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Towards Music Structural Segmentation Across Genres: Features,
Structural Hypotheses and Annotation Principles

MI TIAN, Centre for Digital Music, Queen Mary University of London
MARK B. SANDLER, Centre for Digital Music, Queen Mary University of London

This paper faces the problem of how different audio features and segmentation methods work with dif-
ferent music genres. A new annotated corpus of Chinese traditional Jingju music is presented. We incorpo-
rate this dataset with two existing music datasets from the literature in an integrated retrieval system to
evaluate existing features, structural hypotheses and segmentation algorithms outside a Western bias. A
harmonic-percussive source separation technique is introduced to the feature extraction process and brings
significant improvement to the segmentation. Results show that different features capture the structural
patterns of different music genres in different ways. Novelty- or homogeneity-based segmentation algo-
rithms and timbre features can surpass the investigated alternatives for the structure analysis of Jingju
due to their lack of harmonic repetition patterns. Findings indicate that the design of audio features and
segmentation paradigms and the associated signal processing techniques, the consideration of annotation
principles and contextual information related to the music genre should be considered together in an effec-
tive segmentation system.

CCS Concepts: •Information systems→ Information retrieval; Evaluation of retrieval results; Pre-
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Additional Key Words and Phrases: Music information retrieval, music structural segmentation, data col-
lection, harmonic-percussive source separation, evaluation, non-Western music
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1. INTRODUCTION
Music information retrieval (MIR) is a research field concerning the extraction of
meaningful information from music content, usually using computational methods and
with broad applications [Schedl et al. 2014]. Music is primarily an event-based phe-
nomenon comprising a series of musical elements such as melody, harmony or rhythm
that unfold in time. Both human listening and analysis activities suggest music bound-
aries to facilitate portraying content with specific within-piece sectional characteris-
tics. Music structural segmentation (MSS) deals with the structural analysis of an
entire piece. It involves dividing a music signal into its structural parts by giving it
boundaries. What we target with an MSS task then depends on the subjective under-
standing we have of what defines the music structure. Smith studied several segmen-
tation algorithms and suggested that algorithms designed originally for the structural
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39:2 M. Tian and M. B. Sandler

analysis of Western popular music are widely applicable [Smith 2010]. Nonetheless,
the corpora used in [Smith 2010] were collected on the basis of general structural co-
herence that is Western-centric. One primary motivation of this article is to set out
principles for the analysis of the structure of non-Western music.

In the recent decade, a few non-Western traditional music corpora have been in-
cluded in MIR research [Serra 2011]. Jingju, also known as Beijing Opera or Peking
Opera, is one of the most representative Chinese traditional music genres. It combines
singing, dance and theatre art and can offer intriguing research topics to challenge the
existing MIR paradigm [Repetto et al. 2014]. Despite its rich heritage and the sheer
size of its audience, little analytic work has been done to understand its music con-
tent from an MIR perspective until very recently with few works addressing its music
structure.

Because Jingju is initially improvised at its birth, an analytical discovery of its struc-
ture will assist its standardisation and popularisation as well as applications in areas
such as music production and education. In modern times, the art form of Jingju has
undergone changes with newly introduced popular and regional characteristics. This
paper only investigates the classical repertoire of traditional songs. It should also be
noted that song structure has to be differentiated from the structure of the full Jingju
play, where the former relates to only the arias part of the latter. In this work, we will
be addressing the analysis of the song structure.

Existing MSS tools, including audio features and segmentation algorithms, are to
a certain extent encoded with assumptions or heuristics observed for specific types
of music they were originally designed for or evaluated with. The overarching goal
of this article is to evaluate such tools and methodologies for different music genres,
and we situate our study in the scenario of Jingju. With the research presented here,
we are aiming towards an audio-based music structural segmentation system, which
is capable of selecting the optimal audio features and segmentation algorithms allied
to contextual information such as the genre and annotation principles, hence making
intelligent structural discoveries. The remainder of this article can be summarised
as below. In Section 2 we will outline the background of the studied music genre
and review some related work. Section 3 surveys the existing datasets used in this
paper and presents a new Jingju database. We present the feature extraction work
with harmonic-percussive source separation processing in Section 4. The segmenta-
tion methods and experiment conditions will be introduced in Section 5 and Section 6
presents and discusses the results. Finally, Section 7 summarises this work and out-
lines directions for future work.

2. BACKGROUND: JINGJU MUSIC AND MUSIC SEGMENTATION RESEARCH
2.1. Jingju Music
The music form of Jingju can have distinctively different characteristics from Western
music. Unlike the well-known Western pop, harmony or chordal structure is hardly
present in Jingju songs at the segment-level, i.e., the music is what musicians call
through-composed. The music texture is then heterophonic, where variations intro-
duced by different instruments exist in the unitary basic melody.

The Jingju music system is comprised of three major elements: melodic-phrases
(”qiang”)1, metrical patterns (”banshi”), and modes (”diaoshi”) and modal systems
(”shengqiang xitong”). They are hierarchically related and collectively shape the music
structure [Stock 1999; Wichmann 1991].

1A melodic-phrase in this scenario differs from the Western understanding for a melodic phrase, in the sense
that it means ”the melodic progression for singing a single written character from the lyrics”.
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When composing a Jingju play, modal systems and modes are firstly chosen to set
the overall atmosphere. The metrical patterns and melodic-phrases are then arranged
to elaborate the specific content of each passage of lyrics. The song lyrics are organised
in a couplet structure, each consists of two lines of lyrics, which lays the basis of the
music structural framework.

