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Abstract
In this paper, an intelligent nonsingular termirgtiding-mode control (INTSMC)
system, which is composed of a terminal neural rolet and a robust compensator, is
proposed for an unknown nonlinear system. The temneural controller including a
perturbed fuzzy neural network (PFNN) is the mantoller and the robust compensator is
designed to eliminate the effect of the approxioragrror introduced by the PFNN upon the
system stability. The PFNN is used to approximatei@known nonlinear term of the system
dynamics and perturbed asymmetric membership fomstiare used to handle rule
uncertainties when it is hard to exactly determine grade of membership functions. In
additional, Lyapunov stability theory is used tedaliss the parameter learning and system
stability of the INTSMC system. Finally, the propdsINTSMC system is applied to an
inverted pendulum and a voice coil motor actuaitye simulation and experimental results

show that the proposed INTSMC system can achiewerdble tracking performance and is

robust against parameter variations in the plant.

Keywords. Intelligent control; Sliding-mode control; Fuzzy ural network; Perturbed

membership function.
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1. Introduction

In the last 40 years, the sliding-mode control (SMgstem has been successfully applied
to handle several practical control problems irefat system uncertainties and time-varying
disturbancegNayeripour et al., 2011; Zhang et al., 2014)is known that the chattering
problem is one of the most critical handicaps fpplging the SMC system to real
applications. A solution to this problem is theliigrder SMC systerfGennaro et al., 2014;
Na et al., 2013)The actual control signal was obtained aftergrdaéng the discontinuous
derivative control law; however, the main problefrttee high-order SMC is the increasing
information demand. Meanwhil&ang et al.(2014) proposed a continuous dynamic SMC
system to drive the states to the dynamic slidungase. Though the level of the chattering
phenomenon can be reduced; however, the desigeguoeis overly complex.

Motivated by the previous discussions, the mostmonly used sliding surface is a
hyperplane-based sliding surface. The SMC systemguthe hyperplane-based sliding
surface cannot guarantee the convergence in finite. To attack this problem, a terminal
sliding-mode control (TSMC) is presented by introdig a nonlinear item into the sliding
mode which offers some superior properties sudasisand better control precisi¢@Ghen et
al., 2012; Li et al., 2013; Tan et al., 2010; Yuakt 2005) The states of the TSMC system
can guarantee converging to the origin in finiteeai Though the TSMC provides fast
convergence and high precision control, there are disadvantages in the TSMC system.
One is the singularity point problem and the ofkehe requirement of system dynamics. To
resolve the singularity problemg nonsingular terminal sliding-mode control (NTSMC)
system was propose@dreng et al. 2013; Komurcugil, 2013; Yang et abDl3) Though
favorable control performance can be achieved lilf b6 TSMC and NTSMC systems, not
only the chattering phenomenon cannot be avoideédilso these schemes required detailed

system models.
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Some researchers focus on intelligent NTSMC (INTgMPproaches to attack the
requirement of the system dynami€hen and Lin, 2011; Lin, 2006; Lin et al., 201Rn
(2006) used a fuzzy wavelet network to accurately appraxénthe unknown dynamics of
robotic systems. Though the tracking performancelma guaranteed by Lyapunov stability
theory, a conservative switching control law wasstoucted to cause damage to actuators.
The chattering problem is one of the most critibahdicaps for applying the INTSMC
system to real application€€hen and Lin (2011proposed a recurrent Hermite neural
network uncertainty estimator to improve the contperformance and increase the
robustness of the control system. However, theritgo supposed that the approximation
error is constant but this is not true due to tphpreximated function is a function of the
states.Lin et al. (2012)developed an interval type-2 recurrent fuzzy nleaetwork to
approximate a lumped uncertainty. However, the -tgakiction operation of the interval
type-2 recurrent fuzzy neural network results iadyecomputational loading. It is unsuitable
for real-time control applications.

Though the INTSMC system can achieve favorable robnperformance, the
approximation error introduced by the used neusdlvorks may cause instability of the
control system. Thus, an extra compensator, sutieasvitching compensat@vion and Lin,
2012) and the supervisory compensat@hen and Hsu, 2010xhould be used. These
compensators result in the chattering phenomera $o cause damage to actuators or plants.
Zhao et al. (2011proposed a low-pass filtering for chattering redurg however, a trade-off

problem between chattering phenomenon and cont@lracy arises. AL, compensator

was proposedHsu, 2012; Lee and Li, 201Z)he control input may lead to a large control
signal as the specified attenuation level was anaseall. A smooth compensator was
proposed to achieve the uniformly ultimately bowstability of the control system without

occurring chattering phenomeftaim and Calise, 2007; Lin and Li, 2013; Na et 2013)
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When the approximator error is large, the smootimmensator cannot improve the
convergent speed of tracking error due to its abigain is fix.

