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Mobile sensor networks (MSNs) are widely used in various domains to monitor, record, compute, and interact the information within
an environment. To prolong the life time of each node in MSNs, energy model and conservation should be considered carefully
when designing the data communication mechanism in the network. The limited battery volume and high workload on channels
worsen the life times of the busy nodes. In this paper, we propose a new energy evaluating methodology of packet transmissions in
MSNSs, which is based on redividing network layers and describing the synchronous data flow with matrix form. We first introduce
the cache coherence layer to the protocol stack of MSNs. Then, we use a set of energy probability matrices to describe and calculate
the energy consumption of each state in the protocol. After that, based on our energy model, we will give out an energy evaluating
method of the MSNs design, which is suitable for measuring and comparing the energy consumption from different implements
of hardware/software. Our experimental results show that our approach achieves a precision with less than 2% error and provides

a credible quantitative criterion for energy optimization of data communication in MSNs.

1. Introduction

A Mobile sensor network (MSN) is a wireless sensor network
which is widely used in many industrial and consumer appli-
cations, such as industrial process monitoring and control
and machine health monitoring. Various kinds of MSNs,
such as vehicular ad hoc networks (VANETS), underwater
sensor networks (UWSNs), and wireless body area networks
(WBANS), have been widely researched and developed to
provide ubiquitous solutions for real-time monitoring [1]. A
sensor network usually comprises some node sensors, wire-
less communication devices, microcontrollers, and power
source. As a mobile device, the limited battery volume cannot
supply the durable power to the sensor node [2], known as
power wall. Sensors in a wireless sensor network are prone
to failure, due to energy depletion [3]. In order to save the
energy consumption on communication, some base stations
are added into the network as a center of a cluster of near
nodes. These base stations are able to send queries and gather
the data from the sensor nodes. Depending on the applica-
tions, the sensors are deployed randomly or using a

systematic approach to gather the information from the
environment [4]. Making effective use of multiple memory
modules remains difficult, considering the combined effect
of performance and power requirement [5]. Because fetching
and synchronizing the data in remote node is a high energy
consuming procedure, caching the data in the memory media
oflocal node can effectively decrease the energy consumption
on data communication. However, to measure and evaluate
the energy consumption of cache coherence among a large
number of nodes is not easy. (1) The application’s data opera-
tions are randomly happening on each node, which make the
energy consumed in communication unpredictable. (2) In a
distributed cache system, synchronizing a data between a pair
of nodes includes several steps, such as requiring, responding,
and transmitting, and each step is independent from the other
one, which increase the uncertainty of the procedure. So,
precisely describing the complicated energy consumed in the
procedure with mathematical tools is the key solution of this
issue.

Generally, the energy of a node can be divided into three
kinds: listening energy, mobility energy, and communication



energy. The listening energy is consumed when the sensor
node is in inactive state, in which, the sensor’s radio module
is ready to transmit or receive data at any time. The mobility
energy comes from mobile sensor physical movements, and
the power dissipation through the movement of sensors is
dependent on the number of sensors moved during the
deployment phase. The communication energy is the energy
consumed when the message is exchanging among sensors
[6]. We focus on the communication energy in MSNs because
(1) the listening energy is the statical part of the energy
unrelated with applications; (2) in our architecture, the mob-
ility energy can be ignored when a mobile node only moves
around its master base station. As the dynamic part of the
energy consumption, the communication energy is com-
pletely driven by the applications running on each node,
which can be seen as the source of remote data fetching and
caching.

It is foreseen that huge gains are achievable both in
terms of overall MSN energy saving and data availability, if
caching is properly implemented in MSN. Since queries can
be serviced at nearby node or local cache, caching reduces
data access time and thus obviates the need for query to travel
to actual data source that would be quite far from the query-
ing node [7]. There are two valid cache strategies of caching
in MSNs: one is to cache the recently used data in the mobile
node waiting for being reused by the local (or nearby) sensor;
another one is to cache the data in the master base station of
the mobile node so that all sensors in one cluster can share
the cache data stored in their public base station. Our energy
model supports both of the two cache strategies.

With the traditional ISO/OSI network, the stack is
divided into seven layers, from the physical layer to the appli-
cation layer. However, this partition cannot be directly mig-
rated to the MSN with cache coherence, because more con-
ditions should be considered carefully: (1) the data commu-
nication comes from the sensor’s remote fetching operation,
instead of application’s send and receive functions; (2) if the
remote data is written by an arbitrary node and has not been
synchronized over the network, the received message might
contain dirty data; Therefore, we redivide the upper layers of
OSI network so that the cache coherence protocol becomes
the kernel application in MSN. Based on the new network
stack, our energy model of cache coherence protocol can be
built to describe the energy dissipating over the network.

