4,009 research outputs found

    A Survey on Multimedia-Based Cross-Layer Optimization in Visual Sensor Networks

    Get PDF
    Visual sensor networks (VSNs) comprised of battery-operated electronic devices endowed with low-resolution cameras have expanded the applicability of a series of monitoring applications. Those types of sensors are interconnected by ad hoc error-prone wireless links, imposing stringent restrictions on available bandwidth, end-to-end delay and packet error rates. In such context, multimedia coding is required for data compression and error-resilience, also ensuring energy preservation over the path(s) toward the sink and improving the end-to-end perceptual quality of the received media. Cross-layer optimization may enhance the expected efficiency of VSNs applications, disrupting the conventional information flow of the protocol layers. When the inner characteristics of the multimedia coding techniques are exploited by cross-layer protocols and architectures, higher efficiency may be obtained in visual sensor networks. This paper surveys recent research on multimedia-based cross-layer optimization, presenting the proposed strategies and mechanisms for transmission rate adjustment, congestion control, multipath selection, energy preservation and error recovery. We note that many multimedia-based cross-layer optimization solutions have been proposed in recent years, each one bringing a wealth of contributions to visual sensor networks

    Development of personal area network (PAN) for mobile robot using bluetooth transceiver

    Get PDF
    The work presents the concept of providing a Personal Area Network (PAN) for microcontroller based mobile robots using Bluetooth transceiver. With the concept of replacing cable, low cost, low power consumption and communication range between 10m to 100m, Bluetooth is suitable for communication between mobile robots since most mobile robots are powered by batteries and have high mobility. The network aimed to support real-time control of up to two mobile robots from a master mobile robot through communication using Bluetooth transceiver. If a fast network radio link is implemented, a whole new world of possibilities is opened in the research of robotics control and Artificial Intelligence (AI) research works, sending real time image and information. Robots could communicate through obstacles or even through walls. Bluetooth Ad Hoc topology provides a simple communication between devices in close by forming PAN. A system contained of both hardware and software is designed to enable the robots to form a PAN and communicating, sharing information. Three microcontroller based mobile robots are built for this research work. Bluetooth Protocol Stack and mobile robot control architecture is implemented on a single microcontroller chip. The PAN enabled a few mobile robots to communicate with each other to complete a given task. The wireless communication between mobile robots is reliable based from the result of experiments carried out. Thus this is a platform for multi mobile robots system and Ad Hoc networking system. Results from experiments show that microcontroller based mobile robots can easily form a Bluetooth PAN and communicate with each other

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Blind guide: anytime, anywhere

