5 research outputs found

    Analytical Modelling of a New Handover Algorithm to Improve Allocation of Resources in Highly Mobile Environments

    Get PDF
    Wireless and mobile communication systems have evolved considerably in recent years. Seamless mobility is one of the main challenges facing mobile users in wireless and mobile systems. However, highly mobile users lead to a high number of handover failures and unnecessary handovers due to the limited resources and coverage limitations with a high mobile speed. The traditional handover models are unable to cope with high mobile users in such environments. This paper proposes, an intelligent handover decision approach to minimize the probability of handover failures and unnecessary handovers whilst maximizing the usage of resources in highly mobile environments. The proposed approach is based on modelling the system using a Markov chain to enhance the system’s performance in terms of blocking probability, mean queue length and transmission delay. The results are compared with the traditional handover model. Simulation is also employed to validate the accuracy of the proposed model. Numerical results have shown that the proposed method outperforms the traditional algorithm over a wide range of handover failures and significantly reduced the number of such failures and unnecessary handovers. The results of this study show that quality if service (QoS) measures of such systems can be evaluated efficiently and accurately using the proposed analytical model. However, the performance results have also shown that it is still necessary to explore an effective model for operational spaces. In addition, the proposed model can also be adapted to various types of networks considering the high speed of the mobile user and the radius of the network

    A reservation-based call admission control scheme and system modeling in 4G vehicular networks

    Get PDF
    In 4G cellular networks, call admission control (CAC) has a direct impact on quality of service (QoS) for individual connections and overall system efficiency. Reservation-based CAC schemes have been previously proposed for cellular networks where a certain amount of system bandwidth is reserved for high-priority calls, e.g., hand-off calls and real-time new calls. Traditional reservation-based schemes are not efficient for 4G vehicular networks, as the reserved bandwidth may not be utilized effectively in low h

    Передача обслуговування в мобільних мережах 5G на базі SDN

    Get PDF
    Сьогодні телекомунікаційна галузь у всьому світі стоїть на порозі впровадження нового, п'ятого покоління мобільного зв'язку. Подібно своїм попередникам, 5G надає поштовх розвитку не тільки телекомунікаційної, а й інших галузей економіки. Очікувані технологічні інновації стандарту п'ятого покоління призведуть до зростання пропускної здатності мереж мобільних операторів і швидкості передачі даних, а також до появи нових сценаріїв використання мобільного зв'язку та розвитку інноваційних цифрових послуг. Це сприятиме економічному розвитку шляхом збільшення продуктивності, автоматизації та впровадження нових технологій у різних сферах економіки та діяльності людини. 5G надає величезні можливості для підвищення продуктивності і зростання цифрової економіки. Наявність необхідних частот є одним з основних чинників для розвитку таких мереж, поряд з готовністю мережевої архітектури та інфраструктури, бізнес-моделей і абонентських пристроїв.Today, the telecommunications industry around the world is on the verge of introducing a new, fifth generation of mobile communications. Like its predecessors, 5G provides a boost not only to telecommunications but also to other sectors of the economy. The expected technological innovations of the fifth generation standard will lead to an increase in the capacity of mobile operators' networks and data transfer speeds, as well as to the emergence of new scenarios for the use of mobile communications and the development of innovative digital services. This will contribute to economic development by increasing productivity, automation and the introduction of new technologies in various areas of the economy and human activity. 5G provides great opportunities to increase productivity and grow the digital economy. The availability of the necessary frequencies is one of the main factors for the development of such networks, along with the readiness of the network architecture and infrastructure, business models and subscriber devices

