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Summary

We propose a music content analysis framework to determine the musicalkey, chordsand the

hierarchicalrhythm structurein musical audio signals. Knowledge of the key will enable us

to apply a music theoretic analysis to derive the scale and thus the pitch class elements that a

piece of music uses, that would be otherwise difficult to determine on account of complexities

in polyphonic audio analysis. Chords are the harmonic description of the music and serve to

capture much of the essence of the musical piece. The identity of individual notes in the music

does not seem to be important. Rather, it is the overall quality conveyed by the combination of

notes to form chords. Rhythm is another component that is fundamental to the perception of

music. A hierarchical structure like the measure (bar-line) level can provide information more

useful for modeling music at a higher level of understanding.

Our rule-based approach uses a combination of top down and bottom up approaches - com-

bining the strength of higher level musical knowledge and low level audio features. To the

best of our knowledge this is the first attempt to extractall of these three important expressive

dimensions of music from real world musical recordings (sampled from CD audio), carefully

selected for their variety in artist and time spans. Experimental results illustrate accurate key

and rhythm structure determination for 28 out of 30 songs tested with an average chord recog-

nition accuracy of around 80% across the length of the entire musical piece. We do a detailed

evaluation of the test results and highlight the limitations of the system. We also demonstrate

the applicability of this approach to other aspects of music content analysis and outline steps for

further development.
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Chapter 1

Introduction

1.1 Motivation

Content based analysis of music is one particular aspect of computational auditory scene anal-

ysis, the field that deals with building computer models of higher auditory functions. A com-

putational model that can understand musical audio signals in a human-like fashion has many

useful applications. These include:

• Automatic music transcription: This problem deals the transformation of musical audio

into a symbolic representation such as MIDI or a musical score which in principle, could

then be used to recreate the musical piece [36].

• Music informational retrieval: Interaction with large databases of musical multimedia

could be made simpler by annotating audio data with information that is useful for search

and retrieval [25].

• Emotion detection in music: Hevner [18] has carried out experiments that substantiated a

hypothesis that music inherently carries emotional meaning. Huron [19] has pointed out

that since the preeminent functions of music are social and psychological, emotion could

serve as a very useful measure for the characterization of music in information retrieval
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systems. The relation between musical chords and their influence on the listeners emotion

has been demonstrated by Sollberger in [47].

• Structured Audio : The first generation of partly-automated structured-audio coding tools

could be built [25]. Structured Audio means transmitting sound by describing it rather

than compressing it [24]. Content analysis could be used to partly automate the creation

of this description by the automatic extraction of various musical constructs from the

audio.

While the general auditory scene analysis is something we would expect most human lis-

teners to have reasonable success at, this is not the case for the automatic analysis of musical

content. Even simple human acts of congnition such as tapping the foot to the beat, swaying to

the pulse or waving the hands in time with the music are not easily reproduced in a computer

program [42].

Over the years, a lot of research has been carried out in the general area of music and audio

content processing. These include analysis of pitch, beats, rhythm and dynamics, timbre classi-

fication, chords, harmony and melody extraction among others. The landscape of music content

processing technologies is discussed in [1].

To contribute towards this research, we propose a novel framework to analyze a musical au-

dio signal (sampled from CD audio) and determine its key, provide usable chord transcriptions

and determine the hierarchical rhythm structure across the length of the music.

Though the detection of individual notes would form the lowest level of music analysis, the

identity of individual notes in music does not seem to be important. Rather, it is the overall

quality conveyed by the combination of notes to form chords [36]. Chords are the harmonic
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description of the music and serve to capture much of the essence of the musical piece. Non-

expert listeners, hear groups of notes as chords. It can be quite difficult to identify whether or

not a particular pitch has been heard in a chord. Analysis of music into notes is also unneces-

sary for classification of music by genre, identification of musical instruments by their timbre,

or segmentation of music into sectional divisions [25].

The key defines the diatonic scale which a piece of music uses. The diatonic scale is a seven

note scale and is most familiar as the Major scale or the Minor scale in music. The key can

be used to obtain high level information about the musical content of the song that can capture

much of the character of the musical piece.

Rhythm is another component that is fundamental to the perception of music. A hierarchi-

cal structure like the measure (bar-line) level can provide information more useful for modeling

music at a higher level of understanding [17].

Key, chords and rhythm are important expressive dimensions in musical performances. Al-

though expression is necessarily contained in the physical features of the audio signal such as

amplitudes, frequencies and onset times, it is better understood when viewed from a higher level

of abstraction, that is, in terms of musical constructs [11] like the ones discussed here.

1.2 Related Work

1.2.1 Key Determination

Existing work has been restricted to either the symbolic domain (MIDI and score) [4, 27, 33, 40]

or single instrument sounds and simple polyphonic sounds [37]. An attempt to extract the mu-

sical scale and thus the key of a melody has been attempted in [53, 54]. This approach is again
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however restricted to the MIDI domain [53, 54] and to hummed queries [53]. To our knowledge,

the current effort is the first attempt to to identify the key from real-world musical recordings.

1.2.2 Chord Determination

Over the years, considerable work has been done in the detection and recognition of chords.

However this has been mostly restricted to single instrument and simple polyphonic sounds

[5, 6, 13, 21, 28, 39] or music in the symbolic, rather than that in the audio domain [29, 30, 34,

35, 40].

A statistical approach to perform chord segmentation and recognition on real-world musi-

cal recordings that uses the Hidden Markov Models (HMMs) trained using the Expectation-

Maximization (EM) algorithm has been demonstrated in [44] by Sheh and Ellis. This work

draws on the prior idea of Fujishima [13] who proposed a representation of audio termed “pitch

class profiles” (PCPs), in which the Fourier transform intensities are mapped to the twelve semi-

tone classes (chroma). This system assumes that the chord sequence of an entire piece is known

beforehand. In this chord recognition system, first the input signal is transformed to the fre-

quency domain. Then it is mapped to the PCP domain by summing and normalizing the pitch

chroma intensities, for every time slice. PCP vectors are used as features to build chord models

using HMM via EM. Prior to training, a single composite HMM for each song is constructed

according to the chord sequence information. During the training, the EM algorithm calculates

the mean and variance vector values, and the transition probabilities for each chord HMM. With

these parameters defined, the model can now be used to determine a chord labeling for each

test song. This is done using the the Viterbi algorithm to either forcibly align or recognize

these labels. In forced alignment, observations are aligned to a composed HMM whose tran-

sitions are limited to those dictated by a specific chord sequence. In recognition, the HMM is
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unconstrained, in that any chord may follow any other, subject only to the markov constraints

in the trained transition matrix. Forced alignment always outperforms recognition, since the

basic chord sequence is already known in forced alignment which then has to only determine

the boundaries, whereas recognition has to determine the chord labels too.

