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As the number of rules and sample rate for type 2 fuzzy logic systems (T2FLSs) increases, the speed of calculations becomes a
problem. The T2FLS has a large membership value of inherent algorithmic parallelism that modern CPU architectures do not
exploit. In the T2FLS, many rules and algorithms can be speedup on a graphics processing unit (GPU) as long as the majority of
computation a various stages and components are not dependent on each other. This paper demonstrates how to install interval
type 2 fuzzy logic systems (IT2-FLSs) on the GPU and experiments for obstacle avoidance behavior of robot navigation. GPU-
based calculations are high-performance solution and free up the CPU. The experimental results show that the performance of the

GPU is many times faster than CPU.

1. Introduction

Graphic processing units (GPUs) give a new way to perform
general purpose computing on hardware that is better
suited for the complicated fuzzy logic systems. However, the
installation of these systems on the GPUs is also difficult
because many algorithms are not designed in a parallel
format conducive to GPU processing. In addition, there may
be too many dependencies at various stages in the algorithm
that will slow down GPU processing.

Type 2 fuzzy logic has been developed in theory and
practice to obtain achievement for real applications [1-10].
A review of the methods used in the design of interval type
2 fuzzy controllers has been considered [11]. However, the
complexity of T2FLS is still large and many researches focus
to reduce these problems on the approach to algorithm
or hardware implementation. Some proposals implement
type 2 FLS focus on the design, and software development
for coding a high-speed defuzzification stage based on the
average method of two type 1 FLS [12] or the optimization
of an incremental fuzzy PD controller based on a genetic
algorithm [13]. More recent works, where an interval type

2 FIS Karnik-Mendel is designed, tested and implemented
based on hardware implementation [14]. Using GPUs
for general purpose computing is mentioned in many
researches, recently, to speed up complicated algorithms
by parallelizing to suitable GPU architecture, especially for
applications of fuzzy logic. Anderson et al. [15] presented a
GPU solution for the fuzzy C-means (FCMs). This solution
used OpenGL and Cg to achieve approximately two orders
of magnitude computational speedup for some clustering
profiles using an nVIDIA 8800 GPU. They later generalized
the system for the use of non-Euclidean metrics [16].
Further, Sejun Kim [17] describes the method used to adapt
a multilayer trees structure composed of fuzzy adaptive
units into CUDA platforms. Chiosa and Kolb [18] present
a framework for mesh clustering solely implemented on the
GPU with a new generic multilevel clustering technique.
Chia et al. [19] proposes the implementation of a zero-order
TSK-fuzzy neural network (FNN) on GPUs to reduce
training time. Harvey et al. [20] present a GPU solution
for fuzzy inference. Anderson et al. [21] present a parallel
implementation of fuzzy inference on a GPU using CUDA.
Again, over two orders of speed improvement of this



naturally parallel algorithm can be achieved under particular
inference profiles. One problem with this system, as well as
the FCM GPU implementation, is that they both rely upon
OpenGL and Cg (graphics libraries), which makes the system
and generalization of its difficult for newcomers to GPU
programming.

Therefore, we carried out fuzzy logic systems analysis in
order to take advantage of GPUs processing capabilities. The
algorithm must be altered in order to be computed fast on a
GPU. In this paper, we explore the use of nVIDIA’s Compute
Unified Device Architecture (CUDA) for the implementation
of an interval type 2 fuzzy logic system (IT2FLS). This lan-
guage exposes the functionality of the GPU in a language that
most programmers are familiar with, the C/C++ language
that the masses can understand and more easily integrate
into applications that do not have the need otherwise to
interface with a graphics API. Experiments are implemented
for obstacle avoidance behavior of robot navigation based
on nVIDIA platform with the summarized reports on
runtime.

The paper is organized as follows: Section 2 presents
an overview on GPUs and CUDA; Section 3 introduces the
interval type 2 fuzzy logic systems; Section 4 proposes a
speedup of IT2FLS using GPU and CUDA; Section 5 presents
experimental results of IT2FLS be implemented on GPUs in
comparing with on CPU; Section 6 is conclusion and future
works.

