatic annota-

tion is evaluated by perplexity and annotation accuracy using cross-validation.

In our experiment, we resort to the word caption perplexity as standard criteria of the an-

notation performance.

The perplexity of a set of testing image-caption pairs (for all d ∈ Dtest ) is defined as the

exponential of the negative normalized predictive log-likelihood using the training model,

in which the topic-word conditional probability: p(wi|zwi = t) is obtained from the Gibbs

sampling process of training dataset.

ppx = exp{− 1
NW

∑
D
j=1 ∑

W
i=1 log[∑T

t=1 E(p(w = w j,i|z = t))E(p(z = t|d = j))]}

With uncovered latent topics from training image-caption pairs, the estimation of prior

probability of topic in a testing image can be approximated by running collapse Gibbs

sampling over all the extracted visual words (no words or concepts used) in testing dataset

(eq. (3.35)) using fixed visual word-topic conditional probability obtained from the Gibbs

sampling process of training dataset.

p(y′′i = t|vi,v−i,y′′−i) ∝ p(vi|y′′i = t) ·
α +nd

−i,t

T α +nd
−i,t

(3.35)
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Figure 3.34: Comparison of word annotation accuracy over different topic numbers

After the convergence of the Gibbs sampling process, the probability for the ’missing’

caption words and concepts of an image can be calculated via the production of topic-

word/concept conditional probability and the prior probability for each topic.

Recall that for HPB model, we assume no background topic for visual words, the prior for

background topic in a document is approximated by averaging probability over the training

dataset. Fig. 3.31b represents the perplexity of CorrLDA and HPB model over different

topic numbers. The perplexity of HPB model is lower than that of the CorrLDA model,

which indicates that HPB model generated from training data set is ‘less surprised’ by the

testing data, thus, it demonstrates better ability in annotation. What is more, as the topic

number increases, the perplexities of both models decrease first, and then increase, with

100 topics having the lowest perplexity. It appears that the increase of topic number does

not always lead to persistent improvement of predictive ability.

Fig. 3.32 illustrates the perplexities over the iterations when the topic number is 100.
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Figure 3.35: Comparison of concept annotation accuracy over different topic numbers

Although the HPB model appears to be more sophisticated than the Corr-LDA model,

they converged in similar number of iterations. Recall that we have a variation of HPB

model (named as the HPB2 model), which assumes that background words and concepts

are related to certain image content (visual words). As shown in Fig. 3.32, the perplexity

of HPB2 increases sharply and quickly exceeds 10000, which indicates that the Gibbs

sampling process for this model fails to converge. Finally, over 90% of the entities in

documents are assigned to the background topic (as a comparison, only about 1/10 of the

words will be assigned to background topic when the Gibbs sampling process of HPB

model converges). According to the perplexity results, there is no evidence that there exist

a direct correlation between image content and background information in the caption.

When the prior probability of topics in a testing image is estimated (eq. (3.35)), the word

and caption annotation for each document can be achieved by ranking words and concepts
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Figure 3.36: Image annotation comparison

with regard to the following probability.

{
p(wi|d j) = ∑

T
t=1 p(w = wi|z = t)p(z = t|d = j)

p(ci|d j) = ∑
T
t=1 p(c = ci|z = t)p(z = t|d = j)

(3.36)

The words and concepts that achieve highest probability value in eq. (3.36) are used as the

annotation of images. After that, the image annotations are compared to the original words

and concepts in testing image-caption pairs for validation. During annotation evaluation,

the cross-validation process repeats 5 times, and the results are averaged to produce the

final annotation accuracy.

The accuracy of word and concepts annotation over different topic numbers is illustrated in

Fig. 3.34 and Fig 3.35. Specifically, Fig. 3.34 represents the annotation accuracy from top

5 annotation words to top 30, while Fig. 3.35 provides the annotation accuracy from top 5

concepts to top 20. According to the experiment results, the HPB achieves best annotation
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performance when topic number is 150, while the Corr-LDA model achieves best perfor-

mance with 100 topics. As the topic number increases, the annotation accuracy of both

models increase first, and then decrease, which is consistent with the results in perplexity

comparison.

The annotation accuracy of extended Corr-LDA model and the proposed HPB model is

compared using their best annotation performance (i.e. 100 topics for Corr-LDA model,

and 125 topics for HPB model). As illustrated in Fig. 3.36, the HPB model is consistently

better than the extended Corr-LDA model in both word annotation and concept annotation

tasks, which is consistent with the perplexity comparison results. Furthermore, according

to Fig. 3.34-3.36, the performance of HPB model drop slower than the Corr-LDA model

when considering the annotation accuracy of large number of annotation terms. The result

indicates that HPB model is more robust and is able to achieve better performance in anno-

tating less frequent terms.

Conclusions

The contribution of this part of thesis is twofold. First, we proposed a novel HPB model to

integrate background information in topic learning, incorporating contextual information

to interpret the uncovered latent topic and improve the image annotation accuracy. Second,

in our experiments, we discovered that there is no direct correlation between image content

and the background information in the captions. In other word, the extracted visual words

from images have nothing to do with the background topic. It is unnecessary to incorporate

contextual information when modeling the image contents.
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3.6.3 Probabilistic Topic-Connection Model for Co-existing Image Features and An-

notations

The image dataset used in our study is downloaded from the ImageNet database

(http://www.image-net.org/) under the granted access permission, following the term of ac-

cess. The ImageNet is built on the hierarchical ontology structure provided by WordNet,

in which each node involves a group of images that depict a particular concept named as

a synonym set, or ‘synset’. Specifically, we download a total of 508 synsets under the

‘flower’ sub-tree, 1473 synsets under the ‘mammal’ sub-tree and 1118 synsets under the

‘tree’ sub-tree. Following the term mapping schema in Section 3.3.2, we map each synset to

a Wikipedia article that describes the same concept. Then, we parse the structured content

of Wikipedia articles and apply a rule-based method to identify the explanative sections.

Unrelated sections such as ‘External-links’ and ‘References’ are removed from the articles.

After that, to ensure the quality of text description, we filter out articles with insufficient

words (< 200 words). The qualified articles then serve as text description for correspond-

ing ImageNet synsets. In total, we obtain comprehensive text descriptions for 1452 synsets

(330, 562 and 560 synsets for sub-trees ‘flower’, ‘mammal’ and ‘tree’, respectively).

For each of the 1452 synsets, we randomly select 5 images from the corresponding image

group and adjust them to normalized size (640× 480 pixels). After that, we replicate the

text descriptions to each of the 5 images, resulting in 5 image-text pairs. As introduced

in Section 3.3.2, we make index for single-words and multiple word phrases in the text

descriptions, and extract visual-word features as well as MESR region features from im-

ages. In total, we indexed 5,699,505 word tokens which belong to 35,744 different words,

624,205 multiple word phrases from a total number of 13078 unique phrases, 7,945,075
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visual words (an average of 1095 visual words per image)from a vocabulary size of 2000,

and a total of 924,924 MSER region features(an average of 127 MSER regions per image).

The original dataset is divided into 5 subsets with equal size. Of the 5 subsets, one subset

(20%) is retained as the validation data for testing the model, and the remaining 4 subsets

(80%) are used as training data. For image annotation evaluation, the cross-validation pro-

cess repeats 5 times, with each of the 5 subsets used once as the validation data. After that,

we take the average results for evaluation.

The estimation of the proposed probabilistic topic model is achieved by performing Gibbs

Sampling over training dataset until convergence (generally, the model takes less than 100

iterations to converge). Once the topic model is estimated from the training dataset, we will

be able to evaluate it by log-likelihood and perplexity. The inferred latent topics are also

visualized.

Log-Likelihood Comparison

Log-likelihood is one of the standard criteria for generative model evaluation. It provides

a quantitative measurement of how well a topic model fits the training data. The score of

log-likelihood (which is a negative number) is the higher the better. In practice, the log-

likelihood of elements given latent topics can be calculated by integrating out all the latent

variables. In our study, we are interested in which topic model is more suitable to study the

latent patterns of image features. Thus, instead of calculating word-likelihood, we choose

to evaluate the log-likelihood of visual words for both models. In the proposed probabilis-

tic topic-connection (PTC)model, The marginal likelihood of visual words v given all the
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visualtopics y is p(v|y), which can be calculated by integrating out latent variables ψ:

p(v|y) =
T2

∏
j=1

[
∫

ψ j

p(v|y j,ψ j)p(ψ j|y j)dψ j] = [
Γ(V βv)

Γ(βv)V
]T2 ·

T2

∏
j=1

∏v(C
V T2
v j +βv)

Γ(∑v′C
V T2
v′ j +V βv)

(3.37)

The final log-likelihood of visual words is obtained by taking the logarithm of eq. (3.37)

and averaging the resulting summation by V.

For the extended Corr-LDA model, the log-likelihood can be calculated in a similar way,

the only difference is, instead of using their own latent topics, the visual words in Corr-

LDA model directly use latent topics generated from text words.

In Fig. 3.37a, we plot the log-likelihood for both models under different topic number (to

make this comparison fair, the number of word topic and visual topics are made equal).

It shows that our model has higher log-likelihood than Corr-LDA model, which means

that our model fits training data better. It also shows that the log-likelihood of both mod-

els increase as the number of topic increase, which suggests that a relatively greater topic

number may potentially fit the training data better. However, it should be noted that there

is a trade-off between topic numbers and convergence time of model estimation, and the

unbounded increase of topic number may results in an over-fitting problem.

Perplexity Comparison

The perplexity is a standard criterion for topic models that evaluates how well the model

predicts the new data. Specifically, the perplexity of a set of testing documents is defined

as the exponential of the negative normalized per-word predictive log-likelihood using pa-

rameters from the trained topic model. The score of perplexity is the lower the better.

With uncovered latent topics from training image-text pairs, the problem of estimating topic



121

priors in testing images can be approximated by performing Gibbs sampling over observa-

tions of image features, while keeping all the topic-entity conditional probability fixed. It

should be noted that we need to know the posterior probability of word topic indicators

given visual topics: p(s|y) when estimating the new document-level word topic prior. In

our study, this probability is approximated by counting the number of evidences across the

training dataset.

Upon the convergence of the Gibbs sampling process over testing data, the word perplexity

of testing image-text pairs is:

Perplexity = exp[
−∑dtest logp(wd,pd|vd,rd)

∑dtest (N
d
w +Nd

p)
] (3.38)

One advantage of our model is that it assigns different topic numbers to different types of

data, which makes this model more suitable to deal with image and associated text. Fig.3.37

b represents the perplexity comparison between our model and the Corr-LDA model as the

increase of word topic number, in which the number of visual topics in our model is fixed to

1000. It shows that the perplexity of our model is consistently lower than Corr-LDA model,

which suggests that our model is ‘less surprised’ by the testing data, thus demonstrates bet-

ter performance. Also, it shows that the predictive ability of our model may benefit from

greater visual topic number, as it tend to have lower perplexity as the visual topic number

increases (Fig. 3.37c).

Illustration of Inferred Latent Topics

In order to better interpret the uncovered latent topics, we visualize the word topics by pro-

viding the top-ranked words, top-ranked phrases and most related images. As represented
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Figure 3.37: The likelihood and perplexity comparison of the proposed PTC model and the
extended Corr-LDA model

in Fig. 3.38, the words and phrases are sorted by their probability of being generated from

a word topic, while images are sorted by the probability of containing that word topic (by

counting the topic indicator variables of image features).

In Fig.3.38, we present two examples of uncovered latent word topics. The former one is a

topic related to the concept of ‘orchid’, while the later one is a topic related to the concept

of ‘leopard’. By providing a combination of words, multiple word phrases and images, it

becomes much easier to interpret the domain knowledge captured by each topic. As we can

see, the uncovered latent topics show high consistency to semantic concepts.

Conclusions

In this section, a probabilistic topic-connection model is proposed to deal with the problem

of modeling images and associated text description. Specifically, new latent variables have

been introduced to allow for more flexible sampling of word topics and visual topics, in

which one word topic may connect to multiple visual topics.The proposed model provides
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Figure 3.38: Illustration of uncovered latent topics by PTC model

better representation of the connection between latent semantic topics and latent image

patterns, thus achieves better performance compared to the traditional Corr-LDA model.

3.6.4 Perspective Hierarchical Dirichlet Process for User-Tagged Image Modeling

In this section, we investigate the performance of the proposed pHDP model in au-

tomatic image tagging experiments using the MIR-Flickr dataset, which is composed of

25000 images covering a wide spectrum of image categories(contributed by a total of 9862

Flickr users). In total,there are 302447 tags, with a vocabulary size (number of unique

tags) of 64037; thus the average number of tags per image is 8.94. In the image tagging

experiment, we use a 50% subset of the MIR-Flickr collection as training data and the other

50% as testing data (with tags removed). On constructing the two subsets, we ensure that

tagged images from the same user are equally split to both subsets. The values of global

concentration parameter γ and the user perspective number L are determined by perplexity
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Figure 3.39: The comparison of Perplexity changing over iterations

comparison on a serial of values. Other hyper-parameters (such as Dirichlet distribution

priors: αu,ξy,ξt ,η ,ζ ) are set in prior and fixed during the experiments. The prediction of

image tags for the testing images is achieved by performing another Gibbs sampling on

testing images to estimate the document-level distribution of switch variable and semantic

components, with a fixed set of semantic components and user perspectives estimated from

the training dataset. On the convergence of Gibbs sampling, the probability of tagging an

image j from user u with tag t j is:

p(t j) = p(x jt = 0,1)
K

∑
k=1

p(t j|zk)ptest(zk| j)+ p(x jt = 2)
L

∑
l=1

p(t j|pl)ptest(pl|u) (3.39)

The performance is evaluated by perplexity and tagging accuracy.