In this paper, we propose a new energy evaluating meth-
odology of packet transmissions in MSNs, which is based
on redividing network layers and describing the synchronous
data flow with matrix form. Specifically, our main contribu-
tions are as follows.

(1) A new cache coherence protocol is inserted into the
network stack of MSNs, based on which, all data com-
munication in the MSNs can be replaced by the move-
ments of state in the protocol.

(2) We propose a high accuracy probability-based energy
model for the cache coherence protocol. It combines
the energy model of network components, such as
routing unit and link on base stations to measure the
energy distribution of single message in MSNG.
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(3) We propose a new energy comparison method to
evaluate different types of cache coherence protocols
for single message, which strongly depend on cache
organizations, network design, and run-time envi-
ronments.

The remainder of this paper is organized as follows.
Architecture and data fetching procedure of the cache coher-
ence protocol are presented in Section 2. Our probability-
based energy model for the the protocol is described in
Section 3. The new energy comparison method is depicted
in Section 4. Experimental results are shown in Section 5.
Section 6 contains some related work. Finally, Section 7
concludes the paper.

2. Architecture and Data Fetching Procedure

A typical mobile wireless sensor network includes some inter-
connected fixed base stations (FBSs), more mobile sensors
(MSs) around these FBSs, and the sensing regions (SRs) of
each FBS define the corresponding FBS’ control area. Based
on the architecture, a network stack is set up to provide
the network services to the applications running in each
MS. Using caching mechanism, the remote data reading and
writing services can be provided by the cache coherence
protocol layer in the stack, so that all applications can invoke
the synchronization functions identically.

2.1. Architecture Overall. As mentioned above, components
of an MSN, for example FBSs and MSs, are organized as
a hierarchical fashion. Figurel provides an illustration of
the typical architecture of the MSN. End MSs communicate
with each other with the mechanisms available through their
directly connected master FBS.

Mobile Sensor. Abstractly speaking, a sensor is a device capa-
ble of measuring a physical quantity and transforming it into
a format that can be correctly interpreted by an instrument,
namely, a computer or digital device. However, the current
mobile sensors, such as the ends of mobile internet, have high
performance on computing. They are able to process some
simple and complicated tasks with local processors, which
decreases the workload of communication, while demands
more complex data synchronization mechanism for the dis-
tributed sensor. In this situation, the energy consumed by
network is mainly used for fetching the remote data from
other locations.

Fixed Base Station. A FBS stays in the center of an SR and
gathers data from sensor nodes through shot-range commu-
nications, so that the energy consumption of each sensor is
reduced, since fewer relays are needed for the sensor to send
and receive its message to and from its master FBS [8]. The
communication between a pair of FBSs is a more reliable
channel than the one between MS and its master FBS, such
as a wired connection based on TCP. In this architecture, we
assume that the relative locations of any two FBSs are concrete
so that they invoke fixed routing algorithm to find the target
FBS and MS.
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SR3
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FBS: Fixed base station
MS: Mobile sensor
SR: Sensing region

FIGURE 1: The architecture of typical mobile sensor network.

In the architecture, different MSs communicate with each
other by the FBSs. For example, in Figure 1, if an MS A in SR2
wants to communicate with another MS B which residents in
SR4 remotely, A has to send the requesting message to its mas-
ter fixed base station FBS2 as an agency, and FBS2 retransmits
the message to FBS4 which is the master FBS of MS B through
several hops in the network, for example, FBS2 — FBS3 —
FBS4. The energy consumption of this procedure combines
the energy of each network component in the transition path
of the message. When the application on the sensors synchro-
nize data with a high frequency, the remote connection above
is set up over and over, and the energy is wasted if the remote
data does not change. Therefore, a cache coherence protocol
layer is added into the traditional MSN stack so that MS can
get the remote data with a prompt response.

2.2. Protocol Stack of MSN. As a packet-switching network,
MSNs need a protocol stack to support various communi-
cation services at different levels. However, limited resource
and power on the mobile sensors can hardly sustain an inte-
grated stack as complex as open system interconnection (OSI).
Therefore, a simple network topology and light stack are
needed to provide high-efficiency communication services
with less energy consumption. Two significant differences
exist between MSN and OSI protocol stacks: (1) the goal
of designing OSI is to meet the communication demands
of most network environments and conditions. However, in
MSN design, the cache organization affects the communica-
tion, since different cache capability on each node determines
the hit rate of the sensor’s applications. Thus, this may affect

MS read/write layer

Provide data synchronization for

Cache coherence layer the applications on sensors

Transport layer

Network layer Provide a reliable communication
Data link layer for arbitrary pair of nodes
Physical layer

FIGURE 2: A new layer division of MSN stack.

communication patterns over the MSN. (2) The operating
environment of OSI cannot be predicted precisely, and a
series of safeguarding mechanisms are implemented to main-
tain the integrity and correctness of data units in each layer.
However, MSN resides on distributed sensors and base sta-
tion, and designers have to focus on how to utilize the limited
resources and reduce the energy consumption.