2. Graphics Processor Units and CUDA

Traditionally, graphics operations, such as mathematical
transformations between coordinate spaces, rasterization,
and shading operations have been performed on the CPU.
GPUs were invented in order to offload these specialized
procedures to advanced hardware better suited for the task
at hand. Because of the popularity of gaming, movies, and
computer-aided design, these devices are advancing at an
impressive rate. Classically, before the advent of CUDA,
general purpose programming on a GPU (GPGPU) was
performed by translating a computational procedure into
a graphics format that could be executed in the standard
graphics pipeline. This refers to the process of encoding data
into a texture format, identifying sampling procedures to
access this data, and converting the algorithms into a process
that utilized rasterization (the mapping of array indices to
graphics fragments) and frame buffer objects (FBO) for
multipass rendering. GPUs are specialised stream processing
devices.

This processing model takes batches of elements and
computes a similar independent calculation in parallel to
all elements. Each calculation is performed with respect to
a program, typically called a kernel. GPUs are growing at
a faster rate than CPUs, and their architecture and stream
processing design makes them a natural choice for many
algorithms, such as computational intelligence algorithms
that can be parallelised.

nVIDIAs CUDA is a data-parallel computing environ-
ment that does not require the use of a graphics API, such
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as OpenGL and a shader language. CUDA applications are
created using the C/C++ language. CPU and GPU programs
are developed in the same environment (i.e., a single C/C++
program), and the GPU code is later translated from C/C++
to instructions to be executed by the GPU. nVIDIA has
even gone as far as providing a CUDA Matlab plugin.
A C/C++ program using CUDA can interface with one GPU
or multiple GPUs can be identified and utilized in parallel,
allowing for unprecedented processing power on a desktop
or workstation.

CUDA allows multiple kernels to be run simultaneously
on a single GPU. CUDA refers to each kernel as a grid. A grid
is a collection of blocks. Each block runs the same kernel but
is independent of each other (this has significance in terms
of access to memory types). A block contains threads, which
are the smallest divisible unit on a GPU. This architecture is
shown in Figure 1.

The next critical component of a CUDA application is
the memory model. There are multiple types of memory
and each has different access times. The GPU is broken
up into read-write perthread registers, read-write perthread
local memory, read-write per-block shared memory, read-
write per-grid global memory, read-only per-grid constant
memory, and read-only per-grid texture memory. This
model is shown in Figure 2.

Texture and constant memory have relatively small access
latency times, while global memory has the largest access
latency time. Applications should minimize the number of
global memory reads and writes. This is typically achieved
by having each thread read its data from global memory and
store its content into shared memory (a block level memory
structure with smaller access latency time than global
memory). Threads in a block synchronize after this step.
Memory is allocated on the GPU using a similar mechanism
to malloc in C, using the functions cudaMalloc and
cudaMallocArray. GPU functions that can be called by the
host (the CPU) are prefixed with the symbol “global”, GPU
functions that can only be called by the GPU are prefixed
with “device”, and standard functions that are callable from
the CPU and executed on the CPU are prefixed with “host”
(or the symbol can be omitted, as it is the default). GPU
functions can take parameters, as in C. When there are a few
number of variables that the CPU would like to pass to the
GPU, parameters are a good choice; otherwise, such as in
the case of large arrays, the data should be stored in global,
constant, or texture memory and a pointer to this memory is
passed to the GPU function. Whenever possible, data should
be kept on the GPU and not transferred back and forth to the
CPU.

3. Interval Type 2 Fuzzy Logic Systems

3.1. Type 2 Fuzzy Sets. A type 2 fuzzy set in X is denoted A,
and its membership grade of x € X is pg(x,u), u € J, <
[0, 1], which is a type 1 fuzzy set in [0, 1]. The elements of
domain of pz(x, u) are called primary memberships of x in
A, and memberships of primary memberships in p3(x, u) are
called secondary memberships of x in A.
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FIGURE 1: CUDA-processing model design [22].

Figure 2: CUDA GPU memory model design [22].