1.2.3 Rhythm Structure Determination

A lot of research in the past has focused on rhythm analysis and the the development of beat-

tracking systems. However, most of them did not consider the higher-level beat structure above

the quarter note level [10, 11, 16, 41, 42, 50] or were restricted to the symbolic domain rather

than working in real-world acoustic environments [2, 7, 8, 38].

In [17], Goto and Muraoka have developed a technique for detecting a hierarchical beat

structure in musical audio without drum-sounds using chord change detection for musical de-

cisions. Because it is difficult to detect chord changes when using only a bottom-up frequency

analysis, a top-down approach of using the provisional beat times has been used. The provi-

sional beat times are a hypothesis of the quarter-note level and are inferred by an analysis of

onset times. In this model, onset times are represented by an onset-time vector whose dimen-

sions correspond to the onset times of different frequency ranges. A beat-prediction stage is

used to infer the quarter-note level by using the autocorrelation and cross-correlation of the

onset-time vector. The chord change analysis is then performed at the quarter note level and at

the eighth note level, by slicing the frequency spectrum into strips at the provisional beat times

and at the interpolated eighth note levels. This is followed by an analysis of how much the

dominant frequency components included in chord tones and their harmonic overtones change

in the frequency spectrum. Musical knowledge of chord change is then applied to detect the

higher-level rhythm structure at the half and measure (whole note) levels.
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In [15], Goto has developed a hierarchical beat tracking system for musical audio signals

with or without drum sounds using drum patterns in addition to onset times and chord changes

discussed previously. A drum pattern is represented by the temporal pattern of a bass and snare

drum. A drum pattern detector detects the onset times of the bass and snare drums in the signal

which are used to create drum patterns and then compared against eight pre-stored drum pat-

terns. Using this information and musical knowledge of drum in addition to musical knowledge

of chord changes, the rhythm analysis at the half note level is performed. The drum pattern

analysis can be performed only if the musical audio signal contains drums and hence a tech-

nique that measures the autocorrelation of the snare drum’s onset times is applied. Based on

the premise that drum-sounds are noisy, the signal is determined to contain drum sounds only

if this autocorrelation value is high enough. Based on the presence or absence of drum sounds,

the knowledge of chord changes and/or drum patterns is selectively applied. The highest level

of rhythm analysis at the measure level (whole note/ bar) is then performed using only musical

knowledge of chord change patterns.

1.3 Contributions of this thesis

We shall now discuss the shortcomings in the existing work discussed in the previous section.

The approach for chord detection used in [44] assumes that the chord sequence for an entire

piece is known. This has been obtained for 20 songs by theBeatlesfrom a standard book of

Beatlestranscriptions. Thus the training approach limits the technique to be restricted to the

detection of known chord progressions. Further, as the training and testing data is restricted to

the music of only one artist, it is unclear how this system will perform for other kinds of music.

[15, 17] perform real-time higher level rhythm determination up to the measure level us-
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ing chord change analysis without identifying musical notes or chords by name. In both these

works, it is mentioned that chord identification in real-world audio signals is generally difficult.

Traditionally, musical chord recognition is approached as a combination of polyphonic tran-

scription to identify the individual notes followed by symbolic inference to determine the chord

[13]. However in the audio domain, various kinds of noise and overlap of harmonic components

of individual notes would make this a difficult task. Further, techniques applied to systems that

used as their input MIDI-like representations cannot be directly applied because it is not easy to

obtain complete MIDI representations from real-world audio signals.

Thus in this work, we propose an offline-processing, rule-based framework to obtainall of

the following from real-world musical recordings (sampled from commercial CD audio):

1. Musical key - to our knowledge, the first attempt in this direction.

2. Usable chord transcriptions - that overcome all of the problems with [44] highlighted

above.

3. Hierarchical rhythm structure across the entire length of the musical piece - where the

detection has been performed using actual chord information, as against chord change

probabilities used in [15, 17].

1.4 Document Organization

The rest of this document is organized as follows. In Chapter 2 we give a primer on music

theoretic concepts and define the terminology used in the the rest of this document. In Chapter

3, we give a brief overview of our system. Chapter 4 discusses the individual components of

this system in detail. In Chapter 5 we present the empirical evaluation of our approach. Finally,

we discuss our conclusion and highlight the future work in Chapter 6.
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Chapter 2

Music Theory Background

2.1 Note

A noteis a unit of fixed pitch that has been given a name. Pitch refers to the perception of the

frequency of a note.

2.2 Octave

An octaveis the interval between one musical note and another whose pitch is twice its fre-

quency. The human ear tends to hear both notes as being essentially the same. For this reason,

notes an octave apart are given the same note name. This is calledoctave equivalence.

2.3 Tonic / Key

The wordtonic simply refers to the most important note in a piece or section of a piece. Music

that follows this principle is calledtonal music. In the tonal system, all the notes are perceived

in relation to one central or stable pitch, the tonic. Music that lacks a tonal center, or in which all

8



pitches carry equal importance is calledAtonal music. Tonic is sometimes used interchangeably

with key. All tonal music is based upon scales. Theoretically, to determine the key from a piece

of sheet music, the key signature is used. The key signature is merely a convenience of notation

placed on the music staff, containing notation in sharps and flats. Each key is uniquely identified

by the number of sharps or flats it contains. An example is shown in Figure 2.1

Key Signature = A Major (3 sharps)

Figure 2.1: Key Signature

2.4 Scale

A scaleis a graduated ascending (or descending) series of notes arranged in a specified order.

A scale degreeis a numeric position of a note within a scale ordered by increasing pitch. The

simplest system is to name each degree after its numerical position in the scale, for example:

the first (I), the second (II) etc.

2.4.1 Intervals

Notes in the scale are separated by whole and half step intervals oftonesandsemitones. Semi-

tone is the interval between any note and the next note which may be higher or lower. Tone is

the interval consisting of two semitones.

9



2.4.2 Equal temperament

Musically, the frequency of specific pitches is not as important as their relationships to other

frequencies. The pitches of the notes in any given scale are usually related by a mathematical

rule. Semitones are usually equally spaced out in a method known asequal temperament. Equal

temperament is a scheme of musical tuning in which the octave is divided into a series of equal

steps (equal frequency ratios). The best known example of such a system istwelve-tone equal

temperamentwhich is nowadays used in most Western music. Here, the pitch ratio between any

two successive notes of the scale is exactly the twelfth root of two. So rare is the usage of other

types of equal temperament, that the term “equal temperament ” is usually understood to refer

to the twelve tone variety.

2.4.3 Chromatic Scale

Thechromaticscale is a musical scale that contains all twelve pitches of the Western tempered

scale. (C, C], D, D], E, F, F], G, G], A, A], B). In musical notation, sharp (]) and flat ([) mean

higher and lower in pitch by a semitone respectively. The pitch ratio between any two succes-

sive notes of the scale is exactly the twelfth root of two. For convenience, we will use only the

notation of sharps based on theenharmonic equivalence(identical in pitch) of sharps and flats.