The melodic lines corresponding to a couplet are considered the smallest meaningful
musical units. Although following certain melodic, rhythmic and instrumentation reg-
ularities, each pair of melodic couplets unfolds in a temporal order and never repeats.
A passage of melodic phrases expressing specific music ideas or motifs can be grouped
into a melodic section (”qiangjie”) which can play an integrating role in the overall mu-
sical form. The metrical pattern is the most expressive characteristic element of Jingju.
The transitions of alternating metrical patterns in a Jingju song may indicate bound-
aries between sectional units [Repetto et al. 2014; Srinivasamurthy et al. 2014]. There
are fixed types of metrical patterns, each associated with certain melodic tendencies
and dramatic contexts. Metrical patterns can be classified into the metred and free
categories based on whether their beat styles have accented beats and specific met-
ric regulations or are free of them. Besides the sung sections, Jingju songs also have
instrumental sections and percussion sections bridging the sung parts in the arias.
The percussion is mainly cymbals and gongs which rarely overlap the singing and the
melodic instrumental sections. Functionally, the instrumental and percussion parts
serve to introduce melodic passages and to connect successive melodic lines, hence are
integral to Jingju structure.

Jingju corpora have been presented in two recent works. The first addresses mood
estimation in singing [Black et al. 2014] and the second for melody analysis [Repetto
and Serra 2014]. However, they mainly feature singing properties and are less relevant
to the present research. In the next section, we will introduce a new corpus designed
for the purpose of structural analysis.

2.2. Related Work in Music Structural Segmentation
Techniques for MSS fall into three categories: novelty-, homogeneity-, and repetition-
based. Novelty-based methods rely on the hypothesis that segment boundaries are
characterised by prominent changes in audio features. One classical example of these
methods is introduced in [Foote 2000] by correlating a Gaussian-tapered kernel with
the main diagonal of the self-similarity matrix (SSM) computed from the audio fea-
tures, resulting in a function commonly denoted the novelty curve indicating segment
boundaries as peaks in the novelty function. Homogeneity based approaches, also re-
ferred to as the state approaches, assume homogeneities in local statistical properties
of features in individual structural sections. One common practice is to represent the
sections as states in a hidden Markov model (HMM) [Levy and Sandler 2008]. Alterna-
tively, repetition-based approaches attempt to find repetitive patterns as indicators of
sectional units. Such repetitions commonly form stripe structures in the sub-diagonals
of the SSMs from audio features or patterns in the state sequences from statistical rep-
resentations. Besides using these methods individually, some work attempts to com-
bine them to derive descriptors integrating multiple structural principles and musical
properties [Serrà et al. 2012].

Various audio features have been used to analyse music structure capturing mainly
its harmonic, timbral and rhythmic content, which are identified as the most important
structural descriptors [Paulus et al. 2010].

The chromagram [Fujishima 1999], also called Harmonic pitch class profiles (HPCP),
along with its variants is the most frequently used feature for the structural analysis
of Western pop music. The chromagram is a B-dimensional vector representation de-
noting the relative intensity of each semitone in a chromatic scale, where B is the
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number of bins per octave (BPO). While the 12-BPO setting is intuitively adopted for
most studies for Western pop music, several works have proposed different BPO set-
tings for specific tasks or music genres [Harte and Sandler 2005]. In the numbered
notation Jingju uses, when C is the keynote, 1, 2, 3, . . . , 7 correspond to C, D, E, . . . , B.
Importantly, [Liu et al. 2009] demonstrates that when mapped into a 12-dimensional
chroma scale, the energy distribution of a Chinese traditional music piece is much less
dispersed than that of Western classical music, with around 90% of the energy dis-
tributed in frequency components corresponding to five notes (C, D, E, G, A). [Chen
2013] analyses the pitch histogram for a Jingju collection and confirms the use of pen-
tatonicism with small energy distribution also presented for the 4th and the 7th degree
notes, which use a different tuning scale than the equal temperament. These two have
very expressive roles in modulating between keys in Jingju performance hence are in-
dispensable for the analysis of its pitched content [Wichmann 1991]. Hence, in this
work, we investigate the 7-BPO chromagram feature for MSS of Jingju music.

The Mel frequency cepstral coefficients (MFCCs) feature models the shape of the
spectral envelope by describing the frequency spectrum transposed to a perceptual
scale in a compact form [Logan 2000]. MFCCs are among the most popular timbre
features in MSS research [Aucouturier et al. 2005].

Rhythmic information may also identify music structure. It is however much less
employed compared to the timbre and harmony alternatives [Paulus et al. 2010]. In
this article, we will revisit these three types of audio features for the structural analy-
sis of several distinct music genres.

The success of an audio-based MSS system largely depends on the signal processing
techniques used. One commonly employed technique is to use beat-synchronised audio
features [Levy and Sandler 2008]. This is especially effective for some Western pop
music with predicable beat patterns that can be considered as the basic unit of a po-
tential structural decomposition. However, as discussed in Section 2.1, accented beats
may be lacking and the tempo can be highly flexible in Jingju, resulting in limited
efficacy of common beat tracking algorithms.

MFCCs have been reported as presenting problems in expressing both harmonic and
percussive contents when they present at the same time in a music genre classification
study [Rump et al. 2010]. Furthermore, the heavy use of cymbal and gong instruments
in Jingju can mask the rest of the instrumentation components whose timbral char-
acteristics might hold more fine detail [Tian et al. 2014]. Harmonic-percussive source
separation (HPSS) is a well-studied task concerning separating the input audio signal
into its harmonic and percussive components. Gkiokas et al. point out that HPSS has
the tendency to improve the accuracy of music tempo estimation [Gkiokas et al. 2012].
However, the study of its effects for music structural analysis is lacking from the liter-
ature. In this article, we will investigate the HPSS technique as a pre-processing step
for feature extraction in an MSS scenario.

3. MUSIC CORPORA
3.1. Existing Collections for Music Structural Segmentation
Two of the publicly available databases collected for MSS research are used in this
work. The first consists of 174 songs from The Beatles. It was first manually anno-
tated at Music Technology Group (MTG), Universisitat Pompeu Fabra (UPF) and cor-
rected at Tampere University of Technology (TUT) [Paulus and Klapuri 2008b]. We
denote this dataset BeatlesTUT. The SALAMI Internet Archive dataset (S-IA) is a
publicly available subset of the full database collected in the SALAMI project2 com-

2https://ddmal.music.mcgill.ca/research/salami
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prising 272 pieces [Smith et al. 2011]. The main consideration of the SALAMI dataset
was to cover a wide variety of musical genres, mainly including Western classical mu-
sic, popular music, jazz and world music, and was particularly intended to provide a
textbook example of Western pop music. This dataset has a diversity of audio qualities
by including a large set of live recordings. It is also used for the structural segmen-
tation evaluation in Music Information Retrieval Evaluation eXchange (MIREX), an
international community-based evaluation campaign for various MIR tasks held an-
nually3. Note that S-IA has an overlap with BeatlesTUT of 35 songs, although the
actual recording conditions may differ.

