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Abstract 

In this paper, an intelligent nonsingular terminal sliding-mode control (INTSMC) 

system, which is composed of a terminal neural controller and a robust compensator, is 

proposed for an unknown nonlinear system. The terminal neural controller including a 

perturbed fuzzy neural network (PFNN) is the main controller and the robust compensator is 

designed to eliminate the effect of the approximation error introduced by the PFNN upon the 

system stability. The PFNN is used to approximate an unknown nonlinear term of the system 

dynamics and perturbed asymmetric membership functions are used to handle rule 

uncertainties when it is hard to exactly determine the grade of membership functions. In 

additional, Lyapunov stability theory is used to discuss the parameter learning and system 

stability of the INTSMC system. Finally, the proposed INTSMC system is applied to an 

inverted pendulum and a voice coil motor actuator. The simulation and experimental results 

show that the proposed INTSMC system can achieve favorable tracking performance and is 

robust against parameter variations in the plant.  
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1.  Introduction 

In the last 40 years, the sliding-mode control (SMC) system has been successfully applied 

to handle several practical control problems in face of system uncertainties and time-varying 

disturbances (Nayeripour et al., 2011; Zhang et al., 2014). It is known that the chattering 

problem is one of the most critical handicaps for applying the SMC system to real 

applications. A solution to this problem is the high-order SMC system (Gennaro et al., 2014; 

Na et al., 2013). The actual control signal was obtained after integrating the discontinuous 

derivative control law; however, the main problem of the high-order SMC is the increasing 

information demand. Meanwhile, Yang et al. (2014) proposed a continuous dynamic SMC 

system to drive the states to the dynamic sliding surface. Though the level of the chattering 

phenomenon can be reduced; however, the design procedure is overly complex. 

Motivated by the previous discussions, the most commonly used sliding surface is a 

hyperplane-based sliding surface. The SMC system using the hyperplane-based sliding 

surface cannot guarantee the convergence in finite time. To attack this problem, a terminal 

sliding-mode control (TSMC) is presented by introducing a nonlinear item into the sliding 

mode which offers some superior properties such as fast and better control precision (Chen et 

al., 2012; Li et al., 2013; Tan et al., 2010; Yu et al., 2005). The states of the TSMC system 

can guarantee converging to the origin in finite time. Though the TSMC provides fast 

convergence and high precision control, there are two disadvantages in the TSMC system. 

One is the singularity point problem and the other is the requirement of system dynamics. To 

resolve the singularity problem, a nonsingular terminal sliding-mode control (NTSMC) 

system was proposed (Feng et al. 2013; Komurcugil, 2013; Yang et al., 2013). Though 

favorable control performance can be achieved by both of TSMC and NTSMC systems, not 

only the chattering phenomenon cannot be avoided but also these schemes required detailed 

system models. 
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Some researchers focus on intelligent NTSMC (INTSMC) approaches to attack the 

requirement of the system dynamics (Chen and Lin, 2011; Lin, 2006; Lin et al., 2012). Lin 

(2006) used a fuzzy wavelet network to accurately approximate the unknown dynamics of 

robotic systems. Though the tracking performance can be guaranteed by Lyapunov stability 

theory, a conservative switching control law was constructed to cause damage to actuators. 

The chattering problem is one of the most critical handicaps for applying the INTSMC 

system to real applications. Chen and Lin (2011) proposed a recurrent Hermite neural 

network uncertainty estimator to improve the control performance and increase the 

robustness of the control system. However, the algorithm supposed that the approximation 

error is constant but this is not true due to the approximated function is a function of the 

states. Lin et al. (2012) developed an interval type-2 recurrent fuzzy neural network to 

approximate a lumped uncertainty. However, the type-reduction operation of the interval 

type-2 recurrent fuzzy neural network results in heavy computational loading. It is unsuitable 

for real-time control applications. 

Though the INTSMC system can achieve favorable control performance, the 

approximation error introduced by the used neural networks may cause instability of the 

control system. Thus, an extra compensator, such as the switching compensator (Mon and Lin, 

2012) and the supervisory compensator (Chen and Hsu, 2010), should be used. These 

compensators result in the chattering phenomena so as to cause damage to actuators or plants. 