All of the other scales in traditional Western music are currently subsets of this scale.

2.4.4 Diatonic Scale

Thediatonicscale is a fundamental building block of the Western musical tradition. It contains

seven notes to the octave, made up of a root note and six other scale degrees. The list of names

for the degrees of the scale are:Tonic (I), Supertonic(II), Mediant (III), Subdominant(IV),

Dominant(V), Submediant(VI) and Leading Tone(VII). The Major and Minor scales are two
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most commonly used diatonic scales and the term “diatonic” is generally used only in reference

to these scales.

2.4.5 Major Scale

Tables 2.1 lists the pitch notes that are present in the 12 Major scales. Similar tables can be

constructed for these scales with flats ([) in them. The Major scale follows a pattern of: “T-

T-S-T-T-T-S” on the twelve-tone equal temperament where T (implying Tone) and S (implying

Semitone) corresponds to a jump of one and two pitch classes respectively. The elements of

the Major Diatonic Scale corresponds to the Do, Rae, Me, Fa, So, La, Ti, Do (in order of scale

degree) inSolfege, a pedagogical technique of assigning syllables to names of the musical scale.

Scale Notes in Scale
I II III IV V VI VII I

A A B C] D E F] G] A
A] A] C D D] F G A A]
B B C] D] E F] G] A] B
C C D E F G A B C
C] C] D] F F] G] A] C C]
D D E F] G A B C] D
D] D] F G G] A] C D D]
E E F] G] A B C] D] E
F F G A A] C D E F
F] F] G] A] B C] D] F F]
G G A B C D E F] G
G] G] A] C C] D] F G G]

Table 2.1: Pitch notes in Major Scale

2.4.6 Minor Scales (Natural, Harmonic, Melodic)

Table 2.2 lists the pitch notes that are present in the 12 Minor Scales.

The Minor scales in Table 2.2 can be derived from the Major scales in Table 2.1. Every

Major scale has aRelativeMinor scale. The two scales are built from the exact same notes and

the only difference between them is which note the scale starts with. The relative Minor scale

11



Scale Notes in Scale
I II III IV V VI VII I

Am A B C D E F G A
A]m A] C C] D] F F] G] A]
Bm B C] D E F] G A B
Cm C D D] F G G] A] C
C]m C] D] E F] G] A B C]
Dm D E F G A A] C D
D]m D] F F] G] A] B C] D]
Em E F] G A B C D E
Fm F G G] A] C C] D] F
F]m F] G] A B C] D E F]
Gm G A A] C D D] F G
G]m G] A] B C] D] E F] G]

Table 2.2: Pitch notes in Minor Scale

starts from the sixth note of the Major scale. For example, the C Major scale is made up of the

notes: “C-D-E-F-G-A-B-C” and its relative Minor scale, which is A Minor is made up of the

notes “A-B-C-D-E-F-G-A”. A Minor is called the relative Minor of C Major, and C Major is the

relative Major of A Minor. The relative Major/Minor combination for all the 12 pitch classes is

illustrated in Table 2.3.

Major C C] D D] E F F] G G] A A] B
Minor A A] B C C] D D] E F F] G G]

Table 2.3: Relative Major and Minor Combinations

There is only one Major scale and three types of Minor scales for each of the 12 pitch

classes. The Minor scale shown in Table 2.2 is theNatural Minor scale and what is simply

referred to as the Minor scale. TheHarmonicMinor scale is obtained by raising the VII note

in the Natural Minor Scale by one semitone and theMelodicMinor scale is obtained by raising

the VI note in addition to the VII note by one semitone. As an example, table 2.4 lists the notes

that are present in all the 3 Minor Scales for C.

Scale Notes in Scale
I II III IV V VI VII I

Natural Minor C D D] F G G] A] C
Harmonic Minor C D D] F G G] B C
Melodic Minor C D D] F G A B C

Table 2.4: Notes in Minor scales of C
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C C# D D# E F F# G G# A A# B

4 (Major Third)

7 (Perfect Fifth)

C C# D D# E F F# G G# A A# B

3 (Minor Third)

6 (Diminished Fifth)

C C# D D# E F F# G G# A A# B

4 (Major Third)

8 (Augmented Fifth)

C C# D D# E F F# G G# A A# B

3 (Minor Third)

7 (Perfect Fifth)

Major Chord

Diminished Chord

Minor Chord

Augmented Chord

Figure 2.2: Types of Triads

2.5 Chords

Chord are a set of notes,usually with harmonic implication, played simultaneously. Atriad is a

chord consisting of 3 notes - a root, and two other members, usually a third and a fifth. The four

types of triads shown in Figure 2.2 are:

• TheMajor chord contains four half steps between the root and the third (a major third),

and seven half steps between the root and fifth (a perfect fifth). This is equivalent to the

combination of the I, III and V note of the Major Scale.

• TheMinor chord contains three half steps between the root and third (a minor third), and

the same perfect fifth between the root and fifth. This is equivalent to the combination of

the I, III and V note of the Minor Scale.

• TheDiminishedchord contains three half steps between the root and third (a minor third),

and six half steps between the root and fifth (a diminished fifth)

• The Augmentedchord consists of four half steps between the root and the third (major

third) and eight half steps between the root and the fifth (an augmented fifth)

There are only 2 kinds of keys possible : Major and Minor; and the chord patterns built on

the 3 Minor scales (Natural, Harmonic and Melodic) are all classified as being simply in the Mi-

nor key. Thus we have 12 Major and 12 Minor keys (henceforth referred to as 24 Major/Minor
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keys).

Table 2.5 shows the chord patterns in Major and Minor keys. Roman numerals are used to

denote the scale degree. Upper case roman numerals indicate Major chords, lower case roman

numerals refer to Minor chords,• indicates a Diminished chord and the + sign indicates an

Augmented chord. These chords are obtained by applying the interval patterns of Major, Minor,

Diminished and Augmented chords discussed earlier in this section.

Key Chords
Major I ii iii IV V vi vii • I
Natural Minor i ii • III iv v VI VII i
Harmonic Minor i ii • III+ iv V VI ]vii• i
Melodic Minor i ii III+ IV V ]vi• ]vii• i

Table 2.5: Chords in Major and Minor Keys

As an example, Table 2.6 shows the chords in the Major and Minor key of C. It is observed

that the chord built on the third note of the Natural Minor scale is D] Major. This is obtained by

extracting the 1-3-5 elements on the D] Natural Minor scale - D], G and A]. This corresponds

with the interval pattern for the D] Major chord.