These datasets are based on different annotation principles. BeatlesTUT is anno-
tated with section labels mainly including: ”intro”, ”verse”, ”chorus”, ”bridge”, ”refrain”
and ”outro” with their variations, as well as a few others such as ”break” and ”silence”.
Such annotation is made on a functional level, i.e., the music is segmented into struc-
tural parts expressing specific musical functions. A potential problem is that the use
of function labels can conflate the notion of musical similarity with musical function
and can cause uncertainties in annotation decisions [Peeters and Deruty 2009; Smith
2010]. In contrast, S-IA is annotated on multiple scales incorporating the approach
proposed in [Peeters and Deruty 2009]. In the lowest music similarity level, the seg-
ments are identified to address similarities in ”music ideas”. The function level anno-
tation is similar to that of BeatlesTUT but with more limited section types. Finally the
highest lead instrument level defines structural sections by searching for dominating
instrumentation they consist, such as ”vocal” or ”guitar”. In this paper, we use the mu-
sic similarity level annotations for S-IA. It is because these two datasets use different
annotation principles that they serve as a comprehensive testbed for the segmentation
algorithms and will offer a meaningful reference for the analysis of Jingju music.

3.2. Jingju Structural Segmentation Database
The Jingju corpus used in this article is composed of 30 excerpts from commercial
CDs [(CMG) 2010], sampled at 44.1 KHz and 16 bits per sample with a total length
of 3.6 hours. The CDs were released in the past decade and are recordings of classical
repertoires by the most renowned performers.

A full Jingju play can last several hours, comprising multiple acts. For the purpose
of this study, the excerpts consist of melodic passages taken from arias, with an aver-
age length of 432 seconds. They were selected on the criteria of repertoire coverage,
structural diversity and audio quality. One prerequisite for an excerpt is that various
structural parts should be present characterising temporal progressions or changes of
sectional units. The selected samples in the collection cover the two main modes (xipi
and erhuang) and various metrical patterns. Half of them are performed by female
singers and half by male singers, covering different role types.

3.3. The Annotation Process
In this work, annotations are arranged to describe the musical similarity within a
piece setting aside the musical functions of segments, just as in the lowest level of S-
IA. This is for two reasons. First, functional or lead instrumentation annotations can
be highly genre-dependent, meaning that segmentation results of one dataset are not
necessarily comparable to those of another, whereas low-level music similarity is a phe-
nomenon that can be observed across different genres [Deutsch 2012]. Assessing the
structure on a music similarity level provides a fair comparison between genres and
datasets. Second, the melodic sections are never repeated as chorus-verse based music

3http://www.music-ir.org/mirex/wiki/MIREX HOME
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forms would do and there is much expressiveness in the performance. This can necessi-
tate the analysis of the ornamentations in parallel to defining the functional structure,
thus introducing uncertainties in locating sectional boundaries. It is plausible to set a
flexible and sufficient range for the temporal location of a segment boundary, but this
would raise the demand for new evaluation metrics tailored for this music genre, which
is outside the scope of this study. Annotations created at such a fundamental level also
allows for conveying semantic or musicological meanings given further grouping.

Three listeners (”A1”, ”A2” and ”A3”) participated in annotating the music. Another
two engaged in verifying their annotations, one of which is the first author of this paper
(noted ”V1”) and is familiar with this music style as an amateur, the other is a Jingju
musician and musicologist (noted ”V2”). All annotators are Chinese and were provided
with music scores and lyrics [wenyi chubanshe 1992]. The software used for annotation
is Sonic Visualiser which displays the waveform and the corresponding spectrogram
of the music4. This dataset is denoted CJ in the remainder of this paper. Associated
metadata is available online5.

In this process, A1, A2 and A3 firstly worked independently, each producing anno-
tations on their own. They were instructed to assign each syllable they hear in the
audio to the (Chinese) character in the lyrics. They were asked to listen to prominent
changes in music phenomena such as rhythm, melody, harmony or timbre, and mark
the boundaries in places where the similarities break. Within a section, high similarity
should present with a single musical idea or subject expressed. V1 and V2 then inde-
pendently went through the 3 annotations to verify their disagreements and possible
inconsistencies. Each would record a boundary annotated by only one of A1, A2 and
A3 – hence the other two disagree with him – and then decide whether it should be
marked and if yes, its exact position.

Fig. 1 shows respectively the annotations by V1 and V2 and the final accepted anno-
tation for an 60-second excerpt of the recording ”Ba wang bie ji” (meaning ”Farewell my
concubine”), with the corresponding lyrics shown on the top. The phrase shown consti-
tutes half a couplet. We can notice that this phrase is sung at a relatively slow tempo
and that a single sung character may last several seconds. This gives the performer
lots of freedom in the singing, where each syllable can be sung with ornamentations
such as vibrato and even intermittence.

Rather than adopting the common approach for grouping two sets of annotations
by averaging event positions, the final annotation decision is a result of conscious dis-
cussions by V1 and V2 based on their individual work. The reason for this is that V1
and V2 each has noted different number of boundaries and there is not necessarily a
match for a boundary from one set in another. We however realised that the discussion
can produce different boundaries, i.e., the final accepted boundary location may differ
from the locations indicated individually by both V1 and V2, as shown in Fig. 1. One
main reason for the uncertainties in deciding the exact temporal position of an under-
lying boundary is that, the emergence of new sections may be accompanied by gradual
changes of acoustical properties, for example, the sustaining decaying of cymbal in-
struments and the fade-out effect of singing. Such temporal disparities of an accepted
boundary from those indicated by V1 and V2 individually however barely lead to du-
bious evaluation results given a sufficient acceptance window for the retrieved bound-
aries. In this work, detected segment boundaries are accepted to be correct if within 3s
from an annotated one in the ground truth following [Levy and Sandler 2008].