    Handover management strategies in LTE-advanced heterogeneous networks.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.Meeting the increasing demand for data due to the proliferation of high-specification mobile devices in the cellular systems has led to the improvement of the Long Term Evolution (LTE) framework to the LTE-Advanced systems. Different aspects such as Massive Multiple-Input Multiple Output (MIMO), Orthogonal Frequency Division Multiple Access (OFDMA), heterogeneous networks and Carrier Aggregation have been considered in the LTE-Advanced to improve the performance of the system. The small cells like the femtocells and the relays play a significant role in increasing the coverage and the capacity of the mobile cellular networks in LTE-Advanced (LTE-A) heterogeneous network. However, the user equipment (UE) are faced with the frequent handover problems in the heterogeneous systems than the homogeneous systems due to the users‟ mobility and densely populated cells. The objective of this research work is to analyse the handover performance in the current LTE/LTE-A network and to propose various handover management strategies to handle the frequent handover problems in the LTE-Advance heterogeneous networks. To achieve this, an event driven simulator using C# was developed based on the 3GPP LTE/LTE-A standard to evaluate the proposed strategies. To start with, admission control which is a major requirement during the handover initiation stage is discussed and this research work has therefore proposed a channel borrowing admission control scheme for the LTE-A networks. With this scheme in place, resources are better utilized and more calls are accepted than in the conventional schemes where the channel borrowing is not applied. Also proposed is an enhanced strategy for the handover management in two-tier femtocell-macrocell networks. The proposed strategy takes into consideration the speed of user and other parameters in other to effectively reduce the frequent and unnecessary handovers, and as well as the ratio of target femtocells in the system. We also consider scenarios such as the one that dominate the future networks where femtocells will be densely populated to handle very heavy traffic. To achieve this, a Call Admission Control (CAC)-based handover management strategy is proposed to manage the handover in dense femtocell-macrocell integration in the LTE-A network. The handover probability, the handover call dropping probability and the call blocking probability are reduced considerably with the proposed strategy. Finally, the handover management for the mobile relays in a moving vehicle is considered (using train as a case study). We propose a group handover strategy where the Mobile Relay Node (MRN) is integrated with a special mobile device called “mdev” to prepare the group information prior to the handover time. This is done to prepare the UE‟s group information and services for timely handover due to the speed of the train. This strategy reduces the number of handovers and the call dropping probability in the moving vehicle.Publications and conferences listed on page iv-v

    An intelligent call admission control algorithm for load balancing in 5G-satellite networks

    Get PDF
    A thesis submitted in partial fulfilment of the requirements of the University of Wolverhampton for the degree of Doctor of Philosophy.Cellular networks are projected to deal with an immense rise in data traffic, as well as an enormous and diverse device, plus advanced use cases, in the nearest future; hence, future 5G networks are being developed to consist of not only 5G but also different RATs integrated. In addition to 5G, the user’s device (UD) will be able to connect to the network via LTE, WiMAX, Wi-Fi, Satellite, and other technologies. On the other hand, Satellite has been suggested as a preferred network to support 5G use cases. Satellite networks are among the most sophisticated communication technologies which offer specific benefits in geographically dispersed and dynamic networks. Utilising their inherent advantages in broadcasting capabilities, global coverage, decreased dependency on terrestrial infrastructure, and high security, they offer highly efficient, effective, and rapid network deployments. Satellites are more suited for large-scale communications than terrestrial communication networks. Due to their extensive service coverage and strong multilink transmission capabilities, satellites offer global high-speed connectivity and adaptable access systems. The convergence of 5G technology and satellite networks therefore marks a significant milestone in the evolution of global connectivity. However, this integration introduces a complex problem related to resource management, particularly in Satellite – Terrestrial Integrated Networks (STINs). The key issue at hand is the efficient allocation of resources in STINs to enhance Quality of Service (QoS) for users. The root cause of this issue originates from a vast quantity of users sharing these resources, the dynamic nature of generated traffic, the scarcity of wireless spectrum resources, and the random allocation of wireless channels. Hence, resource allocation is critical to ensure user satisfaction, fair traffic distribution, maximised throughput, and minimised congestion. Achieving load balancing is essential to guarantee an equal amount of traffic distributed between different RATs in a heterogeneous wireless network; this would enable optimal utilisation of the radio resources and lower the likelihood of call blocking/dropping. This research endeavours to address this challenge through the development and evaluation of an intelligent call admission control (CAC) algorithm based on Enhanced Particle Swarm Optimization (EPSO). The primary aim of this research is to design an EPSO-based CAC algorithm tailored specifically for 5G-satellite heterogeneous wireless networks. The algorithm's objectives include maximising the number of admitted calls while maintaining Quality of Service (QoS) for existing users, improving network resource utilization, reducing congestion, ensuring fairness, and enhancing user satisfaction. To achieve these objectives, a detailed research methodology is outlined, encompassing algorithm development, numerical simulations, and comparative analysis. The proposed EPSO algorithm is benchmarked against alternative artificial intelligence and machine learning algorithms, including the Artificial Bee Colony algorithm, Simulated Annealing algorithm, and Q-Learning algorithm. Performance metrics such as throughput, call blocking rates, and fairness are employed to evaluate the algorithms' efficacy in achieving load-balancing objectives. The experimental findings yield insights into the performance of the EPSO-based CAC algorithm and its comparative advantages over alternative techniques. Through rigorous analysis, this research elucidates the EPSO algorithm's strengths in dynamically adapting to changing network conditions, optimising resource allocation, and ensuring equitable distribution of traffic among different RATs. The result shows the EPSO algorithm outperforms the other 3 algorithms in all the scenarios. The contributions of this thesis extend beyond academic research, with potential societal implications including enhanced connectivity, efficiency, and user experiences in 5G-Satellite heterogeneous wireless networks. By advancing intelligent resource management techniques, this research paves the way for improved network performance and reliability in the evolving landscape of wireless communication
    corecore