It is known that the type-1 fuzzy sets are unablditectly handle the rule uncertainties.
To attack this problem, several studies on therthed type-2 fuzzy systems have been
conducted(Castillo and Melin, 2012; Lou and Dong, 2012; Mehd001) Type-2 fuzzy
systems make it possible to model and minimizeetifiects of uncertainties that cannot be
directly modeled by type-1 fuzzy systems. Thoudhrial type-2 fuzzy systems are useful in
handling uncertainties, the problem of how to desigerval type-2 fuzzy systems remains
an unsolved problem. To address this problem, aéugerval type-2 fuzzy neural networks
(T2FNNs) were proposed based on gradient-descamt® algorithms(Abiyev and
Kaynak, 2010; Chang and Chan, 2014; Kayacan 2@l2 and 2015)The interval T2FNNs
use a typical type reduction operation, namelyktheik-Mendel iterative procedure, to find
the extended output. The type reduction operasa@omplex and time consuming, especially
for hardware implementation. A simplified type retan operation was proposed to reduce
the hardware implementation cqdtiang and Chen, 2013 and 2014; Juang and Juahg), 20
proposed.

Contributions of this paper are twofold. First,extprbed fuzzy neural network (PFNN)
using a perturbed asymmetric membership functiopragposed. The perturbed functions
possess the ability of handling rule uncertaintig$h a simplified computation complexity.
Unlike interval T2FNN, the PFNN does not require ttime-consuming type reduction
operation. The proposed online parameter learninifjtya makes it feasible for online
approximating an unknown nonlinear term of the eaystdynamics. Second, an intelligent
nonsingular terminal sliding-mode control (INTSME&ystem is proposed for an unknown
nonlinear system. The design contains two partse @nthe design of terminal neural

controller and the other is the design of robushgensator upon the system stability. The



Accepted Paper

robust compensator which is based on the choia@naéxponential term that adapts to the
variation of the system states is proposed. Tigscontrol chattering occurred in TSMC and
NTSMC can be alleviated. Further, the proposed INTSsystem is applied to an inverted

pendulumand a voice coil motor (VCM) actuator to verify éfectiveness.

2. Problem formulation

Consider am-th order nonlinear system as

x™ = £ (x) + g(x)u 1)
where x =[x, X,...,xX"?]" is the state vectorf(x) and g &) are the system dynamics,
and u is the control input. Without losing generality,is assumed thag(x) > Gor all
time. The control objective is to find a controlviao that the state vector can track a
command vectorx, =[x_, X.,...X"™]" closely. To achieve this control objective, defime
tracking error vector as

e=x-x, =[eég,..e" (2)
where e= x—x_. Substituting (1) into (2) yields

e =u+z(X) (3)

RO B BTN
9(x) 9(x)

where the nonlinear ternz x ( js defined asz(x) =-x" + (1

system uncertainties occur, i.e., parameters o$ystem deviate from its nominal values, the

error dynamic equation can be modified as

e =u+z (x)+Az(x) (4)
where z &) is the nominal behavior of nonlinear termx (and Az &) denotes the
system uncertainties. It is assumed to be boun(yedﬂt(x)|s Z where Z is a positive

constant.
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In this study, a nonsingular terminal sliding sagfas designed d&eng et al. (2013)
1. » .
S =s1_1+/]—s_1q ,for i=12,...,n-1 (5)

where g =e, A is designed positive constant angl and g, are positive odd integers

which should satisfy the conditiog, < p, < 2q . If a controller can guarantee that the system
state approaches the nonsingular terminal slidiméase s =0 in finite time and confines
the state on the sliding surface,, =0 can be achieveds Feng et al. (2013)When the

nonsingular terminal sliding surface is reachechimitimited time t , the system dynamic

can be determined by the following nonlinear défgral equation

. 4
S (6)
Then, a finite timet, is taken to travel froms_l‘tqr #0 to s_l‘t:trﬂs =0. So on so forth,

finally s =0 and s, = O (thatis e=0) will converge to zero within a limited time.
Assuming that the nominal system dynangg x (s)known, there exists an NTSMC
system ageng et al. (2013)