    Get PDF
    Sight dominates our mental life, more than any other sense. Even when we are just thinking about something the world, we end imagining what looks like. This rich visual experience is part of our lives. People need the vision for two complementary reasons. One of them is vision give us the knowledge to recognize objects in real time. The other reason is vision provides us the control one need to move around and interact with objects. Eyesight helps people to avoid dangers and navigate in our world. Blind people usually have enhanced accuracy and sensibility of their other natural senses to sense their surroundings. But sometimes this is not enough because the human senses can be affected by external sources of noise or disease. Without any foreign aid or device, sightless cannot navigate in the world. Many assistive tools have been developed to help blind people. White canes or guide dogs help blind in their navigation. Each device has their limitation. White canes cannot detect head level obstacles, drop-offs, and obstructions over a meter away. The training of a guide dog takes a long time, almost five years in some cases. The sightless also needs training and is not a solution for everybody. Taking care of a guide dog can be expensive and time consuming. Humans have developed technology for helping us in every aspect of our lives. The primary goal of technology is helping people to improve their quality of life. Technology can assist us with our limitations. Wireless sensor networks is a technology that has been used to help people with disabilities. In this dissertation, the author proposes a system based on this technology called Blind Guide. Blind Guide is an artifact that helps blind people to navigate in indoors or outdoors scenarios. The prototype is portable assuring that can be used anytime and anywhere. The system is composed of wireless sensors that can be used in different parts of the body. The sensors detect an obstacle and inform the user with an audible warning providing a safety walk to the users. A great feature about Blind Guide is its modularity. The system can adapt to the needs of the user and can be used in a combination with other solution. For example, Blind Guide can be used in conjunction with the white cane. The white cane detects obstacles below waist level and a Blind Guide wireless sensor in the forehead can detect obstacles at the head level. This feature is important because some sightless people feel uncomfortable without the white cane. The system is scalable giving us the opportunity to create a network of interconnected Blind Guide users. This network can store the exact location and description of the obstacles found by the users. This information is public for all users of this system. This feature reduces the time required for obstacle detection and consequent energy savings, thus increasing the autonomy of the solution. One of the main requirements for the development of this prototype was to design a low-cost solution that can be accessible for anyone around the world. All the components of the solution can provide a low-cost solution, easily obtainable and at a low cost. Technology makes our life easier and it must be available for anyone. Modularity, portability, scalability, the possibility to work in conjunction with other solutions, detecting objects that other solutions cannot, obstacle labeling, a network of identified obstacles and audible warnings are the main aspects of the Blind Guide system. All these aspects makes Blind Guide an anytime, anywhere solution for blind people. Blind Guide was tested with a group of volunteers. The volunteers were sightless and from different ages. The trials performed to the system show us positive results. The system successfully detected incoming obstacles and informed in real time to its users. The volunteers gave us a positive feedback telling that they felt comfortable using the prototype and they believe that the system can help them with their daily routine

    An Probability-Based Energy Model on Cache Coherence Protocol with Mobile Sensor Network

    Get PDF
    Mobile sensor networks (MSNs) are widely used in various domains to monitor, record, compute, and interact the information within an environment. To prolong the life time of each node in MSNs, energy model and conservation should be considered carefully when designing the data communication mechanism in the network. The limited battery volume and high workload on channels worsen the life times of the busy nodes. In this paper, we propose a new energy evaluating methodology of packet transmissions in MSNs, which is based on redividing network layers and describing the synchronous data flow with matrix form. We first introduce the cache coherence layer to the protocol stack of MSNs. Then, we use a set of energy probability matrices to describe and calculate the energy consumption of each state in the protocol. After that, based on our energy model, we will give out an energy evaluating method of the MSNs design, which is suitable for measuring and comparing the energy consumption from different implements of hardware/software. Our experimental results show that our approach achieves a precision with less than 2% error and provides a credible quantitative criterion for energy optimization of data communication in MSNs

    Pervasive brain monitoring and data sharing based on multi-tier distributed computing and linked data technology

    Get PDF
    EEG-based Brain-computer interfaces (BCI) are facing grant challenges in their real-world applications. The technical difficulties in developing truly wearable multi-modal BCI systems that are capable of making reliable real-time prediction of users’ cognitive states under dynamic real-life situations may appear at times almost insurmountable. Fortunately, recent advances in miniature sensors, wireless communication and distributed computing technologies offered promising ways to bridge these chasms. In this paper, we report our attempt to develop a pervasive on-line BCI system by employing state-of-art technologies such as multi-tier fog and cloud computing, semantic Linked Data search and adaptive prediction/classification models. To verify our approach, we implement a pilot system using wireless dry-electrode EEG headsets and MEMS motion sensors as the front-end devices, Android mobile phones as the personal user interfaces, compact personal computers as the near-end fog servers and the computer clusters hosted by the Taiwan National Center for High-performance Computing (NCHC) as the far-end cloud servers. We succeeded in conducting synchronous multi-modal global data streaming in March and then running a multi-player on-line BCI game in September, 2013. We are currently working with the ARL Translational Neuroscience Branch and the UCSD Movement Disorder Center to use our system in real-life personal stress and in-home Parkinson’s disease patient monitoring experiments. We shall proceed to develop a necessary BCI ontology and add automatic semantic annotation and progressive model refinement capability to our system
    • 

    corecore