Zhao et al. (2011) proposed a low-pass filtering for chattering reduction; however, a trade-off 

problem between chattering phenomenon and control accuracy arises. A 2L  compensator 

was proposed (Hsu, 2012; Lee and Li, 2012). The control input may lead to a large control 

signal as the specified attenuation level was chosen small. A smooth compensator was 

proposed to achieve the uniformly ultimately bound stability of the control system without 

occurring chattering phenomena (Kim and Calise, 2007; Lin and Li, 2013; Na et al., 2013). 
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When the approximator error is large, the smooth compensator cannot improve the 

convergent speed of tracking error due to its control gain is fix.  

It is known that the type-1 fuzzy sets are unable to directly handle the rule uncertainties. 

To attack this problem, several studies on the theory of type-2 fuzzy systems have been 

conducted (Castillo and Melin, 2012; Lou and Dong, 2012; Mendel, 2001). Type-2 fuzzy 

systems make it possible to model and minimize the effects of uncertainties that cannot be 

directly modeled by type-1 fuzzy systems. Though interval type-2 fuzzy systems are useful in 

handling uncertainties, the problem of how to design interval type-2 fuzzy systems remains 

an unsolved problem. To address this problem, several interval type-2 fuzzy neural networks 

(T2FNNs) were proposed based on gradient-descent-learning algorithms (Abiyev and 

Kaynak, 2010; Chang and Chan, 2014; Kayacan et al., 2012 and 2015). The interval T2FNNs 

use a typical type reduction operation, namely the Karnik-Mendel iterative procedure, to find 

the extended output. The type reduction operation is complex and time consuming, especially 

for hardware implementation. A simplified type reduction operation was proposed to reduce 

the hardware implementation cost (Juang and Chen, 2013 and 2014; Juang and Juang, 2014) 

proposed.  

Contributions of this paper are twofold. First, a perturbed fuzzy neural network (PFNN) 

using a perturbed asymmetric membership function is proposed. The perturbed functions 

possess the ability of handling rule uncertainties with a simplified computation complexity. 

Unlike interval T2FNN, the PFNN does not require the time-consuming type reduction 

operation. The proposed online parameter learning ability makes it feasible for online 

approximating an unknown nonlinear term of the system dynamics. Second, an intelligent 

nonsingular terminal sliding-mode control (INTSMC) system is proposed for an unknown 

nonlinear system. The design contains two parts. One is the design of terminal neural 

controller and the other is the design of robust compensator upon the system stability. The 
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robust compensator which is based on the choice of an exponential term that adapts to the 

variation of the system states is proposed. Thus, the control chattering occurred in TSMC and 

NTSMC can be alleviated. Further, the proposed INTSMC system is applied to an inverted 

pendulum and a voice coil motor (VCM) actuator to verify its effectiveness. 

 

2.  Problem formulation 

Consider an n-th order nonlinear system as 

 ugfx n )()()( xx +=  (1) 

where Tnxxx ],...,,[ )1( −= &x  is the state vector, )(xf  and )(xg  are the system dynamics, 

and u  is the control input. Without losing generality, it is assumed that 0)( >xg  for all 

time. The control objective is to find a control law so that the state vector x  can track a 

command vector Tn
cccc xxx ],...,,[ )1( −= &x  closely. To achieve this control objective, define a 

tracking error vector as 

 Tn
c eee ],...,,[ )1( −=−= &xxe  (2) 

where cxxe −= . Substituting (1) into (2) yields 

 )()( xzue n +=  (3) 

where the nonlinear term )(xz  is defined as 
)(

)(
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xz nn

c +−+−= . If the 

system uncertainties occur, i.e., parameters of the system deviate from its nominal values, the 

error dynamic equation can be modified as 

 )()()( xx zzue n
n ∆++=  (4) 

where )(xnz  is the nominal behavior of nonlinear term )(xz  and )(xz∆  denotes the 

system uncertainties. It is assumed to be bounded by Zz ≤∆ )(x  where Z  is a positive 

constant.  
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In this study, a nonsingular terminal sliding surface is designed as Feng et al. (2013)  
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i
i

ii sss 11

1
−− += &

λ
, for 1,...,2,1 −= ni  (5) 

where es =0
, 

iλ  is designed positive constant and 
ip  and 

iq  are positive odd integers 

which should satisfy the condition 
iii qpq 2<< . If a controller can guarantee that the system 

state approaches the nonsingular terminal sliding surface 0=is  in finite time and confines 

the state on the sliding surface, 01 =−is  can be achieved as Feng et al. (2013). When the 

nonsingular terminal sliding surface is reached within limited time 
rt , the system dynamic 

can be determined by the following nonlinear differential equation 
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iii ss 11 −− −= λ&  (6) 