Definition 1. A type 2 fuzzy set, denoted A, is characterized
by a type 2 membership function 3 (x, u) where x € X and
u € J, € [0,1], that is,

A= {(wagtow) | Vee X,vue <011} 1)

Z:J J yg(x,u))
xeX Juej, (x,u)

in which 0 < pz(x,u) < L.

or

Je < [0,1] (2)

At each value of x, say x = x’, the 2D plane whose axes
are u and pg(x’,u) is called a vertical slice of uz(x,u). A
secondary membership function is a vertical slice of pz(x, u).
Itis pug(x = x',u) forx € X and for all u € ], < [0, 1], that
is,

pi(x =x"su) = pz(x’) = J M’

I S O

inwhich 0 < fo(u) < 1.

In manner of embedded fuzzy sets, a type 2 fuzzy sets [1]
is union of its type 2 embedded set, that is,

A=Y A, (4)

where n = ]_[filMi and A? denoted the jth type 2 embedded
set ofﬁ, that is,

Al

1l fo (), i=1,2,... N} (5)

where uf S {uik, k= 1,... ,Mi}.

Type 2 fuzzy sets are called interval type 2 fuzzy sets if the
secondary membership function fy (1) = 1, for all u € J,
that is, a type 2 fuzzy set is defined as follows.

Definition 2. An interval type 2 fuzzy set A is characterized by
an interval type 2 membership function uz(x, u) = 1 where
x€ Xandu € J, < [0,1], that is,

A= {((xu),)VxeX,VueJ, < [0,1]}. (6)

Uncertainty of Z, denoted FOU, is union of primary
functions that is FOU(A) = Uy Jx. Upper/lower bounds
of membership function (UMF/LMF), denoted zi;(x) and
Ex(x), of A are two type 1 membership function and bounds
of FOU.

3.2. Interval Type 2 Fuzzy Logic Systems (IT2FLSs). The
general type 2 fuzzy logic system is introduced as Figure 3.
The output block of a type 2 fuzzy logic system consists of
two blocks that are type-reduced and defuzzifier. The type-
reduced block will map a type 2 fuzzy set to a type 1 fuzzy
set, and the defuzzifier block will map a fuzzy to a crisp. The
membership function of an interval type 2 fuzzy set is called
FOU which is limited by two membership functions of a type
1 fuzzy set that are UMF and LMF (see Figure 4).
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The combination of antecedents in a rule for IT2FLS is
called firing strength process represented by the Figure 5.

In the IT2FLS, calculating process involves 5 steps to
getting outputs: fuzzification, combining the antecedents
(apply fuzzy operators or implication function), aggregation,
and defuzzification.

Because each pattern has a membership interval as the
upper fi(x) and the lower x(x), each centroid of a cluster is
represented by the interval between ¢; and cg. Now, we will
represent an iterative algorithm to find ¢z, and cg as follows.

Step 1. Calculate 0; by the following equation:

Ir_
6; = - [Ax) +u(x)]. (7)
Step 2. Calculate ¢’ as follows:

Zfiﬂci * 0;
S, 6

Step 3. Find k such that xx < ¢’ < Xp47.

C' = C(@l,gz,...,gN) = (8)

Step 4. Calculate ¢”’ by following equation: in case ¢”’ is used
for finding ¢,

e S i) + S g xi(x) o)
S aG) + SN )

In case ¢ is used for finding cg, then

D i () + S gy Xifi(x;)
D1 @(Xi) + itk B(x:)

Step 5. If ¢ = ¢”" go to Step 6 else set ¢ = ¢, then back to
Step 3.

Step 6. Setcy =c orcg =
Finally, compute the mean of centroid, y, as

CrRtcCL

5 (11)

4. Speedup of IT2FLS Using GPU and CUDA

The first step in IT2FLS on the GPU is selection of memory
types and sizes. This is a critical step, the choice of format
and type dictate performance. Memory should be allocated
such that sequential access (of read and write operations) is
as possible as the algorithm will permit.

Let the number of inputs be N, the number of parameters
that define a membership function be P, the number of rules
be R and the discretization rate be S. Inputs are stored on the
GPU as a one-dimensional array of size N (see Figure 6).

The consequences are a CPU two-dimensional array of
size R X P. They are used only on the CPU when calculating
the discrete fuzzy set membership values.