Pi

dn i o
=-2,(0 - ZA o t,ﬁz - Zsgn;, ) (7)
n-i P
where sgn() is a sign function. It is obvious that the termi% *in (7) will not

i
result in the negative power as lone as the cadity < p, <2g holds fori=12,...n-1
Differentiating (5) with respect to time and usthg control law u =u_,, we can obtain that

pnl

S N
/1—1 qn—l

= 5n—2[AZ(X) -Z Sgn(sn—l)] (8)
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pn—l_ . g .
where Jn_zzih%_zﬂl. Since p,, and g,, are both positive odd integers and

n-1 “n-1

1<h<2, there is 31_2%_1 >0 and J,_, > O for §_, # 0. To guarantee the stability of
qn—l

the NTSMC system, consider the candidate Lyapunpogtfon in the following form as
Vi) =25, ©)
Differentiating (9) with respect to time and usii&) yields
Vi(t) =528
= 3,,[02(X)8,4 = Z|8,4]
< 0, [IAz(X)[s14| = Z[sy4 ]
=-0,,(Z -|Az(x))|s,.| <O (10)
The stability of the NTSMC system can be guarantedtie sense of the Lyapunov theorem
(Feng et al., 2013However, the NTSMC system in (7) not only regsiitiee nominal system

dynamic but also results in the chattering phen@n@&hus, itis not suitable for real control

applications.

3. Design of theINTSMC system

The proposed INTSMC system as shown in Fig. 1 ssgted as

_bi

n-1 n—i 2 )
u.=u,+u,=-2 —Z)I.id—sffz Y +u (11)
IC tc rc 0 = I pl dtn| rc

where the terminal neural controller, serves as the main control, the output of PFRN
is utilized to online approximate the nonlineanterz(x) in (3), and the robust compensator
u,. is designed to eliminate the effect of the appr@tion error upon system stability. The

proposed ITSMC system needs only one neural appiaigr to online estimate the nonlinear

7
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term. Thus, the proposed INTSMC system admits éessputation complexity compared
with traditional indirect INTSMC system.
3.1. Description of PENN
There arem fuzzy rules in PFNN, which has external inputs and one output as
shown in Fig. 2. Th&-th rule can be described as
Rulek: IF s, is A and ...ands_, is A, THEN z is a, (12)
where A“ is the fuzzy set andr, is the singleton. The operation functions of tleeas in

each layer are introduced in the following.
Layer 1 (Input Layer): The input vector of is given bys,,s;,....S,.]" =[u,,...,.u,]", where

u

represents thieth input to the node of layer 1.

Layer 2 (Membership Layer): Each function is described by a perturbed asymametr

membership function as follogiKarakose, 2010)

exp —(ui(_—L(;'i) —h Sin(a)lj (Ui Y ))Cos@j (Ui — G )) foru, <g;
Jij
e (13)
(ui -G )2 ;
exy —W +h sm(a)”- (u -G ))COS(W.J' (u - Ci ). foru > Ci

0 foru; <0
1 ,fory; 21 for j=12,---,m (14)
4; otherwise

¢ij

L R

o, , @ and h, presents the

where g including adjustable parameters;, o /)

ij
membership function. In (13), the first term desotee asymmetric membership function

with left-sided deviation c(fijL) and right-sided deviationaij) to upgrade the learning
capability, and the second term denotes the petiorbwith adjustable frequency) ) and

magnitude @;) to handle information uncertainties. Figure 3 vghoseveral perturbed
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asymmetric membership functions with different fregcies and magnitudes. It can be seen
that the special case of the perturbed asymmeeimivership function wherh, =, =0 is

as the same as the asymmetric membership functi@hieng et al., 2007; Lin et al., 2014)
Further, the perturbed asymmetric membership fanctwith a large frequency and

magnitude acts likes the membership function gpa+2 fuzzy system ifMendel, 2001)

Layer 3 (Rule Layer): The firing strength of thk-th rule is

O, =|_1|¢ik,for k=12,...m (15)
Layer 4 (Output Layer): The output of PFNN is obtained as