Then, a finite time st  is taken to travel from 01 ≠=− rttis  to 01 =+=− sr tttis . So on so forth, 

finally 01 =s  and 00 =s  (that is 0=e ) will converge to zero within a limited time. 

Assuming that the nominal system dynamic )(xnz  is known, there exists an NTSMC 

system as Feng et al. (2013) 
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where )sgn(⋅  is a sign function. It is obvious that the term 
i
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−
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result in the negative power as lone as the condition iii qpq 2<<  holds for 1,...,2,1 −= ni . 

Differentiating (5) with respect to time and using the control law smcuu = , we can obtain that 
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ns&  and 02 >−nδ  for 02 ≠−ns& . To guarantee the stability of 

the NTSMC system, consider the candidate Lyapunov function in the following form as 

 2
11 2

1
)( −= nstV  (9) 

Differentiating (9) with respect to time and using (8) yields 

 
111 )( −−= nn sstV &&  

 ])([ 112 −−− −∆= nnn sZsz xδ  

 ])([ 112 −−− −∆≤ nnn sZsz xδ  

 0))(( 12 ≤∆−−= −− nn szZ xδ  (10) 

The stability of the NTSMC system can be guaranteed in the sense of the Lyapunov theorem 

(Feng et al., 2013). However, the NTSMC system in (7) not only requires the nominal system 

dynamic but also results in the chattering phenomena. Thus, it is not suitable for real control 

applications. 

 

3.  Design of the INTSMC system 

The proposed INTSMC system as shown in Fig. 1 is designed as 
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where the terminal neural controller tcu  serves as the main control, the output of PFNN oẑ  

is utilized to online approximate the nonlinear term )(xz  in (3), and the robust compensator 

rcu  is designed to eliminate the effect of the approximation error upon system stability. The 

proposed ITSMC system needs only one neural approximator to online estimate the nonlinear 
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term. Thus, the proposed INTSMC system admits less computation complexity compared 

with traditional indirect INTSMC system.  

3.1. Description of PFNN 

There are m  fuzzy rules in PFNN, which has n  external inputs and one output as 

shown in Fig. 2. The k-th rule can be described as 

 Rule k: IF 0s  is kA0  and  … and 1−ns  is k
nA 1− , THEN oz  is kα  (12) 

where kA  is the fuzzy set and kα  is the singleton. The operation functions of the nodes in 

each layer are introduced in the following. 

Layer 1 (Input Layer): The input vector of is given by T
n

T
n uusss ],...,[],...,,[ 1110 =− , where 

iu  represents the i-th input to the node of layer 1.  

Layer 2 (Membership Layer): Each function is described by a perturbed asymmetric 

membership function as follow (Karakose, 2010) 
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where ijµ  including adjustable parameters ijc , L
ijσ , R

ijσ , ijω  and ijh  presents the 

membership function. In (13), the first term denotes the asymmetric membership function 

with left-sided deviation ( L
ijσ ) and right-sided deviation (R

ijσ ) to upgrade the learning 

capability, and the second term denotes the perturbation with adjustable frequency (ijω ) and 

magnitude ( ijh ) to handle information uncertainties. Figure 3 shows several perturbed 
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asymmetric membership functions with different frequencies and magnitudes. It can be seen 

that the special case of the perturbed asymmetric membership function when 0== ijijh ω  is 

as the same as the asymmetric membership function in (Cheng et al., 2007; Lin et al., 2014). 

Further, the perturbed asymmetric membership function with a large frequency and 

magnitude acts likes the membership function of a type-2 fuzzy system in (Mendel, 2001). 