Perplexity Comparison

The perplexity is a standard criterion for generative probabilistic models that evaluates how

well the model predicts the testing data. The perplexity of a testing image dataset Dtest is:

perplexity(Dtest) = exp[
−∑

Dtest
j=1 log(p(t j))

∑
Dtest
j=1 Nt

j

] (3.40)
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Figure 3.40: Perplexityas perspective number changing(γ=15.0)

Figure 3.41: Average image tagging accuracy comparison of the proposed pHDP models
and baseline models

The perplexity score for a model is the lower the better. Fig. 3.39 shows the perplexity

changing of the proposed pHDP model and baseline modes (CorrLDA model and HDP

model) over the iterations during the Gibbs sampling process. We test pHDP model on a

serial of γ values. For CorrLDA model and HDP model, we only show their perplexity

scores under the optimal parameter settings (i.e. CorrLDA model with 75 topics and HDP

model with γ = 15.0 ). The results show that pHDP model achieve best performance with

γ = 15.0 and it outperforms both HDP model and CorrLDA model. Fig 3.40 represents the

perplexity of pHDP model under different perspective numbers. The optimal perspective
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number is L=75.

Image Tagging Accuracy Evaluation

Using Eq.(3.39), we calculate the probability of tagging an image j from user u with dif-

ferent tags. Tags with highest probability are used for tagging. After that, the predicted

top-ranked image tags are compared with the ground truth for validation. If a predicted tag

finds exact match in the ground truth tags, it will be considered as one hit. The ratios of

hit numbers over the predicted tag numbers are averaged to produce the final annotation

accuracy.

Fig.3.42, Fig.3.43, Fig.3.44 illustrates examples of image tagging results. Fig.3.42 is an im-

age shows a winter night in Toronto,Ontario, Canada.The ground truth image tags involve

both location tags (‘ontario’, ‘canada’ ) and topic tags (such as ‘clouds’, ‘lake’, ‘night’,

‘sky’ and ‘water’). However, the image content alone provides little clues about the loca-

tion. Further studies indicate that other images contributed by the same user are also tagged

with ‘ontario’ and ‘canada’. This may suggest that the user lives in Ontario, Canada and

contribute pictures taken from the same location. During the pHDP modeling, this user

contextual information is captured as a part of the user’s perspectives. When tagging a new

image from the same user, the pHDP model will smooth the document-level predictive tag

distribution with users perspective and allow for tagging with location tags (Fig. 3.42 and

3.43, highlighted in bold). Fig 3.44 is contributed a user from Malaysia. Similarly, the user

contextual information is captured in users perspectives. Thus the pHDP model succeeds in

tagging image with both location tags (such as ‘malaysia’) and type tags (camera settings,

like ‘nikon’). As shown in Fig. 3.44, tags predicted by the pHDP model also involve sub-

jective tag, like ‘interestingness’, which demonstrates that the pHDP model is also capable
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Figure 3.42: Tagging results of image entitled ‘City with ice’

of modeling user’s subjective feelings. As a comparison, the HDP model fails to predict

either location tags or subjective tags since it only relies on image content to make tag pre-

dictions.

Fig 3.44 shows the overall image tagging accuracy (averaged over the testing dataset) of

different models under their optimal parameter settings. It should be noted that the accu-

racy is calculated based on exact match, so it won’t take into account the synonym tags.

In other words, predicted tags like ‘human’ and ‘female’ will be considered as unmatched

with respect to the ground truth tag ‘girl’. According to the result, the HDP model doesn’t

show much improvement in the tagging accuracy compared to the CorrLDA model. It’s

reasonable because the CorrLDA model is in essence a finite case of HDP model. Under

optimal parameter settings, their performance should be similar. The pHDP model, as it
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Figure 3.43: Tagging results of image entitled ‘Some say in ice’

integrates the user perspective information, significantly outperforms both CorrLDA model

and HDP model in predicting image tags for different users.

Conclusions

In this section, we proposed a perspective Hierarchical Dirichlet Process (pHDP) model to

deal with user-tagged image modeling. The contribution is two fold. Firstly, we associate

image features with image tags. Secondly, we incorporate the user’s perspectives into the

image tag generation process and introduce new latent variables to determine if an image

tag is generated from user’s perspectives or from the image content. Therefore, the model

is capable of extracting both embedded semantic components and user’s perspectives from

user-tagged images. Based on the proposed pHDP model, we achieve automatic image

tagging with user’s perspective. Experimental results show that the pHDP model achieves
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Figure 3.44: Tagging results of image entitled ‘Spread your wings and fly away’

better image tagging performance compared to state-of-the-art topic models.

3.6.5 Modeling Semantic Relations between Visual Attributes and Object Cate-

gories via Dirichlet Forest Prior

In this section, we evaluate the performance of the proposed methods, including au-

tomatic attribute identification, object categorization, and modeling the semantic relations

between visual attributes and object categories.

Datasets and Experimental Setup

In learning the visual attributes of object categories, we use the Animals with Attributes

(AwA) dataset introduced by [57] (which is a fraction of ImageNet database). The AwA

dataset consists of 50 mammal object categories with a human provided attribute inven-
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tory and corresponding object class-attribute associations. In our experiment, we split the

dataset into 80% training and 20% testing (i.e. 24,295 trainingimages and 6,180 test im-

ages) for learning the attribute classifiers.We map all the 50 AwA categories to the corre-

sponding synsets (identified withWordNet ID) under the ImageNet hierarchical taxonomy,

from which we are able to calculate the semantic metric among different categories. Also,

with the help of word entities from the corresponding WordNet ID (wnid), we download 75

Wikipedia articles that share the same lexicalized entry as WordNet entities (considering

synonyms). The Wikipedia articles are then considered as the knowledge base of natural

language description for corresponding ImageNet synsets or AwA categories.

Object Categorization and Attribute Identification

The first part of our experiments is semi-supervised learning for object categorization. As

mentioned in Section 3.5.1, bounding box detection is performed to ensure that we identify

clean attributes from each object category. We are the learning process from 50 labeled

images bounding box per class (i.e. 2500 image bounding boxes in total) for training,

The semi-supervised SVM use 50 labeled bounding boxes and an addition of 50 unlabeled

bounding box samples (from preliminary detection in Section 3.5.1). We use another 100

images from each class (other than the 5000 training image) for testing. For each test im-

age i, if it is correctly classified then the flat error ei = 0, if it is not correctly classified

thenei = 1. Fig.3.45 shows the Receiver Operating Characteristic (ROC) curves of the ob-

ject categorization results. Each curve is the result of the one-vs-all semi-supervised SVM

categorical classifier on HOG-LBP feature. The Area Under Curves (AUC) are also pro-

vided. Higher AUC indicate better classify performance.For example, the AUC scores of

giant panda (AUC=0.912) and zebra (AUC=0.975) are among the highest, indicating that
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Figure 3.45: Part of the object classification results plotted in receiver operating charac-
teristic (ROC) curves. Each curve is the result of the one-vs-all semi-supervised SVM
categorical classifier on HOG-LBP feature.

these object categories are well represented by HOG-LBP feature and are well separated in

the feature space. The categorization results of raccoon and lion is fair, which are possibly

caused by the high diversity of object appearance among training samples.

In Fig.3.46, we compare our categorization method (semi-supervised SVM with HOG-

LBP features) to two state-of-the-art approaches, i.e. SVM classifier using spatial bag of

word (sBoW) features and SVM using HOG-LBP features. Specifically, Fig. 3.46a shows

the Average Flat Error (AFE) with respect test images with top predictive scores. The AFE

score is defined as: e = 1
N ∑

N
i=1 ei,e ∈ [0,1],N = 5000, the lower AFE score indicates better

classification performance. Fig. 3.46 b represents the Average Hierarchical Error (AHE)

of different approaches. Supposing that the image from class i is mis-classified as class j,
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Figure 3.46: Performance comparison of proposed method (semi-supervised SVM + HOG-
LBP features) with state-of-the-art approaches (a) Average Flat Error (AFE)(b)Average
Hierarchical Error (AHE)

and π(i, j) is the lowest common ancestor between class i and j in the hierarchy of Ima-

geNet taxonomy. The height h(π(i, j)) of node π(i, j) on the hierarchy is then defined as

the length of the longest path to one of its leaf node. Leaf nodes have height 0. The AHE

is the average of h(π(i, j)) for all the testing images, , the lower AHE score indicate higher

semantic accuracy in object categorization. As shown in Fig. 3.46, the proposed object

categorization method consistently outperforms the state-of-the-art approaches under both

AFE and AHE comparisons.

Fig. 3.47 shows the confusion matrix of object categorization in all the 50 AWA cate-

gories. By comparing the confusion matrix of semi-supervised SVM classification and

the confusion matrix categorization results are smoothed by the signature of the most rel-

evant attributes, we can see that, the performance of object categorization can be signif-
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Figure 3.47: Confusion matrix of classifying 50 AWA animal classes.Upper: confusion
matrix by semi-supervised SVM classifier. Lower: confusion matrix after object-attribute
signatures being introduced in, categorization results are smoothed by (eq. 9), with K=10
most relevant visual attributes used.

icantly improved when attribute signatures are introduced. For example, in the original

semi-supervised SVM classification results (upper part of Fig.3.47), the giant panda cate-

gory is to some extends confused with the tiger category and the spider monkey category.

However, after introducing in the object-attribute signatures and smoothing the categoriza-

tion results with posterior object-attribute prediction model, the categorization ambiguity is

mostly eliminated (lower part of Fig.3.47). The significantly reduced categorization ambi-

guity across the 50 AWA animal classes (Fig. 3.47) evidences the effectiveness of identified

attribute-object relations.

Model Estimation and Illustration

In this section, we perform both quantitative and qualitative evaluation on the perfor-
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mance of proposed topic model. The quantitative evaluation includes comparing both

log-likelihood and perplexity, while qualitative evaluation is achieved by visualizing the

inferred latent topics and evaluate its relevance to the object-attribute relations.

Log-likelihood is one of the standard criteria in generative model evaluation. It provides

a quantitative measurement of how well a topic model fits the training data. The score of

log-likelihood (which is a negative real number) is the higher the better. In practice, the

log-likelihood of words given latent topics can be calculated by integrating out all the latent

variables:

p(w|z) =
T

∏
t=1

(∫
ϕzt

p(w|zt ,ϕzt ) p(ϕzt |zt)dϕzt

)
=
(Γ(Wβ )

Γ(β )W
)T

T

∏
t=1

∏wi Γ

(
n(wi)

t +β

)
Γ

(
n(·)t +Wβ

) · Γ(Wη)

(η)W
·

∏wi Γ

(
n(wi)

0 +η

)
Γ

(
n(·)t +Wη

) (3.41)

The perplexity is another standard criterion for generative probabilistic models that evalu-

ates how well the model predicts the testing data. The perplexity of a testing dataset Dtest is:

perplexity(Dtest) = exp

(
−∑

Dtest
j=1 log

(
p
(
t j
))

∑
Dtest
j=1 Nt

j

)
(3.42)

The perplexity score for a model is the lower the better. Fig. 3.48a represents the log-

likelihood comparison results between our proposed model and the LDA model over the

iterations. As we can see from Fig. 3.48a, our proposed topic model has consistently

higher log-likelihood than standard LDA model, which can be explained by the introduced

Dirichlet Forest priors, which make our model fit better to training data than the LDA

model. Fig. 3.48b shows the comparison of perplexity between our model and the LDA
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Figure 3.48: Log-likelihood and perplexity comparison between proposed model and LDA
model over the iterations

model over the iterations. Our model achieves best perplexity scores when Q=3, while

the LDA model achieves best perplexity scores when topic number is 250. Although LDA

model has relative lower perplexity score compared to our model, however, as we can see

in the next section, the LDA model may not be able to accurately link object category to its

attributes. On the convergence of the Markov Chain Monte Carlo and Gibbs sampling pro-

cess, the conditional probability of each word/entity given each inferred latent topic can be

obtained. In Fig. 3.49 - Fig.3.51, we illustrate the qualitative evaluations of 3 ImageNet ob-

ject categories (i.e. n02391049:zebra, n02129165:lion and n02581957:dolphin), including

the category names, the identified visual attributes, the Must-Links and Cannot-Link from

aggregated attribute-object concurrence map. We also visualize the most relevant inferred

latent topics with respect to each object category name entity. The relevance between ob-

ject category name entities and the inferred latent topics can be obtained by calculating the
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Figure 3.49: The most relevant latent topic of object category ‘zebra’

Mutual Information(MI) score.