4http://www.sonicvisualiser.org/
5http://isophonics.net/content/jingju-structural-segmentation-dataset
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Fig. 1: Boundary annotations for a 60-second excerpt of the recording ”Ba wang bie ji”
from Dataset CJ. Panes from top to bottom pane show respectively the lyrics of the
singing (in Chinese), annotations by annotator V1 and V2 and the final annotation.

F0.5 F3 Mad Mda Sad Sda

0.693 0.743 11.88 0.27 74.31 0.97

Table I: Average agreement between annotator V1 and V2 for recordings in dataset
CJ. F0.5 and F3: boundary retrieval F-measure obtained at a resolution of 0.5s and
3.0s; Mad and Mda: median distance between each annotated segment boundary to
its closest detected segment boundary (in second); Sad and Sda: standard deviation of
distance between each annotated segment boundary to its closest detected segment
boundary (in second).

3.4. Statistics of the Annotations
From the variety of existing measures commonly used to compare multiple annota-
tions [Smith 2010], we now discuss the inter-annotator agreement between V1 and V2.
This means we analyse the accuracy first of V2 against V1, with the former playing
the role of ”detection” and the latter the role of ”ground truth”. Then their roles are
reversed. Finally, averages are taken.

The analysed statistics include: F-measure retrieved at the tolerance of 0.5s (F0.5)
and 3s (F3), median of the distance between each annotated segment boundary to its
closest detected segment boundary (Mad) and that between each detected segment
boundary to its closest annotated segment boundary (Mda), standard deviation of the
distance between each annotated segment boundary to its closest detected segment
boundary (Sad) and between each detected segment boundary to its closest annotated
segment boundary (Sda).

As shown in Table I, the agreement between the annotators measured at 0.5s (F0.5

= 0.693) is reasonably close to that measured at 3.0s (F3 = 0.743). This shows that
once V1 and V2 both indicate the acceptance of a boundary, they report relatively close
temporal locations of it. However, there exists a large discrepancy when comparing
the median or the standard deviation of the distances from one set of annotation to
the another. This is mainly because the two annotators noted different numbers of
segment boundaries, as shown in Fig. 1. This suggests that the structural annotations
do depend on the annotators’ individual understanding of the music just as is observed
for Western music [Smith et al. 2014].

Statistics of datasets used in this paper describing the number and average length
of the excerpts are given in Table II. We notice that the average segment length of S-IA
and CJ are on average much shorter than those of BeatlesTUT.

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 4, Article 39, Publication date: March 2010.
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Dataset No. tracks Len. track No. segments Len. segment
BeatlesTUT 174 159.30 (50.08) 10.21 (2.32) 17.73 (5.45)

S-IA 258 333.09 (130.78) 56.26 (32.07) 7.69 (5.28)
CJ 30 421.38 (219.02) 44.37 (19.18) 9.56 (4.57)

Table II: Statistics of datasets (standard deviations into parenthesis): number of sam-
ples in the dataset, average length of each sample (in second), average number of seg-
ments per sample, average length of each segment (in second).

GT
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Fig. 2: Workflow of the feature extraction and music segmentation system.

4. FEATURE EXTRACTION
In this work, three features related to three musical aspects – harmony, timbre and
rhythm, are evaluated. The workflow of our feature extraction and segmentation sys-
tem is shown in Fig. 2. We will introduce the harmonic-percussive source separation
operation as pre-processing for feature extraction.

4.1. Harmonic-percussive Source Separation
Given the complex spectrogram X of the input audio signal x(t), we separate it into its
harmonic component Xh and percussive component Xp. We denote as Y the magnitude
spectrogram where Y = |X|. In this work, the separation is realised by applying a me-
dian filter to Y once in the horizontal direction and once in the vertical direction to de-
rive respectively a harmony and percussion enhanced spectrogram following [Driedger
et al. 2014] as a modification to [FitzGerald 2010].

However, this process might be influenced by vibrato in the singing voice and bowed
string instruments in Jingju, which yield frequency variations over a small time pe-
riod [Yang et al. 2015]. A possible solution is to consider widened frequency bins in the
neighbourhood to generate a vertical mask. For the percussive component suppression
in the harmony enhanced spectrogram, we also propose to widen the masking trajec-
tory across neighbouring time instants in case the transient energies are varying. A
maximum filter has the capacity to broaden the spectral trajectory by setting the value
at certain position in the trajectory to the maximum value in the vicinity, hence can
suppress the spurious positives in energy transients. As a modification to [Driedger
et al. 2014], we introduce a one-dimensional maximum filter processing before gener-
ating the mask. The maximum filter is applied to the magnitude spectrogram verti-
cally for the separation of the harmonic component and horizontally for the separation
of the percussive component, taking the opposite directions of the median filter applied
subsequently. In this way, the harmonic/percussive slices can be strengthened before
the separation, leading to a highlighting effect of the corresponding sources combating

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 4, Article 39, Publication date: March 2010.
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the possible interference of vibratos or energy sways. The whole process is described
as follows:

Yh
m(t, k) = max(Y (t, k −mh : k +mh)) (1a)

Yp
m(t, k) = max(Y (t−mp : t+mp, k)), (1b)

Ỹh
m
(t, k) = median(Yh

m(t− lh : t+ lh, k)) (2a)

Ỹp
m
(t, k) = median(Yp

m(t, k − lp : k + lp)), (2b)
Next, the derived masks are applied to the original X to compute correspondingly

the separated source Xh and Xp,

Xh(t, k) = X(t, k) ·
(
Ỹh

m
(t, k)/(Ỹp

m
(t, k) + ε) > β

)
(3a)

Xp(t, k) = X(t, k) ·
(
Ỹp

m
(t, k)/(Ỹh

m
(t, k) + ε) > β

)
, (3b)

The sample rate, window and step size used in this study are respectively 44100 Hz,
0.046s and 0.023s. For lh, lp, mh, mp ∈ N, 2lh + 1, 2lp + 1, 2mh + 1 and 2mp + 1 are
respectively the sizes of the median and maximum filters equal to 0.23s, 350 Hz, 0.07s
and 70 Hz. ε is a small constant to avoid zero division and β is the separation factor
to control the ratio of specific component to separate experimentally set to 0.5. We will
discuss the involved parameters in Section 6.