As shown in Figure 2, we insert a cache coherence pro-
tocol layer to MSN stack to control the cache coherence trans-
action. When a read/write operation of a MS is launched, a
datarequest isadded to a request queue of its master FBS if the
required data is missing in local FBS’s cache. These requests
will be sent into backbone network by the FBS network
interface (NI), and a remote data cache will respond with a
synchronizing message to the requester. In this procedure,
the memory address is mapped to the remote node’s identifier
and path to the remote node.

FBS cache missing is the reason of communication acti-
vities, and the knowledge of FBS cache is enough to set up
an energy consumption model because the location of the
remote responder can be deduced and the transferring path
is determined by the cache coherence protocol. At any time,
any node that produces a transaction can locate the required
data in the shortest time. As one of the most widely used
unit in cache coherence protocol, the directory table utilizes
the distributed directory items to record the states of mem-
ory blocks, such as locations, sharing members, and owners.
With this information, the requester traces the newest copy of
a memory block, and a shortest path between the responder
and the requester is reserved. We will focus on the energy
consumption in this protocol because all location informa-
tion can be determined and it is possible to determine the
hops of a message in a specific network typology, considering
fixed routing mechanism.

2.3. Data Fetching Procedure. The cache coherence protocol
can set up a 3-way data fetching procedure to load the remote
data into local FBS cache. We describe the fetching procedure
as shown in Figure 3.

Request Step. The request node produces the home node’s
location i; that is, the block directory information required
by the request node may be stored into the i node’s directory
table. Then, the request node sends the home node a request



Home node

MS
\ Request node

Request
FBS2

%
§
@Q
&

Target node

FIGURE 3: Procedure of data synchronization in MSN.

message which includes the memory address of the required
block.

Response Step. After the home node receives the request
message, it uses the block address to search the directory item
in its directory table. If the directory item shows that there is
an available image of the required memory block in a target
node, the home node sends the target node a transfer request
message which includes the required block address and the
request node’s location.

Transmitting Step. When the target node receives a transfer
request message, it sends a copy of the required memory
block to the request node. Finally, remote data synchroniza-
tion finishes.

For example, in Figure 3, MS launches a remote memory
accessing to its master BFS1. When the FBSI finds that the
required data is not stored in the local cache, a request mes-
sage to the home node of the data is sent, FBS2. The directory
item in FBS2 indicates that the newest copy of the data can
be obtained from a target node, FBS3, then FBS2 will notice
the FBS3 to send a copy of the data to the original requester,
FBS1. From the viewpoint of MS, this cache coherence
protocol provides consistent accessing to any data over the
network. For simplifying model, we neglect some competi-
tion-to-avoid mechanism, which is related to waiting time of
the requester, while independent from the energy consump-
tion model.

This fetching procedure is able to balance the network
load when all directory information is fairly distributed in
each FBS. We will further analyze the energy consumption of
the 3-way data fetching procedure and build its energy eva-
luation model.

3. Energy Model of Data Fetching

As a widely used cache coherence unit, a directory item
includes a 3-way locating procedure to obtain the newest
copy of memory blocks from remote nodes, as shown in
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Section 2.3. This procedure simplifies the communication
because write and read operations are performed in the same
transaction, and each transaction also corresponds to a single
packet travelling in the network. Our energy consumption
model takes into account each step of the data transfer pro-
cedure.

3.1. Location of Remote Data. In this section, we use uniform
memory address to locate the data in the whole MSN system.
With the distributed architecture of the memory, each FBS
is mapped to a piece of consecutive memory address. As the
master of a set of nearby MSs, an FBS provides cache service
to the MSs in its SR. Each MS in an SR can directly access
the cache of its master FBS. Thus, message passing mech-
anism is used for an MS to access memory modules located at
a remote node in the network. Therefore, cache access by an
SM is not uniform since it depends on which memory address
the SM wants to access. It is referred to a nonuniform memory
access (NUMA) system. Many different cache mapping strate-
gies have been designed for distributed cache organization to
achieve a higher hit rate. We use a linear address model that
is simple but scalable to find directory items in a remote FBS
node.