Layer 3 (Rule Layer): The firing strength of the k-th rule is 

 ∏
=

=Θ
n

i
ikk

1

ϕ , for mk ,...,2,1=  (15) 

Layer 4 (Output Layer): The output of PFNN is obtained as  

 ∑
=

Θ=
m

k
kkoz

1

α  (16) 

For ease of notation, the network output can be represented in a vector form as 

 ),,,,( hωσσcΘα RL
T

oz = Θα
T=  (17) 

where T
m ],...,[ 1 αα=α , T

m ],...,[ 1 ΘΘ=Θ , T
nmmn cccc ],.,,...,,.,[ 1111=c , 

TL
nm

L
m

L
n

L ],.,,...,,.,[ 1111 σσσσ=lσ , TR
nm

R
m

R
n

R ],.,,...,,.,[ 1111 σσσσ=rσ , T
nmmn ],.,,...,,.,[ 1111 ωωωω=ω  

and T
nmmn hhhh ],.,,...,,.,[ 1111=h . The output oz  of PFNN can be obtained directly without 

using the Karnik-Mendel iterative procedure. Thus, the computation cost of PFNN can be 

reduced. This leads the PFNN to be more practical. 

According to the powerful approximation ability (Wang, 1994), it implies that there is an 

ideal PFNN which can uniformly approximate the nonlinear term )(xz  such as 

 ∆+=∆+= ******** ),,,,()( ΘαhωσσcΘαx rl
TTz  (18) 

where ∆  is the approximation error, *
α , *

Θ , *c , *
lσ , *

rσ , *
ω  and *h  are the optimal 

vectors of α , Θ , c , lσ , rσ , ω  and h , respectively. In fact, the optimal vectors are 

difficult to determine. In the INTSMC scheme, an estimated PFNN is assumed to take the 
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following form 

 )ˆ,ˆ,ˆ,ˆ,ˆ(ˆˆ hωσσcΘα rl
T

oz = Θα ˆˆ T=  (19) 

where α̂ , Θ̂ , ĉ , lσ̂ , rσ̂ , ω̂  and ĥ  are some estimates of the optimal vectors *
α , *

Θ , 

*c , *
lσ , *

rσ , *
ω  and *h , respectively. Subtracting (19) from (18), the estimation error can 

be obtained as 

 ozzz ˆ)(~ −= x
 

 ∆+++= ΘαΘαΘα
~~~

ˆˆ~ TTT  (20) 

where ααα ˆ~ * −=  and ΘΘΘ ˆ-
~ *= . The linearization technique is employed to transform 

the perturbed asymmetric membership functions into partially linear form by the usage of 

Taylor series expansion, where Θ
~

 can be obtained as (Hsu and Kuo, 2014) 

 ohDωCσBσBcAΘ rrll +++++= ~~~~~~ TTTTT  (21) 

where ccc ˆ~ * −= , lll σσσ ˆ~ * −= , rrr σσσ ˆ~ * −= , ωωω ˆ~ * −= , hhh ˆ~ * −= , o  is a vector of 

high order terms, cccc
A ˆ

1 |... =






∂
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∂
Θ∂= m , 

ll σσ
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l

σσ
B ˆ

1 |... =
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rr σσ

rr
r

σσ
B ˆ

1 |... =
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∂
Θ∂= m , 

ωω

ωω
C ˆ

1 |... =






∂
Θ∂

∂
Θ∂= m  and 

hhhh
D ˆ

1 |... =






∂
Θ∂

∂
Θ∂= m . Substituting 

(21) into (20) yields 

 ∆++++++++= ΘαohDωCσBσBcAαΘα rrll

~~)
~~~~~(ˆˆ~~ TTTTTTTTz  

 ε++++++= αDhαCωαBσαBσαAcΘα rrll ˆ~ˆ~ˆ~ˆ~ˆ~ˆ~ TTTTTT  (22) 

where ∆++= Θαoα
~~ˆ TTε  denotes a lump approximation error, αAccAα ˆ~~ˆ TTT = , 

αBσσBα llll ˆ~~ˆ TTT =  , αBσσBα rrrr ˆ~~ˆ TTT = , αCωωCα ˆ~~ˆ TTT =  and αDhhDα ˆ~~ˆ TTT = . The lump 

approximation error ε  can be bounded by E≤≤ ε0  where E  is a positive constant 

(Lin and Li, 2012). 
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3.2. Parameter learning 