Z,= Y a0, (16)
For ease of notation, the network output can beesgmted in a vector form as

z =a'0(C,6,,6;,m,h) =a'O @an
where  a=[a,,...a,]" 0=[0,.9.]1 , C=[CrsCrprersCimrs Gl

L

— L L L
6, =[0,1,.,04,...0,, 0

nm

T — R R R R 1T —_ T
1, o, =[0,,00, 000, O], @ =W, Wy s Wy W]

and h=[h,,..h,,...,h,.,h ]". The outputz, of PFNN can be obtained directly without

using the Karnik-Mendel iterative procedure. Thile computation cost of PFNN can be
reduced. This leads the PFNN to be more practical.
According to the powerful approximation abilifyang, 1994)it implies that there is an

ideal PENN which can uniformly approximate the mo@hr term z X ) such as
z(x) =0 '0O(C,06,,6,,0 ,h)+A=a"O +A (18)

where A is the approximation errorg’, ®, ¢, 6,, 6,, ® and h™ are the optimal

r?

vectors ofa, ®, c, 6,, 6,, ® and h, respectively. In fact, the optimal vectors are

r

difficult to determine. In the INTSMC scheme, animmated PFNN is assumed to take the
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following form

7 =6'0(,6,,6,,0,h) =0"0 (19)

N
A A

where a, O, ¢, ¢,, 6,, ® and h are some estimates of the optimal vectais @,

r?

¢, o, 6, o andh’, respectively. Subtracting (19) from (18), theiraation error can

be obtained as

Z=2z(x) - 2,
=3'0+3'0+3'0+A (20)
where @ =a’ - and ® =@ -@. The linearization technique is employed to tramsf

the perturbed asymmetric membership functions pedially linear form by the usage of

Taylor series expansion, whe® can be obtained dblsu and Kuo, 2014)

©=A"C+Blg, +B’s, +C'@+D"h+0 (21)
where €=c¢' -¢, 6,=6, -6,, 6, =6, -6,, ®=® -®, h=h"-h, o is a vector of
high order terms, A:[ﬂ...aem}lcﬁt : B, = 99, On |y, =5 :

oc dc do, Oo, |

B, = 00, __a@m L. C:{ael 6@_,“} |-, and D:[@ ...aemph_ﬁ. Substituting
oo, Oo, | " oo Jdo oh oh |

'
(21) into (20) yields
7=0'0+a"(ATC+B'6, +B’s, +C'@+D'h+0)+a'® +A
=0'@+C"AG+6/B,a+6/B,a+® Ca+h'Da+e (22)
where £¢=d"0+a'®@+A denotes a lump approximation erro’ ATC=C'Ad ,
@'B'6,=¢/Bd , @'B6. =¢/'B,a, a'C'®=®"Ca and a'D'h=h"Da . The lump
approximation errors can be bounded bﬂ)s|£|s E where E is a positive constant

(Lin and Li, 2012)

10
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3.2. Parameter learning

Differentiating (5) with respect to time and impagithe control lawu =u, into (3)

yields
X . 1 pn—l A pnfl_l.
Sha TS v — Sh-2%- Sy
' ? An—l qn—l ’ ’
) % Prt g, o 1200 - 2, +u,]
n-1 “n-1
= 5n_2[Z(X) - 2o + urc] (23)
_ 1 py . Py . . :
where J,_, =——"=95 _,a. . Substituting (22) into (23) yields
n-1 “n-1
$ .=0,@0+c"Aa+6/Ba+6'B,a+® Ca+h'Da+e+u) (24)

In this study, the robust compensatat is designed as

E nhé) (25)

u.=-Ks _, - — ta
p+ (1‘,0)6 Vsl (0]

rc n-1

where K is a positive constanttanh() is the hyperbolic tangent functiornp is a strictly

positive constant that is less than one,is a strictly positive integer an@® is the bound

layer of the sliding surfaces, ;. It can be seen that the term E

ji p)e_y‘sn_l‘ dynamically

varies betweenE and = by the variations of thds,,|. If |s.,| increases, the term
0

E
,0+ (1_p)e—y‘3n—1‘

converges toE which is greater tharE. It implies that the robust
P

compensator can dynamically increases the conainl @ obtain a faster reaching time, a
good robustness and tracking performance.
To guarantee the stability of the proposed INTSM@Gtem, consider a Lyapunov

function candidate in the following form as

11
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~T~ ~Tx ~T~ ~T=~ ~T~ [Tp
2 00 CTC+G|G|+GrGr+(z)T(D+hTh

