47 research outputs found

    A COMPREHENSIVE STUDY OF CRYPTOGRAPHY AND KEY MANAGEMENT BASED SECURITY IN CLOUD COMPUTING

    Get PDF
    Cloud computing is a cost effective flexible and proven delivery platform for providing consumer IT services or business services over internet. It has an ability to provide many services over internet. It not only provides computing services but additional computing resources. To interact with various services in the cloud and to store retrieve data from cloud several security mechanism is required. Cryptography and key management mechanism are one of the import services in the cloud to secure data. In this context, this paper investigates the basic problem of cloud computing with cryptography and key management system for enabling support of interoperability between cloud cryptography client and key management services

    A survey on wireless body area networks: architecture, security challenges and research opportunities.

    Get PDF
    In the era of communication technologies, wireless healthcare networks enable innovative applications to enhance the quality of patients’ lives, provide useful monitoring tools for caregivers, and allows timely intervention. However, due to the sensitive information within the Wireless Body Area Networks (WBANs), insecure data violates the patients’ privacy and may consequently lead to improper medical diagnosis and/or treatment. Achieving a high level of security and privacy in WBAN involves various challenges due to its resource limitations and critical applications. In this paper, a comprehensive survey of the WBAN technology is provided, with a particular focus on the security and privacy concerns along with their countermeasures, followed by proposed research directions and open issues

    Data Auditing and Security in Cloud Computing: Issues, Challenges and Future Directions

    Get PDF
    Cloud computing is one of the significant development that utilizes progressive computational power and upgrades data distribution and data storing facilities. With cloud information services, it is essential for information to be saved in the cloud and also distributed across numerous customers. Cloud information repository is involved with issues of information integrity, data security and information access by unapproved users. Hence, an autonomous reviewing and auditing facility is necessary to guarantee that the information is effectively accommodated and used in the cloud. In this paper, a comprehensive survey on the state-of-art techniques in data auditing and security are discussed. Challenging problems in information repository auditing and security are presented. Finally, directions for future research in data auditing and security have been discussed

    Data auditing and security in cloud computing: issues, challenges and future directions

    Get PDF
    Cloud computing is one of the significant development that utilizes progressive computational power and upgrades data distribution and data storing facilities. With cloud information services, it is essential for information to be saved in the cloud and also distributed across numerous customers. Cloud information repository is involved with issues of information integrity, data security and information access by unapproved users. Hence, an autonomous reviewing and auditing facility is necessary to guarantee that the information is effectively accommodated and used in the cloud. In this paper, a comprehensive survey on the state-of-art techniques in data auditing and security are discussed. Challenging problems in information repository auditing and security are presented. Finally, directions for future research in data auditing and security have been discusse

    Certificateless Algorithm for Body Sensor Network and Remote Medical Server Units Authentication over Public Wireless Channels

    Get PDF
    Wireless sensor networks process and exchange mission-critical data relating to patients’ health status. Obviously, any leakages of the sensed data can have serious consequences which can endanger the lives of patients. As such, there is need for strong security and privacy protection of the data in storage as well as the data in transit. Over the recent past, researchers have developed numerous security protocols based on digital signatures, advanced encryption standard, digital certificates and elliptic curve cryptography among other approaches. However, previous studies have shown the existence of many security and privacy gaps that can be exploited by attackers to cause some harm in these networks. In addition, some techniques such as digital certificates have high storage and computation complexities occasioned by certificate and public key management issues. In this paper, a certificateless algorithm is developed for authenticating the body sensors and remote medical server units. Security analysis has shown that it offers data privacy, secure session key agreement, untraceability and anonymity. It can also withstand typical wireless sensor networks attacks such as impersonation, packet replay and man-in-the-middle. On the other hand, it is demonstrated to have the least execution time and bandwidth requirements

    Secure and privacy-aware proxy mobile IPv6 protocol for vehicle-to-grid networks

    Get PDF
    Vehicle-to-Grid (V2G) networks have emerged as a new communication paradigm between Electric Vehicles (EVs) and the Smart Grid (SG). In order to ensure seamless communications between mobile EVs and the electric vehicle supply equipment, the support of ubiquitous and transparent mobile IP communications is essential in V2G networks. However, enabling mobile IP communications raises real concerns about the possibility of tracking the locations of connected EVs through their mobile IP addresses. In this paper, we employ certificate-less public key cryptography in synergy with the restrictive partially blind signature technique to construct a secure and privacy-aware proxy mobile IPv6 (SP-PMIPv6) protocol for V2G networks. SP-PMIPv6 achieves low authentication latency while protecting the identity and location privacy of the mobile EV. We evaluate the SP-PMIPv6 protocol in terms of its authentication overhead and the information-theoretic uncertainty derived by the mutual information metric to show the high level of achieved anonymity