A directed graph MSN(Sy;, L) is used to model an MSN
with N FBS nodes, where s; € Sy is the ith routing nodes in
the graph, i represents the location of node s;, 0 <i < N -1,
and /;; € L is a directed edge between s; and s;. A one-
dimensional flat memory can be expressed as a two-tuple
M(1, b), where [ is the number of the basic blocks in the mem-
ory space and b is the number of parts, and each part includes
I/b memory blocks. A number of distributed directory record
tables map all blocks in memory and store their current states,
while all records items of a part are stored in the same home
node. If the number of parts equals the number of nodes, that
is, b = N, then a mapping function from a block address
in memory to its home node’s location in MSN can be repre-
sented as

i= {blockﬁddr X ?J ) 1)

where block_addr is the basic address of the block in memory.
The addresses of all memory units in one block use the same
block_addr. This equation can determine the location of home
node where the blocK’s directory record is stored. Then, the
request node needs to launch a fetching process to obtain
the state information of the block in the home node. We will
discuss the fetching process in the following section.

3.2. Distribution of Request and Response. Our energy con-
sumption model is based on the transitivity of packet sending
probability between the request and response steps. We utilize
the independency between the request and response steps to
provide the matrix expressions of the transitive relationship.
We also describe how to combine these probability matrices
with the energy consumption of a single packet to estimate
the energy distribution on node pairs of an FBS network.
In MSN, all request messages requiring remote data can be
seen as random events. Thus, we use g; ; to represent the pro-
bability of FBS i’s SM asking for the block whose record item
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is stored in node j. Then we utilize a matrix Q to describe the
request sending probability distribution of the whole MSN.
Specifically, (1) if the diagonal elements g;; > 0, a part of
requests from node i hits the local cache of the master FBS,
and node i does not need to look up the directory item in
remote nodes. If g;; = 0, the required data block is always
found in the remote FBS’ cache. (2) Since Q is a probability
matrix, it is natural that the sum of a row in Q must equal 1.
(3) g;,;(i # j) could be any value between 0 and 1.

Matrix Q is a probability matrix that contains more hints
about the transmission energy. If requests from node i are
mainly requests to nearby nodes rather than to distant ones,
the energy consumed in the request process could be lower.
For example, in a 2 x 2 mesh network, consider a probability
vector q = (gy,0,9,.1>91.2-91,3)> @ Tow of the 4 x 4 matrix Q.
If the probability of this row is mainly contributed by g, ,,
q1.1> and g, ,, then the energy dissipation from the requests
to distant nodes, g, 3, cannot increase the overall energy
consumption significantly. However, if g, ; is dominant, the
requests from node 1 to node 3 can seriously impact overall
energy consumption.

We adopt a similar approach to describe the response
probability distribution. A matrix P can be used to express
the relationship between home and target nodes. Its element
Pjx is the probability with which the home node j sends the
transfer request message to the target node k. In some specific
implementations of the cache coherence protocol, designers
employ different swap-out methods to delete the trashy image
or spread a blocKs image in a limited range, where some
blocks can never appear in a node or will always be accessed
by a node. These optimal strategies are viewed as special
probability distributions in our matrix space, which may lead
to better performances, such as fewer average transmission
hops and lower energy consumption. We do not intend to
restrict this model in a specific implementation, so it is
reasonable to assume that an image of any memory block can
resident in any node, and a specific strategy always has corres-
ponding probability distribution matrix P.

We also list the conditions for matrix P: (1) if the diagonal
elements p. ;#0, a part of transfer request messages hits in
the local home node; that is, node j is also the target node
during the response step. If p;; = 0, the available copy of
required data block is never found in the home node j, so all
transfer request messages will be sent to the remote nodes for
a copy of memory image. (2) Since P is a probability matrix,
the sum of a row in P must equal 1. (3) Pik(i# k) could be
any value between 0 and 1, and that depends on the run-time
environment and the swap-out strategy of each node.

In the following section, we will show how to build the
energy consumption distribution using Q and P.

3.3. Energy Consumption on FBS Pairs. A packet traveling
through MSN motivates the activities of the components in
its routing path, such as routers and links. Routing algorithms
always choose the shortest path between a pair of source and
sink nodes for a packet travelling through MSN. Thus, we
can count the number of hops between the source node and
the destination node to estimate the energy incurred by the
transfer of a packet. If each node in the routing path has a

homogeneous routing unit and works in the same frequency,
then the energy consumption by a packet E , . can be
expressed as

packe

Eacket = (h+ 1) Eg + hE, 2)
where £ is the hop along the path of the packet transferring
between a node pair; E; and E; are the average energy
consumption of a single packet passing through a routing unit
and a link, respectively.