4.2. Audio Features
Features extracted from the spectrogram after the harmonic-percussive source separa-
tion processing (HPSS) with the maximum filter applied are denoted hMFCCsm and
hChromagramm in the rest of this article as opposed to MFCCs and chromagram that
are extracted from the raw spectrogram X. We also compute the features with HPSS
but without maximum filtering, and label these hMFCCs and hChromagram.

In this paper the 13-dimension MFCCs are extracted with a 0.046s window and a
50% overlap where the number of Mel filters is 40.

As discussed in Section 2, Jingju uses a different chroma scale to Western pop music.
In this paper, we use theBPO = 7 setting to extract the chromagram feature for Jingu,
i.e., the CJ dataset, while the conventional 12-bin chromatogram is used for the two
Western datasets, S-IA and BeatlesTUT. We will discuss the effect of the number of
pitch classes per octave in Section 6. The window and the step size used for feature
extraction are set to 0.372s and 0.023s respectively.

For most music genres, various instruments can be prominent at different met-
rical levels and play diverse roles to produce the overall rhythmic structure in a
piece [Parncutt 1994]. Although rhythmic features have been investigated in previ-
ous work [Jensen 2005; Paulus and Klapuri 2008a], the novelty of the featureset in-
vestigated in this paper lies in the incorporation of tempo perception cues introduced
shortly. An autocorrelation tempogram is first calculated following [Davies and Plumb-
ley 2004]. The time window used is 6s with a step size of 0.2s. Instead of targeting a
rigorous tempo or beat tracking, features are extracted inspired by acoustical percep-
tion experiments [Moore et al. 1997]. To characterise the specific tempo strength, we
first group the tempogram BPM bins into quasi-logarithmic spaced bands. Two fea-
tures, Tempo intensity (TI) and Tempo intensity ratio (TIR) are extracted respectively
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by compressing the bandwise intensity values inspired by the calculation of the per-
ceptual feature specific loudness [Rodet 2001] and by measuring the intensity ratio of
each band to describe the perceived relative salience of individual rhythmic compo-
nents. Although additional features are presented, the concatenation of TI and TIR
feature vectors achieves the best segmentation in the evaluation [Tian et al. 2015].
In this paper, we replicate this process and use the concatenation of TI and TIR as
the tempogram-derived rhythmic feature used in this paper and note the feature ex-
tracted with no HPSS applied RT . We use the percussive spectrogram Xp after HPSS
to extract the feature which we note pRTm and pRT respectively for cases with the
maximum filtering included and excluded.

All features including their HPSS variants were further resampled to obtain a uni-
form frame rate of 0.2s. Features were then subjected to a 6-dimensional Principal
component analysis (PCA) before used for segmentation because preliminary results
have shown that the PCA has introduced marginal improvements in the segmentation.
The use of a relatively large window would assist forming the structure description on
a musically meaningful scale [Paulus et al. 2010].

5. MUSIC STRUCTURAL SEGMENTATION
The first segmentation algorithm, denoted Quadratic novelty (QN), retrieves segment
boundaries using a polynomial fitting mechanism based on [Foote 2000]. We first com-
pute the Self-Similarity Matrix (SSM) using the pairwise Euclidean distance of the
feature matrix. A novelty curve is generated from the SSM following [Foote 2000]. A
series of post-processing and peak picking procedures are applied to the derived nov-
elty curve to select boundaries following [Tian et al. 2015]. First, normalisation and
DC removal are applied to the raw novelty curve. The normalised novelty curve is then
passed through a low-pass filter for noise removal. Subsequently, adaptive thresholds
are generated from the smoothed novelty curve using a median filter. Finally, bound-
aries are retrieved using a polynomial fitting based method.

We fit a second-degree polynomial on the smoothed novelty curve centred around
each local maximum obtained from the adaptive thresholding using a window of
5 samples. This estimates the coefficients of the second-degree quadratic function
y = ax2 + bx + c, where coefficients a and c correspond respectively to the sharpness
and the amplitude of each peak. The coefficient b is not assessed as the acceptance
of a peak depends on only the shape and amplitude of the parabola in our system. A
peak will be accepted as a segment boundary when both the following conditions are
satisfied: a > tha and c > thc, where tha and thc are computed from a single sensitivity
parameter sens and two experimentally defined values using tha = (100 − sens)/1000
and thc = (100− sens)/1500 (sens ∈ [0, 100]). This method is inspired by the QM Vamp
Onset Detector6. Hence the higher the sensitivity, the looser the condition is and the
more boundaries will be retrieved from the novelty curve. In this work, we use an
experimentally defined setting of sens = 30.

The second segmentation algorithm relies on Non-negative matrix factorisation
(NMF) with a convex constraint [Nieto and Jehan 2013], denoted CNMF in this pa-
per. In NMF-based segmentation, the input matrix V represents a feature matrix or
its SSM, where V ∈ RN×M for the first and V ∈ RN×N for the latter, and N is the
number of frames and M is the number of features. With an NMF decomposition, V
can be approximated as the product of two non-negative matrices W and H, where
the N × R matrix W contains the basis vectors, the R ×M matrix H supplies in its
columns the coefficients to approximate each column of V as the linear combination of

6QM-DSP audio analysis C++ library: https://code.soundsoftware.ac.uk/hg/qm-dsp
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the columns of W , and R is the rank of decomposition. Finally, segment boundaries can
be detected by clustering the frames in the decomposition matrices as row-vector fea-
tures [Kaiser and Sikora 2010; Grohganz et al. 2013]. Based on this approach, CNMF
uses the feature matrix as the input V and introduces a convex constrain to W such
that it becomes the convex combinations of the input feature matrix V , expressed as
W = V C where C ∈ RM × r. In this way, each observation frame of W can be inter-
preted as weighted cluster centroids representing potential sections of the music piece.
To detect segment boundaries from the decomposition matrices, a k-means clustering
with the cluster number set to 2 is carried out where the 2 classes represent respec-
tively if there is a boundary or not. Finally, boundaries detected from each rank are
grouped and merged into the average locations when they locate in a given temporal
window where the final boundary decisions are made. One parameter involved in this
process is the decomposition rank r. Kaiser and Sikora reported a maximum of sepa-
rability with r = 9 [Kaiser and Sikora 2010] while in [Nieto and Jehan 2013] it is set
to 2. We found from preliminary research that the setting of this parameter does not
have a profound effect in the segmentation results when using values in a moderate
range between 3 and 7. In this work r is set to 3.