The antecedents are a two-dimensional array on the GPU
of size R X (N X P).
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FIGURE 3: Diagram of type 2 fuzzy logic system [4].
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FiGURE 5: The combination of antecedents in a rule for IT2FLS [23].
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The fired antecedents are an R one-dimensional array
on the GPU, which stores the result of combining the
antecedents of each rule (see Figures 7, 8, and 9). The last
memory layout is the discretized consequent, which is an
S X R matrix created on the GPU.

The inputs and antecedents are of type texture memory
because they do not change during the firing of a FLS, but
could change between consecutive firings of a FLS and need
to be updated. We proposed the GPU program flow diagram
for a CUDA application computing a IT2FLS in Figure 10.

In IT2FLS, we have to calculate two values for two
membership functions that are UMF and LMFE. The first
step is a kernel that fuzzifies the inputs and combines the
antecedents. The next steps are implication and a process
which is responsible for aggregating the rule outputs. The last
GPU kernel is the defuzzification step.

The first kernel reads from the inputs and antecedents
textures and stores its results in the fired antecedent’s global
memory section. All inputs are sampled for each rule, the
rth rule samples the rth row in the antecedent’s memory,
membership values are calculated, and the minimum of the
antecedents is computed and stored in the rth row of the
fired antecedent’s memory region. There are B blocks used
by this kernel, partially because there is a limit in terms
of the number of threads that can be created per block
(current max is 512 threads). Also, one must consider the
number of threads and the required amount of register
and local memory needed by a kernel to avoid memory
overflow. This information can be found per each GPU.
We limited the number of threads per block to 128 (an
empirical value found by trying different block and thread
profiles for a system that has two inputs and trapezoidal
membership functions). The general goal of a kernel should
be to fetch a small number of data points, and it should have
high arithmetic intensity. This is the reason why only a few
memory fetches per thread are made, and the membership
calculations and combination step is performed in a single
kernel.

The next steps are implication and rule aggregation
kernels. At first, one might imagine that using two kernels to
calculate the implication results and rule aggregation would
be desirable. However, the implication kernel, which simply
calculates the minimum between the respective combined
antecedent results and the discretized consequent, is ineffi-
cient. As stated above, the ratio of arithmetic operations to
memory operations is important. We want more arithmetic
intensity than memory access in a kernel. Attempt to min-
imize the number of global memory samples, we perform
implication in the first step of reduction. Reduction, in this
context, is the repeated application of an operation to a series
of elements to produce a single scalar result. In the case of
rule aggregation, this is the application of the maximum
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FIGURE 9: Discretized consequent.

operator over each discrete consequent sample point for
each rule. The advantage of GPU reduction is that it takes
advantage of the parallel processing units to perform a divide
and conquer strategy. And the last step is defuzzification
kernel. As described above, rule output aggregation and
defuzzification reduction are used for IT2FLS on the GPU.

The output of rule output aggregation is two rows in the
discretized consequent global memory array. The defuzzifier
step is done by the Karnik-Mendel algorithms with two
inputs that are rule_combine_UMF and rule_combine_LMF
with two outputs y; and y,, respectively. The crisp output y
is calculated by the formula y = (y; + y,)/2.

The steps for finding y; and y, on GPU (Notation:
Rule_Combine_UMF (i) = pa(x;) and Rule_Combine LMF
(i) = pa(xi), N = sample rate) as follows

Step 1. Calculate 6; on GPU by the following equation:

0 = - [t + patx) | (12)
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FiGureg 10: IT2FLS diagram for a CUDA application on the GPU.
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FIGURE 11: Membership grades of FDR.




Next, copy ¢’ to host memory.