The calculation of MI between a specific word entity and a latent topic is shown as eq.

(3.43), in which Rg and Zt are binary indicator variables corresponding to the word and the

latent topic, respectively. The variable pair(Rg,Zt) indicates the case that latent topic Zt

being assigned to word entity Rg.

MI (Rg,Zt) = p(Rg,Zt) log
p(Rg,Zt)

p(Rg) p(Zt)
(3.43)

Given the training data, both the joint probability p(Rg,Zt) and the marginal probabilities

p(Rg) and p(Zt) can be empirically estimated by counting the number of evidences over

the training dataset.

As we can see from Fig. 3.49 - Fig. 3.51, for the LDA model, the inferred latent topic that is

most relevant to the object category doesn’t contain much visual attribute names associated
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Figure 3.50: The most relevant latent topics of object category ‘lion’

with that object category. On the contrary, the latent topics inferred from our model have

a lot of important visual attributes among the top-ranked words of the most relevant latent

topic. Specifically, for the object category ‘dolphin’ in Fig. 3.51, the most relevant latent

topic inferred from our model involve visual attributes that are highly consistent with the

identified Must-Link relations associated with the dolphin category such as ‘blue’, ‘water’,

‘white’, ‘fish’, etc. while the most relevant latent topic inferred by LDA model doesn‘t

involve any visual attributes associated with dolphin in its top-ranked words. Similarly, for

the object category ‘zebra’ in Fig. 3.49, the most relevant latent topic inferred from our

model involve most visual attributes associated with the dolphin category such as ‘stripes’,

‘black’, ‘white’, ‘large’, ‘group’, etc. , suggesting that the Must-Link relationships between

object categories and visual attributes are well preserved by the Dirichlet-tree distribution

in our proposed model.
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Figure 3.51: Comparison the most relevant latent topics of object category ‘dolphin’

It’s also worth mentioning that, in Fig. 3.50, one of the attributes (i.e. ‘spotted’) that can-

not be linked to lion category is among the top-ranked words of the most relevant latent

topic inferred by the conventional LDA model. As a comparison, none of the latent top-

ics inferred by our proposed model violate Cannot-Link relations. The experiment results

indicate thatthe Cannot-Link relations between object categories and visual attributes can

be effectively encoded by the Dirhchlet Forest prior introduced in Section 3.5.2, which

enables the topic model to purify the inferred latent topics, filter out the ‘noisy’ and ‘self-

contradictory’ information from the textual descriptions and produce consistently well top-

ical abstraction of object categories and associated visual attributes.

Conclusions

In this section, we deal with two research issues, i.e.the automation of visual attribute iden-

tification and semantic relation learning between visual attributes and object categories.
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The contribution is two-fold, firstly, we provide uniform framework to reliably extract both

categorical attributes and depictive attributes. Secondly, we incorporate the obtained se-

mantic associations between visual attributes and object categories into a text-based topic

model and extract descriptive latent topics from natural language knowledge base. Specif-

ically, we showthat in mining large scale text corpora of natural language descriptions,

the relation between semantic visual attributes and object categories can be encoded as

Must-Links and Cannot-Links, which can be represented by Dirichlet-Forest prior. To re-

duce the amount of manual supervision and labeling in large-scale image categorization,

a semi-supervised training framework using soft-margin semi-supervised SVM classifier

is introduced. Last but not least, automatically extracted visual attributes are used in a

posterior object-attribute prediction model to further improve the performance of object

categorization. Experimental results show that the proposed model achieves better ability

in describing object-related attributes and makes the inferred latent topics more descriptive.
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4. PROBABILISTIC TOPIC MODEL FOR BIOINFORMATICS STUDIES

In this chapter, I would like to introduce the background of Generative Latent Space

Models and review the related works on topic modeling.

4.1 OVERVIEW AND OBJECTIVE

In the system biology community, there has been a long time focus on studying gene-

expression data in isolated organisms and cultures. However, relatively less effort has been

made to study the genome-wide gene-expression data from uncultured environment sam-

ples (like the ocean, soil and human body) and understand the underlying biological pro-

cesses. Recently, the development of new sequencing techniques and meta-genomics has

dramatically changed the way of genomics data acquiring and analyzing. Next generation

sequencing methods (such as Roche/454 Sequencing and Illumina Sequencing) are able to

extract very large amount (100 ∼ 1000 MB) of DNA fragment sequences from an environ-

mental sample (like the ocean, soil and human body) in only a single run (the acquired data

is also known a ‘meta-genomic data’). With the fast advancing sequencing technology,

large amount of sequenced genomes and meta-genomes from uncultured microbial sam-

ples becomes available. Based on the meta-genome sequences, bioinformatics researchers

have done a lot of work to study the underlying biology process such as signal transduction,

translation, and molecular functions like the biochemical activity of gene product. How-

ever, our knowledge about the biological functions encoded in the meta-genome sequence

is still limited. Current functional annotation (genome-level annotation of biological func-
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tions) is still far from satisfied. The lack of high quality functional annotation of the major

functionality encoded in the gene-expression data of given genome/meta-genome posed a

great challenge in the task of interpreting the biological process of meta-genome.

The major objectives of analyzing and interpreting the large amount of meta-genomic data

involve answering two questions. The first question is, ‘Given a large number of genome

fragments from an environmental sample, what genomes are there?’ Answering this ques-

tion requires mapping the meta-genomic reads to taxonomic units (usually a homology-

based sequence alignment, this task is also known as taxonomic classification or taxonomic

analysis). The second question is, ‘What are the major functions of these genomes?’ The

answers to this question involve annotating the major functional units (such as signal trans-

duction, metabolic capacity and gene regulatory) on the genome-level (a.k.a. functional

analysis).

Toward these two questions, we present a set probabilistic topic models to identify func-

tional groups from microbial samples. Probabilistic topic models have been developed for

applications in various domains such as text mining [95], information retrieval [15] and

computer vision [2], [93]. In bioinformatics domain, generative topic model has been

previously used to learn protein-protein relations from MEDLINE abstracts of biomedical

literatures [9], [110]; it has also been applied to identify gene relations from microarray

profiles [36]; the generative topic model is also used to describe the process of construct-

ing mRNA module collections [40]. In [40], the author uses a topic-model-based Gene

Program algorithm to allocate mRNA from each tissue to different gene expression pro-

grams, in which each tissue is considered as a sample from a population of related tissues.

In the model, gene sets have different chances of being co-expressed in different subset of
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samples, which also encodes the assumption that similar sample groups are more likely to

share similar gene sets. The model provides the flexibility in allocating the expression data

and discovering co-expressed gene sets. In our approach, the probabilistic topic models are

derived from either taxonomic or functional-element abundance data(such as high abun-

dance of specific functional group, high expression level of specific taxon, gene cluster, or

specific metabolic pathway) acquired from either composition-based genome classification

or homology-based alignment.

4.2 A BRIEF REVIEW OF COMPOSITION-BASED AND HOMOLOGY-BASED

FUNCTIONAL ANALYSIS

4.2.1 Composition-based Approaches

Recently, the composition-based approaches [84], [85], [4], which break down the

DNA fragments into N-mer sub-reads, have achieved good performance in the task of

genome classification. After extracting N-mers from DNA fragments, the composition-

based taxonomic analysis is achieved by picking up N-mer features for each genome frag-

ment and scoring against each taxon (or calculating the probability that a DNA fragment

comes from a particular taxon [84]).

The taxonomy analysis of ‘N-mer’ sub-reads is achieved by picking up N-mer features for

each genome fragment and scoring against each taxon (or calculating the probability that a

DNA fragment comes from a particular taxon). Recent composition-based approaches for

taxonomic classification usually rely on supervised learning algorithms such as the Naive

Bayesian classifier (NBC) [84], and Phymm [4] to classify short fragments. State-of-
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the-art supervised learning methods of taxonomic classification are reviewed in [55].The

Phymm algorithm uses interpolated Markov model (IMM) to solve the phylogenetic clas-

sification problem [4]. The interpolated Markov model is an extension of traditional

fixed-order Markov models. In this model, the estimation of the probability for the next

state depends on probabilities of all the different orders (that is, probabilities from 0, 1,

2, ..., n previous nucleotides, with different weights); as a comparison, a regular n-th or-

der Markov chain only depends on the n previous nucleotides.During the training stage,

the IMM model compute probability of different nucleotide patterns from each species

When the model is learnt from the training dataset, it is able to compute the probability

of a given nucleotide sequence generated by a specific IMM model distribution of corre-

sponding taxon.The Naive Bayesian Classifier (NBC) algorithm [84], on the other hand,

calculates the N-mer frequencies for each taxon and uses these frequencies as features to

train the Naive Bayesian Classifier (NBC). Based on the Bayesian’s Theorem, the estima-

tion of this classifier can be achieved by calculating and optimizing the scoring function,

which is a product of conditional probability of each Nmer given a genomic class. The

prior probability of Nmers and prior probability of genome classes are omitted in the fi-

nal scoring function. The obtained Classifier is then used to determine the assignment of

genome classes to DNA fragments using the posterior probability that a DNA fragment

comes from a specific class. After assigning to the NCBI taxonomy, the encoded function-

ality of meta-genomic reads can be readily available by querying the Gene Ontology (GO)

database (Fig.4.1).

When considering each genome fragment as a ‘document’, the ‘N-mers’ can to some

extend be considered as a kind of ‘code words’ that compose a genome fragment (we
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Figure 4.1: A framework of composition-based genomic data analyzing

may consider the A,T,C,G nucleotides as letters, so N-mers bear an analogy with N-letter

words). Take one step further; we may assume that a genome fragment bears an analogy

with a text document. The analogy between Nmers and text words (both of them can be

represented as vector of term frequencies) has inspired researchers to introduce some text

mining techniques such as TD-IDF term weighting to Nmers features [97]. The analogy

between Nmers and text words also shows a potential of identifying the functional cores

(core genes) via a mixture of N-mer sub-read distributions (like we are able to identify

the major semantic topics of a text document via a mixture of text word distributions). To

the best of our knowledge, although the composition-based approaches have been inten-

sively used in solving taxonomic classification problems, however, little efforts have been

made to exploit the latent Nmer patterns that build up the core genes and encode the major

metabolic functionalities.
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4.2.2 Homology-based Approaches

In analyzing meta-genomics data, the identification of both taxonomic unit and func-

tional unit are difficult because the large amount of meta-genome fragments are usually

very short (< 100 bp) and may be from a variety of organisms. The challenge is that, when

dealing with large genome-wide gene expression data, the samples may be from different

individuals with different genetic and environmental background. What’s more, the sam-

ples usually represent collections of diverse cell-types mixed together in different propor-

tions. Therefore, in processing the meta-genomic reads, it’s required that the raw reads be

firstly assembled to longer contigs (> 500 bp). After that, the protein-encoding sequences

(CDs) are predicted from assembled contigs, results in a non-redundant catalogue of CDs

(gene regions). The construction of non-redundant CDs catalogue gives rise to a ‘minimal

genome’ and provides opportunity to identify bacterial functions that play important roles

in microbial samples. Based on the non-redundant CDs catalogue, both taxonomic unit

identification (identifying the existence of certain microbial species in the meta-genome)

and functional unit identification (identifying the existence of certain gene product) can be

readily achieved by matching amino acid sequence in CDs regions to standard reference

sequences using homology-based alignments.

The homology-based approaches that align meta-genomics read to standard reference (of

known species) in standard databases (such as NCBI NR database) via BLASTP or BLASTX

algorithms have been intensively used to deal with both taxonomic analysis and functional

analysis problems [21].

One example of homology-based classification approach is the Metagenome Analyzer

(a.k.a. MEGAN) [49]. MEGAN is computer software that achieves taxonomical anal-
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ysis over large databases. It compares DNA fragments against the database of reference

sequence, and extracts taxonomical information from the high score BLAST hits. Based

on the taxonomical information, the BLAST hits will be matched to different species and

strains of the NCBI taxonomy (the algorithm collect all high score BLAST hits and as-

sign taxon ID to each hit based on NCBI taxonomy, the NCBI Taxonomy contains over

460,000 taxa from different taxonomical ranks such as Kingdom, Phylum, Class, Or-

der,...,). After that, the algorithm will look for the lowest common ancestor (LCA) taxon

of all those BLAST hits and then assigned the input sequence fragment with that taxon.