Consider a mesh backbone MSN network with R x C
nodes connected together, and these nodes take identifiers
from 0 to R x C — 1. If a packet travels from node i to node j,
the shortest Manhattan path between the two nodes should
be chosen, which includes a constant number of routers and
links. On the mesh network, in order to reach node j, the
packet has to go through |(j — i)mod(c)| + 1 routers along
the horizontal axis. Yet, along the vertical axis, the shortest
path contains || j/c] — [i/c]| + 1 routers. Thus, from (2), the
energy consumed by a single packet between node i and j is

ei’j

|j—i| mod (c)+ z
c
0; i=j.
(3)

The key idea is to count the number of hops of a Manhat-
tan path and then sum up all the energy from the components
that transport a packet. In general, there are several shortest
paths between two nodes that contain the same number of
routers and links. However, the energy consumption is not
affected by the choice of different shortest paths.

HJ - l JH (ER+EL)+Eg;s i#j,

3.4. Energy Consumption of Data Transmitting. Since the
energy of transmitting step takes the greatest portion of
energy in MSN design, we need to decide the probability dis-
tribution of single packet’s transition which includes the
block data for cache synchronization.

3.4.1. Independence between Request and Response Steps.
For directory table-based cache systems, synchronization is
always a costly operation. A request node has to look up the
directory items stored in home node before a data transmis-
sion action starts. That means, on the one hand, the requester
does not know where an available copy of the block is stored
in the network until the search finishes in the home node. On
the other hand, when a node is searching in its directory table,
it does not need to reference the location of the requester on
the network. If we use one random event A; ; to represent
that node i sends a request to node j and another random
event B} to represent that node j finds a needed data stored
in node k, then the events A, ; and B are statistically inde-
pendent from each other:

Pr(A;;NB;;)=Pr(A,;)Pr(B;;). (4)

In some protocol implementations, several copies of one
cache block may be distributed in different nodes. These
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Require: A MSN prototype; Sequence of memory accessing operation (Opt) from each MS.
Ensure: Data transmission probability matrix T.

(1) Get a cache missing event Opt ,\; in request node RN

(2) ADDR « accessing address of Opt

(3) Home node HN «— ADDR with (1)
(4) req-homeyy, 1 + +sreq-totalpy, + +
(5) Send request message to HN

(6) if ADDR is cold then

(8) else
(11) end if

(19 Q,

= req-home, ;[req total,
i

(16) Tyt =Q, * Py

(17) end for

(18) Send data to RN

(7)  Forward request message to main memory

(9)  Get target node TN from directory table
(10)  trans_target oy + +;trans_totalyy + +

(12) Send transfer request message to TN
(13) for Each group of three nodes i, j,k € NoC do

(15) P, = trans_target j)k/trans,total i

ALGORITHM l: Forming a data transmission matrix T.

nodes constitute a candidate set. Any node in the set could be
a potential target node in the transmitting step. We only select
one node located closest to the requester in order to shorten
the transmission distance, which leads to lower energy
consumption. Since the candidate set is independent from the
location of the requester, the selected target node’s position
is also independent from the requester, no matter how close
the target node will be from the request node. Based on this
independence, we construct the data transmission energy
model in the following section.

3.4.2. Energy Consumption of a Single Packet Transmission.
The final goal of the cache coherence protocol is to send
the latest memory block image from the target node to the
request node. Considering that if a packet is transferring
from node k to node i, two independent events, A; . and
Bj, defined in Section 3.4.1, have happened before the data
transfer The probability of a packet transferring from node k
to node i can be formulated as

Pr(Cy ) = ZPY( ) Pr(Ai; 1B, (5)
thus
N-1
Pr(Cy;) = D Pr(A;;)Pr(Bjx), (6)
=0

where Cy ; is the event that a packet transfers from node k to
nodei. We use an N x N matrix T to represent the probability
distribution of data transferring; then T can be deduced from
(6) as

= (Qp)". )

The result needs to be transposed to fit the correct direction
of data transmission. The meaning of elements of matrix T is
similar to that of Q and P. Element ¢, ; is the probability of
sending a packet from node k to node i. Algorithm 1 shows
the procedure forming the data transmission matrix T.

