580 research outputs found

    Final Research Report on Auto-Tagging of Music

    Get PDF
    The deliverable D4.7 concerns the work achieved by IRCAM until M36 for the “auto-tagging of music”. The deliverable is a research report. The software libraries resulting from the research have been integrated into Fincons/HearDis! Music Library Manager or are used by TU Berlin. The final software libraries are described in D4.5. The research work on auto-tagging has concentrated on four aspects: 1) Further improving IRCAM’s machine-learning system ircamclass. This has been done by developing the new MASSS audio features, including audio augmentation and audio segmentation into ircamclass. The system has then been applied to train HearDis! “soft” features (Vocals-1, Vocals-2, Pop-Appeal, Intensity, Instrumentation, Timbre, Genre, Style). This is described in Part 3. 2) Developing two sets of “hard” features (i.e. related to musical or musicological concepts) as specified by HearDis! (for integration into Fincons/HearDis! Music Library Manager) and TU Berlin (as input for the prediction model of the GMBI attributes). Such features are either derived from previously estimated higher-level concepts (such as structure, key or succession of chords) or by developing new signal processing algorithm (such as HPSS) or main melody estimation. This is described in Part 4. 3) Developing audio features to characterize the audio quality of a music track. The goal is to describe the quality of the audio independently of its apparent encoding. This is then used to estimate audio degradation or music decade. This is to be used to ensure that playlists contain tracks with similar audio quality. This is described in Part 5. 4) Developing innovative algorithms to extract specific audio features to improve music mixes. So far, innovative techniques (based on various Blind Audio Source Separation algorithms and Convolutional Neural Network) have been developed for singing voice separation, singing voice segmentation, music structure boundaries estimation, and DJ cue-region estimation. This is described in Part 6.EC/H2020/688122/EU/Artist-to-Business-to-Business-to-Consumer Audio Branding System/ABC D

    Automatic Music Genre Classification of Audio Signals with Machine Learning Approaches

    Get PDF
    Musical genre classification is put into context byexplaining about the structures in music and how it is analyzedand perceived by humans. The increase of the music databaseson the personal collection and the Internet has brought a greatdemand for music information retrieval, and especiallyautomatic musical genre classification. In this research wefocused on combining information from the audio signal thandifferent sources. This paper presents a comprehensivemachine learning approach to the problem of automaticmusical genre classification using the audio signal. Theproposed approach uses two feature vectors, Support vectormachine classifier with polynomial kernel function andmachine learning algorithms. More specifically, two featuresets for representing frequency domain, temporal domain,cepstral domain and modulation frequency domain audiofeatures are proposed. Using our proposed features SVM act asstrong base learner in AdaBoost, so its performance of theSVM classifier cannot improve using boosting method. Thefinal genre classification is obtained from the set of individualresults according to a weighting combination late fusionmethod and it outperformed the trained fusion method. Musicgenre classification accuracy of 78% and 81% is reported onthe GTZAN dataset over the ten musical genres and theISMIR2004 genre dataset over the six musical genres,respectively. We observed higher classification accuracies withthe ensembles, than with the individual classifiers andimprovements of the performances on the GTZAN andISMIR2004 genre datasets are three percent on average. Thisensemble approach show that it is possible to improve theclassification accuracy by using different types of domainbased audio features

    Automatic characterization and generation of music loops and instrument samples for electronic music production

    Get PDF
    Repurposing audio material to create new music - also known as sampling - was a foundation of electronic music and is a fundamental component of this practice. Currently, large-scale databases of audio offer vast collections of audio material for users to work with. The navigation on these databases is heavily focused on hierarchical tree directories. Consequently, sound retrieval is tiresome and often identified as an undesired interruption in the creative process. We address two fundamental methods for navigating sounds: characterization and generation. Characterizing loops and one-shots in terms of instruments or instrumentation allows for organizing unstructured collections and a faster retrieval for music-making. The generation of loops and one-shot sounds enables the creation of new sounds not present in an audio collection through interpolation or modification of the existing material. To achieve this, we employ deep-learning-based data-driven methodologies for classification and generation.Repurposing audio material to create new music - also known as sampling - was a foundation of electronic music and is a fundamental component of this practice. Currently, large-scale databases of audio offer vast collections of audio material for users to work with. The navigation on these databases is heavily focused on hierarchical tree directories. Consequently, sound retrieval is tiresome and often identified as an undesired interruption in the creative process. We address two fundamental methods for navigating sounds: characterization and generation. Characterizing loops and one-shots in terms of instruments or instrumentation allows for organizing unstructured collections and a faster retrieval for music-making. The generation of loops and one-shot sounds enables the creation of new sounds not present in an audio collection through interpolation or modification of the existing material. To achieve this, we employ deep-learning-based data-driven methodologies for classification and generation

    Music content analysis: Key, chord and rhythm tracking in acoustic signals

    Get PDF
    Master'sMASTER OF SCIENC

    Towards Music Structural Segmentation across Genres: Features, Structural Hypotheses, and Annotation Principles

    Get PDF
    This work is supported by China Scholarship Council (CSC) and EPSRC project (EP/L019981/1) Fusing Semantic and Audio Technologies for Intelligent Music Production and Consumption (FAST-IMPACt). Sandler acknowledges the support of the Royal Society as a recipient of a Wolfson Research Merit Award
    corecore