Key Chords
I II III IV V VI VII I

Major C maj D min E min F maj G maj A min B dim C maj
N. Minor C min D dim D] maj F min G min G] maj A] maj C min
H. Minor C min D dim D] aug F min G maj G] maj B dim C min
M. Minor C min D min D] aug F maj G maj A dim B dim C min

Table 2.6: Chords in Major and Minor Key for C
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Chapter 3

System Description

1. Beat Detection

2. Chroma-based
Feature Extraction

3. Chord Detection

4. Key Determination

6. Rhythm Structure
Determination

5. Chord Accuracy
     Enhancement - I

7. Chord Accuracy
      Enhancement - II

Musical Key

whole note level

quarter note level

half note level

Hierarchical Rhythm

Chord Transcription

Musical Audio Signal

Figure 3.1: System Components
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The block diagram of the proposed framework is shown in Figure 3.1. We draw on the

prior idea of Goto and Muraoka in [15, 17] to incorporate higher level music knowledge of the

relation between rhythm and chord change patterns. Our technique is based on a combination

of bottom-up and top-down approaches, combining the strength of low-level features and high-

level musical knowledge.

Our system seeks to perform a music-theoretical analysis of an acoustic musical signal and

output the musical key, harmonic description in the form of the 12 Major and 12 Minor triad

chords (henceforth referred to as the 24 Major/Minor triads) and the hierarchical rhythm struc-

ture at the quarter note, half note and whole note (measure) levels.

The first step in the process is the detection of the musical key. A well known algorithm

used to identify the key of the music is called theKrumhansl-Schmuckler key-finding algorithm

which was developed by Carol Krumhansl and Mark Schmuckler [22]. The basic principle of

the algorithm is to compare a prototypical Major (or Minor) scale-degree profile (individual

notes within a scale ordered by increasing pitch) with the input music. In other words, the dis-

tribution of pitch-classes in a piece is compared with an ideal distribution for each key. Several

enhancements to the basic algorithm have been suggested in [20, 48, 49].

For input, the algorithm above uses an input vector which is weighted by duration of the

pitch classes in the piece. It requires a list of notes with ontimes and offtimes. However, in

the audio domain, overlap of harmonic components of individual notes in real-world musical

recordings would make it a difficult task to determine the actual notes or their duration. A large

number of notes are detected in the frequency analysis. Hence the algorithm cannot be directly

applied.
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Thus we have approached this problem at a higher level by clustering individual notes de-

tected and have tried to obtain the harmonic description of the music in the form of the 24

Major/Minor triads. Then based on a rule-based analysis of these chords against the chords

present in the Major and Minor keys, we extract the key of the song.

However, the chord recognition accuracy of the system, though sufficient to determine the

key, is not sufficient to provide usable chord transcriptions or determine the hierarchical rhythm

structure across the entire length of the music. We have thus enhanced the four-step key deter-

mination system with three postprocessing stages that allow us to perform these two tasks with

greater accuracy, as shown in the Figure 3.1. In the next section the seven individual components

of this framework are discussed.
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Chapter 4

System Components

4.1 Beat Detection

According to Copland in [9],rhythm is one of the four essential elements of music. Music

unfolds through time in a manner that follows rhythm structure. Measures of music divide a

piece into time-counted segments and time patterns in music are referred to in terms of meter.

The beat forms the basic unit of musical time and in a meter of 4/4 (known as common time or

quadruple time) there are four beats to a measure. Rhythm can be perceived as a combination

of strong and weak beats. A strong beat usually corresponds to the first and third quarter note

in a measure and the weak beat corresponds to the second and fourth quarter note in a measure

[16]. If the strong beat constantly alternates with the weak beat, the inter-beat-interval (the tem-

poral difference between two successive beats), would correspond to the temporal length of a

quarter note. For our purpose, the strong and weak beat as defined above, corresponds to the

alternating sequence of equally spaced phenomenal impulses which define the tempo for the

music [41]. We assume the meter to be 4/4, this being the most frequent meter of popular songs

and the tempo of the input song is assumed to be constrained between 40-185 M.M. (Mälzels

Metronome: the number of quarter notes per minute) and almost constant.
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Our system aims to extract rhythm information in real world musical audio signals in the

form of a hierarchical beat-structure representation comprising the quarter note, half note, and

whole note or measure levels. As a first step towards this end, the musical signal is framed into

beat-length segments to extract metadata in the form of quarter note detection of the music. The

basis for this technique of audio framing is to assist in the detection of chord structures in the

music based on the following knowledge of chords [17]:

• Premise1: Chords are more likely to change on beat times than on other positions.

• Premise2: Chords are more likely to change on half note times than on other positions

of beat times.

• Premise3: Chords are more likely to change at the beginning of the measures than at

other positions of half note times.

Our beat detection process first detects the onsets present in the music using sub-band pro-

cessing [52]. This technique of onset detection is based on the sub-band intensity to detect the

perceptually salient percussive events in the music signal. We draw on the prior ideas of beat

tracking discussed in [11, 41] to determine the beat structure of the music as follows:

1. Compute all possible values of inter-onset intervals (IOIs). An IOI is defined as the time

interval between any pair of onsets, not necessarily successive.

2. Compute clusters of IOIs and create a ranked set of hypothetical inter-beat-intervals (IBIs)

based on the size of the corresponding clusters and by identifying integer relationships

with other clusters. The latter is to recognize harmonic relationships between the beat

(quarter note level) and simple integer multiples of the beat (half note and whole note

levels). An error margin of± 25 ms has been set in the IBI to account for slight variations

in the tempo.
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3. The hightest ranked value is returned as the IBI from which we obtain the tempo, ex-

pressed as an inverse value of the IBI.

4. Track patterns of onsets in clusters at the IBI and interpolate beat information in sections

where onsets corresponding to the beat might not be detected.

Let T = {t1, t2,...tn} % be the set of all detected transients (onsets)

LetQ = {q : 325≤ q≤ 1500} % be the set of all possible quarter-note intervals

Let IOI = {ioiq : ∀ q∈ Q} % maintain the count of all values of inter-onset-intervals

for i = 1... (n-1)
Begin

for j = (i+1)...n
Begin

ioi(tj−ti) = ioi(tj−ti) + 1
End

End

LetD = {d: d∈ Q , ioid ∈ 4 largest elements inIOI }
% be the set containing the 4 largest cluster size values

∀ q∈ Q % to identify harmonic relationships between hypothetical
% beat value (quarter note) and simple integer multiples

Begin % (half note and whole note)

If ( ioiq ∈ D) and (∃ ioi2q , ioi4q ∈ D such thatioiq ≈ (2 *ioi2q) ≈ (4*ioi4q))
Begin

Quarter Note = q
End

End

Tempo = 60,000 /Quarter Note

Beat Sequence = t1 → t2 → t3... such thattk - tk−1 = Quarter Note ± 25ms

Table 4.1: Beat Detection Algorithm

The algorithm has been highlighted in Table 4.1. The results of our tempo detection and

beat structure detection is shown in Figure 4.1 and 4.2 respectively for the song “Back to you”

by Bryan Adams.
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Figure 4.1: Tempo Detection

(a) 15 second excerpt from “ Bryan Adams - Back to you ”

(b) Onsets detected

(c) Beats detected

time

Figure 4.2: Beat Detection
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4.2 Chroma Based Feature Extraction

As highlighted in [4], there are two distinct attributes of pitch perception,Tone Heightand

Chroma[45]. Tone Height describes the general increase in the pitch of a sound as its frequency

increases. Chroma, on the other hand, is cyclic in nature with octave periodicity. Chroma is

closely related to the theoretical concept of pitch class. Under this formulation two tones sep-

arated by an integral number of octaves share the same value of Chroma. Later, it has been

suggested that one could decompose frequency into similar attributes [32].