+ +
2,7 a 2,70 2,7 | 2,7r 2,7w 2,7h

V(t) = % S, (26)

where n,, n., n,, n,, n, and n, are positive learning constants. Differentiatirf)(

with respect to time and using (24) and (25), weeha

. e TE &S &5 &6 B'h

,7a ,7c ,7| I7r ”w I7h

=s.,0,(@'®+C' Aa+6/ Ba+c Ba+o Ca+h'Da+e+u,)

a'a TC, 56 66 &6 hh

,7(1 ,7(: ,7| ,7r ,714) ,7h

~ N, . Cy .~ . o
=a' (5,540 +,7_) +C' (0, oSAa+ ,7_) +6/ (3,,5,4B0. + ,7_|)

a c |

-~

+57(3,,8,B,6+ ) + &7 (3, ,5,.Cit +-2) +RT (3, ,5,.Dd + 1)
n n

r w h
+ Sn—la-n—z (‘9 + urc) (27)

Choose the parameter adaptation laws as

0=~ =11,[8,,5,40 ~ 4, (6.~ )] (28)
¢=-C=1,[3,,5..Aa - 1, (€-C)] (29)
6, = -6, =10, ,5. Ba -1 (6, -5,)] (30)
6, =6, =1,[0,,5,,B,6 - 11 (6, —5,)] (31)
® =~ =1,[8,,5,,Cd ~ 1,(® - )] (32)
h=-h=1,[8,.5,.Dd - 4,(h - )] (33)

where p,, u., 4, 4, H, and g, are small positive constants, arnd, T, &,, ©

r?

@ and h are the initial parameter vectors éf, &, 6,, 6,, ® and h, respectively,

r?

then (27) becomes

12
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V(t) = 4,0 (6 —@) + 4,C' (C-C) + 146/ (6, —5,) + 14,6, (6, —,)
+ U (@ -®) +ph" (W =h) +£0, .5,

E
p+ (1_p)e‘y‘5n—1‘

-KJ, s - s tanhCi)
n-2%-n-1 n-2%-n-1 q)

< (4, (6-@)+p,C (E-T) + 45 (6, -5,) + 4,0, (6, —5,)

+ S (@ -®) + 10" (W =h) +[g]5, s,

-KJ,,s. .- —EJ, .S, tanh%)
=T~ = <T(A_G& =T r~ = =T (4 =
S:Uaa (a_a)-l-/'[cc (C_C)+M6I (GI_GI)-I-IUrGr (Gr _cr)

+ 16" (@ -®) +uh" (h-h) -KJ s,
YES, IS0~ S tanh%)] (34)
It can be found that the following inequality holds any ® >0 as(Kim and Calise, 2007)
0<|s -S4 tanh%) < pd (35)

where B is a constant satisfying? =e “*Y . Using the inequality (35), (34) can be
rewritten as
V() < p,a (6-a)+uc (E-C)+ o, (6,-6,)+ 40, (6, -,)
+ 16" (@-®) +uh"(h-h)-KJ s ° +EJ LD
=l (0" —@) (@ -0) + (¢ -©)' (€-T) + 44 (0, —6,)(6, —5))
+44,(0, =6,)(6, =5,) + 11, (0 —6)(@-®) + ,(h" ~h)(h-h)

B K5n—25n—12 +EJ, [P

< —'u—z"( « —af —Ha* —EHZ +||& —6”2)

13
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50 g e o o)
2o =5 ~Joi -5 +l6 s
-“_Zr(c: 8| ~[o; -5 +[6, -5,
_ﬂ_zw(‘m* -6 -0 -8 +[|6-a]")
—%(h* - =" -A[" +[A-A[")

- KJn—ZSn—l2 + Eéﬂ—Z'BCD
Ho 1= He 1= Ho= M= Ho |io A Il
< K3, 5.t~ el B - el

Ho He :

« 12
o —aH +

+ c —EHZ +ﬁucf —Eluz + H ¢ -0,
2 2 2
o =of + S <"+ 00 @6)

where ||[[|] denotes an induced norm. Defiree and d are positive constants given as

€ =MiN(KS, o, Mol os Heles il s il Hof Tos HifT) 37)
A=l =l +safe - + ulei =i+ sl 5 |
+ o —a”z + g0’ —ﬁ”z) +ES,_,[B0 (38)
thus (36) can be rewritten as
V() <cV(t)+d (39)