In practice, BLASTX algorithm will be used to compare all reads against the standard

references database (like the NR (non-redundant) protein database from NCBI). Before

loading BLASTX hits of a specific meta-genomic fragment to perform a LCA algorithm,

the MEGAN algorithm uses a bit-score threshold to limit the number of BLAST hits. It also

discards all the ‘isolated assignment’ by looking into the number of hit with regard to each

taxon. Despite these efforts, however, the number of resulting hits may still be up to tens of

thousands. The LCA algorithm used in MEGAN is able to visualize the hierarchical struc-

ture of the phylogenetic tree. However, it should be pointed out that the resulting taxon

assignment may only has a limited resolution, as reads with too much BLAST hits may

always be assigned to relative high taxon levels such as genus, family instead of species

and strains [48]. Recently, Richter and Huson introduced a new framework to achieve

detailed functional annotation for meta-genomic reads [21]. The framework begins with

a homology based BLASTX algorithm to match the meta-genomic fragments to the refer-

ence sequences in NCBI database. The BLASTX hits will associate fragments with related

protein ID and gene names. After that, with the help of the Gene Ontology (GO) database
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(http://www.geneontology.org), which uses controlled vocabulary to represent biological

processes, cellular components and molecular functions of genes and gene products [29],

the framework is able to refer associated gene names to corresponding GO terms, thus pro-

vides an overview of gene function and products for meta-genomic reads.

By aligning local amino acid sequence to the reference sequences (of known species) in

standard databases (such as NCBI NR database, eggNOG database and KEGG database),

researchers are able to acquire a lot of useful information with respect to the functionality

encoded in predicted CDs regions, including taxonomic levels, indicator of gene ortholo-

gous groups (OGs) and KEGG pathway mappings. The alignment of amino acid sequence

also provides an insight about the functionality groups existing in the genomes. Although

genes vary from strain to strain, similar genes can have similar functions among differ-

ent species known as clusters of Orthologous (COGs). The relative abundance of certain

COG categories in a microbial sample may indicate whether the sample is rich in partic-

ular functions. In practice, COGs can be determined based on their sequence similarity

and can be classified into different function categories [48] including signal transduction,

metabolic pathways and gene regulatory network. With this consideration, the functional

units in microbial samples can be identified by the gene clusters such as COGs shared

among species/strains. Understanding the functionality of gene clusters is of practical and

theoretical importance. For example, the functionality roles of organ/cell specific gene

clusters may be different from gene clusters which are active across diverse cell types. Set

of genes that are very specific to a particular cell type or organ may be useful as diagnostic

bio-markers. In contrast, gene clusters that are active across diverse cell types can give

us insight to uncover functional similarities among organs/cells. Since different microbial
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samples are taken from different micro-environment and expressing different sets of genes,

we may assume that each microbial sample (with multiple cell types) has its own config-

uration of gene clusters, some clusters will be shared among many cell types while others

will be more specific. It has been pointed out that the existence of commonly shared gene

clusters across samples suggests functional similarity and biological relevance [36], [40].

Therefore, we aim to develop a method that enables analyzing the genome-level configu-

ration of both taxonomic units and functional units derived from the non-redundant CDs

catalogue. As we mentioned, by homology-based alignment, each CDs sequence can be

represented as a triplet (i.e. taxonomic levels, indicator of gene orthologous groups and

KEGG pathway mappings) each unit may be considered as a functional element at differ-

ent levels (i.e. taxonomic level, gene level and pathway level). As a result, the functional

meta-genome annotation can be achieved by first decomposing the meta-genomic samples

into a mixture of functional elements (from three different levels); and then analyzing the

genome-level configuration of functional elements to learn how those functional elements

are grouped and jointly participate in the biological processes.

4.3 FUNCTIONAL AND TAXONOMIC ANALYSIS OF N-MER SUB-READ PRO-

FILES BY PROBABILISTIC TOPIC MODELING

In 2005, Medini et al. challenged the concept of ‘the species’ and described the concept

of the pan-genome, which is the ‘entire genome’ of an entire species, instead of each think-

ing about each strains genome individually [68]. Genetic elements are classified as two

types in each strain genes shared by all the strains and genes that are ‘dispensable’ or only

contained within a subset of the strains. For example, strains of E. Coli are hypothesized
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to only share 1,560 core genes (approximately 1/3 of the genes of any given strain) [34],

which means many more are ‘dispensable’ or as Erhlich et al. put it ‘distributed’ [27].

We will refer to those essential to each strain as core gene, while those vary from strain to

strain as distributed gene.

In this section, we aim to analyze the genome-level composition of DNA sequences. In

order to characterize a set of common genomic features shared by strains within the same

species and tell their functional roles, we firstly apply a composition-based approach to

break down DNA sequences into sub-reads called the ‘N-mer’ and represent the N-mer

sub-read sequences as a ‘bag-of-words’ model. Then, we employ the Latent Dirichlet Al-

location (LDA) model to study latent topics. Specifically, the inferred latent topic means

genome-level distributions of N-mer sub-read features corresponding to some functional

groups. A collection of inferred latent topics thus represent the major functional groups of

the whole genome. The identified latent topics are not necessarily specific to any specific

microbe; instead, they may potentially indicate the co-occurrence of diverse gene function

categories (these gene function categories may either belong to biology process such as

signal transduction, translation, etc. or belong to molecular functions like the biochemical

activity of gene product) from different organisms and may suggest functional relation-

ships between genes. With the help of the BioJava toolkit [45], we access to the gene

region information of reference sequences from the NCBI database. We also use our data

mining framework to investigate two areas: 1) do strains within species share similar core

and distributed topics? and 2) do genes with similar functional roles contain similar latent

topics?
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4.3.1 Construction of N-mer sub-read Profile

The dataset we dealt with involves standard reference sequences (FASTA format) of

genomes downloaded from the NCBI database. Each genome is corresponding to a spe-

cific strain (say, Escherichia coli K12) and has multiple chromosomes. The chromosome

(reference sequence) has an average length of about one million base pairs and is uniquely

tagged by a Gen-Bank accession number (such as NC 009926).

For each chromosome under the same strain, by parsing the corresponding FASTA file,

both GenBank accession number and the nucleotide sequence of the chromosome can be

obtained. After that, a sequential indexing process is performed on all the chromosome

sequences, in which each N-mer (N=9) is consider as a number from a quaternary (base

4) numeral system and assigned a numerical ID. Compared to regular N-mer indexing ap-

proach in [84], which only keeps N-mer frequencies while ignore their orders (Fig. 4.2),

the sequential indexing approach generates a sequence of N-mer indices, while keeping

their original order in each of the chromosomes. Specifically, a JAVA program is performed

to automatically extract all the N-mers as well as their location in the chromosomes. The

location of each N-mer is then kept in the index file, which is then used to recover the

original order of N-mer sequence.

4.3.2 Gene Region Annotation for N-mer Sequence

With the help of the ‘BioJava’ package [45], detailed gene region information from

the NCBI database such as locations of non-protein encoding regions (such as tRNA) and

gene regions (CDS) as well as the corresponding gene names are obtained by querying the
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Figure 4.2: Illustration of the N-mer (N=15) presences in genomes, which bear analogy
with text documents. The diagram on the left represents different genomes which may share
or not share the same N-mers and the diagram on the right is their frequency occurrences
in those genomes.

online NCBI database with the GenBank accession number of each reference sequence.

Given an N-mer index file (obtained by method introduced in Section 2.1), by matching

every N-mer location against the gene regions, it is able to generate a detailed gene region

annotation that specify the relation between gene regions and each of the N-mers (Fig.

4.3). More specifically, for each N-mer from a given chromosome, the gene annotation

is achieved by comparing the position of current N-mer to all the available gene regions

in this chromosome. If an nmer doesn’t belong to any protein-encoding region, it will be

tagged with ‘0’. If an nmer is within a gene region with a gene name, it will be tagged

with the corresponding gene name ID number; otherwise, it will be tagged with ‘1’ for

protein-encoding region that doesnt specify its name. The significance of the sequential

indexing is that, by keeping the order of nmers, we will be able to annotate them with gene

region information obtained from NCBI database, which may also be used to calculate the
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Figure 4.3: Illustration of the N-mer (N=15) presences in genomes, which bear analogy
with text documents. The diagram on the left represents different genomes which may share
or not share the same N-mers and the diagram on the right is their frequency occurrences
in those genomes.

relevance between genome-level statistic patterns (a.k.a. latent topics) and gene regions.

The relevance between latent topics and region regions will provide us an insight of how

N-mer patterns related to their functional roles. It should be noted that the actual protein-

encoding region (translation site) may be from the reverse complement instead of from

the forward strand. Thus, as illustrated in Fig.4.2, some gene regions may be specified as

‘from reverse complement’. As a result, we need to carry out sequential indexing from

both directions, and tag gene region on both forward and reverse complement sequence

(Fig. 4.3).

4.3.3 Generative Topic Model for N-mer Sequence

In our study, we use the Latent Dirichlet Allocation (LDA) model [15], an effective

generative topic model firstly introduced in text mining domain, to study the functional
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groups. Latent Dirichlet Allocation (LDA) model [15], is an effective probabilistic topic

model firstly introduced in text mining domain to infer latent semantic topics from text

documents. The LDA model allows us to study underlying concurrence patterns of the data

and extract useful knowledge such as latent semantic topics from the data. Whats more,

the learning process of LDA model is totally unsupervised; therefore, it is very suitable

for research areas which lack of labeled data. Due to its solid theoretic foundation and

promising performance, the LDA model has been popular with the data mining commu-

nity in recent years. It is widely agreed that the LDA model promises good results across

most text data categories including domain specific text data (such as MEDLINE) [110]

and general text data (such as the New York Times Dataset) [95] and may also bring good

results in other text-like data such as visual code words [2]. Those data categories are also

known as ‘bag-of-words’ models since they represent each document by a distribution over

fixed vocabulary (in which the order of the vocabulary doesnt matter).

In text mining, the underlying assumption of LDA model is that, a document may deal

with multiple topics; and each of these topics can be represented by a unique distribution

of words. A latent topic is a high-level concept which explains the co-occurrence patterns

of words that appear in one document, it provides an effective way to analyze the compo-

sition of documents. Depending on different application context, a latent topic may have

different semantic meanings. Based on the definition of latent topics, the objective of LDA

model is to assign these latent topics to words in a document (each word wi may only be

assigned one topic), so that a document may in turn be represented as a mixture of latent

topics. In practice, the latent topic assignment is achieved by manipulating some unseen

latent random variables to determine the conditional probability of words given a latent
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topic p(word|topic) and probability of latent topics given a document p(topic|document).

When a generative topic model (such as LDA model) is used to study microbial commu-

nities, each sample can be considered as a ‘document’, which has a mixture of functional

groups, while each functional group (also known as a ‘latent topic’) is a weight mixture of

taxa (the taxon label of each genomic read can be considered as a word). Estimating the

generative topic model will uncover the distribution over latent functions (latent topic) in

each sample.

Due to the analogy between N-mers and text words, the genome sequences are comparable

to documents. Therefore, the LDA model for N-mers can be defined as follows. Assum-

ing that there are a total of D genomes (documents) in the data collection, which in total

contain Nw N-mers (tokens) from W different numerical N-mer indices (words); and there

are a total of T latent topics. For the d-th genome (document), the LDA model samples

a latent variable θ d ∼ Dir(α), in which θ d is a T-dimensional vector of topic priors in

genome d. Then, for the j-th topic, the model samples latent variableϕ j ∼ Dir(β ) , which

serves as prior probabilities for N-mer distributions of different topics. After sampling la-

tent variables θ d and ϕ j , the probability that topic j appears in genome d is defined as

p(z j|d) ∼Multi(θ d) , in which z j means topic z = j . The probability that a given N-mer

wi is generated by z j is defined as p(wi|z j)∼Multi(ϕ j) .

The generative process of this model is defined as follows:

1. For the d-th (d=1D) genomes(documents), sample θd ∼ Dir(α)

2. For the t-th (t=1T) topic, sample ϕt ∼ Dir(β )

3. For each of the Nd N-mers (words) wi in genome d:

a) Sample a topic zi ∼Multi(θd) and sample wi|zi ∼Multi(ϕzi).
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The estimation of LDA model given the observed N-mer sequence data can be estimated

via the Gibbs Sampling Monte Carlo processs [95]. The estimation process requires sepa-

rately sampling topic for each word in each document according to the posterior probability

as follows.

p(zwi = j|wi,w−i,z−wi) ∝
β +nwi

−i, j

Wβ +n∗−i, j
·

α +nd
−i, j

T α +nd
−i,∗

(4.1)

In which nwi
−i, j is the total number of taxon labels assigned to topic j except for wi , and

nd
−i, j is the total number of taxon labels in sample d (except for wi ) that have been assigned

to topic j. In our model, we assume symmetric priors and set α = 0.1,β = 0.01 . Such a

parameter setting is for the consideration of making topic modeling results more diverse.

For example, by setting Dirichlet distribution with parameter α = 0.1, the topic mixture

for each genome will converge on several unique topics instead of having equal probability

for every topic. We follow the model selection method in [110] to determine the number

of latent topics. In general, a larger topic number may provide higher resolution to the

uncovered functional core (either microbial core or gene core) of genome. However, a large

topic number may also cause an over-fitting problem to the model. The selection among

the models with different topic number is carried out based on the approximated evidence

(log likelihood) of samples. After extensive experimental study, the number of latent topics

is set to be 50 for taxon-abundance data. Usually, it takes less than 100 iterations for the

Gibbs sampling process to converge, thus in the model estimation procedure, we terminate

the Gibbs sampling process after 100 iterations.
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4.3.4 Relevance between Latent Topics and Gene Regions

The significance of learnt latent topics can be greatly enriched by studying the rele-

vance between latent topics and gene regions. As mentioned in Section 4.2, a sequential

indexing process is performed on the N-mer features, which keeps the original order of

N-mers in genome sequences, thus enables the relevance study between latent topics and

gene regions after the topic model assigning topics labels to N-mers. During the sequential

indexing stage, we tagged each N-mers position with an identification number specifying

the gene region type. The identification number (which covers all the gene names appear

in all the genomes in our study) not only indicates whether the current N-mers is within a

gene region or not, but also tell what the gene name is (if gene region has a name).