The feature which we are using is a reduced spectral representation of each beat-spaced

segment of the audio based on a Chroma transformation of the spectrum. This feature class

represents the spectrum in terms of pitch-class, and forms the basis for theChromagram[51].

The input signal is transformed into the frequency domain. For each quarter-note spaced

segment of audio, this is then restructured into a Chroma spectrum by summing and normalizing

the pitch chroma intensities over 5 octaves using the frequencies of pitch notes in the tempered

scale [3] as shown in Table 4.2. This mapping procedure provides us with a highly reduced

representation of the frame, consisting of a single 12-element feature vector corresponding to

the 12 pitch classes.

Octave C-2 to B-2 C-3 to B-3 C-4 to B-4 C-5 to B-5 C-6 to B-6

C 65.406 130.813 261.626 523.251 1046.502
C] 69.296 138.591 277.183 554.365 1108.730
D 73.416 146.832 293.665 587.330 1174.659
D] 77.782 155.563 311.127 622.254 1244.508
E 82.407 164.814 329.628 659.255 1318.510
F 87.307 174.614 349.228 698.456 1396.913
F] 92.499 184.997 369.994 739.989 1479.978
G 97.999 195.998 391.995 783.991 1567.982
G] 103.826 207.652 415.305 830.609 1661.219
A 110.000 220.000 440.000 880.000 1760.000
A] 116.541 233.082 466.164 932.328 1864.655
B 123.471 246.942 493.883 987.767 1975.533

Table 4.2: Musical Note Frequencies
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We have found it useful to employ the musical relevance of Chroma in the development of

features for our purpose since various 3-element pitch class combinations in the Chroma vector

can be used to detect the presence of Major and Minor chords in an audio frame.

4.3 Chord Detection

In this current work, we have considered only the Major and Minor triads. This is because they

are the most commonly used chords in western music and constitute the majority of the chords

for any key as can be seen from tables 2.5 and 2.6

For our analysis we consider only the elements with the four highest values in the Chroma

vector and assign weights to them accordingly. Four elements are sufficient to distinguish be-

tween a Major and Minor chord. This is because they share the same Tonic (I) and Dominant

note (V) and differ only in the position of the Mediant note (III). For a Minor chord, it is one

semitone lower than the one for the Major chord. For example, the C Major chord is comprised

of C, E and G notes and the C Minor chord is comprised of C, D] and G notes. This is illustrated

with an example in Figure 4.3 and the algorithm is highlighted in Table 4.3

C C# D D# E F F# G G# A A# B

C Minor C Major

Step 1: Check for Tonic
           and Dominant

Step 2: Check for Mediant

Figure 4.3: Chord Detection Example

The chords detected across all the beat-spaced frames are then used to create a histogram, a

24 element vector whose elements correspond to the 24 Major/Minor triads. This will be used

for key determination in the next stage.
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Let C = {C, C], D,..... B} be the 12 elements of the chromatic scale

Let S = {SC , SC], SD,.....SB } be the signal strengths of the individual pitch notes
(Chroma Vector)

LetD = {d: d∈ C, Sd ∈ 4 largest elements inS }
∀ c∈ C, set Tonic = c % perform loop 12 times
Begin

Dominant = c + 7 semitones % perfect fifth interval
MediantMinor = c + 3 semitones % minor third interval
MediantMajor = c + 4 semitones % major third interval

If (Tonic & Dominant)∈ D
Begin

Case : (MediantMajor & Mediant Minor) ∈ D
Chord = c(Major) ifSMediant Major ≥ SMediant Minor

Chord = c(Minor) ifSMediant Major < SMediant Minor

Case : MediantMajor∈ D
Chord = c(Major)

Case : MediantMinor ∈ D
Chord = c(Minor)

End

End

Table 4.3: Chord Detection Algorithm

It is to be noted that complexities in polyphonic audio analysis often result in chord recognition

errors. Thus we are unable to obtain usable chord transcriptions at this stage.
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4.4 Key Determination

As highlighted in section 1.1, the key defines the diatonic scale which a piece of music uses.

The diatonic scale is a seven note scale and is most familiar as the Major/Minor scale in music.

Tonic/tonalityis sometimes used interchangeably with key. Tonality is an important structural

property of music, and has been described by music theorists and psychologists as a hierarchical

ordering of the pitches of the chromatic scale such that these notes are perceived in relation to

one central and stable pitch, the tonic [46]. This hierarchical structure is manifest in listeners’

perceptions of the stability of pitches in tonal contexts.

The Krumhansl-Schmuckler Key-Finding Algorithm and its variations described in section

3 cannot be directly applied to polyphonic audio as it requires a list of notes with ontimes and

offtimes which cannot be directly extracted from polyphonic audio. Hence we introduce the

concept of musical key determination at this stage that serves two purposes:

1. Identify the diatonic scale, and hence the individual notes that a piece of music uses: This

process will use the chords detected thus far (correct and wrong) to categorize a given

music signal into one of the 24 Major/Minor keys.

2. Perform error correction on the detected chords: Complexities in polyphonic audio anal-

ysis often results in chord recognition errors. Knowledge of the key will allow us to

identify the erroneous chords among the chords detected via music-theoretic analysis.

We can then define a criterion to eliminate them as will be discussed in the next section.