In (3), we use e; ; to denote energy consumed by a packet
travelling from node i to node j. Thus, ¢; ; could be a fixed
parameter of the shortest path between a pair of nodes in
the network. We multiply e; ; to each element of the data
transferring probability matrix T, shown in (8), and get the
energy distribution of fetching a single block over MSN:

E=(et; ]) (8)

The matrix E can be used to display the energy con-
sumption distribution of data transferring in network. In
particular, (1) the sum of a row Zf\igl ey ity is the expected
energy when sending a packet through MSN from node k.
(2) The diagonal element ey ;t; ;. equals 0, because e, = 0
(see (3)).

With our energy consumption model above, the data
update can be achieved conveniently. Referring the descrip-
tion in Section 2, a remote data update includes three steps.
At first, a copy of remote data is fetched from a remote node,
which can be seen as a regular data fetching procedure in our
model. Then, the data is written in the local memory. If the
data is set with a write-through flag, this copy of data should
be sent back to the remote data so that the other node is able
to use the latest data version, which is also another regular
data fetching procedure:

Eupdate =2x Efetching + Elocalwrite' (9)

Therefore, the energy consumption of a data update proce-
dure is the sum of two regular data fetching energy and one
local data writing energy, see (9).
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4. Energy Estimation with Random Sending

To use our energy model to evaluate different cache orga-
nizations and application algorithms on sensors, we present
a random sending solution that does not include any opti-
mizing information. By comparing with the random sending
solution, we can determine the optimization gain of a given
solution. Using the expected energy of a single packet in
directory protocols, we can define a random sending solution
which is a complete, fair packet sending instance that satisfies
qij = qix and p; ; = p; for any node identifier 7, j, and k. In
a random sending solution, all elements in matrix P, Q, and
T equal 1/N, where N is the node quantity in the MSN. This
is because g; ; = p;, = 1/N for any node i, j, and k. Then
ti = qiPx = N x (1/N)* = 1/N, where g; and p, are the ith
row vector of matrix Q and kth column vector of matrix P,
respectively.

In the random sending solution, the sending probability
between any pair of FBS nodes is uniform, so there is no
information about data aggregation and address optimization
in this solution. In other words, it's unnecessary to adopt a
solution whose energy performance is worse than the random

one. We use a scalar « to represent the energy optimization

. . . iven
gain for a given solution, and ef i fa}nd‘)m

of matrix E of a given and random solution, respectively

and e are elements

Y. . erandom
P E— (10)

given
2, j Ci,j

Based on the uniformization, « is able to evaluate the
energy optimal depth of any given solution because the
random solution can be calculated without any measurement.
A bigger « indicates that the given solution can save more
energy during the transmission of a single packet from target
node to the requester. We will use this ratio to evaluate differ-
ent energy optimal solutions in our experiments section.

5. Model Evaluation

In order to verify the effectiveness of our energy model, we
perform two experimental cases. Firstly, we use simulator to
mimic the behaviours of cache coherence protocol and test
the accuracy that characters the performance of this model
in a more practical context. Secondly, the model is inserted
into mobile sensors network to help to measure the energy
consumption of a set of application we developed.

5.1. Evaluation Methodology. In the evaluation, we developed
our simulator as our experimental platform. Our simulator
contains 16 FBSs organized as a 4 x 4 mesh network. Each
of the FBS nodes master a random number of MS, from 1 to
255, and a directory table. The cache stores the cached data
by the FBSs; the directory table keeps the locating records for
part of memory. We use (1) to map a specific address to the
position of its directory table. To demonstrate the accuracy of
our energy model, we implement a random packet sending
system as a reference. Three packet sending patterns are used
to test the model in different environments.

Evaluation Methodology. The basic method to measure the
energy consumption of the MSN is to set an energy monitor
in each link and router. When a packet arrives at a monitor of
a link, a basic energy value is added to the link’s energy prop-
erty. When a packet enters a router, the energy consumption
of router’s components, such as buffer and crossbar are also
accounted for using an average energy value for one packet.
The statistic data of links and routers are used at the end of
simulation to calculate the overall energy consumption of the
MSN system.

Configuration of Network. As an event-driven network sim-
ulator, our simulator provides flexible interfaces to create
various network units and sample these units’ parameters. In
our 4 x 4 mesh network, each pair of neighbouring nodes
is connected with a link which has 10 Mbps bandwidth. This
bandwidth guarantees that there is no packet loss. The link’s
basic energy value mentioned above is also initiated based on
this active frequency. When a data transmission event occurs,
the synchronous packets have a length of 512 bytes which fit
one data block of memory and cache line. In the NI of a target
node, a packet is divided into 4 messages, and the routers in
their transfer path only launch the routing algorithm for the
head message. After the tail flit leaves the router, all resources
allocated to this packet, such as buffer space and crossbar
path, are released. We use the simple X-Y routing algorithm
in the mesh to determine the shortest path between a pair of
source and sink nodes.

