14 research outputs found

    A Review on the Development of Fuzzy Classifiers with Improved Interpretability and Accuracy Parameters

    Get PDF
    This review paper of fuzzy classifiers with improved interpretability and accuracy param-eter discussed the most fundamental aspect of very effective and powerful tools in form of probabilistic reasoning, The fuzzy logic concept allows the effective realization of ap-proximate, vague, uncertain, dynamic, and more realistic conditions, which is closer to the actual physical world and human thinking. The fuzzy theory has the competency to catch the lack of preciseness of linguistic terms in a speech of natural language. The fuzzy theory provides a more significant competency to model humans like com-mon-sense reasoning and conclusion making to fuzzy set and rules as good membership function. Also, in this paper reviews discussed the evaluation of the fuzzy set, type-1, type-2, and interval type-2 fuzzy system from traditional Boolean crisp set logic along with interpretability and accuracy issues in the fuzzy system

    A Bibliometric Overview of the Field of Type-2 Fuzzy Sets and Systems [Discussion Forum]

    Get PDF
    © 2005-2012 IEEE. Fuzzy Sets and Systems is an area of computational intelligence, pioneered by Lotfi Zadeh over 50 years ago in a seminal paper in Information and Control. Fuzzy Sets (FSs) deal with uncertainty in our knowledge of a particular situation. Research and applications in FSs have grown steadily over 50 years. More recently, we have seen a growth in Type-2 Fuzzy Set (T2 FS) related papers, where T2 FSs are utilized to handle uncertainty in realworld problems. In this paper, we have used bibliometric methods to obtain a broad overview of the area of T2 FSs. This method analyzes information on the bibliographic details of published journal papers, which includes title, authors, author address, journals and citations, extracted from the Science and Social Science Citation Indices in the Web of Science (WoS) database for the last 20 years (1997-2017). We have compared the growth of publications in the field of FSs, and its subset T2 FSs, identified highly cited papers in T2 FSs, highly cited authors, key institutions, and main countries with researchers involved in T2 FS related research

    A big bang-big crunch optimization based approach for interval type-2 fuzzy PID controller design

    Get PDF
    In this paper, we will present a big bang-big crunch optimization (BB-BC) based approach for the design of an interval type-2 fuzzy PID controller. The implemented global optimization algorithm has a low computational cost and a high convergence speed. As a consequence, the BB-BC method is a very efficient search algorithm when the number of the optimization parameters is relatively big. The optimized type-2 fuzzy controller is compared with PID and type-1 fuzzy PID controllers which were optimized with either the BB-BC optimization method or conventional design strategies. The paper will also show the effect the extra degrees of freedom provided by the antecedent interval type-2 fuzzy sets on the closed loop system performance. We will present a comparative study performed on the highly nonlinear cascaded tank process to show the superiority of the optimized interval type-2 fuzzy PID controller compared to its optimized PID, type-1 counterparts. © 2013 IEEE

    Speedup of Interval Type 2 Fuzzy Logic Systems Based on GPU for Robot Navigation

    Get PDF
    As the number of rules and sample rate for type 2 fuzzy logic systems (T2FLSs) increases, the speed of calculations becomes a problem. The T2FLS has a large membership value of inherent algorithmic parallelism that modern CPU architectures do not exploit. In the T2FLS, many rules and algorithms can be speedup on a graphics processing unit (GPU) as long as the majority of computation a various stages and components are not dependent on each other. This paper demonstrates how to install interval type 2 fuzzy logic systems (IT2-FLSs) on the GPU and experiments for obstacle avoidance behavior of robot navigation. GPU-based calculations are high-performance solution and free up the CPU. The experimental results show that the performance of the GPU is many times faster than CPU

    Particle swarm optimization and spiral dynamic algorithm-based interval type-2 fuzzy logic control of triple-link inverted pendulum system: A comparative assessment

    Get PDF
    This paper presents investigations into the development of an interval type-2 fuzzy logic control (IT2FLC) mechanism integrated with particle swarm optimization and spiral dynamic algorithm. The particle swarm optimization and spiral dynamic algorithm are used for enhanced performance of the IT2FLC by finding optimised values for input and output controller gains and parameter values of IT2FLC membership function as comparison purpose in order to identify better solution for the system. A new model of triple-link inverted pendulum on two-wheels system, developed within SimWise 4D software environment and integrated with Matlab/Simulink for control purpose. Several tests comprising system stabilization, disturbance rejection and convergence accuracy of the algorithms are carried out to demonstrate the robustness of the control approach. It is shown that the particle swarm optimization-based control mechanism performs better than the spiral dynamic algorithm-based control in terms of system stability, disturbance rejection and reduce noise. Moreover, the particle swarm optimization-based IT2FLC shows better performance in comparison to previous research. It is envisaged that this system and control algorithm can be very useful for the development of a mobile robot with extended functionality