In this process, the 24 element vector of Major and Minor chords created in the previous

step is pattern matched using weighted Cosine Similarity against 24 element reference vectors

created for each of the 24 Major/Minor keys. The pattern that returns the highest rank is selected

as the one being the key of the song. We assume the key to be constant throughout the length of
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the song. The algorithm has been highlighted in Table 4.4

Let wij , i , j = 1...24 be the 24 element reference vectors for the 24 Major / Minor keys

Let vi, i = 1..24 be the 24 element input vector

Select key = j | cosΘ =
∑24

i=1 viwij√∑24
i=1(vi)2

√∑24
i=1(wij)2

is max∀ j = 1...24

Table 4.4: Key Determination Algorithm

An important point to be noted here is that the similarity analysis has been biased by assign-

ing relatively higher weights to theprimary chordsin each key. The system of primary chords

was formulated by the French composerJean Phillipe Rameuin the 18th century in his book

Treatise on Harmony. The primary chords are the three most important chords in a key and

every note of the scale is part of at least one of the primary chords. The first is the triad built

on the root or tonic note, and it is called theroot or thetonic chord. The next is the chord built

on the fifth note, called thedominant chord. The third chord is built on the fourth note, and is

called thesubdominant chord. In the key of C Major these chords are C Major, G Major and F

Major respectively.

The primary chords for each key can be determined using the chord patterns in Table 2.5 and

2.6. A simpler way of approaching this would be to use thecircle of fifths. The circle of fifths,

shown in Figure 4.4 is a visualization of relations between keys. In the circle of fifth the three

primary chords are always next to each other: The tonic or root in the center, the subdominant

to the left (counterclockwise) and the dominant to the right (clockwise). For example: In the

key of C Major, C is on the top, the subdominant F is to the left, and the dominant G is to the

right. The notes on the outside of the circle represent the Major keys and those on the inside are

all the relative Minor keys.
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Figure 4.4: Circle of Fifths

4.5 Chord Accuracy Enhancement - I

In this step we aim to increase the accuracy of chord detection. For each audio frame:

• [Check 1] Eliminate erroneous chords not in the key of the song:

Perform a rule-based analysis of the detected chord to see if it exists in the key of the

song. If it does not:

a. Check for the presence of the Major chord of the same pitch class if the detected

chord is a Minor and vice-versa. If this is present in the key, replace the erroneous

chord with this chord. This is because the Major and Minor chord of a pitch class

differ only in the position of the Mediant note. The chord detection approach often

suffers from recognition errors that result from overlaps of harmonic components

of individual notes in the spectrum that is quite difficult to avoid. Hence there is a

possibly of error in the distinction between the Major and Minor chords for a given

pitch class.

b. If the check fails, eliminate the chord.

• [Check 2] Perform temporal corrections of detected or missing chords:

If the chords detected in the adjacent frames are the same but different from the current

27



frame, then the chord in the current frame is likely to be incorrect. In these cases, we

coerce the current frame’s chord to match the one in the adjacent frames.

C Major C Minor C Major

1 2 3

Chord not detected in frame

Check 1 (a)

C Major F Major C Major

C Major C major

Check 2 (erroneous chord)

Check 2 (missing chord)

1 2 3

1 2 3

C Major C Major C Major

1 2 3

Analysis over frame 2
Key of song = C Major

C Major D#Major C Major

Check 1 (b)
1 2 3
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Figure 4.5: Chord Accuracy Enhancement - I

We present an illustrative example of the above checks over three consecutive quarter note

spaced frames of audio in Figure 4.5

4.6 Rhythm Structure Determination

Check for start of measures based on the premise that chords are more likely to change at the

beginning of a measure than at other positions of beat times [15]. Since there are 4 quarter notes

to a measure, check for patterns of 4 consecutive frames with the same chord to demarcate all

the possible measure boundaries. However not all of these boundaries may be correct. We will

illustrate this with an example in which a chord sustains over 2 measures of the music.

From Figure 4.6(c), it can be seen that there are 4 possible measure boundaries being de-
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C Major C Major C Major C Major C Major C Major C Major A Minor A Minor A Minor A Minor

1 2 3 4 5 6 7 8 9 10 11 12

Chord not detected in frame

Length = 4 quarter notes

Length = 4 quarter notes

(a) Chords detected across 12 quarter notes

(b) Actual Measure Boundaries

(c) Detected  Possible Measure Boundaries

Erronous boundaries

Figure 4.6: Error in Measure Boundary Detection

tected across the 12 quarter note spaced frames of audio. Our aim is to eliminate the 2 erroneous

ones (dotted line in Figure 4.6(c)) and interpolate an additional measure line at the start of the

fifth frame to give us the required result as seen in Figure 4.6(b). The correct measure boundaries

along the entire length of the song are thus determined as follows:

1. Along the increasing order on the time axis, obtain all possible patterns of boundaries

originating from every boundary location that are have integer relationships in multiples

of 4. Select the pattern with the highest count as the one corresponding to the pattern of

actual measure boundaries.

2. Track the boundary locations in the detected pattern and interpolate missing boundary

positions across the rest of the song.

The result of our hierarchical rhythm detection is shown in Figure 4.7. The symbolic rep-

resentation of the hierarchical rhythm structure in Figure 4.7(d) can be interpreted as shown in

Figure 3.1.
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(a) 15 second excerpt from “ Bryan Adams - Back to you ”

(b) Onsets detected

(c) Beats detected

(d) Hierarchical Rhythm Structure

time

Figure 4.7: Hierarchical Rhythm Structure

4.7 Chord Accuracy Enhancement - II

Now that the measure boundaries have been extracted, we can increase the chord accuracy in

each measure of audio as follows:

• [Check 3] Intra-measure Chord Check:

FromPremise3, we know that chords are more likely to change at the beginning of the

measures than at other positions of half note times. Hence:

a. If three of the chords are the same, then the 4th chord is likely to be the same as the

others.

b. If there is a chord common to both halves of the measure, then all the chords in the

measure are likely to be the same as this chord.

It is observed that all possible cases of chords under[Check3] (a) are already handled by

[Check1, 2] above. Hence we only implement[Check3](b) and this is illustrated in Figure 4.8

with an example. This check is required because, in the case of a Minor key, we can have both

the Major and Minor chord of the same pitch class present in the song. A classic example of

this can be seen in “Hotel California” by theEagles. This song is in the key of B Minor and the
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chords in the verse include an E Major and an E Minor chord which shows a musical shift from

the Melodic Minor to the Natural Minor. Here if an E minor is detected in a measure containing

the E major chord,[Check1] would not detect any error on account of both the E Major and E

Minor chord being present in the key of B Minor.

1 2 3 4 5 6 7 8 9 10 11 12

12 quarter notes

Measure Boundaries

E major E Minor B Minor

5 6 7

Check 3 (b) (example 1: erroneous chord)

5 6 7

E major

E Major E minor E Major

Chord not detected in frame

Check 3 (b) (example 2: missing chord) E major E major E Major E Major

8

5 6 7 8

8

Analysis of measure 2
Key of song = B Minor

Figure 4.8: Chord Accuracy Enhancement - II
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Chapter 5

Experiments

5.1 Results

The results of our experiments, performed on 30 popular English songs spanning 5 decades of

music are tabulated in Table 5.1. The songs have been carefully selected for their variety in

artist and time spans.

