1,952 research outputs found

    How 5G wireless (and concomitant technologies) will revolutionize healthcare?

    Get PDF
    The need to have equitable access to quality healthcare is enshrined in the United Nations (UN) Sustainable Development Goals (SDGs), which defines the developmental agenda of the UN for the next 15 years. In particular, the third SDG focuses on the need to “ensure healthy lives and promote well-being for all at all ages”. In this paper, we build the case that 5G wireless technology, along with concomitant emerging technologies (such as IoT, big data, artificial intelligence and machine learning), will transform global healthcare systems in the near future. Our optimism around 5G-enabled healthcare stems from a confluence of significant technical pushes that are already at play: apart from the availability of high-throughput low-latency wireless connectivity, other significant factors include the democratization of computing through cloud computing; the democratization of Artificial Intelligence (AI) and cognitive computing (e.g., IBM Watson); and the commoditization of data through crowdsourcing and digital exhaust. These technologies together can finally crack a dysfunctional healthcare system that has largely been impervious to technological innovations. We highlight the persistent deficiencies of the current healthcare system and then demonstrate how the 5G-enabled healthcare revolution can fix these deficiencies. We also highlight open technical research challenges, and potential pitfalls, that may hinder the development of such a 5G-enabled health revolution

    Challenges and Opportunities of Internet of Things in Healthcare

    Get PDF
    The Internet of  Things (IoT) relies on physical objects interconnected between each other’s, creating a mesh of devices producing information and services. In this context, sensors and actuators are being continuously embedded in everyday objects (e.g., cars, home appliances, and smartphones) thus pervading our living environment. Among the plethora of application contexts, smart Healthcare is gaining momentum. Indeed IoT can revolutionize the healthcare industry by improving operational efficiency and clinical trials’ quality of monitoring, and by optimizing healthcare costs. This paper provides an overview of IoT, its applicability in healthcare, some insights about current trends and an outlook on future developments of healthcare systems.

    Design of a Healthcare Monitoring and Communication System for Locked-In Patients Using Machine Learning, IOTs, and Brain-Computer Interface Technologies

    Get PDF
    Machine learning (ML) models have shown great promise in advancing brain-computer interface (BCI) signal processing and in enhancing the capabilities of Internet of Things (IoT) mobile devices. By combining these advancements into a comprehensive healthcare monitoring and communication system, we may significantly improve the quality of life for patients living with locked-in syndrome. To that effect, we present a three-tiered approach to systems design using known ML models: data collection, local integrated system deployed on IoT hardware, and administrative management. The first tier focuses on IoT sensors and non-invasive recording of brain signals, their calibration and data collection, and data processing. The second tier focuses on aggregating and directing the data, an alert system for caregivers, and a BCI for personalized communication. The last tier focuses on accountability and essential management tools. This research-in-progress demonstrates the feasibility of integrating current technologies to improve care for locked-in patients

    AI-based smart sensing and AR for gait rehabilitation assessment

    Get PDF
    Health monitoring is crucial in hospitals and rehabilitation centers. Challenges can affect the reliability and accuracy of health data. Human error, patient compliance concerns, time, money, technology, and environmental factors might cause these issues. In order to improve patient care, healthcare providers must address these challenges. We propose a non-intrusive smart sensing system that uses a SensFloor smart carpet and an inertial measurement unit (IMU) wearable sensor on the user’s back to monitor position and gait characteristics. Furthermore, we implemented machine learning (ML) algorithms to analyze the data collected from the SensFloor and IMU sensors. The system generates real-time data that are stored in the cloud and are accessible to physical therapists and patients. Additionally, the system’s real-time dashboards provide a comprehensive analysis of the user’s gait and balance, enabling personalized training plans with tailored exercises and better rehabilitation outcomes. Using non-invasive smart sensing technology, our proposed solution enables healthcare facilities to monitor patients’ health and enhance their physical rehabilitation plans.info:eu-repo/semantics/publishedVersio

    Exploring the Landscape of Ubiquitous In-home Health Monitoring: A Comprehensive Survey

    Full text link
    Ubiquitous in-home health monitoring systems have become popular in recent years due to the rise of digital health technologies and the growing demand for remote health monitoring. These systems enable individuals to increase their independence by allowing them to monitor their health from the home and by allowing more control over their well-being. In this study, we perform a comprehensive survey on this topic by reviewing a large number of literature in the area. We investigate these systems from various aspects, namely sensing technologies, communication technologies, intelligent and computing systems, and application areas. Specifically, we provide an overview of in-home health monitoring systems and identify their main components. We then present each component and discuss its role within in-home health monitoring systems. In addition, we provide an overview of the practical use of ubiquitous technologies in the home for health monitoring. Finally, we identify the main challenges and limitations based on the existing literature and provide eight recommendations for potential future research directions toward the development of in-home health monitoring systems. We conclude that despite extensive research on various components needed for the development of effective in-home health monitoring systems, the development of effective in-home health monitoring systems still requires further investigation.Comment: 35 pages, 5 figure