Step 3. Find k such that x; < ¢’ < x44; (calculated on CPU).
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FIGURE 12: Membership grades of Range.
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FIGURE 13: Membership grades of AoD.
TaBLE 1: The rule base of collision avoidance behavior. Step 4. Calculate ¢’ on GPU by following equation. In case
¢"’ is used for finding y;
FDR Range AoD FDR Range AoD
NS VN PL PS VN NL LS () + S e xipa () (1)
kK — N
NS N PLPS NN S A + S o pax)
NS M PM PS M NM
In case ¢” is used for finding y,, consider
NS F PS PS F NS
k _
NM VN PM PM VN NM S xpax) + SN ko1 Xifia(xi) 15)
k N —
NM N PM PM N NM zi:l &(xi) + Zi=k+1 ,UA(XI’)
NM M PM PM M NM
NM P PS PM F NS Next, copy ¢’ to host memory.
NL VN PM PL VN NM Step 5. If ¢ = ¢”" go to Step 6 else set ¢ = ¢”, then back to
NL N PM PL N NM Step 3 (Calculated on CPU)
NL M pS PL M NS Step 6. Set y; = c or y, = c'.
NL F PS PL F NS
5. Experiments
Step 2. Calculate ¢’ on GPU as follows: 5.1. Problems. We implement IT2FLS with collision avoid-
ance behavior of robot navigation. The fuzzy logic systems
' _ (6.0 0v) SN X% 6; 13 have two inputs: the extended fuzzy directional relation
¢ =c(01,02...,0n) = ZN1 6, (13) (FDR) [24] and range to obstacle; the output is angle of
in

deviation (AoD). The fuzzy rule has the form as follows.

IF FDR is A; AND Range is B; THEN AoD is C;, where Aj,
B;, and C; are type 2 fuzzy sets of antecedent and consequent,
respectively.
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FIGURE 14: Run-time graph of the problem implementation.

The fuzzy directional relation has six linguistic val-
ues (NLarge, NMedium, NSmall, PSmall, PMedium, and
PLarge). The range from robot to obstacle is divided into
four subsets: VNear, Near, Medium, and Far. The output of
fuzzy if-then is a linguistic variable representing for angle
of deviation and has six linguistic variables the same the
fuzzy directional relation with the different membership
functions. Linguistic values are interval type 2 fuzzy subsets
that membership functions are described in Figures 11, 12,
and 13. The problem is built with 24 rules given by the
following Table 1.

5.2. Experiments. The performance of the GPU implemen-
tation of a IT2FLS was compared to a CPU implementation.
The problem is written in C/C++ console format and be
installed on the Microsoft Visual Studio 2008, and it was
performed on computers with the operating system windows
7 32 bit and nVIDIA CUDA support with specifications.

CPU was the Core i3-2310 M 2.1 GHz, the system had 2
GB of system RAM (DDR3).

GPU was an nVIDIA Gerforce GT 540 M graphics card
with 96 CUDA Core, 1 GB of texture memory, and PCI
Express X16.
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TaBLE 2: CPU/GPU performance ratio.

N
128 256 512 1024 2048 4096 8192
32 0.1 0.24  0.41 0.76 1.47 2.64 3.22
64  0.21 0.39  0.73 1.58 2.7 4.69 8.99

128 0.32  0.76 1.25 3.07 3.95 9.01 18.26
256 0.72 1.19 2.95 5.35 10.7 17.56 21.3
512 0.77  2.43 3.32 12.57 18.43 20.51 29.3

The number of inputs was fixed to 2, the number of rules
was varied between 32, 64, 128, 256, and 512, and sample rate
was varied between 256, 512, 1024, 2048, 4096, and 8192.

We take the ratio of CPU versus GPU performance. A
value below 1 indicated that the CPU is performing best,
and value above 1 indicates the GPU is performing best. The
CPU/GPU performance ratios for the IT2FLS are given in
Table 2 and run-time graph of the problem implementation
was shown in Figure 14.

6. Conclusion

As demonstrated in this paper, the implementation of
interval type 2 FLS on a GPU without the use of a graphics
API which can be used by any researcher with knowledge of
C/C++. We have demonstrated that the CPU outperforms
the GPU for small systems. As the number of rules and
sample rate grow, the GPU outperforms the CPU. There is
a switch point in the performance ratio matrices (Table 2)
that indicates when the GPU is more efficient than the CPU.
In the case that sample rate is 8192 and rule is 512, the GPU
runs approximately 30 times faster on the computer.

Future work will look at to extend interval type 2 FLS
to the generalised type 2 FLS and applying to various
applications.
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