Packet Sending Patterns. During a specific interval, node is
either in the bursting state or in the idling state. In the
experiments, we use the proportion of bursting time in one
second to control the expected sending rate. Since a time
interval is set to one second, the expectations of bursting time
E(BT) and idling time E(IT) of one node satisfy E(BT) +
E(IT) = 1. The sending probability of a node can be calculated
as E(BT)/[E(BT) + E(IT)] = E(BT). We design three packet
sending patterns to represent different task mapping results of
an application: 3 x 3, 5 x 5, and 7 x 7 windows. For example,
when the 3 x 3 window is chosen, the node in position of
(i, ), where i and j are the row and column identifiers, sends
packets only to thenodesin (i—-1, j—1), (i—-1, ), (i—1, j+ 1),
(i, j-1), (G, j+1), (i+1, j—1),(i+1, j),and (i+1, j+1), forming
a 3 x 3 sending window. This type of sending model satisfies
the random feature in the sending window of node (i, j) area.
The basic idea of this kind of design is that, if a task is mapped
to several neighbouring nodes, the communication between
the neighbours will happen with much higher probabilities
than the remote node pair.

5.2. Experimental Setup and Applications. Our simulators
were conducted using Intel Core i5-2410M CPU which
integrates 2.30 GHz quad core. The system memory used in
this machine is an 8 GB DDR3 memory with 1600 MHz clock
frequency. This machine runs Linux with the 3.5.0-17-generic
Kernel.

Our experiments are designed based on NS-2 to set up
the simulation environment, which includes the architecture
of our network design and the infrastructures of the MSN sys-
tem, such as node sensors, wireless devices microcontroller,



8 International Journal of Distributed Sensor Networks
TABLE 1: Single packet energy comparison and errors.
Sending type Packet number Platform energy (J) Model average energy (J) Mean error Maximum error
7 X7 6,700,208 95.6 95.8 0.18% 1.76%
5x5 5,022,234 78.3 78.2 0.07% 0.69%
3x3 2,357,410 51.2 51.3 0.14% 1.35%
and power source. There are two kinds of node sensors in the 02
MSN system: base station and movable device. In our experi-
ments, there are 16 base stations which are organized as a 4 by 015
4 mesh network. Each pair of neighbor base stations is con- Z o1
nected with a 10 MHz frequency Ethernet. The positions of =
these base stations are stable so that the energy consumption 0.05 |
of wireless communications between base station and mov-
able device can be computed quickly. The movable devices 0 ; . 4 .
0 0.2 0.4 0.6 0.8 1

in our simulator are initialed with random positions in a
rectangle area. Their positions keep changing with every time
interval so that the distances with their base station also vary
with time. The energy consumption counting system in our
simulator is designed based on packet level. When a packet
passes through the network components, such as the link
and router, an activity count is accumulated to compute the
energy consumption for the component. If the packet arrive
its target base station, the energy consumption of the wireless
communication is calculated based on the current distance
between the base station and the sink movable device. The
similar case also happens in the packet sending action.

5.3. Accuracy Comparison of Energy Consumption. The sim-
ulation results in Table 1 shows that the stable single packet
energy could be obtained without the effects from different
sending probability. The different values of packets” hops only
came from the different sending patterns. In 7 x 7 pattern,
some packets are sent to farther nodes; then the average hop
count is greater. While, in 3 x 3 pattern, all packets are limited
in a small area, which leads to a shorter average transmission
range. Table 1 shows the energy simulation results of the three
types of sending patterns in Section 5.1. Since our simulator
sends hundreds of thousands of packets to transfer the data
in the 16-node MSN system, the energy results are very
close to the model’s forecast. Even if in the worst case, the
error between the simulation’s measurements and models
prediction is less than 2%. This outcome is acceptable as a
validation of the energy evaluation model.

The model’s stability is also important in evaluating the
energy consumption of MSN. We also run the simulator with
different packet sending probabilities for each type of pattern,
from 0.05 to 0.95. The errors between the platform and our
model are shown in Figures 4, 5, and 6. The results shows
that a higher sending speed, or a larger probability, always
results in less variances. This illustrates a better prediction of
energy consumption. The reason is rooted in the law of large
numbers. When the sending probability is higher than 0.8
each node, the simulation results stably corresponded to the
model predictions and maximum errors are less than 0.2%.
This results show that our model’s prediction approaches the
limit of a single packet’s energy consumption.