It can be observed that the average chord detection accuracy across the length of the entire

music performed by the Chord Detection step (module 3 in our framework) is relatively low at

48.13%. The rest of the chords are either not detected or detected in error. The latter is reflected

primarily by the difference between A & B in Table 5.1 as B performs the correction or elimi-

nation of erroneous chords not in the key of the song.

This accuracy is however sufficient to determine the key accurately for 28 out of 30 songs

in the Key Detection step (module 4 in our framework) which reflects an accuracy of over 93%

for key detection. This has verified against the information in the commercially available sheet

music for the songs, a good source of which can be found at [26, 43].
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No. Song Title A Original Detected B Measure C
(%) Key Key (%) Detection (%)

1 (1965) Righteous Brothers - Unchained melody 57.68 C maj C maj 70.92 Yes 85.11

2 (1977) Bee Gees - Stayin’ Alive 39.67 F min F min 54.91 Yes 71.40

3 (1977) Eric Clapton - Wonderful tonight 27.70 G maj G maj 40.82 Yes 60.64

4 (1977) Fleetwood Mac - You make lovin’ fun 44.37 A] maj A] maj 60.69 Yes 79.31

5 (1979) Eagles - I can’t tell you why 52.41 D maj D maj 68.74 Yes 88.97

6 (1984) Foreigner - I want to know what love is 55.03 D] min D] min 73.42 No 58.12

7 (1986) Bruce Hornsby - The way it is 59.74 G maj G maj 70.32 Yes 88.50

8 (1989) Chris Rea - Road to hell 61.51 A min A min 76.64 Yes 89.24

9 (1991) R.E.M. - Losing my religion 56.31 A min A min 70.75 Yes 85.74

10 (1991) U2 - One 56.63 C maj C maj 64.82 Yes 76.63

11 (1992) Michael Jackson - Heal the world 30.44 A maj A maj 51.76 Yes 68.62

12 (1993) MLTR - Someday 56.68 D maj D maj 69.71 Yes 87.30

13 (1995) Coolio - Gangsta’s paradise 31.75 C min C min 47.94 Yes 70.79

14 (1996) Backstreet Boys - As long as you love me48.45 C maj C maj 61.97 Yes 82.82

15 (1996) Joan Osborne - One of us 46.90 A maj A maj 59.30 Yes 80.05

16 (1997) Bryan Adams - Back to you 68.92 C maj C maj 75.69 Yes 95.80

17 (1997) Green Day - Time of your life 54.55 G maj G maj 64.58 Yes 87.77

18 (1997) Hanson - Mmmbop 39.56 A maj A maj 63.39 Yes 81.08

19 (1997) Savage Garden - Truly, madly, deeply 49.06 C maj C maj 63.88 Yes 80.86

20 (1997) Spice Girls - Viva forever 64.50 D] min F] maj 74.25 Yes 91.42

21 (1997) Tina Arena - Burn 35.42 G maj G maj 56.13 Yes 77.38

22 (1998) Jennifer Paige - Crush 40.37 C] min C] min 55.41 Yes 76.78

23 (1998) Natalie Imbruglia - Torn 53.00 F maj F maj 67.89 Yes 87.73

24 (1999) Santana - Smooth 54.53 A min A min 69.63 No 49.91

25 (2000) Corrs - Breathless 36.77 B maj B maj 63.47 Yes 77.28

26 (2000) Craig David - Walking away 68.99 A min C maj 75.26 Yes 93.03

27 (2000) Nelly Furtado - Turn off the light 36.36 D maj D maj 48.48 Yes 70.52

28 (2000) Westlife - Seasons in the sun 34.19 F] maj F] maj 58.69 Yes 76.35

29 (2001) Shakira - Whenever, wherever 49.86 C] min C] min 62.82 Yes 78.39

30 (2001) Train - Drops of Jupiter 32.54 C maj C maj 53.73 Yes 69.85

Average accuracy at each stage 48.13 28/30 songs 63.20 28/30 songs 78.91

(A −→ Chord Detection) (B−→ Chord Accuracy Enhancement-I) (C−→ Chord Accuracy Enhancement-II)

Table 5.1: Experimental Results

The average chord detection accuracy of the system improves on an average by 15.07% on

applying Chord Accuracy Enhancement - I (module 5 in our framework). Errors in key determi-

nation do not have any effect on this step as will be discussed in Section 5.2. The new accuracy

of 63.20% has been found to be sufficient to determine the hierarchical rhythm structure (mod-

ule 6 in our framework) across the music for 28 out of the 30 songs, thus again reflecting an

accuracy of over 93% for rhythm tracking.

Finally the application of Chord Accuracy Enhancement - II (module 7 in our framework)
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makes a substantial performance improvement of 15.71% leading to a final chord detection

accuracy of 78.91%. This could have been higher, were it not for the performance drop for

the 2 songs (6 and 24 in table 5.1) on account of error in measure boundary detection. This

exemplifies the importance of accurate measure detection in order to perform intra-measure

chord checks based on the previously discussed musical knowledge of chords.

5.2 Key Determination Observation

It can be observed that for 2 of the songs (song numbers, 20 and 26 in Table 5.1), the key has

been determined incorrectly. The explanation for this can be based on the theory of the Relative

Major/Minor combination of keys as explained earlier in this paper.

Our technique assumes that the key of the song is constant throughout the length of the song.

However, many songs often use both Major and Minor keys, perhaps choosing a Minor key for

the verse and a Major key for the chorus, or vice versa. This has a nice effect, as it helps break up

the monotony that sometimes results when a song lingers in one key. Often, when switching to

a Major key from a Minor key, the songwriters will choose to go to the Relative Major from the

Minor key the song is in and vice-versa. Sometimes the chords present in the song are present

in both the Major and its relative Minor.

For example, the 4 main chords used in the song “Viva Forever” by the Spice Girlsare - D]

Minor, A] Minor, B Major and F] Major. These chords are present in the key of F] Major and

D] Minor. Hence it is difficult for the system to determine if the song is in the Major key or the

Relative minor. This can be taken as a probable explanation for both the songs with erroneous

key results where the relative Major has been detected instead of the actual Minor key. A similar

observation can be made for the song “Walking Away” by Craig David where the main chords

used are - A Minor, D Minor, F Major, G Major and C Major. These chords are present in both,
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the key of C Major as well as in it’s relative Minor, A Minor.

The usage of weighted Cosine similarity technique causes the shorter Major key patterns to

be preferred over the longer Minor key patterns. This is because of the normalization that is

performed while applying the Cosine similarity. For the Minor keys, normalization is applied

taking into account the count of chords that can be constructed across all the three types of

Minor scales. However, from an informal evaluation of popular music we observe that popular

music in Minor keys usually shift across only two out of the three scales, primarily the Natural

and Harmonic Minor. So in such cases, the normalization technique applied would cause the

system to get slightly biased towards the relative Major key where this problem is not present as

there is only one Major scale.

