484 research outputs found

    Self-organizing inter-cell interference coordination in 4G and beyond networks using genetic algorithms

    Get PDF
    The design objective of the 4G and beyond networks is not only to provide high data rate services but also ensure a good subscriber experience in terms of quality of service. However, the main challenge to this objective is the growing size and heterogeneity of these networks. This paper proposes a genetic-algorithm-based approach for the self-optimization of interference mitigation parameters for downlink inter-cell interference coordination parameter in Long Term Evolution (LTE) networks. The proposed algorithm is generic in nature and operates in an environment with the variations in traffic, user positions and propagation conditions. A comprehensive analysis of the obtained simulation results is presented, which shows that the proposed approach can significantly improve the network coverage in terms of call accept rate as well as capacity in terms of throughput

    Opportunistic Third-Party Backhaul for Cellular Wireless Networks

    Full text link
    With high capacity air interfaces and large numbers of small cells, backhaul -- the wired connectivity to base stations -- is increasingly becoming the cost driver in cellular wireless networks. One reason for the high cost of backhaul is that capacity is often purchased on leased lines with guaranteed rates provisioned to peak loads. In this paper, we present an alternate \emph{opportunistic backhaul} model where third parties provide base stations and backhaul connections and lease out excess capacity in their networks to the cellular provider when available, presumably at significantly lower costs than guaranteed connections. We describe a scalable architecture for such deployments using open access femtocells, which are small plug-and-play base stations that operate in the carrier's spectrum but can connect directly into the third party provider's wired network. Within the proposed architecture, we present a general user association optimization algorithm that enables the cellular provider to dynamically determine which mobiles should be assigned to the third-party femtocells based on the traffic demands, interference and channel conditions and third-party access pricing. Although the optimization is non-convex, the algorithm uses a computationally efficient method for finding approximate solutions via dual decomposition. Simulations of the deployment model based on actual base station locations are presented that show that large capacity gains are achievable if adoption of third-party, open access femtocells can reach even a small fraction of the current market penetration of WiFi access points.Comment: 9 pages, 6 figure

    Enhanced Inter-Cell Interference Coordination Challenges in Heterogeneous Networks

    Full text link
    3GPP LTE-Advanced has started a new study item to investigate Heterogeneous Network (HetNet) deployments as a cost effective way to deal with the unrelenting traffic demand. HetNets consist of a mix of macrocells, remote radio heads, and low-power nodes such as picocells, femtocells, and relays. Leveraging network topology, increasing the proximity between the access network and the end-users, has the potential to provide the next significant performance leap in wireless networks, improving spatial spectrum reuse and enhancing indoor coverage. Nevertheless, deployment of a large number of small cells overlaying the macrocells is not without new technical challenges. In this article, we present the concept of heterogeneous networks and also describe the major technical challenges associated with such network architecture. We focus in particular on the standardization activities within the 3GPP related to enhanced inter-cell interference coordination.Comment: 12 pages, 4 figures, 2 table

    Samoorganizirajuće mreže: Podržano učenje za optimizaciju LTE mobilnosti

    Get PDF
    With the evolution of broadband mobile networks towards LTE and beyond, the support for the Internet and Internet based services is growing. Self Organizing Network (SON) functionalities intend to optimize the network performance for the improved user experience while at the same time reducing the network operational cost. This paper proposes a Reinforcement Learning (RL) based framework to improve throughput of the mobile users. The problem of spectral efficiency maximization is modeled as co-operative Multi-Agent control problem between the neighbouring eNodeBs (eNBs). Each eNB has an associated agent that dynamically changes the outgoing Handover Margin (HM) to its neighbouring cells. The agent uses the RL technique of Fuzzy Q-Learning (FQL) to learn the optimal mobility parameter i.e., HM value. The learning framework is designed to operate in an environment with the variations in traffic, user positions and propagation conditions. Simulation results have shown the proposed approach improves the network capacity and user experiences in terms of throughput.Razvoj širokopojasne mobilne mreže prema LTE mrežama uvjetuje pojačani rast internetskih servisa i usluga. Samoorganizirajuće mreže namijenjene su optimizaciji performansi mreže s ciljem poboljšanja korisnikovog zadovoljstva i smanjenja troškova rada. U radu se predlaže pristup zasnovan na podržanom učenju kako bi se popravila propusnost mobilnog korisnika. Problem maksimizacije spektralne učinkovitosti modelira se kao kooperativni više agentski problem upravljanje između susjednih čvorova (eNBs). Svaki čvor ima pridruženog agenta koji dinamički mijenja marginu primopredaje prema susjednim ćelijama. Agent koristi tehniku neizrazitog Q učenja (FQL) kako bi naučio optimizirati parametre mreže. Učenje je organizirano za rad u uvjetima raznovrsnog prometa, korisničkih položaja i uvjeta propagacije. Simulacijski rezultati pokazuju kako predloženi pristup poboljšava kapacitet mreže i korisnički doživljaj u smislu propusnosti mreže

    Self Organising Network Techniques to Maximise Traffic Offload onto a 3G/WCDMA Small Cell Network using MDT UE Measurement Reports

    Get PDF
    This paper presents a number of Self-Organising Network (SON) based methods using a 3GPP Minimisation of Drive Testing (MDT) approach or similar and the analysis of these geo-located UE measurements to maximise traffic offload onto lamppost mounted 3G/WCDMA microcells. Simulations have been performed for a real 3G/WCDMA microcell deployment in a busy area of central London and the results suggest that for the network studied a traffic increase on the microcell layer of up to 175% is achievable through the novel SON methods presented
    corecore