After estimating the topic model and assigning latent topic to each N-mer, the relevance

between latent topics and gene regions can be obtained by calculating the mutual informa-

tion (MI) between genes and obtained latent topics based on the annotated gene regions

and final latent topic assignments. The MI between a specific gene (Rg) and a latent topic

(Zt) is as follows:

p(xw ji = 0,zw ji = 0|w ji,w− ji,z− ji,x− ji,) ∝
N0

d,−i + γ

Nd,−i +2γ
·

β2 +nwi
−i,0

wβ2 +n∗−i,0
(4.2)

In which the gene region indicator Rg and latent topic indicator Zt are both nmer-wide

binary variables, which indicate whether an nmer is within a gene region and which latent

topic has been assigned to this nmer. Given the training data, the joint probability p(Rg,Zt)

and two marginal probabilities p(Rg) and p(Zt) can be simply estimated by counting the

number of evidences over all the training data.
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4.3.5 Functional Annotation for Latent Topics

After identifying a set of genome-level latent N-mer patterns (latent topics) that repre-

sent different genome sequence components and calculating the relevance between inferred

latent topics and gene regions, the functional role of each inferred latent topic can be ex-

plain by the function of its most relevant genes.

Traditional functional annotation approaches use the Gene Ontology (GO) terms to explain

the functional role of genomic sequences [21]. Typically, the GO terms are obtained by

query the GeneGo Database with corresponding gene symbols or protein IDs. One prob-

lem with the GO terms is that they are highly incomplete (only covers a limited number of

organisms and gene symbols) and usually not very detailed. Therefore, the GO terms are

unable to provide us a comprehensive view of gene functions in different species. What’s

more, in order to fully understand the gene functions, its of great importance to look into

the enzyme, pathway information, and metabolic capabilities related to the gene. With this

consideration, we utilize the BioCyc database [30], an openly available, highly accurate,

valuable database of metabolite pathway and enzyme data that have been experimentally

demonstrated in the scientific literatures, to study the functional role of identified genome

components (latent topics). Compared to the GO terms, the gene function searched from

the BioCyc database is much more comprehensive, which involves information about en-

zyme, pathway, and metabolic capabilities

Specifically, we have acquired a data accessing license and download flat files of individual

databases (covers most of the species we study) from BioCyc DB. After that, we convert

the flat data file into data table that enable effective data search (Fig. 4.4). The gene func-

tion search begins with querying the BioCyc database with gene symbol and species name,
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Figure 4.4: Gene function search in BioCyc flat tables

after that, based on the searching schema in Fig. 4.4, enzyme and pathway information

as well as the metabolic capabilities related to the gene will in turn be retrieved from the

database, which explains the function role of genomic patterns that most relevant to the

gene.

4.4 ESTIMATING FUNCTIONAL GROUPS IN HUMAN GUT MICROBIOME

WITH PROBABILISTIC TOPIC MODELS

In this section, based on the functional elements derived from non-redundant CDs cata-

logue, we present the generative framework to infer the configuration of functional groups

in meta-genome samples and introduce the extended Enterotypr-HDP model to infer func-
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tional basis of detected enterotypes.

In using the probabilistic topic model for inferring functional groups of biological process,

we define the model as follows. The genome set serves as the document corpus, with in-

dividual samples representing the documents. The functional elements (including NCBI

taxonomic level indicators, indicator of gene orthologous groups and KEGG pathway in-

dicators) serve as words, which jointly define a fixed words vocabulary of the corpus (take

the genes orthologous group (OGs) indicators for example, the COG and NOG terms from

the eggNOG database [75]can be used as vocabulary of the model). Consequently, each

document can be represented as a bag of words, in which the order of words is not con-

sidered. Each inferred latent topic (i.e. functional group such as bacteria groups or group

of gene clusters) defines a multinomial distribution over given vocabulary. In other words,

each functional group specifies a multinomial distribution over functional elements. The

discrete expression levels of functional elements are treated analogously as the word fre-

quency in text documents. The configuration of functional groups in each sample as well as

the distribution of functional elements in each functional group are considered generated

conditional independently by the topic model. With inferred latent topics, meta-genome

samples can be represented as weighted combinations of functional groups. Different func-

tional groups (latent topics) may co-exist in the same sample and may be shared across a

set of samples. The samples differ in terms of which functional groups are presenting in

and how they weighted.
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4.4.1 Modeling Commonly Shared Functional Elementsvia LDA Model with Back-

ground Distribution(LDA-B)

Given non-redundant CDs catalog, and derived functional elements, we are interested in

identifying the frequent co-occurrence patterns of functional elements. Commonly shared

functional elements (such as taxa groups, gene clusters and pathways) across samples may

suggest functional similarity and biological relevance among samples. If strong genome-

wide co-existing patterns of functional elements do exist, then it may suggest the existence

of ‘core’ genome.

With this consideration, we extend the LDA model by adding a background distribution

of commonly shared functional elements. We present graphical representation of the pro-

posed model in Fig. 4.5. Following the convention in depicting graphical representation

of topic models, we use round nodes to represent random variables, in which the white

nodes stand for latent random variables, while the gray nodes denote observations during

the model training. The rounded boxes are used to represent fixed hyper-parameters of

the model, while the edges illustrate the conditional dependency underlying the generative

process.The generative process of the proposed model is as follows. As shown in Fig. 4.5,

a switch variable x is introduced in the model, which fits a Binomial distribution λ (with

a Beta prior of γ) and only takes binary values 0, 1. Before sampling the latent topics in

sample j, the switch variable x needs to be sampled for each functional element w ji. For a

given w ji, if its switch variable x equals to 0, then it should be generated by the background

topic z0, otherwise, if its switch variable x takes the value 1, it should be generated by one

of the T regular latent topics. For functional element w ji in sample j, its assigned topic

(either background topic z0 or one of the T regular latent topics)is sampled according to the
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Figure 4.5: Hierarchical structure of proposed LDA-B model

posterior probability:

p(xw ji = 0,zw ji = 0|w ji,w− ji,z− ji,x− ji,) ∝
N0

d,−i + γ

Nd,−i +2γ
·

β2 +nwi
−i,0

wβ2 +n∗−i,0
(4.3)

p(xw ji = 1,zw ji = k|w ji,w− ji,z− ji,x− ji,) ∝
N1

d,−i + γ

Nd,−i +2γ
·

β2 +nwi
−i,0

wβ2 +n∗−i,0
·

α +nd
−i,k

T α +n∗−i,∗
(4.4)

For formally, the generative process of this model is defined as follows:

1. For the j-th document(meta-genome sample), sample θ j ∼ Dir(α) and λ j ∼ Beta(γ,1−

γ)

2. For the t-th (t=1T) latent topic, sample ϕt ∼ Dir(β ), for the background topic, sample

psi∼ Dir(η)

3. For each of the N j functional element w ji in document(sample) j:

4. For each functional element w ji, sample a switch x ji ∼ Bernoulli(λ j)

a. If xi j = 0, sample wi|z0 ∼Multi(ψ)
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b. If xi j = 1, sample a topic z ji ∼Multi(θ j) and sample w ji|z ji ∼Multi(ϕzi)

In our model, we assume symmetric priors and set α = 0.1,β = 0.01,γ = 0.5. Such a

parameter setting is for the consideration of making topic modeling results more diverse.

For example, by setting Dirichlet distribution with parameterα = 0.1, the topic mixture for

each genome will converge on several unique topics instead of having equal probability

for every topic. We follow the model selection method in [110]to determine the optimal

latent topic number. In general, a larger topic number may provide higher resolution to

the uncovered functional core (either microbial core or gene core) of genome. However,

a large topic number may also cause an over-fitting problem to the model. The selection

among the models with different topic number is carried out based on the approximated

evidence (log likelihood) of samples. Usually, it takes less than 100 iterations for the Gibbs

sampling process to converge.

After estimating the topic model and assigning latent topic to each functional element, the

relevance between latent topics and functional element indicators (i.e. NCBI taxonomic

level indicators, indicator of gene orthologous groups and KEGG pathway indicators) can

be obtained by calculating the mutual information (MI) between functional element indi-

cators and obtained latent topics based on the final latent topic assignments to functional

elements. The MI between specific functional element indicators and a latent topic is shown

in eq. 4, in which Rg and Zt are binary indicator variables corresponding to functional el-

ement and latent topic, respectively. The variable pair (Rg, Zt) indicates whether a latent

topic has been assigned to a specific functional element.

MI(Rg,Zt) = p(Rg,Zt)log
p(Rg,Zt)

p(Rg)p(Zt)
(4.5)
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Given the training data, the joint probability p(Rg,Zt) and two marginal probabilities p(Rg)

and p(Zt) can be simply estimated by counting the number of evidences over all the training

data.

One limitation of LDA-based topic model is that it requires specifying the exact number of

mixture components, which remains unchanged during the model estimation. In practice,

in order to get an optimal number, the researchers have to try different mixture components

numbers and make a choice by comparing the log-likelihood, perplexity and other criteria

that indicate how good the model fits the data. The Hieratical Dirichlet Process (HDP)

model [108], is a nonparametric extension of the Latent Dirichlet Allocation (LDA)-based

topic models, it enables modeling documents with countable infinite mixture components,

thus provides the flexibility of modeling data with different semantic component numbers.

4.4.2 Extended Hierarchical Dirichlet Process for Detected Enterotypes

In this section, we introduce the extended background HDP model to infer the func-

tional basis for detected phylogenetic clusters (a.k.a. Enterotypes).

In recent studies [32] [28], there has been some general consensus about the phyloge-

netic composition in human gut microbiome. However, the composition of gene functions

in human gut microbiome and their variations across human population is still not clear.

It’s unknown whether inter-individual variation may lead to dramatically different gene

function composition or whether individual human gut microbiome congregates on several

categories with shared functional properties. It has been demonstrated in that researcher

may identified distinct clusters in human gut microbiome by analyzing the phylogenetic

composition. Specifically, a large fraction of the meta-genome can be matched to the refer-
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ence genome set on the genus and phylum level. In [28], multidimensional cluster analysis

and principle component analysis (PCA) are performed on phylogenetic abundance profiles

to further cluster 33 samples into 3 distinct clusters (a.k.a. ‘Enterotypes’), which are iden-

tified by the levels of one of three genera: Bacteroides, Prevotella and Ruminococcus. It’s

hoped that the identified Enterotypesmay explain either the host properties (such as IBD) or

the complex mixture of functional properties. However, when clustering the samples using

purely functional metric (such as the abundance of the orthologous groups derived from

predicted genes) the grouping of samples doesn’t very much agree with the Enterotypes

obtained by phylogenetic clustering, indicating that the abundance of function may not be

coinciding with the abundance of genera. Typically, the most abundant molecular functions

can be traced back to the most dominant species or genera. However, it should be noted

that abundant species or genera cannot reveal the entire functional complexity of the gut

microbiota, some identified orthologous groups may also be primary contributed by low-

abundance genera. In our study, in order to determine the functional basis of the identified

Enterotypes, we introduce the extended background HDP model of inferring sample-level

composition of orthologous groups with respect to different Enterotypes.

To indicate the Enterotypes label of each sample, a switch variable x is introduced. The

generative process of the Enterotype HDP model is represented in Fig. 4.6. For each or-

thologous group (OG) indicator w ji in sample j, the value of x ji (which takes values 0-1) is

sampled from a binomial distribution λ j (with a Beta prior ζ ). When the value of x ji equals

0, the topical indicator of OG indicator wji is draw uniformly from the functional basis ψe

learned from the corresponding Enterotypes (the blue arrows in Fig. 4.6 illustrate this pro-

cedure). When x ji equals 1, a mixture component of functional properties will be sampled
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Figure 4.6: Hierarchical structure of proposed Enterotype HDP model

according to the sample-level weights of functional mixture components π j ∼ DP(α0,β )

for sample j, and OG indicator w ji will be drawn from the distributionϕk of functional mix-

ture component k(the red dashed arrows in Fig. 4.6 illustrate this procedure). Detailed

explanations of notations in the model are summarized in Table 4.1.