Since% >0 and the solution of the differential inequalit@§3atisfieqLin and Li, 2013)

OSV(t)S%+[\/(O)—%]e_CT (40)

14
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N

A N

6

where V(0) is the initial value ofV t( ) then the estimated vectos, ®, C, 6,, 6,, ®
and h are uniformly ultimately bounded. From (40), iistained that
E S(t) < 9y 0)e™ (41)
2 C
L . /2d o -
which implies that, givenp > " the tracking index satisfies
s(t)< p (42)

where p is the size of a small residual set that dependherPFNN approximation error

and the INTSMC controller parameters. It implieattthe output of the INTSMC system can
exponentially converge to a small neighborhoodheftrajectory comman(Kim and Calise,
2007; Lin and Li, 2013; Na et al., 2013)

Remark 1: Though the control chattering has been eliminatgyd using the smooth
compensator in (Kim and Calise, 2007; Lin and 1O12; Na et al., 2013), the convergence
speed of tacking error is slow due to the conteohgf the smooth compensator is fixed. In
the proposed control scheme, the control gain @frtibust compensator in (25) dynamically
increases to obtain a good robustness and to gypette convergence speed of tacking error
without chattering problem. Thus, the proposed sblmompensator could be more suitable

than the smooth compensator(iim and Calise, 2007; Lin and Li, 2013; Na et 2D]13)

4. Simulation and experimental results
It should be emphasized that the proposed INTSMegy requires no prior knowledge

of the system dynamics. The parametdrs p. and g, for the nonsingular terminal sliding
surface offers some superior properties such ate fihme convergence. Selections of the

learning rates A, , t,, M., Hey My Hs 0o Moo Ny My 77, @nd g4) for online

training have a significant effect on the PFNN h#ag performance. If necessary, the

15
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variable optimal learning rates can be derivedgisine algorithms presented (hin and Li,
2015) to speed up parameter learning. The constaftsand E will influence the

convergent speed of the tracking error and thetaohso will attenuate a desired level of

approximation error. It is known that the determgnian appropriate number of fuzzy rules
m in PFNN is an important issue because of the todflbetween a computational loading
and a learning performance. In general, if the rembf fuzzy rules is large, the
computational loading is heavy so that it is natadle for online practical applications. If the
number of fuzzy rules is small, the learning perfance may be not good enough to achieve
desired control performance. In this paper, the lmemof the used fuzzy rules is determined
by some trial-and-error tuning procedures.
Example 1. inverted pendulum

Consider an inverted pendulum stabilizing problegite dynamic equation of the
inverted pendulum system is given\&@ang (1994)

x=f(x) +g(xu (43)
where x is the angle of the pendulum with respect to thdisal line, x =[x X]" is the

state vector,m, is the mass of cartm is the mass of rodg is the acceleration due to

mlxsin()cos¢) - (m, +m)gsin(x) __,

gravity, | is the half length of rod,f(x) =
4
mlcosz(x)—gl(mﬁm)

—cos)
ml cog ()~ JI(m, +m,)

g(x) = are the system dynamics, and is the control input. In

this example, it is assumed thgt= 981, m. =1, m =01, and | = 05. To illustrate the
effectiveness of the proposed INTSMC system, aareat disturbanced = 3sin(4t) cos(t8)

is generated starting fromh=20sec. The parameters of the proposed INTSMC system are

selected as 4 =05, p=7, q=5, n,=20, n.=n=n=n,=n,=1,

16
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U, =l = = =, =4 =0001 K=1, p=05, y=1, E=01 and ® = 005 All
of the parameters are determined by trial and emwarder to guarantee the desired control
performance.

For the comparison of the control performance,t,fitke simulation results of the
dynamic fuzzy neural contrdLin and Li, 2015)are shown in Fig. 4. The simulation results
show that the dynamic fuzzy neural control systean cachieve favorable control
performance. Due to the supervised gradient-desuetitod is used to develop the parameter
learning law, the system stability has not beerraputaed so far.