Packet sending probabilities of FBS

—— The absolute errors between platform and model

FIGURE 4: 7x 7 window’s packet energy errors between platform and
model.
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FIGURE 5: 5x 5 window’s packet energy errors between platform and
model.
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FIGURE 6: 3 x 3 window’s packet energy errors between platform and
model.

We implement the static energy consumption analyser
for a distributed MSN system. The analyser takes the data
fetching operations as inputs to record each sensor’s cache
access. Starting from the records, we identify the remote data
accesses from local data hit and generate the remote accessing
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FIGURE 7: Energy consumption optimization for different transmit-
ting hops.

list for each thread. During the energy evaluating stage, we
iterate different shapes of windows and various locations of
main thread with our energy model to get the best thread
mapping pattern. The reason for iterating the location of
master sensor is that master sensor always has the most com-
munication with other subsensors, which intensively impacts
the energy consumption of MSN. Figure 7 shows the rela-
tionship between average hop and the activity count of com-
ponents, such as routers and links. We can conclude from the
figure that the energy consumption has a linear increasing
with the average hop of the network, which is irrelevant with
the topology of network.

6. Related Works

Research works on energy model of mobile sensor network
mainly focus on energy modelling and estimation. Reference
[6] proposes a comprehensive energy model to estimate the
overall energy consumption through power dissipation, for
both static and mobile sensors in the potential sensor fields.
Their model can calculate the total remaining lifetime of
mobile sensor networks from the total power dissipation, and
an optimum network strategy can be designed for a given
application. Reference [9] gives an efficient hybrid method for
message relaying and load balancing which is proposed in low
mobility wireless sensor networks. Taking a mathematical
approach, the system parameters are adjusted so that all the
sensor nodes dissipate the same amount of energy, so that the
problem of losing connectivity due to the fast power drainage
of the closest node to the fixed sink is resolved. A 3D model
of energy consumption for deploying nodes proposed in [10]
describes a mathematical model for the power consumption
of mobile node in wireless sensor networks. Each source
node must send all its locally generated data to the other
nodes and vice versa. To maximize mobile node’s lifetime, it is
essential to have optimum monitored region and radio range
of each source node of wireless sensor networks. Reference
[11] proposes a transmission scheme for power-adjustable
radio to optimize transmit energy efficiency subject to
given overflow and delay constraints. An analytical model is
developed to estimate the unit energy, data throughput, and
delay for a sensor node only in the single-hop case. Some

work in [12] proposes to split the lifetime of a sensor network
into equal periods of time referred to as rounds and model the
energy constrained routing during a round as polynomial-
time solvable flow problems. The flow information from an
optimum solution to a flow problem is then used as a basis for
an energy-eflicient routing protocol. Reference [13] proposes
a mobile cluster which is applied to a vehicle equipped with a
sensor node and consists of a mobile cluster head and mobile
cluster members. Their analytical results show that a mobile
cluster applied to the vehicle can perform data transmission
using less power than direct communication applied to the
vehicle. In [14], they explore an optimal barrier coverage-
based sensor deployment for object tracking wireless sensor
networks where a dual-sink model was designed to evaluate
the energy performance of all the static sensors, static sink,
and mobile sink simultaneously. Reference [I5] gives a
distributed target localization and pursuit scheme based
on discrete measurements of the energy intensity field
produced by mobile targets. In their new strategy, all robots
are categorized into two groups: the leaders, responsible
for the target pursuit, and the followers, responsible for
the formation and connectivity maintenance. Most of these
previous work have the ability to describe the activities of
wireless components and get the energy consumption in each
router node or link. Some of them achieve high accuracy
for single device energy consumption when simulating some
applications of wireless sensor network. However, they are
weak in predicting the energy consumption of the overall
MSN system, because they only set up their energy model
on hardware layers so that the software (coherence protocol)
impact on energy consumption is ignored by the model.

7. Conclusions

Energy consumption of MSNss is a vital factor in the design
of a large-scale network. A low power consumption design
of wireless sensor network has to satisfy heavy workload on
communication and high power-efficiency at the same time.
In this paper, we analyse the data fetching procedure of a
3-way cache coherence protocol and proposed a method-
ology to build the energy model for it. In this model, an
independence assumption is provided to guarantee that any
application can be seen as a sequence of data fetching action
on the wireless sensor network, and the fetching procedure is
decided by the first two steps of the cache protocol. Then, we
use our model to evaluate any given application that transits
copy of data between different node in the MSNs system.
Our model is also suitable for measuring and comparing
the energy consumption from different implements of hard-
ware and software. Our experimental results shows that our
approach achieves a precision with less than 2% error and
provides a credible quantitative criterion for energy optimiza-
tion of cache coherence protocols with MSNs system.
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