11 research outputs found

    Automatic Segmentation of Trees in Dynamic Outdoor Environments

    Get PDF
    Segmentation in dynamic outdoor environments can be difficult when the illumination levels and other aspects of the scene cannot be controlled. Specifically in orchard and vineyard automation contexts, a background material is often used to shield a camera\u27s field of view from other rows of crops. In this paper, we describe a method that uses superpixels to determine low texture regions of the image that correspond to the background material, and then show how this information can be integrated with the color distribution of the image to compute optimal segmentation parameters to segment objects of interest. Quantitative and qualitative experiments demonstrate the suitability of this approach for dynamic outdoor environments, specifically for tree reconstruction and apple flower detection application

    Vid2Curve: Simultaneous Camera Motion Estimation and Thin Structure Reconstruction from an RGB Video

    Get PDF
    Thin structures, such as wire-frame sculptures, fences, cables, power lines, and tree branches, are common in the real world. It is extremely challenging to acquire their 3D digital models using traditional image-based or depth-based reconstruction methods because thin structures often lack distinct point features and have severe self-occlusion. We propose the first approach that simultaneously estimates camera motion and reconstructs the geometry of complex 3D thin structures in high quality from a color video captured by a handheld camera. Specifically, we present a new curve-based approach to estimate accurate camera poses by establishing correspondences between featureless thin objects in the foreground in consecutive video frames, without requiring visual texture in the background scene to lock on. Enabled by this effective curve-based camera pose estimation strategy, we develop an iterative optimization method with tailored measures on geometry, topology as well as self-occlusion handling for reconstructing 3D thin structures. Extensive validations on a variety of thin structures show that our method achieves accurate camera pose estimation and faithful reconstruction of 3D thin structures with complex shape and topology at a level that has not been attained by other existing reconstruction methods.Comment: Accepted by SIGGRAPH 202

    {Vid2Curve}: {S}imultaneous Camera Motion Estimation and Thin Structure Reconstruction from an {RGB} Video

    Get PDF
    Thin structures, such as wire-frame sculptures, fences, cables, power lines, and tree branches, are common in the real world. It is extremely challenging to acquire their 3D digital models using traditional image-based or depth-based reconstruction methods because thin structures often lack distinct point features and have severe self-occlusion. We propose the first approach that simultaneously estimates camera motion and reconstructs the geometry of complex 3D thin structures in high quality from a color video captured by a handheld camera. Specifically, we present a new curve-based approach to estimate accurate camera poses by establishing correspondences between featureless thin objects in the foreground in consecutive video frames, without requiring visual texture in the background scene to lock on. Enabled by this effective curve-based camera pose estimation strategy, we develop an iterative optimization method with tailored measures on geometry, topology as well as self-occlusion handling for reconstructing 3D thin structures. Extensive validations on a variety of thin structures show that our method achieves accurate camera pose estimation and faithful reconstruction of 3D thin structures with complex shape and topology at a level that has not been attained by other existing reconstruction methods

    Machine Vision-Based Crop-Load Estimation Using YOLOv8

    Full text link
    Labor shortages in fruit crop production have prompted the development of mechanized and automated machines as alternatives to labor-intensive orchard operations such as harvesting, pruning, and thinning. Agricultural robots capable of identifying tree canopy parts and estimating geometric and topological parameters, such as branch diameter, length, and angles, can optimize crop yields through automated pruning and thinning platforms. In this study, we proposed a machine vision system to estimate canopy parameters in apple orchards and determine an optimal number of fruit for individual branches, providing a foundation for robotic pruning, flower thinning, and fruitlet thinning to achieve desired yield and quality.Using color and depth information from an RGB-D sensor (Microsoft Azure Kinect DK), a YOLOv8-based instance segmentation technique was developed to identify trunks and branches of apple trees during the dormant season. Principal Component Analysis was applied to estimate branch diameter (used to calculate limb cross-sectional area, or LCSA) and orientation. The estimated branch diameter was utilized to calculate LCSA, which served as an input for crop-load estimation, with larger LCSA values indicating a higher potential fruit-bearing capacity.RMSE for branch diameter estimation was 2.08 mm, and for crop-load estimation, 3.95. Based on commercial apple orchard management practices, the target crop-load (number of fruit) for each segmented branch was estimated with a mean absolute error (MAE) of 2.99 (ground truth crop-load was 6 apples per LCSA). This study demonstrated a promising workflow with high performance in identifying trunks and branches of apple trees in dynamic commercial orchard environments and integrating farm management practices into automated decision-making

    The Use of Agricultural Robots in Orchard Management

    Full text link
    Book chapter that summarizes recent research on agricultural robotics in orchard management, including Robotic pruning, Robotic thinning, Robotic spraying, Robotic harvesting, Robotic fruit transportation, and future trends.Comment: 22 page

    Segmentation and 3D reconstruction of rose plants from stereoscopic images

    Get PDF
    The method proposed in this paper is part of the vision module of a garden robot capable of navigating towards rose bushes and clip them according to a set of pruning rules. The method is responsible for performing the segmentation of the branches and recovering their morphology in 3D. The obtained reconstruction allows the manipulator of the robot to select the candidate branches to be pruned. This method first obtains a stereo pair of images and calculates the disparity image using block matching and the segmentation of the branches using a Fully Convolutional Neuronal Network modified to return a map with the probability at the pixel level of the presence of a branch. A post-processing step combines the segmentation and the disparity in order to improve the results. Then, the skeleton of the plant and the branching structure are calculated, and finally, the 3D reconstruction is obtained. The proposed approach is evaluated with five different datasets, three of them compiled by the authors and two from the state of the art, including indoor and outdoor scenes with uncontrolled environments. The different steps of the proposed pipeline are evaluated and compared with other state-of-the-art methods, showing that the accuracy of the segmentation improves other methods for this task, even with variable lighting, and also that the skeletonization and the reconstruction processes obtain robust results.This work was funded by the European Horizon 2020 program, under the project TrimBot2020 (Grant No. 688007)
    corecore