The third segmentation method from [Serrà et al. 2012] uses a feature called struc-
ture features incorporating global properties which account for structural information
in the recent past. It is denoted SF in this paper. To construct the structure features, a
multi-dimensional time series is firstly obtained by accumulating vectors of the stan-
dard audio feature ranging across a span centred at different time locations. A recur-
rence plot P is then computed from the pairwise resemblance between time series. An
element Pi,j of the recurrence plot is set to 1 when two time series centred at time i
and j are sufficiently close and to 0 otherwise. The homogeneous and periodic nature
of the typology of a recurrence plot enables addressing the local stationarity and the
global repetition from the time series [Eckmann et al. 1987]. Subsequently, the struc-
ture features are obtained by estimating the temporally spanned Gaussian probability
density of the time lag matrix of P . Finally, a novelty curve is computed denoting the
distances between consecutive samples of structure features where segment bound-
aries are detected using a standard thresholding mechanism following [Foote 2000].
In this way, all three segmentation mechanisms (novelty, homogeneity and repetition)
are combined.

Fig. 3, 4 and 5 show respectively the segmentation processes using the three al-
gorithms on an excerpt of Jingju song ”Hong niang” (meaning ”The red maid”) from
dataset CJ with feature hChromagramm. From Fig. 3 we can see that the novelty
scores associated with the annotated segment boundaries in the raw novelty curve
can be relatively subtle. Compared to standard boundary retrieval algorithms which
decides the acceptance of potential peak by comparing its value to a threshold, polyno-
mial fitting is able to eliminate ”flatter” peaks which in our scenario indicates higher
similarity within feature vectors in the vicinity. Fig. 4 shows the k-means clustering
results from each decomposition matrix with each rank shown in each row from the
segmentation process of CNMF. The white vertical lines in the upper pane show the
detected boundaries by merging boundary decisions derived from each decomposition
matrix. We can notice that the final grouping has removed many boundaries indicated
by only few decomposition matrices especially when the sections are of short durations.
Fig. 5 shows the recurrence plot and the derived novelty curve using SF. Instead of ex-
hibiting stripe structures as Western pop music normally does [Serrà et al. 2012], only
block structures are presented. This demonstrates the non-repeating nature of the mu-
sic from a global perspective as discussed in Section 2. Consequently, boundaries are
mainly derived from the local homogeneities in audio features.
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Fig. 3: Segmentation process on Jingju music excerpt ”Hong niang” using
hChromagramm by algorithm QN. The black vertical lines, green triangles and red
crosses represent respectively the annotations, detected boundaries and those would
also have been retrieved without the polynomial fitting (using adaptive thresholding).
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Fig. 4: Segmentation process on Jingju music excerpt ”Hong niang” using
hChromagramm by algorithm CNMF. The upper pane shows the k-means clustering
results from each decomposition matrix where the duo colours in each row indicate
section divisions. The white and red vertical lines in the upper and bottom pane shows
the retrieved boundaries and the annotations.

6. RESULTS AND DISCUSSION
6.1. Evaluation Metrics
There has been a wealth of research investigating the evaluation frameworks for MSS
tasks [Smith 2010; Schedl et al. 2014]. In this paper, a detected boundary is accepted
as a true positive (TP) if located within a 3s-window from a boundary in the ground
truth [Levy and Sandler 2008]. The quality of segmentation is assessed with the stan-
dard segment boundary recovery precision (P), recall (R) and F-measure (F)7.

7Music structural segmentation evaluation metrics: http://www.music-ir.org/mirex/wiki/2009:Structural
Segmentation#Evaluation Measures
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Fig. 5: Segmentation process on Jingju music excerpt ”Hong niang” using
hChromagramm by algorithm SF. The upper, middle and bottom pane show the re-
currence plot, the novelty curve and retrieved boundaries, and the annotations respec-
tively.

6.2. Harmonic-percussive Source Separation for Music Structural Segmentation
Table III illustrates the average segmentation results for audio samples in dataset S-
IA and CJ using investigated features (MFCCs have been rescaled for non-negativity
for CNMF). We report evaluation for these two datasets here because their annota-
tions are made based on comparable principles. Results reported for CNMF and SF in
Table III differ from the MIREX results of [Nieto and Jehan 2013] and [Serrà et al.
2012]8 mainly due to different system configurations, and that S-IA and the MIREX
testset are both subsets of the full SALAMI dataset hence not equivalent to each other.

The effect of the harmonic-percussive source separation (HPSS) is illustrated in Ta-
ble IIIa comparing results obtained using features without HPSS, with HPSS and
without/with maximum filtering. The significance level of the differences between a
feature with and without HPSS in terms of segmentation F-measures obtained for

8http://nema.lis.illinois.edu/nema out/mirex2012/results/struct/sal/summary.html, http://nema.lis.illinois.
edu/nema out/mirex2014/results/struct/sal/summary.html
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P R F P R F P R F
Chromagram MFCCs RT

S-IA 0.414 0.728 0.476 0.521 0.693 0.505 0.438 0.753 0.489
CJ 0.390 0.594 0.394 0.384 0.612 0.445 0.415 0.557 0.426

hChromagram hMFCCs pRT
S-IA 0.427 0.741 0.501 0.546 0.654 0.507 0.449 0.701 0.476
CJ 0.421 0.615 0.443† 0.427 0.621 0.462 0.437 0.528 0.424

hChromagramm hMFCCsm pRTm
S-IA 0.436 0.767 0.516† 0.558 0.678 0.513* 0.467 0.636 0.501
CJ 0.441 0.659 0.455† 0.458 0.612 0.487* 0.451 0.519 0.446*