The generative process of this model begins with drawing a global probability measure

G0∼DP(γ,H) and for each sample j, draw a child Dirichlet process G j ∼DP(α0,G0). Fol-

lowing the stick-breaking construction, it is equivalent to firstly drawing a global weight

β ∼ GEM(γ) for functional component indicators k, then for each sample j, draw the

document-level weights of functional component indicators π j ∼ DP(α0,β ). The data ob-

servations in sample j are generated by repeatedly drawing functional component indicator

z ji = k from π j and then draw each OG indicator w ji from the conditional probability ϕk

of the sampled functional component z ji = k. For formally, the generative process of this

model is defined as follows:
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Table 4.1: Notations in Proposed Topic Model

Symbol Descriptions
D,W Number of samples;OGs indicators
z Indicators for functional mixture components
K The number of functional mixture components at a certain time point
N j,n jk Number of OG indicators in document j; number of OG indicators as-

signed to functional component k in sample j
n̆ j,−q The number of OG indicators in sample j generated from Enterotype

functional basis(x ji=0), except current instance
n j,−q The number of OG indicators in sample j generated from functional

components (x ji=1), except current instance
CWE

we,−q The number of times that OG indicator w = q is generated from En-
terotype e, except current instance

CWZ
wk,−q The number of times that OG indicator w = q is generated from func-

tional component k, except current instance
α0,γ Concentration parameters of Dirichlet process
ϕk The OG indicator distribution of functional component k
π j The sample-level weights of functional components for sample j
ξ ,η ,σ Hyper-parameters of Dirichlet , Beta distributions
ψp The OG indicator distribution of Enterotype e
xii,λ j Switch variable that decides the source of each OG indicator and the

sample-level distribution of different x values
β The global weight of functional components

1. Draw a global weight β ∼ GEM(γ) ;

2.For each functional component k, draw conditional OG indicator distribution ϕk∼Dirichlet(ξ );

3.For each Enterotype e, sample conditional OG indicator distribution of its functional

basis:ψe ∼ Dirichlet(η)(e = 1,2,3) ;

4.For the jthsample, draw π j ∼ DP(α0,β ) ;

5.For the i-th of the N j OG indicators in the j-th sample
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a. sample functional component indicator z ji = k ∼ Discrete(π j)

b. sample its OG indicator w ji ∼Multinomial(ϕk) ;

6. For each sample j, sample λ j ∼ Beta(ζ ) ;

7. For each OG indicator w ji in sample j;

a.sample a switch variable xii ∼ Binomial(λ j);

b.if (x = 0) Generate OG indicator w ji from the functional basis of corresponding En-

terotypee: w ji ∼Multinomial(ψe)(e = 1,2,3)

c. if (x = 1) Sample functional indicator z ji ∼ Discrete(π j) .Then generate OG indica-

tor wji from functional indicator z ji = k according to the conditional probability w ji ∼

Multinomial(ϕk).

In the following, we describe the Gibbs sampling scheme for the proposed Enterotype HDP

model. The sampling scheme consists of two steps. The first step is sampling for semantic

component indicators z as well as the corresponding HDP hyper-parameters β . In order to

sample a HDP-like model, one may either follow the Chinese restaurant franchise (CRF)

or use direct assignment [108]. In our work, the direct assignment is used(Table 4.2). The

second step is sampling for switch variable x, and conditional distribution of OG indica-

tors varphik and ψe . We derive the sampling equation of switch variable x ji for each OG

indicator w ji = q in sample j as follows:

p(x ji = 1,z ji = k|w ji = q,z−q,w−q,ξ ,ζ ) ∝
n j,−q +ζ

n j,−q + n̆ j +2ζ
·
CWZ

wk
NW
·

CWZ
wk,−q +ξ

∑w′CWZ
w′k,−q +Wξ

(4.6)

p(x ji = 0,z ji = e|w ji = q,z−q,w−q,η ,ζ ) ∝
n j,−q +ζ

n j + n̆ j,−q +2ζ
·

CWE
we,−q +η

∑w′CWE
w′e,−q +Wη

(4.7)
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Table 4.2: The Posterior Sampling Process

Preliminaries:
Suppose that at current stage of the sampling, only K of functional compo-
nents have been assigned to the observations, define:
βu = ∑

∞
k=K+1 βk,γv = γ/L,γu = γ(L−K)/L , then we get:

β = {β1, · · · ,βv, βu} ∼ Dirichlet(γ1, · · · ,γr,γu)
Repeat for each data observation until convergence:
Sampling z (may either equals to an existing k or knew = K +1):
Firstly, integrate out π j to get the marginal probability of :

p(z|β ) =
∫

π j

p(z|π j)p(π j|α0,β )dπ j

=
J

∏
j=1

∫ K

∏
k=1

π
n jk+α0βk−1
jk ·

Γ(∑K
k=1 α0βk)

∏
K
k=1 Γ(α0βk)

dπ j

=
J

∏
j=1

[
Γ(α0)

Γ(α0 +n j)
·

K

∏
k=1

Γ(α0βk +n jk)

Γ(α0βk)
]

Secondly, get the posterior probability of zii given the data observations (not
counting the current observation vii)
p(z ji = k|v ji,z− ji,v− ji,β ) ∝ p(z ji = k|z− ji,β )p(v ji|z ji,z− ji,v− ji,β )

∝ {
(α0βk +n− ji

jk ) f−v ji
k (v ji)

(α0βk) f−v ji
knew

(v ji)

For OG indicator wii , f−w ji
k (w ji) ∝

CWZ
wk,−i+ξ

∑
W
w′=1 CWZ

w′k,−i
+Wξ

f−w ji
knew

(w ji) ∝
ξ

Wξ

Sampling m: For each j, the auxiliary variable mm(0 ≤ m ≤ n jk) is sampled
as:
p(m jk = m|v ji,m− jk,z,β ) = Γ(α0βk)

Γ(n jk+α0βk)
s(n jk,m)(α0βk)

m

in which s(n,m) is defined as: s(0,0) = s(1,1) = 1 , s(n,0) = 0
s(n,m) = 0 f orm > n,s(n+ 1,m) = s(n,m− 1) + ns(n,m) Sampling β : ac-
cumulate mik for all document j to get m1,m2, · · · ,mk, then draw β ∼
Dirichlet(m1,m2, · · · ,mk,γ)
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After a set of sampling processes based on the posterior distribution calculated above, other

parameters can be sampled using the following equations:

ψ
(w)
e =

CWE
we,−q+η

∑w′C
WE
we,−q+Wη

ϕ
(w)
k =

CWE
wk,−q+ξ

∑w′C
WZ
wk,−q+Wξ

λ
(0)
j =

n̆ j,−q+ζ

n j+n̆ j,−q+2ζ
λ
(1)
j =

n j,−q+ζ

n j,−q+n̆ j+2ζ

4.5 EXPERIMENT RESULTS

4.5.1 Functional and Taxonomic Analysis of N-Mer Sub-Read Profiles by Proba-

bilistic Topic Modeling

Taxonomic Data Analysis of Human Gut Microbial Samples

In this section, we conduct a generative topic modeling experiment for taxonomic analysis.

Following the methods in Section 3, we apply the LDA topic model to the taxon abundance

data of human gut microbial samples. The human gut microbial community taxon abun-

dance data is generated by [32], which is openly accessible via http://gutmeta.genomics

.org.cn/. According to [32], the Illumina GA reads from human gut microbial samples are

firstly assembled into longer contigs. After that, the MetaGene program was used to predict

open reading frames (ORFs) from those contigs. The predicted ORFs were then aligned to

each other and grouped to a non-redundant gene set. The gene taxonomic assignment is

achieved by carrying out BLASTP alignment against the NR database. The taxonomical

level of each gene is determined by the lowest common ancestor (LCA). As a result of gene

taxonomic assignment, the taxon abundance data for each sample can be produced.

The human gut microbial samples from [32] belong to both healthy subjects (HS) and pa-

tient with inflammatory bowel disease (IBD). Specifically, the IBD patients are from two

different groups, one group with Crohns disease (CD), and the other group with ulcera-
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tive colitis (UC). In total, there are 85 healthy human gut microbial samples (MH0001

to MH0086), 15 UC samples (O2.UC-1 to O2.UC-24) and 12 CD samples (V1.CD-1 to

V1.CD-15).

During topic modeling, we assume symmetric priors and set hyper-parameters following

the methods in Section 3. The number of latent topics is set to be 50. In our approach,

we apply a Gibbs sampling process to iteratively estimate the model from the genome se-

quence data. On the convergence of the Gibbs sampling process, we will be able to tell the

topic-level distribution of taxa as well as the sample-level distribution of latent topics. Ex-

amples of uncovered latent topics are illustrated in Table 4.3-4.5. More specifically, Table

1 illustrates the top-ranked latent topics of three different samples, in which the ID of latent

topics are sorted by the probability with respect to different samples. Table 4.4 represents

the top-ranked taxa with respect to different latent topics, in which the taxa are sorted by

the probability of being generated by latent topics. Table 4.5 shows the commonly shared

top-ranked latent topics of different sample categories.

Table 4.6 illustrated the most relevant latent topics of each taxon. For each taxon, la-

tent topics are sorted with respect to the mutual information (MI)score, which severs as

a relevance measurement between taxa and latent topics. As shown in Table 4.6, phylum

Firmicutes is most relevant to Topic 15. According to Table 4.5 we know that, Topic 15 is

a common latent topic in Healthy and UC samples, yet it is not a common latent topic in

CD samples. This may suggests that for CD samples, the proportion of bacteria belong to

phylum Firmicutes is reduced. Similarly, since genus Clostridium is most relevant to Topic

14 and genus Bacteroides is most relevant to Topic 24, the prevalence of Topic 14 and 24

in samples may indicate the existence and possibly high abundance of genus Clostridium
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Table 4.3: Illustration of Top-ranked Latent Topics with Respect to Different Microbial
Samples

Table 4.4: Illustration of Top-ranked Taxa with Respect to Different Latent Topics
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Table 4.5: Commonly Shared Top-ranked Latent Topics for Three Different Sample Cate-
gories

Table 4.6: Illustration of the Most Relevant Latent Topics with Respect to Different Taxa

Topic ID MI Score Topic ID MI Score Topic ID MI Score
family Enter-
obacteriaceae

Topic 48 0.02476 Topic 121 0.00915 Topic 31 0.00279

genus Clostrid-
ium

Topic 50 0.01628 Topic 153 0.01001 Topic 95 0.00765

genus Bac-
teroides

Topic 156 0.03030 Topic 77 0.02018 Topic 52 0.01661

phylum Bac-
teroidetes

Topic 132 0.00476 Topic 165 0.00260 Topic 67 0.00257

phylum Firmi-
cutes

Topic 0 0.01256 Topic 99 0.00550 Topic 193 0.00212
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and genus Bacteroides, correspondingly.

Our conclusion from the results is evidenced by the recent discoveries in fecal microbiota

study of inflammatory bowel disease (IBD) patients [42], [31], [96], [33]. It has been

reported that there is a significant reduction in the proportion of bacteria belonging to phy-

lum Firmicutes in CD samples, which is consistent with our results. This can be explained

by the fact mucosal microbial diversity is reduced in IBDs, particular in CD, which is as-

sociated with bacterial invasion of the mucosa. In UC, the inflammation is typically more

superficial; therefore, the reduction of phylum Firmicutes in UC is not significant.

Gene Function Analysis of N-mer sequence

In this section, we deal with the problem of uncovering genome-level composition of N-

mer latent patterns and explain the functional role of different components. More specifi-

cally, in order to deepen our understanding of genome composition and exploit the common

function of genome sequences from the same species, we propose to identify the relatively

stable part (core genome) and relatively diverse part (distributed genome) from the genome

sequences by examining those uncovered latent genomic patterns. We apply the LDA topic

model to N-mer sequence data obtained from standard reference sequences (FASTA for-

mat) of 635 genomes downloaded from the NCBI database. During topic modeling, we

assume symmetric priors and set hyper-parameters. The number of latent topics is set to be

100. In our approach, we apply a Gibbs sampling process to iteratively estimate the model

from the genome sequence data. On the convergence of the Gibbs sampling process, each

N-mer is assigned a topic label. Also, we are able to tell the topic-level distribution of

N-mer as well as the genome-level distribution of topics.

An example of uncovered latent topics is illustrated in Table 4.7 and Table 4.8. More specif-
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Table 4.7: Illustration of Top-ranked 9-mers for Latent Topics Learnt by the LDA Model

ically, Table 4.7 represents the top-ranked N-mer (N=9) for each latent topic, in which the

N-mers are sorted by the probability that they are generated by a certain latent topic. As we

can see, the topic-level distribution of N-mers demonstrates a unique concurrence pattern,

which may consistently present in different genomes. In other words, the presences of a

certain latent topic in a genome may indicate the presence of a specific genomic component

that be related to specific functional roles. Table 4.8 illustrates the top-ranked latent topic

ID for genomes sets E. Coli, in which the latent topics are sorted by the probability that the

given genome contains them.

Table 4.8 and Table 4.9 represent the top-ranked latent topic for genomes sets E. Coli

and P. Marinus, which each involves at least 10 genomes from the same species. Table

4.10 further shows up the commonly shared top-ranked latent topics for both E. Coli and
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Table 4.8: Top-ranked Topics for E. Coli Genomes

P. Marinus genome sets. From the experiment results, we can see that the E. Coli genomes

are really diverse, as they rarely share common latent topics among their top-ranked topics.