    Modelling of Internet of Things (IoT) for Healthcare

    Get PDF
    Purpose: Information technology benefits the world, and it’s required for health care system, such as electronic medical records (EMR). We have proposed systematic model to study hoe IoT with 5g network has potential to benefit various healthcare services. For example, telemedicine may have some usage restrictions in rural areas and physicians may find it difficult to provide continuous monitoring to patients from such area. There are higher chances that the calls or video conferences getting significantly affected by poor networks and signals as well as non-compatible devices and patient may not get the treatment on time. 5G networking with IoT devices are believed to be the game changer for communication technology. The IoT model assists in attaining information by measuring its benefits through criteria which include 5G and IoT features along with a healthcare service requirement. Purpose of this paper is to present a model using Internet of Things (IoT) and 5G technology which will help to understand improved efficiency and efficacy of healthcare services. Our main research methodologies are literature review and modeling. The obtained results can be used for information technology applications in healthcare for various healthcare services and assist in increasing health quality in the healthcare industry.Method: Created a model to set the standard for incorporating 5G IoT devices health related technology and services. Reviewed through several models that serve as potential model to involve key factors that are unique certain healthcare services. We picked one model that can be easily incorporated in the system and can be revised to fit within the requirements using 5G IoT devices. Gathering of related literature served as a foundation in understanding the benefits of 5G IoT in the healthcare systems and parameters were pooled from it to revise the IoT model. Results: Incorporating 5G IoT features into a chosen model gave an overview of various determinants that can help understanding how IoT can influence any healthcare service and improve the quality of health. There are no rules and restrictions for use and utilization of this technology for health management yet in developing stage however, healthcare systems can rely on the 5G IoT devices for quality betterment. Conclusion: IoT with 5G has potential to improve healthcare management. The 5G world with an IoT will allow us to enter an era where real-time health services will become the part of the daily routine rather than the exception. However, further research needs to be done about its usage within any kind of specific health technology. Future research directions can utilize our model for other lesser known healthcare services

    Personalized data analytics for internet-of-things-based health monitoring

    Get PDF
    The Internet-of-Things (IoT) has great potential to fundamentally alter the delivery of modern healthcare, enabling healthcare solutions outside the limits of conventional clinical settings. It can offer ubiquitous monitoring to at-risk population groups and allow diagnostic care, preventive care, and early intervention in everyday life. These services can have profound impacts on many aspects of health and well-being. However, this field is still at an infancy stage, and the use of IoT-based systems in real-world healthcare applications introduces new challenges. Healthcare applications necessitate satisfactory quality attributes such as reliability and accuracy due to their mission-critical nature, while at the same time, IoT-based systems mostly operate over constrained shared sensing, communication, and computing resources. There is a need to investigate this synergy between the IoT technologies and healthcare applications from a user-centered perspective. Such a study should examine the role and requirements of IoT-based systems in real-world health monitoring applications. Moreover, conventional computing architecture and data analytic approaches introduced for IoT systems are insufficient when used to target health and well-being purposes, as they are unable to overcome the limitations of IoT systems while fulfilling the needs of healthcare applications. This thesis aims to address these issues by proposing an intelligent use of data and computing resources in IoT-based systems, which can lead to a high-level performance and satisfy the stringent requirements. For this purpose, this thesis first delves into the state-of-the-art IoT-enabled healthcare systems proposed for in-home and in-hospital monitoring. The findings are analyzed and categorized into different domains from a user-centered perspective. The selection of home-based applications is focused on the monitoring of the elderly who require more remote care and support compared to other groups of people. In contrast, the hospital-based applications include the role of existing IoT in patient monitoring and hospital management systems. Then, the objectives and requirements of each domain are investigated and discussed. This thesis proposes personalized data analytic approaches to fulfill the requirements and meet the objectives of IoT-based healthcare systems. In this regard, a new computing architecture is introduced, using computing resources in different layers of IoT to provide a high level of availability and accuracy for healthcare services. This architecture allows the hierarchical partitioning of machine learning algorithms in these systems and enables an adaptive system behavior with respect to the user's condition. In addition, personalized data fusion and modeling techniques are presented, exploiting multivariate and longitudinal data in IoT systems to improve the quality attributes of healthcare applications. First, a real-time missing data resilient decision-making technique is proposed for health monitoring systems. The technique tailors various data resources in IoT systems to accurately estimate health decisions despite missing data in the monitoring. Second, a personalized model is presented, enabling variations and event detection in long-term monitoring systems. The model evaluates the sleep quality of users according to their own historical data. Finally, the performance of the computing architecture and the techniques are evaluated in this thesis using two case studies. The first case study consists of real-time arrhythmia detection in electrocardiography signals collected from patients suffering from cardiovascular diseases. The second case study is continuous maternal health monitoring during pregnancy and postpartum. It includes a real human subject trial carried out with twenty pregnant women for seven months
    • …
    corecore