Errors in key recognition, does not affect the Chord Accuracy Enhancement - I because we

also consider chords present in the relative Major/Minor key in addition to the chords in the

detected key. A theoretical explanation on how to perform key identification in such cases of

ambiguity (as seen above) based on an analysis of sheet music can be found in [12].

5.3 Chord Detection Observation

The variation in the chord detection accuracy of the system can be explained as follows:

1. Usage of other chords:

In this approach we have considered only the Major and Minor triads. However, in addi-

tion to these, there are other chord possibilities in popular music as highlighted in [23].

Of particular interest to us here is the Dominant7th category of chords as discussed by

Jazz legend,Joe Pass, in [31]. Under this formulation, the Augmented and Diminished

chords are included in the Dominant7th category. The usage of chords from the Domi-

nant7th category varies in commercial music and may be the reason for variation in chord

35



detection.

2. Presence of extended chords:

It is quite common to seeextendedchords in music. Extended chords are chords obtained

by adding diatonic intervals to the basic Major and Minor triads to add “color” to the basic

chord. For example:

C Major7 Chord (C E G B)      = C Major triad +  VII degree of C Major scale
C Minor7 Chord (C D# G A#)  = C Minor triad +  VII degree of C Major scale

Polyphony, with its multidimensional sequences of overlapping tones and overlapping

harmonic components of individual notes in the spectrum might cause the elements in the

Chroma vector to be weighted wrongly. So a C Major 7 chord (C E G B) in the music

might wrongly get detected as an E Minor chord (E G B) if the latter 3 notes are assigned

a relatively higher weight in the Chroma vector.

3. Key Change:

In some songs, there is a key change toward the end of a song to make the final repeated

part(s) (chorus/refrain) slightly different from the previous parts. This is effected by trans-

posing the song to higher semitones, usually up a half step. This has also been highlighted

by Goto in [14]. Since our system does not currently handle key changes, the chords de-

tected in this section will not be recognized. This is illustrated with an example in Figure

5.1

Another point to be noted here is of chord substitution/ simplification of extended chords in

the evaluation of our system. For simplicity, extended chords can be substituted by the respective

Major/Minor triad. As long as the notes in the extended chord are present in the scale, and the

basic triad is there, the simplification can be done. For example, The C Major7 can be simplified

to the C Major triad. This substitution has been performed on the extended chords annotated in
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text

A# BG# AF# GE FD D#C C#

A# BG# AF# GE FD D#C C#

Chord = C Major (C E G)

Modulated Section: (one semitone shift) Chord = C# Major (C# F G#)

Figure 5.1: Key Modulation

the sheet music in the evaluation of our system.

5.4 Rhythm Tracking Observation

We have observed two reasons for error in measure detection:

1. Two patterns of measure boundaries detected by our rhythm detector have the same

length. Hence, our system is unable to make a decision on which pattern to select.

2. An incorrect pattern of measure boundaries has the highest count.

We conjecture this to be on account of errors in the chord detection as discussed above. Chords

present in the music and not handled by our system could be wrongly classified into one of the

24 Major/Minor triads on account of complexities in polyphonic audio analysis. This can result

in incorrect clusters of 4 chords being captured by the rhythm detection process.

Further, beat detection is a non-trivial task and the difficulties of tracking the beats in acous-

tic signals are discussed in [16]. Any error in beat detection can cause a shift in the rhythm

structure determined by the system.
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Chapter 6

Conclusion

We have presented a technique to determine the key, chords and hierarchical rhythm structure

from acoustic musical signals. To our knowledge, this is the first attempt to use a rule-based

approach that combines low-level features with high level music knowledge of rhythm and har-

monic structure to determine all three of these expressive dimensions of music.

We have demonstrated the applicability of this framework in various other aspects of content

analysis like singing voice detection and the automatic alignment of textual lyrics and musical

audio. (Appendix A : Publications)

The human auditory system is capable of extracting rich and meaningful data from com-

plex audio signals [44] and existing computational auditory analysis systems fall clearly behind

humans in performance. Towards this end, we believe that the model proposed here, provides

a promising platform for the future development of more sophisticated auditory models based

on a better understanding of music. Our current and future research that builds on this work is

highlighted below:

• Key Detection : Our technique assumes that the key of the song is constant throughout

the length of the song. However, on account of the properties of the relative Major/Minor
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key combination, we have made the chord and rhythm detection process (that uses the key

of the song as input), quite robust against changes across this key combination. However,

the same cannot be said about other kinds of key changes in the music. This is because

such key changes are quite difficult to track since there are no fixed rules and depend

more on the songwriter’s creativity. For example, the song “Let It Grow” by Eric Clapton

switches from a B Minor key in the verse to an E Major key in the chorus. We believe

that an analysis of the song structure (verse, chorus, bridge etc.) could probably serve as

an input to track these kind of key changes. This problem is currently being analyzed and

will be tackled in the future.

• Chord Detection : In this approach, we have considered only the Major and Minor triads.

However, in addition to these, there are other chord possibilities in popular music and

future work would be targeted towards the detection of the Dominant 7th category chords

and extended chords as discussed in section 5.3. The chord detection research can be

further extended to include knowledge of chord progressions based on the function of

chords in their diatonic scale, which relates to the expected resolution of each chord within

a key. That is, the analysis of chord progressions based on the “need” for a sounded chord

to move from an unstable sound (dissonance) to a more final or stable sounding one (a

consonance).

• Rhythm Tracking : The rhythm extraction technique employed in our current system

does not perform very well for drumless music signals since the onset detector has been

optimized to detect the onset of percussive events. Future effort will be aimed at extending

the current work for music signals that do not contain drum sounds.
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Appendix A

Publications

• A. Shenoy, R. Mohapatra, and Y. Wang. Key Determination of Acoustic Musical Signals.

In ICME, 2004

I (Major contribution - conceptualized, designed and implemented the framework.)

• Y. Wang, M.Y. Kan, T.L. Nwe, A. Shenoy, Y. Jun. LyricAlly: Automatic Synchronization

of Acoustic Musical Signals and Textual Lyrics. In proc.ACM-MM, 2004

I (Significant contribution - integrated Rhythm Detection into the system, one of the

four core system components. Best student paper award)

• T.L. Nwe, A. Shenoy, and Y. Wang. Singing Voice Detection in Popular Music. In proc.

ACM-MM, 2004

I (Significant contribution - pre-processing of the audio using musically designed Key

filters, editorial comments.)

• N.C. Maddage, C. Xu, A. Shenoy, and Y. Wang. Semantic Region Detection in Acoustic

Music Signals. To appear in proc.PCM, 2004

I (Minor contribution - editorial comments.)
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