This result suggests that the E. Coli species has more distributed genes than core genes as

those strains seldom share common genomic components. One possible reason is that the

whole genome sequence in strain of E.Coli has experience massive gene loss and gene gain

which cause increasingly large intra-species genomes variation. In the contrary, P. Marinus,

another genome set we studied, have some common latent topics shared among its different

strains, which may potentially relate to the core genome.

Although the genome-wide top-ranked latent topics provide us some insights about the

common genomic patterns (core genome) in a set of genomes, however, in order to fully un-

derstand such a common genomic pattern, and identify the functional role of core genome,
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Table 4.9: Top-ranked Topics for P. Marinus Genomes

Table 4.10: Commonly Shared Top-ranked Latent Topics for both E. Coli and P. marinus
Genome Sets
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Table 4.11: Annotation (Enzyme and Pathway Information, Metabolic Capabilities) for
Gene gldA

it is of great importance to study the relationship between latent topics and gene regions

and give this relationship a biological explanation to help with the explanation of the func-

tional role of the core genomes and distributed genomes. As mentioned, we exploited the

BioCyc database to provide hierarchical functional annotations for gene regions, which in-

volves enzyme and pathway information as well as the metabolic capabilities. An example

of gene region functional annotation is illustrated in Table 4.11. Table 4.12 illustrated the

most relevant latent topics of each gene region type (with mutual information score speci-

fied behind each topic ID). As mentioned in Section 4.4, after assigning topic labels to each
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Table 4.12: Illustration of the Most Relevant Latent Topics of Some Gene Region in P.
Marinus Genomes

of the N-mers, the mutual information between latent topics and gene regions is calculated

as the relevance measurement. It should be note that we also calculate mutual information

for non-protein-encoding region and unnamed gene regions, under the name ‘Non-Gene’

and ‘Unnamed Gene’, respectively. According to Table 4.12, latent topics 3, 36 and 26 are

in general more relevant to non-protein-encoding regions in P. Marinus genomes. Latent

topics 0, 8, 70, on the other hand, are in general more relevant to protein-encoding regions.

In Table 4.13, we highlight the major functions of genes that are most relevant to the com-

monly shared top-ranked latent topics, which provide us an insight about the functional

role of the core genome. We also show that gene pairs relevant to the same latent topics

also share some common gene functions, which indicates that the uncovered latent topics

are biological informative and useful to the interpretation.

Conclusions

We introduce generative topic model to both homology-based approach and composition-
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Table 4.13: Features for Top-ranked Latent Topics and the Paired Genes
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based approach to further study the functional core (i.e. microbial core and gene core, cor-

respondingly). We show that generative topic model can be used to model the taxon abun-

dance information obtained by homology-based approach and study the microbial core.

Our experimental results show that estimated generative topic model for taxon abundance

data is able to uncover the structure of microbial groups in each sample. Secondly, the ex-

perimental results demonstrate that the proposed method is capable of characterizing a set

of common genomic features (core genomes) shared by the genome sets, thus providing

new insights into our understanding of genome composition. The developed framework

also utilizes the BioCyc dataset to provide a reliable and comprehensive explanation of the

functional roles for genome components, which enable us to acquire the enzyme and path-

way information as well as the major metabolic capabilities of genomic components. We

also show that latent topic modeling can be used to characterize core and distributed genes

within a species and to correlate similarities between genes and their functions.

4.5.2 Estimating Functional Groups in Human Gut Microbiome with Probabilistic

Topic Models

In this section, we conduct a probabilistic topic modeling experiment to identify func-

tional groups from microbial samples from two large published gut microbiome datasets:

the Illumina-based metagenomics data from 112 Danish individuals [32] and the Sanger-

sequenced meta-genome of 39 individuals dataset [28]. Following the methods in Section

4.4,we apply the proposed probabilistic topic models to the functional element abundance

data acquired from non-redundant gene catalog of human gut microbial samples.

Experimental Data Collection
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The Illumina human gut microbial community taxon abundance data is generated by [32],

which is openly accessible via http://gutmeta.genomics.org.cn/. According to [32], the

Illumina GA reads from human gut microbial samples are firstly assembled into longer

contigs. After that, the Glimmer program was used to predict protein-encoding sequences

(CDs) from assembled contigs. The predicted CDs sequences were then aligned to each

other and form a non-redundant CDs catalog (a.k.a. minimal gut genome). The non-

redundant CDs catalog consists of 3,299,822 non-redundant CDs sequences with an av-

erage length of 704 bp.For a given non-redundant CDs sequence, its NCBI taxonomical

level is obtained by carrying out BLASTP alignment against the NCBI NR database. The

taxonomical level of each non-redundant CDs sequence is determined by the lowest com-

mon ancestor (LCA) based algorithm. The taxonomic abundance data for each sample can

be computed by counting the indicators of NCBI taxonomical levels. The assignments of

gene orthologous indicator and KEGG pathway indicator are achieved by BLASTP align-

ment of the amino-acid sequence from predicted CDs to the eggNOG database and KEGG

database. The human gut microbial samples from [32] belong to both healthy subjects

(HS) and patients with inflammatory bowel disease (IBD). Specifically, the IBD patients

are from two different groups, one group with Crohn’s disease (CD), and the other group

with ulcerative colitis (UC). In total, there are 85 healthy samples, 15 UC samples and 12

CD samples.

The Sanger sequenced gut microbime dataset [28] includes 22 European meta-genomes

from Danish, French, Italian and Spanish individuals in combine with Sanger gut dataset

from 13 Japanese and 4 American individuals. For sequencing processing, the raw Sanger

reads are trimmed to remove low-quality reads and possible human DNA contaminations.
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The cleaned Sanger reads are then assembled to longer contigs for gene prediction. The

phylogentic annotation of samples was performed by aligned Sanger reads against a total of

1,511 reference genomes.The gene functions are annotated via BLASTP against eggNOG

and KEGG databases, which yields high through-put gene function profiling, as 63.5% of

the predicted genes in the Sanger-sequenced samples can be assigned to the orthologous

group. The gene function profile, may then be used to study the composition of eggNOG

and KEGG orthologous groups across distinct samples.

Topic Inferring from Predicted Gene Cataloguewith LDA-B Model

As introduced in Section 4.4, the functional elements, which bear an analogy with text

words, includes three different types of indicators, i.e. NCBI taxonomic level indicators,

indicator of gene orthologous groups and KEGG pathway indicators. The union of unique

functional elements jointly defines a fixed word vocabulary. In Illumina dataset, there are

647,136 NCBI taxonomic level indicators, with a vocabulary size of 748; there are a total

of 1,293,764 gene orthologous group indicators, with a vocabulary size of 4667; and there

are 953,493 KEGG pathway indicators, with a vocabulary size of 237.

It should be pointed out that, in our approach we separately estimated three probabilis-

tic topic models with respect to three different types of functional elements (i.e. NCBI

taxonomic level indicators, indicator of gene orthologous groups and KEGG pathway in-

dicators). We apply a Gibbs sampling process to iteratively update the model estimation

from the functional element abundance data until converge (basically, it takes less than 100

iterations to converge). During topic modeling, we assume symmetric priors and set hyper-

parameters.On the convergence of the Gibbs sampling process, we will be able to tell the

topic-level distribution of functional elements as well as the sample-level distribution of
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latent topics. In our experiment, we test different topic numbers on the proposed LDA-B

model and compare the log-likelihood. Log-likelihood is one of the standard criteria for

generative model evaluation. It provides a quantitative measurement of how well a topic

model fits the training data. The score of log-likelihood (which is a negative number) is

the higher the better. In practice, the log-likelihood of elements given latent topics can be

calculated by integrating out all the latent variables.

p(w|z) =
T

∏
t=1

(∫
ϕzt

p(w|zt ,ϕzt ) p(ϕzt |zt)dϕzt

)
=
(Γ(Wβ )

Γ(β )W
)T

T

∏
t=1

∏wi Γ

(
n(wi)

t +β

)
Γ

(
n(·)t +Wβ

) · Γ(Wη)

(η)W
·

∏wi Γ

(
n(wi)

0 +η

)
Γ

(
n(·)0 +Wη

) (4.8)

For the LDA model, the log-likelihood can be calculated in a similar way. In Fig. 4.7(a-

c),we show the log-likelihood comparison of the proposed LDA-B models and LDA model

on three different types of functional elements under different topic number. It shows that,

for both models, the likelihood increases as the number of topic increases, which means

that a relatively larger topic numbers may potentially result in better fitting of the data.

However, it should be noted that there is a trade-off between topic numbers and conver-

gence time of models. And, as we would see in next section, the increase of topic number

does not always lead to the improvement of predictive results. In general, the log-likelihood

of LDA model is higher than that of the LDA-B model, which shows LDA model fit the

training data better. The difference between two models can be explained by the introduc-

ing of background topic in the LDA-B model.

The Perplexity is a widely used criterion for evaluating the predictive ability of probabilis-
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tic topic models. The perplexity is calculated for held-out testing data. In our experiment,

we use a 50% subset of the functional elements as training data and the other 50% as test-

ing data. On constructing the two subsets, we ensure that functional elements from the

same sample are equally split to both subsets. In practice, it is the inverse predicted model

likelihood of data in held-out testing data, using parameters inferred from the trained topic

model. Thus the smaller perplexity value indicates better model fitting.

perplexity(Dtest) = exp

(
−∑

Dtest
j=1 log

(
p
(
t j
))

∑
Dtest
j=1 Nt

j

)
(4.9)

One advantage of our LDA-B model is that it assigns commonly shared functional ele-

ments to the background distribution, which makes the model more suitable to represent

genome-wide co-existing patterns of functional elements. Fig. 4.7(d-f)represents the per-

plexity comparison of the proposed LDA-B models and LDA model on three different types

of functional elements as the topic number increasing. It shows that the perplexity of our

model is consistently lower than LDA model, which suggests that our model is ‘less sur-

prised’ by the testing data, thus demonstrates better predictive ability. Also, it shows that

the predictive ability of our model may benefit from greater topic number, as it tends to

have lower perplexity as the topic number increases. The proposed LDA-B model achieves

best log-likelihood and perplexity scores when topic number equals to 200. Therefore, the

LDA-B models are inferred with topic number set to 200.

Inferring Functional Basis for Enterotypes with Extended Background HDP Model

In this section, we investigate the performance of the proposed Enterotype-HDP model us-

ing the Sanger-sequenced meta-genome samples [28].
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Figure 4.7: (a-c) The Log-likelihood comparison of the proposed LDA-B models and LDA
model on three different types of functional elements (as topic number changing), (e-f)
The perplexity comparison on three different types of functional elements (as topic number
increasing).
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In [28], the predicted gene catalog from Sanger-sequenced meta-genome samples cov-

ering a wide spectrum of bacteriaonly 0.14% of the reads could be classified as human

contamination. Also, 63.5% of the predicted genes in the Sanger-sequenced samples can

be assigned to the orthologous groups. Across the 33 samples in 3 distinct Enterotypes,

there are 2,319,439 genes assigned to 13507 eggNOG orthologous groups and 1,543,293

genes mapped to 4,900 KEGG orthologous groups.

The values of global concentration parameter γ are determined by log-likelihood and per-

plexity comparison on a serial of values. Other hyper-parameters (such as Dirichlet dis-

tribution priors:ξ ,ηand Beta distribution prior ζ ) are set in prior and fixed during the

experiments. The prediction of functional basis for each Enerotype and functional mix-

ture components across the samples is achieved by performing Gibbs sampling on sample

orthologous-group (OG) profiles (including both eggNOG and KEGG OG indicators) to

estimate the sample-level distribution of switch variable and functional components. The

output will be a set of functional components and Enterotype functional basis inferred from

the training dataset.

Fig. 4.8 shows the log-likelihood comparison of the Enterotype HDP model with different

concentration parameterγ .Overall, the log-likelihood of the model increase over the itera-

tions during the Gibbs sampling process, indicating better fitting to the training data. The

best (highest) log-likelihood score is achieved with γ = 15.0. We also compare the per-

plexity of Enterotype HDP model on a serial of γ values. The results in Fig. 4.9 show that

the model achieve best perplexity score when=20.0 .

Illustration of Discovered Latent Themes

One major objective of the proposed models is inferring functional groups from meta-
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Figure 4.8: Log-likelihood comparison of Enterotype HDP model

Figure 4.9: Perplexity comparison of Enterotype HDP model
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genomes to facilitate knowledge organizing and interpreting the biological processes en-

coded in meta-genome sequences. Inferred latent topic may provide more details to study

both the phylogenetic variation at the genus and phylum level and the functional variations

at gene and functional class levels across samples. With this consideration, we visualize

the uncovered background topics of NCBI taxonomic level indicators, geneOGs indicators

and KEGG pathway indicators from three independent LDA-B models and providing the

top-ranked functional elements (Table 4.14-4.16).