(a) QN

Chromagram MFCCs RT
S-IA 0.448 0.411 0.418 0.425 0.473 0.431 0.457 0.387 0.407
CJ 0.444 0.353 0.367 0.451 0.372 0.396 0.403 0.314 0.332

hChromagram hMFCCs pRT
S-IA 0.479 0.445 0.462* 0.454 0.485 0.460* 0.487 0.395 0.416
CJ 0.465 0.388 0.392 0.470 0.406 0.408 0.463 0.352 0.366

hChromagramm hMFCCsm pRTm
S-IA 0.495 0.486 0.491† 0.489 0.496 0.486† 0.460 0.411 0.427*
CJ 0.478 0.401 0.404* 0.489 0.393 0.421* 0.468 0.376 0.396†

(b) CNMF

Chromagram MFCCs RT
S-IA 0.445 0.539 0.463 0.423 0.550 0.478 0.436 0.567 0.484
CJ 0.454 0.307 0.322 0.470 0.321 0.354 0.445 0.332 0.349

hChromagram hMFCCs pRT
S-IA 0.459 0.545 0.497* 0.471 0.566 0.486 0.454 0.501 0.468
CJ 0.458 0.335 0.372* 0.476 0.342 0.383* 0.473 0.368 0.379*

hChromagramm hMFCCsm pRTm
S-IA 0.487 0.575 0.521† 0.486 0.567 0.505* 0.456 0.509 0.480
CJ 0.471 0.343 0.397† 0.502 0.384 0.418‡ 0.466 0.388 0.387*

(c) SF

Table III: Segmentation results using selected features on S-IA and CJ dataset with
method QN, SF and CNMF. P, R, F: Segment boundary recovery precision, recall and
F-measure measured at 3s. Highest F-measure for each dataset is shown in bold. *,
† and ‡ denote the presence of significant improvement in segmentation F-measure
for features extracted with HPSS over the standard versions (without HPSS) on each
dataset at the level of 0.05, 0.01 and 0.001 using the Wilcoxon signed-rank test.

each audio sample in a dataset is measured using Wilcoxon signed-rank test. The
most notable improvements are observed for chromagram, with p < 0.01 for most
cases with a maximum filtering, second to which are MFCCs. Although HPSS has
improved the segmentation when using MFCCs and chromagram features in general,
its actual effects for each lies in improving respectively the precision and the recall.
This is mainly because the low-level timbre similarities encoded in MFCCs may incur
limited segmentation precision in the first place, especially for novelty-based methods;
while chromagram tends to depict the long-term repetition structures and can over-
look the low-level novelty-associated boundaries, so that there might have been room
for improvements in recall, especially for repetition-based methods.

However, the opposite is observed for the two datasets using the RT feature. For
CJ, HPSS yields improved segmentation. We found the onset detection algorithm and
subsequently the tempo tracking may work less effectively in the presence of singing
voice the constant tempo variation. Removal of the harmonic components in the spec-
trogram therefore is beneficial to the tempogram computation and the following fea-
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Fig. 6: SSMs computed with pRTm (top) and RT features (bottom) for 60-second ex-
cerpt of music ”Yellow Submarine” By Beatles (left) from BeatlesTUT and ”Not” by Box
O’Laffs from S-IA (right). Black vertical lines indicate segment boundaries.

ture extraction. We also observed that the occasional absence of accented beats in the
music has degraded the accuracy of the tempogram calculation. Analysis of the results
for S-IA indicates, however, that using RT features with HPSS may lead to an under-
segmentation. The block structures are made cleaner in the SSM, resulting in less false
positives and a higher precision (p < 0.05). Nevertheless, this is achieved at the cost of
a substantial degradation in true positives, generating degraded recall.

To validate this observation, we repeated this experiment on dataset BeatlesTUT,
whose annotations are made on a functional level (see Section 3.1). The segmentation
using all three investigated features are significantly improved after HPSS including
RT (p < 0.001). Fig. 6 shows SSMs of the RT features with and without HPSS (maxi-
mum filter applied) for two pieces from BeatlesTUT and S-IA (only the first 60 seconds
of the tracks are shown for visualisation purposes). Smaller blocks are aggregated into
bigger ones as a result of HPSS, yielding less local dynamics hence less false positives.
However, this may also cause SSMs to fail to represent structural details correspond-
ing to low-level annotations. One limitation of the RT feature is a degraded tempo-
ral resolution as a result of using long window (6s) with considerable overlap during
the tempogram calculation. Applying the maximum filter in the HPSS operation can
accentuate this resolution deficiency and lead to more missed boundaries. Therefore
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(a) Tian nu san hua (b) Dig a pony

Fig. 7: SSMs computed using hChromagramm for music ”Tian nv san hua” from CJ
(left) and ”Dig a pony” By Beatles (right).

when applying HPSS, its influence on feature resolution can be an additional factor to
consider for an effective segmentation.

The improvement due to HPSS in segmentation is altered by its parameters. The
most influential parameter in our case is the separation factor β. [Driedger et al. 2014]
report that when β = 1, the residual is roughly equally distributed in both Xh and Xp

while when β = 3 only clearly horizontal and vertical structures are preserved in the
spectrogram. We tested values ranging from 0.3 to 3 (in steps of 0.1 when β ranges
from 0.3 to 1 and of 0.5 from 1 to 3). Applying a maximum filter also has the tendency
of leaving residual components in the resulting signal. A β ranging from 0.4 to 0.5 is
optimal for all investigated features in our system (Table III results are obtained with
β = 0.5). When β exceeds 1.5, extracted features yield worse segmentation results than
when not using HPSS. In the case of music structural analysis, it is not desirable to
have the opposite source and the residuals tightly removed when using only Xh or Xp

for feature extraction, given each may contain complementary structural information.