Differentiating (5) with respect to time and imposing the control law icuu =  into (3) 

yields 
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n s
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δ . Substituting (22) into (23) yields  

 )ˆ~ˆ~ˆ~ˆ~ˆ~ˆ~(21 rc
TTTTTT

nn us +++++++= −− εδ αDhαCωαBσαBσαAcΘα rrll&  (24) 

In this study, the robust compensator rcu  is designed as 

 )tanh(
)1(

1
1

1 Φ−+
−−= −

−− −

n
snrc

s

e

E
Ksu

nγρρ
 (25) 

where K  is a positive constant, )tanh(⋅  is the hyperbolic tangent function, ρ  is a strictly 

positive constant that is less than one, γ  is a strictly positive integer and Φ  is the bound 

layer of the sliding surface 1−ns . It can be seen that the term 
1)1( −−−+ nse

E
γρρ

 dynamically 

varies between E  and 
ρ
E

 by the variations of the 1−ns . If 1−ns  increases, the term 

1)1( −−−+ nse

E
γρρ

 converges to 
ρ
E

 which is greater than E . It implies that the robust 

compensator can dynamically increases the control gain to obtain a faster reaching time, a 

good robustness and tracking performance. 

To guarantee the stability of the proposed INTSMC system, consider a Lyapunov 

function candidate in the following form as 
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where αη , cη , lη , rη , ωη  and hη  are positive learning constants. Differentiating (26) 

with respect to time and using (24) and (25), we have 
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Choose the parameter adaptation laws as 

 )]ˆ(ˆ[~ˆ 12 ααΘαα −−=−= −− αα µδη nn s&&  (28) 

 )]ˆ(ˆ[~ˆ 12 ccαAcc −−=−= −− cnnc s µδη&&  (29) 

 )]ˆ(ˆ[~ˆ 12 lllll σσαBσσ −−=−= −− lnnl s µδη&&  (30) 

 )]ˆ(ˆ[~ˆ 12 rrrrr σσαBσσ −−=−= −− rnnr s µδη&&  (31) 

 )]ˆ(ˆ[~ˆ 12 ωωαCωω −−=−= −− ωω µδη nn s&&  (32) 

 )]ˆ(ˆ[
~ˆ

12 hhαDhh −−=−= −− hnnh s µδη&&  (33) 

where αµ , cµ , lµ , rµ , ωµ  and hµ  are small positive constants, and α , c , lσ , rσ , 

ω  and h  are the initial parameter vectors of α̂ , ĉ , lσ̂ , rσ̂ , ω̂  and ĥ , respectively, 

then (27) becomes 
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It can be found that the following inequality holds for any 0>Φ  as (Kim and Calise, 2007) 

 Φ≤
Φ

−≤ −
−− β)tanh(0 1
11

n
nn

s
ss  (35) 

where β  is a constant satisfying )1( +−= ββ e . Using the inequality (35), (34) can be 

rewritten as 

 )(tV& )ˆ(~)ˆ(~)ˆ(~)ˆ(~
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l
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where ⋅  denotes an induced norm. Define c  and d  are positive constants given as 

 ),,,,,,min( 2 hhrrllccnKc ηµηµηµηµηµηµδ ωωαα−=  (37) 

 )(
2

1 2*2*2

0
*2*

rrll σσσσccαα −+−+−+−= rlcd µµµµα  

 )
2*2* hhωω −+−+ hµµω Φ+ − βδ 2nE  (38) 

thus (36) can be rewritten as 

 dtcVtV +≤ )()(&  (39) 

Since 0>
c

d
 and the solution of the differential inequality (39) satisfies (Lin and Li, 2013) 

 cte
c

d
V

c

d
tV −−+≤≤ ])0([)(0  (40) 
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where )0(V  is the initial value of )(tV , then the estimated vectors α̂ , Θ̂ , ĉ , lσ̂ , rσ̂ , ω̂  

and ĥ  are uniformly ultimately bounded. From (40), it is obtained that 

 cteV
c

d
ts −+≤ )0()(

2
1 2  (41) 

which implies that, given 
c

d2>ρ , the tracking index satisfies 

 ρ<)(ts  (42) 

where ρ  is the size of a small residual set that depends on the PFNN approximation error 

and the INTSMC controller parameters. It implies that the output of the INTSMC system can 

exponentially converge to a small neighborhood of the trajectory command (Kim and Calise, 

2007; Lin and Li, 2013; Na et al., 2013).  