    Intelligent nonsingular terminal sliding-mode control via perturbed fuzzy neural network

    Get PDF
    [[abstract]]In this paper, an intelligent nonsingular terminal sliding-mode control (INTSMC) system, which is composed of a terminal neural controller and a robust compensator, is proposed for an unknown nonlinear system. The terminal neural controller including a perturbed fuzzy neural network (PFNN) is the main controller and the robust compensator is designed to eliminate the effect of the approximation error introduced by the PFNN upon the system stability. The PFNN is used to approximate an unknown nonlinear term of the system dynamics and perturbed asymmetric membership functions are used to handle rule uncertainties when it is hard to exactly determine the grade of membership functions. In additional, Lyapunov stability theory is used to discuss the parameter learning and system stability of the INTSMC system. Finally, the proposed INTSMC system is applied to an inverted pendulum and a voice coil motor actuator. The simulation and experimental results show that the proposed INTSMC system can achieve favorable tracking performance and is robust against parameter variations in the plant

    Optimal Fuzzy Controller Design for Autonomous Robot Path Tracking Using Population-Based Metaheuristics

    Get PDF
    This researchwas funded by projects TecNM-5654.19-P and DemocratAI PID2020-115570GB-C22.In this work, we propose, through the use of population-based metaheuristics, an optimization method that solves the problem of autonomous path tracking using a rear-wheel fuzzy logic controller. This approach enables the design of controllers using rules that are linguistically familiar to human users. Moreover, a new technique that uses three different paths to validate the performance of each candidate configuration is presented. We extend on our previous work by adding two more membership functions to the previous fuzzy model, intending to have a finer-grained adjustment. We tuned the controller using several well-known metaheuristic methods, Genetic Algorithms (GA), Particle Swarm Optimization (PSO), GreyWolf Optimizer (GWO), Harmony Search (HS), and the recent Aquila Optimizer (AO) and Arithmetic Optimization Algorithms. Experiments validate that, compared to published results, the proposed fuzzy controllers have better RMSE-measured performance. Nevertheless, experiments also highlight problems with the common practice of evaluating the performance of fuzzy controllers with a single problem case and performance metric, resulting in controllers that tend to be overtrained.TecNM-5654.19-PDemocratAI PID2020-115570GB-C2

    Global Research Performance on the Design and Applications of Type-2 Fuzzy Logic Systems: A Bibliometric Analysis

    Get PDF
    There has been a significant contribution to scientific literature in the design and applications of Type-2 fuzzy logic systems (T2FLS). The T2FLSs found applications in many aspects of our daily lives, such as engineering, pure science, medicine and social sciences. The online web of science was searched to identify the 100 most frequently cited papers published on the design and application of T2FLS from 1980 to 2016. The articles were analyzed based on authorship, source title, country of origin, institution, document type, web of science category, and year of publication. The correlation between the average citation per year (ACY) and the total citation (TC) was analyzed. It was found that there is a strong relationship between the ACY and TC (r = 0.91643, P<0.01), based on the papers consider in this research.  The “Type -2 fuzzy sets made simple” authored by Mendel and John (2002), published in IEEE Transactions on Fuzzy Systems received the highest TC as well as the ACY. The future trend in this research domain was also analyzed. The present analysis may serve as a guide for selecting qualitative literature especially to the beginners in the field of T2FLS

    Speedup of Interval Type 2 Fuzzy Logic Systems Based on GPU for Robot Navigation

    Get PDF
    As the number of rules and sample rate for type 2 fuzzy logic systems (T2FLSs) increases, the speed of calculations becomes a problem. The T2FLS has a large membership value of inherent algorithmic parallelism that modern CPU architectures do not exploit. In the T2FLS, many rules and algorithms can be speedup on a graphics processing unit (GPU) as long as the majority of computation a various stages and components are not dependent on each other. This paper demonstrates how to install interval type 2 fuzzy logic systems (IT2-FLSs) on the GPU and experiments for obstacle avoidance behavior of robot navigation. GPUbased calculations are high-performance solution and free up the CPU. The experimental results show that the performance of the GPU is many times faster than CPU
    corecore