Then, a type-1 fuzzy neural network (T1LFNN) whi@nde found ir(Lin et al., 2014)
is used to approximate the nonlinear term of thetesy dynamics. The simulation results of
the INTSMC system with TLFNN are shown in Fig. BeTsimulation results show that the
INTSMC system with TIFNN can achieve favorable oconperformance and is robust
against external disturbance after TLFNN learniviganwhile, an interval T2FNN which can
be found in(Chang and Chan, 201#) used to approximate the nonlinear term of tfstesn
dynamics again. The simulation results of the INTGSB/stem with T2FNN are shown in Fig.
6. The simulation results show that the INTSMC systwith T2FNN can achieve more
favorable tracking performance with faster convamgespeed of the tracking error.

Finally, the proposed PFNN is used to approximhte ronlinear term of the system
dynamics again. The simulation results of the INTGM/stem with PFNN are shown in Fig.
7. The simulation results verify that the propofld@@SMC system with PFNN can achieve
the favorable tracking performance even under dereal disturbance occurs. Moreover, to
demonstrate the robust tracking capability of tN&$SMC system with PFNN, a payload is

added to the inverted pendulum with, = 2. Tracking responses with payload are shown in

Fig. 8. The simulation results show that favoratgatrol performance can be achieved after

controller parameters learning and is robust ag@aisameter variations in the plant.
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In summary, a performance comparison between thardic fuzzy neural control, the
INTSMC with T1FNN, the INTSMC with T2FNN and the T$MC system with PFENN is
made in Table 1. It shows that the proposed INTSyi€lem with PFNN possesses the better
tracking performance than others. The INTSMC wi#2FNN shows a smaller error than the
INTSMC system with PENN; however, the former ack®\this advantage at the cost of
using the much more complex Karnik-Mendel iteraty@cedure for the type reduction
operation.

Example 2: VCM actuator

The VCM actuator has many excellent features suxhhigh-starting thrust force,
high-speed operation, low cost and so on. The dicgamf the VCM actuator can be
presented aiSeok and Kim, 2012; Wu et al., 2014)

x=f(x)+g(xX)u+d (44)

where x is the position of the moving tablex =[x X]" is the state vector,

f(x)= _(}EK" *R.B) x is the system dynamicg(x) =—————— is the control gain,
(M+M)R, (M+M)R,
- Ff . . . . . . .
d= — is the external disturbancey is the input voltage R, is the coil resistance,

K, is the back electromotive force coefficierit, is the coil inductanceM is the mass
of the moving table,m is the mass of the payloadd is the viscous coefficientK, is the
thrust force coefficient,i, is the coil current, and~; is the lumped friction force.

This paper proposes an experimental setup as showfig. 9. The used 86duino
platform is an open-source embedded platform basedrtex86EX SoC and it can operate
up to 400 MHz. On the software side, 86duino platf@an support many x86 O/S as well as
those running on the original Arduino base syst@me control subroutine with 2 msec

sampling rate is used for the execution of the robratigorithms. Thereafter, the calculated
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control effort is sent to the L298 motor driver. ivestigate the robustness of the proposed
INTSMC system, the system is tested under two wiffe conditions. One is the nominal
condition and the other is the payload conditionabiging a payload on the moving table.

The parameters of the INTSMC system are selected, &s05, p,=7, g =5, 7, =10,

n.=n=n=n,=n,=001, w=u=y=u=u,=4=00001, K=1, p=02,
y=1, E=05 and ® = 10 These parameters are selected through some trials
For the comparison of the control performancet,filse PD control is applied to the

VCM actuator. The PD control is given ag,, = 7.8e+ 0.3¢. All the gains are selected by

trial-and-error to achieve the best control perfance in the experimentation. The
experimental results of the PD control are showRig 10. The experimental results show
that the satisfactory performance is difficult tbtain for the PD control due to its linear
structure with fixed control gains cannot cope wtite uncertainties of the plant.

Then, the proposed ITSMC system with supervisommensato(Chen and Hsu, 2010)
is applied to the VCM actuator again and the cpwading experimental results are shown in
Fig. 11. The experimental results show that favieralontrol performance can be achieved
after learning of the parameters. However, thetehagg phenomena are found due to the
supervisory compensator with the bound of the appration error E=2 is used. The
undesirable chattering control inputs will wear tmechanism and might excite unstable
system dynamics. Further, the proposed ITSMC syst#m smooth compensatgLin and
Li, 2013)is applied to the VCM actuator again and the cpwading experimental results
are shown in Fig. 12. The experimental results sttt favorable control performance can
be achieved without chattering problem for boththe test conditions. Though the control
chattering has been eliminated by using the smoothpensator, the convergence speed of
tacking error is slow.