Remark 1: Though the control chattering has been eliminated by using the smooth 

compensator in (Kim and Calise, 2007; Lin and Li, 2013; Na et al., 2013), the convergence 

speed of tacking error is slow due to the control gain of the smooth compensator is fixed. In 

the proposed control scheme, the control gain of the robust compensator in (25) dynamically 

increases to obtain a good robustness and to speed up the convergence speed of tacking error 

without chattering problem. Thus, the proposed robust compensator could be more suitable 

than the smooth compensator in (Kim and Calise, 2007; Lin and Li, 2013; Na et al., 2013). 

 

4.  Simulation and experimental results 

It should be emphasized that the proposed INTSMC system requires no prior knowledge 

of the system dynamics. The parameters iλ , ip  and iq  for the nonsingular terminal sliding 

surface offers some superior properties such as finite time convergence. Selections of the 

learning rates (αη , αµ , cη , cµ , lη , lµ , rη , rµ , ωη , ωµ , hη  and hµ ) for online 

training have a significant effect on the PFNN learning performance. If necessary, the 
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variable optimal learning rates can be derived using the algorithms presented in (Lin and Li, 

2015) to speed up parameter learning. The constants K  and E  will influence the 

convergent speed of the tracking error and the constant ρ  will attenuate a desired level of 

approximation error. It is known that the determining an appropriate number of fuzzy rules 

m  in PFNN is an important issue because of the trade off between a computational loading 

and a learning performance. In general, if the number of fuzzy rules is large, the 

computational loading is heavy so that it is not suitable for online practical applications. If the 

number of fuzzy rules is small, the learning performance may be not good enough to achieve 

desired control performance. In this paper, the number of the used fuzzy rules is determined 

by some trial-and-error tuning procedures. 

Example 1: inverted pendulum 

Consider an inverted pendulum stabilizing problem, the dynamic equation of the 

inverted pendulum system is given as Wang (1994) 

 ugfx )()( xx +=&&  (43) 

where x  is the angle of the pendulum with respect to the vertical line, Txx ],[ &=x  is the 

state vector, cm  is the mass of cart, rm  is the mass of rod, g  is the acceleration due to 

gravity, l  is the half length of rod, 
)(

3

4
)(cos

)sin()()cos()sin(
)(

2
rcr

rcr

mmlxlm

xgmmxxxlm
f

+−

+−=
&

x  and 

)(
3

4
)(cos

)cos(
)(

2
rcr mmlxlm

x
g

+−

−=x  are the system dynamics, and u  is the control input. In 

this example, it is assumed that 81.9=g , 1=cm , 1.0=rm , and 5.0=l . To illustrate the 

effectiveness of the proposed INTSMC system, an external disturbance )8cos()4sin(3 ttd =  

is generated starting from sec20=t . The parameters of the proposed INTSMC system are 

selected as 5.01 =λ , 71 =p , 51 =q , 20=αη , 1===== hrlc ηηηηη ω , 
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001.0====== hrlc µµµµµµ ωα , 1=K , 5.0=ρ , 1=γ , 1.0=E  and 05.0=Φ . All 

of the parameters are determined by trial and error in order to guarantee the desired control 

performance. 

For the comparison of the control performance, first, the simulation results of the 

dynamic fuzzy neural control (Lin and Li, 2015) are shown in Fig. 4. The simulation results 

show that the dynamic fuzzy neural control system can achieve favorable control 

performance. Due to the supervised gradient-descent method is used to develop the parameter 

learning law, the system stability has not been guaranteed so far.  

Then, a type-1 fuzzy neural network (T1FNN) which can be found in (Lin et al., 2014) 

is used to approximate the nonlinear term of the system dynamics. The simulation results of 

the INTSMC system with T1FNN are shown in Fig. 5. The simulation results show that the 

INTSMC system with T1FNN can achieve favorable control performance and is robust 

against external disturbance after T1FNN learning. Meanwhile, an interval T2FNN which can 

be found in (Chang and Chan, 2014) is used to approximate the nonlinear term of the system 

dynamics again. The simulation results of the INTSMC system with T2FNN are shown in Fig. 