Table 4.14 illustrates the background topic of taxonomic level indicators, which provides an

insight of the bacteria core of the most common co-existing taxa across meta-genome sam-

ples. Table 4.15 represents the background topic of gene OGs indicators. As we can see,

the top-ranked functional elements not only involves general biology process and molecular

functions such as signal transduction, metabolic capacity, and important protein synthesis

(RNA and DNA polymerase, ATP synthase) but also involves gut-specific functions such

as adhesion to the host protein or in harvesting sugars of the glycolipids. Table 4.16 shows

the background topic of KEGG pathway indicators, which involves the main metabolic

pathways such as carbon metabolism and amino acid metabolism.

More examples about uncovered latent topics with respect to NCBI taxonomic indicators

are illustrated in Table4.17 -4.19.Specifically, Table 4.17 illustrates the top-ranked latent

topics of three different samples, in which the ID of latent topics are sorted by the probabil-

ity with respect to different samples. Table 4.18 represents the top-ranked taxa with respect

to different latent topics, in which the taxa are sorted by the probability of being generated

by topics.

Table 4.19 illustrated the most relevant latent topics of each taxon. For each taxon, latent
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Table 4.14: Illustration of the Background Topic of Taxonomic Level Indicators

Table 4.15: Illustration of the Background Topic of Gene Ogs Indicators
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Table 4.16: Illustration of the Background Topic of Kegg Pathway Indicators
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topics are sorted with respect to the mutual information score (MI score). As shown in

Table 8, phylum Firmicutes is most relevant to the background topic (Topic 0). According

to Table4.17, the probability of Topic 0 in Healthy and UC samples (0.475 in MH0001

and 0.363 in O2.UC-1) is much higher than that in CD samples (0.286 in V1.CD-1). This

suggests that for CD samples, the proportion of bacteria belong to phylum Firmicutes is

significantly reduced. Similarly, since genus Clostridium is most relevant to Topic 50, 153,

95 and genus Bacteroides is most relevant to Topic 156, 77, 52, the prevalence of Topic 95

and 52 in samples O2.UC-1 and sample V1.CD-1 may indicate the existence and possibly

high abundance of genus Clostridium and genus Bacteroides, correspondingly. Our con-

clusion from the results is evidenced by the recent discoveries in fecal microbiota study of

inflammatory bowel disease (IBD) patients [96], [42], [31], [33]. It has been reported

that there is a significant reduction in the proportion of bacteria belonging to phylum Firmi-

cutes in CD samples, which is consistent with our results. This can be explained by the fact

mucosal microbial diversity is reduced in IBDs, particular in CD, which is associated with

bacterial invasion of the mucosa. In UC, the inflammation is typically more superficial;

therefore, the reduction of phylum Firmicutes in UC is not significant.

In our experiment, the phylogenetic composition inferred from latent topics(Fig. 4.10)agrees

with previous observations in [32]and [28]: the Firmicutes and Bacteroidetes phyla con-

stitute the vast majority of the dominant human gut microbiota, and Bacteroidesis among

the most abundant yet most variable genus across samples.

In order to facilitate analyzing the composition of microbiome community of human gut

across cohorts, and get insights into functional differences between gut microbiomes across

different samples, we use the extended HDP model to infer the functional basis of each of
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Figure 4.10: Box-plot of background topic probability in samples

the three identified Enterotype in [28]. We illustrate the inferred functional basis ψe learned

from the corresponding Enterotypes in Table 4.20-4.22.

Conclusions

In this section, based on the functional elements derived from the non-redundant CDs cat-

alogue, we have shown that the configuration of functional groups encoded in the gene-

expression data of meta-genome samples can be inferred by applying probabilistic topic

modeling to functional elements derived from the non-redundant CDs catalogue (including

taxonomic levels, indicators of gene orthologous groups and KEGG pathway mappings).

When used to study microbial samples, the proposed model considers each sample as a

‘document’, which has a mixture of ‘latent topic’; while each latent topic is a weighted

mixture of functional elements that bear an analogy with ‘words’. We also introduce the

extended Enterotypr-HDP model to infer functional basis from detected enterotypes. The

latent topics estimated from human gut microbial samples are evidenced by the recent dis-
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Table 4.17: Illustration of Top-ranked Latent Topics with Respect to Different Microbial
Samples

MH0001 p(t|sample) O2.UC-1 p(t|sample) V1.CD-1 p(t|sample) · · ·
Topic 0 0.475 Topic 0 0.363 Topic 0 0.286 · · ·
Topic 124 0.116 Topic 95 0.101 Topic 61 0.124 · · ·
Topic 181 0.103 Topic 143 0.062 Topic 12 0.116 · · ·
Topic 159 0.040 Topic 83 0.059 Topic 115 0.050 · · ·
Topic 86 0.027 Topic 65 0.056 Topic 52 0.048 · · ·
Topic 72 0.018 Topic 139 0.034 Topic 32 0.037 · · ·
Topic 19 0.017 Topic 59 0.033 Topic 50 0.036 · · ·

Table 4.18: Illustration of Top-ranked Taxa with Respect to Different Latent Topics

Topic 1 p(w|t) Topic 2 p(w|t) Topic 3 p(w|t) · · ·
order Clostridi-
ales

0.343 genus Strepto-
coccus

0.395 genus Bac-
teroides

0.277 · · ·

genus Clostrid-
ium

0.283 order Clostridi-
ales

0.117 order Clostridi-
ales

0.144 · · ·

genus Ru-
minococcus

0.187 order Lactobacil-
lales

0.101 order Bac-
teroidales

0.121 · · ·

phylum Firmi-
cutes

0.052 genus Lactobacil-
lus

0.091 phylum Bac-
teroidetes

0.101 · · ·

family
Erysipelotrichaceae

0.038 genus Clostrid-
ium

0.062 genus Clostrid-
ium

0.084 · · ·
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Table 4.19: Illustration of the Most Relevant Latent Topics with Respect to Different Taxa

Topic ID MI Score Topic ID MI Score Topic ID MI Score
family Enter-
obacteriaceae

Topic 48 0.02476 Topic 121 0.00915 Topic 31 0.00279

genus
Clostridium

Topic 50 0.01628 Topic 153 0.01001 Topic 95 0.00765

genus Bac-
teroides

Topic 156 0.03030 Topic 77 0.02018 Topic 52 0.01661

phylum Bac-
teroidetes

Topic 132 0.00476 Topic 165 0.00260 Topic 67 0.00257

phylum Firmi-
cutes

Topic 0 0.01256 Topic 99 0.00550 Topic 193 0.00212

coveries in fecal microbiota study, which demonstrate the effectiveness of the proposed

method.
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Table 4.20: Illustration of the Functional Basis of Gene Ogs in Enterotype 1 of Sanger
Sequenced Samples

Orthologous Group Descriptions Probability
COG0642 Signal transduction histidine kinase 0.009613
COG1132 ABC-type multidrug transport system, ATPase

and permease components
0.006868

COG0745 Response regulators consisting of a CheY-like
receiver domain and a winged-helix DNA-
binding domain

0.005773

COG0577 ABC-type antimicrobial peptide transport sys-
tem, permease component

0.005155

COG3451 Type IV secretory pathway, VirB4 compo-nents 0.004516
COG3250 Beta-galactosidase/beta-glucuronidase 0.004511
COG0550 Topoisomerase IA 0.004370
COG0463 Glycosyltransferases involved in cell wall bio-

genesis
0.003678

COG1472 Beta-glucosidase-related glycosidases 0.003632
COG1595 DNA-directed RNA polymerase specialized

sigma subunit, sigma24 homolog
0.003350

K03169 DNA topoisomerase III [EC:5.99.1.2] 0.003330
K03088 RNA polymerase sigma70 factor, ECF subfam-

ily
0.003151
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Table 4.21: Illustration of the Functional Basis of Gene Ogs in Enterotype 2 of Sanger
Sequenced Samples

Orthologous Group Descriptions Probability
COG1132 ABC-type multidrug transport system, ATPase

and permease components
0.006746

COG0642 Signal transduction histidine kinase 0.006288
COG0745 Response regulators consisting of a CheY-like

receiver domain and a winged-helix DNA-
binding domain

0.005296

COG3451 Type IV secretory pathway, VirB4 components 0.004350
COG1373 Predicted ATPase (AAA+ superfamily) 0.004011
COG3505 Type IV secretory pathway, VirD4 components 0.003961
COG0577 ABC-type antimicrobial peptide transport sys-

tem, permease component
0.003841

COG3344 Retron-type reverse transcriptase 0.003704
COG0550 Topoisomerase IA 0.003307
COG1472 Beta-glucosidase-related glycosidases 0.003187
COG0463 Glycosyltransferases involved in cell wall bio-

genesis
0.003164

COG0178 Excinuclease ATPase subunit 0.003083
K03205 type IV secretion system protein VirD4 0.002699
COG0463 Glycosyltransferases involved in cell wall bio-

genesis
0.003164
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Table 4.22: Illustration of the Functional Basis of Gene Ogs in Enterotype 3 of Sanger
Sequenced Samples

Orthologous Group Descriptions Probability
COG0745 Response regulators consisting of a CheY-like

receiver domain and a winged-helix DNA-
binding domain

0.007661

COG3451 Type IV secretory pathway, VirB4 components 0.007353
COG0577 ABC-type antimicrobial peptide transport sys-

tem, permease component
0.005765

COG3505 Type IV secretory pathway, VirD4 components 0.004628
COG0550 Topoisomerase IA 0.004314
COG1472 Beta-glucosidase-related glycosidases 0.004213
COG3250 Beta-galactosidase/beta-glucuronidase 0.003617
COG0463 Glycosyltransferases involved in cell wall bio-

genesis
0.003524

COG1136 ABC-type antimicrobial peptide transport sys-
tem, ATPase component

0.003474

K03205 type IV secretion system protein VirD4 0.003246
K03169 DNA topoisomerase III [EC:5.99.1.2] 0.002958
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5. CONCLUSIONS

In this thesis, a set of novel probabilistic topic models have been proposed to address

challenging issues in image mining and bioinformatics studies. The contributions are as

follows.

To leverage image, text and user-created tags to enhance the performance of image anno-

tation and retrieval,we have introduced novel image representation, and a wide-range of

algorithms and methods including the saliency model (salient regions and key-points) as

a complement part of spatial layout model for image representation. Several probabilis-

tic topic models are proposed for effective and robust modeling of the co-existing image

features, annotations, user-perspective and the semantic relations between visual attributes

and object categories. Specifically,a probabilistic topic-connection (PTC) model is pro-

posed for co-existing image features and annotations, in which new latent variables are

introduced to allow for more flexible sampling of word topics and visual topics, allowing

one word topic may connect to multiple visual topics. A perspective hierarchical Dirichlet

process (pHDP) model is proposed to deal with user-tagged image modeling, associating

image features with image tags and incorporating the user’s perspectives into the image

tag generation process. New latent variables are introduced to determine if an image tag

is generated from user’s perspectives or from the image content. Moreover, the automatic

framework forvisual attributes identification and semantic relation learning between visual

attributes and object categories is proposed. The semantic associations between visual at-

tributes and object categories are then incorporated into a text-based topic model to infer
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descriptive latent topics from natural language knowledge base. It’s shown that in min-

ing large scale text corporaof natural language descriptions, the relation between semantic

visual attributes and object categories can be encoded as Must-Links and Cannot-Links,

which can be represented by Dirichlet-Forest prior.

We also introduce generative topic model to meta-genomics studies. We show that gen-

erative topic model can be used to model the taxon abundance information obtained by

homology-based approach and study the microbial core. Our experimental results show that

estimated generative topic model for taxon abundance data is able to uncover the structure

of microbial groups in each sample. Secondly, the experimental results demonstrate that

the proposed method is capable of characterizing a set of common genomic features (core

genomes) shared by the genome sets, thus providing new insights into our understand-

ing of genome composition. The developed framework also utilizes the BioCyc dataset

to provide a reliable and comprehensive explanation of the functional roles for genome

components, which enable us to acquire the enzyme and pathway information as well as

the major metabolic capabilities of genomic components. We also show that latent topic

modeling can be used to characterize core and distributed genes within a species and to

correlate similarities between genes and their functions.Based on the functional elements

derived from the non-redundant CDs catalogue, our study shows that the configuration of

functional groups encoded in the gene-expression data of meta-genome samples can be

inferred by applying probabilistic topic modeling to functional elements derived from the

non-redundant CDs catalogue (including taxonomic levels, indicators of gene orthologous

groups and KEGG pathway mappings). When used to study microbial samples, the pro-

posed model considers each sample as a ‘document’, which has a mixture of ‘latent topic’;
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while each latent topic is a weighted mixture of functional elements that bear an analogy

with ‘words’. The extended Enterotypr-HDP model is introduced to infer functional basis

from detected enterotypes. The latent topics estimated from human gut microbial samples

are evidenced by the recent discoveries in fecal microbiota study, which demonstrate the

effectiveness of the proposed models.

In summary, a broad range of topics in statistical learning, image processing, social net-

work analysis, content-based image retrieval and bioinformatics studies are addressed in

this thesis. A set of the robust probabilistic topic models and annotation algorithms are de-

veloped. Research outcomes from this thesis will lead to more efficient and effective mod-

eling and simulation mechanism insemantic image annotation, statistical learning, bioin-

formatics and social network analysis.
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