    Data storage security and privacy in cloud computing: A comprehensive survey

    Get PDF
    Cloud Computing is a form of distributed computing wherein resources and application platforms are distributed over the Internet through on demand and pay on utilization basis. Data Storage is main feature that cloud data centres are provided to the companies/organizations to preserve huge data. But still few organizations are not ready to use cloud technology due to lack of security. This paper describes the different techniques along with few security challenges, advantages and also disadvantages. It also provides the analysis of data security issues and privacy protection affairs related to cloud computing by preventing data access from unauthorized users, managing sensitive data, providing accuracy and consistency of data store

    Secure data sharing in cloud and IoT by leveraging attribute-based encryption and blockchain

    Get PDF
    “Data sharing is very important to enable different types of cloud and IoT-based services. For example, organizations migrate their data to the cloud and share it with employees and customers in order to enjoy better fault-tolerance, high-availability, and scalability offered by the cloud. Wearable devices such as smart watch share user’s activity, location, and health data (e.g., heart rate, ECG) with the service provider for smart analytic. However, data can be sensitive, and the cloud and IoT service providers cannot be fully trusted with maintaining the security, privacy, and confidentiality of the data. Hence, new schemes and protocols are required to enable secure data sharing in the cloud and IoT. This work outlines our research contribution towards secure data sharing in the cloud and IoT. For secure data sharing in the cloud, this work proposes several novel attribute-based encryption schemes. The core contributions to this end are efficient revocation, prevention of collusion attacks, and multi-group support. On the other hand, for secure data sharing in IoT, a permissioned blockchain-based access control system has been proposed. The system can be used to enforce fine-grained access control on IoT data where the access control decision is made by the blockchain-based on the consensus of the participating nodes”--Abstract, page iv

    Multifactor Authentication Key Management System based Security Model Using Effective Handover Tunnel with IPV6

    Get PDF
    In the current modern world, the way of life style is being completely changed due to the emerging technologies which are reflected in treating the patients too. As there is a tremendous growth in population, the existing e-Healthcare methods are not efficient enough to deal with numerous medical data. There is a delay in caring of patient health as communication networks are poor in quality and moreover smart medical resources are lacking and hence severe causes are experienced in the health of patient. However, authentication is considered as a major challenge ensuring that the illegal participants are not permitted to access the medical data present in cloud. To provide security, the authentication factors required are smart card, password and biometrics. Several approaches based on these are authentication factors are presented for e-Health clouds so far. But mostly serious security defects are experienced with these protocols and even the computation and communication overheads are high. Thus, keeping in mind all these challenges, a novel Multifactor Key management-based authentication by Tunnel IPv6 (MKMA- TIPv6) protocol is introduced for e-Health cloud which prevents main attacks like user anonymity, guessing offline password, impersonation, and stealing smart cards. From the analysis, it is proved that this protocol is effective than the existing ones such as Pair Hand (PH), Linear Combination Authentication Protocol (LCAP), Robust Elliptic Curve Cryptography-based Three factor Authentication (RECCTA) in terms storage cost, Encryption time, Decryption time, computation cost, energy consumption and speed. Hence, the proposed MKMA- TIPv6 achieves 35bits of storage cost, 60sec of encryption time, 50sec decryption time, 45sec computational cost, 50% of energy consumption and 80% speed

    Secure pairing-free two-party certificateless authenticated key agreement protocol with minimal computational complexity

    Get PDF
    Key agreement protocols play a vital role in maintaining security in many critical applications due to the importance of the secret key. Bilinear pairing was commonly used in designing secure protocols for the last several years; however, high computational complexity of this operation has been the main obstacle towards its practicality. Therefore, implementation of Elliptic-curve based operations, instead of bilinear pairings, has become popular recently, and pairing-free key agreement protocols have been explored in many studies. A considerable amount of literatures has been published on pairing-free key agreement protocols in the context of Public Key Cryptography (PKC). Simpler key management and non-existence of key escrow problem make certificateless PKC more appealing in practice. However, achieving certificateless pairing-free two-party authenticated key agreement protocols (CL-AKA) that provide high level of security with low computational complexity, remains a challenge in the research area. This research presents a secure and lightweight pairingfree CL-AKA protocol named CL2AKA (CertificateLess 2-party Authenticated Key Agreement). The properties of CL2AKA protocol is that, it is computationally lightweight while communication overhead remains the same as existing protocols of related works. The results indicate that CL2AKA protocol is 21% computationally less complex than the most efficient pairing-free CL-AKA protocol (KKC-13) and 53% less in comparison with the pairing-free CL-AKA protocol with highest level of security guarantee (SWZ-13). Security of CL2AKA protocol is evaluated based on provable security evaluation method under the strong eCK model. It is also proven that the CL2AKA supports all of the security requirements which are necessary for authenticated key agreement protocols. Besides the CL2AKA as the main finding of this research work, there are six pairing-free CL-AKA protocols presented as CL2AKA basic version protocols, which were the outcomes of several attempts in designing the CL2AKA
    corecore