6. The simulation results show that the INTSMC system with T2FNN can achieve more 

favorable tracking performance with faster convergence speed of the tracking error. 

Finally, the proposed PFNN is used to approximate the nonlinear term of the system 

dynamics again. The simulation results of the INTSMC system with PFNN are shown in Fig. 

7. The simulation results verify that the proposed INTSMC system with PFNN can achieve 

the favorable tracking performance even under an external disturbance occurs. Moreover, to 

demonstrate the robust tracking capability of the INTSMC system with PFNN, a payload is 

added to the inverted pendulum with 2=cm . Tracking responses with payload are shown in 

Fig. 8. The simulation results show that favorable control performance can be achieved after 

controller parameters learning and is robust against parameter variations in the plant. 
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In summary, a performance comparison between the dynamic fuzzy neural control, the 

INTSMC with T1FNN, the INTSMC with T2FNN and the INTSMC system with PFNN is 

made in Table 1. It shows that the proposed INTSMC system with PFNN possesses the better 

tracking performance than others. The INTSMC with T2FNN shows a smaller error than the 

INTSMC system with PFNN; however, the former achieves this advantage at the cost of 

using the much more complex Karnik-Mendel iterative procedure for the type reduction 

operation. 

Example 2: VCM actuator 

The VCM actuator has many excellent features such as high-starting thrust force, 

high-speed operation, low cost and so on. The dynamics of the VCM actuator can be 

presented as (Seok and Kim, 2012; Wu et al., 2014) 

 dugfx ++= )()( xx&&  (44) 

where x  is the position of the moving table, Txx ],[ &=x  is the state vector, 

x
RMm

BRKK
f

a

abt
&

)(

)(
)(

+
+−=x  is the system dynamic, 

a

t

RMm

K
g

)(
)(

+
=x  is the control gain, 

Mm

F
d f

+
−

=  is the external disturbance, u  is the input voltage, aR  is the coil resistance, 

bK  is the back electromotive force coefficient, aL  is the coil inductance, M  is the mass 

of the moving table, m  is the mass of the payload, B  is the viscous coefficient, tK  is the 

thrust force coefficient, ai  is the coil current, and fF  is the lumped friction force.  

This paper proposes an experimental setup as shown in Fig. 9. The used 86duino 

platform is an open-source embedded platform based on Vortex86EX SoC and it can operate 

up to 400 MHz. On the software side, 86duino platform can support many x86 O/S as well as 

those running on the original Arduino base system. The control subroutine with 2 msec 

sampling rate is used for the execution of the control algorithms. Thereafter, the calculated 
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control effort is sent to the L298 motor driver. To investigate the robustness of the proposed 

INTSMC system, the system is tested under two different conditions. One is the nominal 

condition and the other is the payload condition by adding a payload on the moving table. 

The parameters of the INTSMC system are selected as 5.01 =λ , 71 =p , 51 =q , 10=αη , 

01.0===== hrlc ηηηηη ω , 0001.0====== hrlc µµµµµµ ωα , 1=K , 2.0=ρ , 

1=γ , 5.0=E  and 0.1=Φ . These parameters are selected through some trials. 

For the comparison of the control performance, first, the PD control is applied to the 

VCM actuator. The PD control is given as eeu pd &3.08.7 += . All the gains are selected by 

trial-and-error to achieve the best control performance in the experimentation. The 

experimental results of the PD control are shown in Fig. 10. The experimental results show 

that the satisfactory performance is difficult to obtain for the PD control due to its linear 

structure with fixed control gains cannot cope with the uncertainties of the plant. 