6.3. Effect of Bins per Octave in Chroma for Jingju
Although chroma features were originally designed for chord recognition for West-
ern music [Fujishima 1999], they measure the relative intensity of each pitch class
of an equal-tempered scale in a tuning independent way. This justifies their use for
Jingju music which uses equal temperament except for its 4th and 7th degrees which
have more musical expressiveness functions. However, because there are no repetitive
harmonic patterns, the chroma feature does not form stripes in the sub-diagonals in
the SSM. This somehow contradicts observations for Western pop music, as in Fig. 7.
Therefore, the same audio feature may capture different structural characteristics for
different genres and the design of segmentation algorithms should be adapted accord-
ingly to interpret such patterns. In this paper, we use chromagrams with 7 bins per oc-
tave (BPO) setting for Jingju. For both the original chromagram and its variants with
HPSS, we compare the segmentation results to those adopted using the 12-BPO setting
commonly used for Western music. 7-BPO achieves better segmentation for all cases.
The difference is however significant only for hChromagram and hChromagramm with
p = 0.036 and 0.014 respectively. Another interpretation of this is that the chroma fea-
ture may be more effective, if it is specially adapted or enhanced for Jingju. A direction
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CNMF SF QN
P R F P R F P R F

BeatlesTUT 0.489 0.636 0.540 0.681 0.737 0.699‡ 0.465 0.646 0.527

Table IV: Segmentation results using beat-synchronised chroma features on Beat-
lesTUT dataset using the three investigated algorithms CNMF, SF and QN.

for future work also lies in analysing the behaviour of the 4th and the 7th pitch classes
in the Jingju chroma scale.

6.4. Features, Segmentation Methods and Genres
Here we discuss the three types of features regardless of the effect of HPSS. Chroma-
gram and MFCCs work reliably well for Western music, confirming the conclusion of
previous studies [Paulus and Klapuri 2008a]. MFCCs have consistent performance for
both CJ and S-IA and significantly surpass chromagram and RT on CJ as shown in
Table III. This can be mainly because these two datasets are annotated at the lowest
music similarity level as perceived by human listeners, which is well captured by the
timbral description of the music content [Logan 2000]. Jingju music tends to have spe-
cific leading instruments presenting distinct timbre characteristics at different struc-
tural sections which makes timbral features very appealing for structural description
of Jingju.

It is noted that SF and CNMF do not work as effectively as QN on the Jingju
dataset, as shown in Table III. To validate this, we evaluated these algorithms on the
BeatlesTUT dataset which is often used to test the repetition-based segmentation al-
gorithms. We used the Music Structure Analysis Framework by Nieto9 which contains
the segmentation algorithms of interest10. We plugged our QN algorithm into the same
framework to obtain a direct comparison and used beat-synchronised chromagram as
the feature descriptor following the default setting. Results are shown in Table IV.
SF outperforms the other two while QN performs the worst (p < 0.001). Although
the boundary extraction method of this algorithm is designed to be generic [Serrà
et al. 2012], its advantage is more pronounced on music with discernible repetitions.
When the music is less repetitive, SF may give a low recall rate regardless of the
feature used. CNMF exhibits more balanced performance for different music genres
and feature types. It does not rely on the repetition hypothesis of the music structure
and can detect the patterns encoded in the feature matrices. This property of many
homogeneity-based algorithms makes them susceptible to noise and tend to yield lim-
ited precision rates. This is a shared weakness noted also for novelty based methods
which may overlook the global music pattern. The QN algorithm attempts to mitigate
this by assessing the sharpness of a peak in the novelty curve hence comparing the
extent of novelty of the current frame to the recent past and near future. However, we
still observe an unbalanced precision and recall rate in Table IIIa and Table IV. A low
boundary retrieval sensitivity of 30 over the range of [0, 100] (see Section 5) gives the
optimal segmentation in our system. When using higher sensitivities, the increase in
the recall rate does not compensate the downgrade in precision, resulting in degrading
F-measures overall.

9https://github.com/urinieto/msaf/tree/devel
10It has to be noted that the processing techniques used may be different from our system where results
from Table III are obtained.
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Fig. 8: Tempogram, melody contour and segmentation for a 60-second excerpt of the
recording ”Ba wang bie ji”. The top pane shows the extracted melody (in white curves)
and tempogram for the excerpt. Bottom pane shows the smoothed novelty curve using
the QN algorithm using hMFCCsm feature (dotted curve in black), segment annota-
tions (solid lines in red) and retrieved boundaries (dotted lines in navy).

7. CONCLUSION AND FUTURE WORK
In this article, we applied conventionally used features and algorithms for audio struc-
tural segmentation to an important non-Western music style, Jingju. As part of this, a
new database of Jingju music is presented to complement existing evaluation corpora.
The harmonic-percussive source separation technique introduced in the feature extrac-
tion process has brought significant improvements in segmentation for both Western
and Chinese music categories. Furthermore, we have demonstrated that novelty or
homogeneity based segmentation algorithms using timbral features may surpass rep-
etition based ones for Jingju due to its lack of global repetition structures. However,
this method produces only limited precision. A possible solution is to use musically
meaningful audio features or statistical models to discriminate the non-section related
noises in the low-level feature representations and target characterising the melodic
and metrical patterns as the underlying structural units (see Section 2.1). Fig. 8 shows
the tempogram [Tian et al. 2015] and the predominant melody [Salamon and Gómez
2012] for a 60s excerpt of Jingju music (see Fig. 1). Both the melodic contour and the
predominant pulses have the tendency to remain stable or to show steadily evolving
patterns within a structural segment, whose sudden break can indicate emergence of
new sections. It is also noticeable that a peak in the novelty curve is more likely to
indicate a structural boundary when accompanied by prominent rhythmic or melodic
changes. In future work, we propose to use the novelty information from timbre fea-
tures to derive intermediate structural descriptions and meanwhile, rely on rhythmic
and melodic modelling for verified segmentations.

The outcomes of this study give strong indications to direct the creation of an in-
telligent system that automates the selection of audio features and segmentation al-
gorithms, given contextual knowledge of the audio signal such as genre and the level
of music structure to analyse. A semi-supervised system capable of encoding human
knowledge into the audio signal analysis process in an interactive fashion is also con-
sidered as a future direction.
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