Finally, the proposed ITSMC system with robust cemgator is applied to the VCM
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actuator again and the corresponding experimemsiilts are shown in Fig. 13. The
experimental results show that more favorable trackerformance with faster convergence
speed of the tracking error can be obtained. Comgavith Figs. 11 and 12, the convergence
speed of tracking error can speed up by the praposieust compensator. In summary, a
characteristic comparison between the PD contha, INTSMC system with supervisory

compensator, the INTSMC system with smooth comgensand the INTSMC system with

robust compensator is made in Table 2. It shows tia proposed robust compensator

possesses the better tracking performance tharsothe

5. Conclusions

SMC system is one of the effective control methsidse it is insensitive to parameter
variations, external disturbance injection and fdghamic response. In this paper, an
INTSMC system via PFNN approach is proposed foruaknown nonlinear system. The
proposed PFNN is a more generalized network witttebdearning ability and has lower
computational complexity for practical implementati In additional, Lyapunov stability
theory is used to discuss the parameter learnidgsgstem stability of the INTSMC system.
Finally, the effectiveness of the proposed INTSMGtam has been confirmed by simulation
and experimental results. In addition, the conpmformance of the proposed control scheme
is robust with regard to external disturbances@ardmeter variations.

The main contributions of this paper are: (1) tli&NR can accurately approximate the
unknown nonlinear term of control systems; (2) terturbed asymmetric membership
function not only can handle rule uncertainties &lsb the learning capability of the PFNN
can be upgraded; (3) the INTSMC system can guagathte tracking error convergence
within a finite time; (4) the robust compensatot paly can alleviate the control chattering

but also can speed up the convergence speed thtikng error; (5) the applicability of the
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INTSMC system is demonstrated by an inverted pemdwnd a VCM actuator.
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Table 1. Performance measures for inverted pendulum example

tracking error

Methods ) standard

maximum average| L oo

dynamic fuzzy 0.1227 | 0.0124| 0.0155

neural control

INTSMC system

it TLEMN 0.1567 | 0.0241| 0.0300
INTSMC system

it T2EMN 0.0602 | 0.0159| 0.0123
INTSMC system

it PENN 0.0815 | 0.0174| 0.0154
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Table 2. Characteristic comparison.

stability chattering convergence

Methods robustness
proof | phenomena speed

PD control no no poor slow

INTSMC system with
supervisory compensa
INTSMC system with
smooth compensator
INTSMC system with
robust compensator

toryes yes excellent fast

yes no middle middle

yes no excellent  fast

27



Accepted Paper

intelligent nonsingular terminal siding-mode control

¢l neural controller

] . !
! nonsingular i
| 9 Sh-1 robust u,. |
r —  terminal > !
! - compensator i
. sliding surface :
i :
: i
: parameter l
! learning law :
1 1
1 .. . . . A 1
| A A A ~ ~ 1
! {a,Co 0 ,0,h :
1 1
i — PFNN !
: i
' A :
! v% :
i > . u. + "+ i
x(”) terminal et A
i :
1 1

unknown u
nonlinear |«
system

Fig. 1. The block diagram of the proposed INTSMC system.
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Fig. 2. Network structure of PFNN.
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Fig. 3 Perturbed asymmetric membership function withedéht perturbations.
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Fig. 4 Simulation results of the dynamic fuzzy neuralteolfor inverted pendulum.
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Fig. 5 Simulation results of the INTSMC system with T1FIfd inverted pendulum.
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Fig. 6 Simulation results of the INTSMC system with T2FIfd¥ inverted pendulum.
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Fig. 7 Simulation results of the INTSMC system with PFiXinverted pendulum.
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Fig. 8 Simulation results of the INTSMC system with PFdNihder parameter variations.
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Fig. 9 Experimental setup of VCM actuator.

36



table position

position

position .
. command

+075cm

trfacking respbnse

Accepted Paper

Fig. 10 Experimental results of the PD control for VCM watDr.
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Fig. 12 Experimental results of the INTSMC system with sthocompensator for VCM

actuator.

39



positibn
- command

/. table- - - ™=
position

trfacking r%pbnse

+075cm.

position
command

Accepted Paper

Fig. 13 Experimental results of the INTSMC system withusthcompensator for VCM

actuator.
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