Then, the proposed ITSMC system with supervisory compensator (Chen and Hsu, 2010) 

is applied to the VCM actuator again and the corresponding experimental results are shown in 

Fig. 11. The experimental results show that favorable control performance can be achieved 

after learning of the parameters. However, the chattering phenomena are found due to the 

supervisory compensator with the bound of the approximation error 2=E  is used. The 

undesirable chattering control inputs will wear the mechanism and might excite unstable 

system dynamics. Further, the proposed ITSMC system with smooth compensator (Lin and 

Li, 2013) is applied to the VCM actuator again and the corresponding experimental results 

are shown in Fig. 12. The experimental results show that favorable control performance can 

be achieved without chattering problem for both of the test conditions. Though the control 

chattering has been eliminated by using the smooth compensator, the convergence speed of 

tacking error is slow. 

Finally, the proposed ITSMC system with robust compensator is applied to the VCM 
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actuator again and the corresponding experimental results are shown in Fig. 13. The 

experimental results show that more favorable tracking performance with faster convergence 

speed of the tracking error can be obtained. Comparing with Figs. 11 and 12, the convergence 

speed of tracking error can speed up by the proposed robust compensator. In summary, a 

characteristic comparison between the PD control, the INTSMC system with supervisory 

compensator, the INTSMC system with smooth compensator and the INTSMC system with 

robust compensator is made in Table 2. It shows that the proposed robust compensator 

possesses the better tracking performance than others.  

 

5.  Conclusions 

SMC system is one of the effective control methods since it is insensitive to parameter 

variations, external disturbance injection and fast dynamic response. In this paper, an 

INTSMC system via PFNN approach is proposed for an unknown nonlinear system. The 

proposed PFNN is a more generalized network with better learning ability and has lower 

computational complexity for practical implementation. In additional, Lyapunov stability 

theory is used to discuss the parameter learning and system stability of the INTSMC system. 

Finally, the effectiveness of the proposed INTSMC system has been confirmed by simulation 

and experimental results. In addition, the control performance of the proposed control scheme 

is robust with regard to external disturbances and parameter variations. 

The main contributions of this paper are: (1) the PFNN can accurately approximate the 

unknown nonlinear term of control systems; (2) the perturbed asymmetric membership 

function not only can handle rule uncertainties but also the learning capability of the PFNN 

can be upgraded; (3) the INTSMC system can guarantee the tracking error convergence 

within a finite time; (4) the robust compensator not only can alleviate the control chattering 

but also can speed up the convergence speed of the tracking error; (5) the applicability of the 
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INTSMC system is demonstrated by an inverted pendulum and a VCM actuator. 
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Table 1. Performance measures for inverted pendulum example. 

 
tracking error 

Methods 
maximum average 

standard 
deviation 

dynamic fuzzy 
neural control 

0.1227 0.0124 0.0155 

INTSMC system 
with T1FNN 

0.1567 0.0241 0.0300 

INTSMC system 
with T2FNN 

0.0602 0.0159 0.0123 

INTSMC system 
with PFNN 

0.0815 0.0174 0.0154 
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Table 2. Characteristic comparison. 
 

Methods 
stability 
proof 

chattering 
phenomena 

robustness 
convergence 

speed 
PD control no no poor slow 

INTSMC system with 
supervisory compensator 

yes yes excellent fast 

INTSMC system with 
smooth compensator 

yes no middle middle 

INTSMC system with 
robust compensator 

yes no excellent fast 
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Fig. 1. The block diagram of the proposed INTSMC system. 
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Fig. 2. Network structure of PFNN. 
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Fig. 3 Perturbed asymmetric membership function with different perturbations. 
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Fig. 4 Simulation results of the dynamic fuzzy neural control for inverted pendulum. 
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Fig. 5 Simulation results of the INTSMC system with T1FNN for inverted pendulum. 
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Fig. 6 Simulation results of the INTSMC system with T2FNN for inverted pendulum. 
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Fig. 7 Simulation results of the INTSMC system with PFNN for inverted pendulum. 
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Fig. 8 Simulation results of the INTSMC system with PFNN under parameter variations. 
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Fig. 9 Experimental setup of VCM actuator. 
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Fig. 10 Experimental results of the PD control for VCM actuator. 
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Fig. 11 Experimental results of the INTSMC system with supervisory compensator for VCM 
actuator. 
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Fig. 12 Experimental results of the INTSMC system with smooth compensator for VCM 
actuator. 
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Fig. 13 Experimental results of the INTSMC system with robust compensator for VCM 
actuator. 


