3,083 research outputs found

    Computing the power profiles for an Airborne Wind Energy system based on large-scale wind data

    Get PDF
    Airborne Wind Energy (AWE) is a new power technology that harvests wind energy at high altitudes using tethered wings. Studying the power potential of the system at a given location requires evaluating the local power production profile of the AWE system. As the optimal operational AWE system altitude depends on complex trade-offs, a commonly used technique is to formulate the power production computation as an Optimal Control Problem (OCP). In order to obtain an annual power production profile, this OCP has to be solved sequentially for the wind data for each time point. This can be computationally costly due to the highly nonlinear and complex AWE system model. This paper proposes a method how to reduce the computational effort when using an OCP for power computations of large-scale wind data. The method is based on homotopy-path-following strategies, which make use of the similarities between successively solved OCPs. Additionally, different machine learning regression models are evaluated to accurately predict the power production in the case of very large data sets. The methods are illustrated by computing a three-month power profile for an AWE drag-mode system. A significant reduction in computation time is observed, while maintaining good accuracy

    State of the Art in the Optimisation of Wind Turbine Performance Using CFD

    Get PDF
    Wind energy has received increasing attention in recent years due to its sustainability and geographically wide availability. The efficiency of wind energy utilisation highly depends on the performance of wind turbines, which convert the kinetic energy in wind into electrical energy. In order to optimise wind turbine performance and reduce the cost of next-generation wind turbines, it is crucial to have a view of the state of the art in the key aspects on the performance optimisation of wind turbines using Computational Fluid Dynamics (CFD), which has attracted enormous interest in the development of next-generation wind turbines in recent years. This paper presents a comprehensive review of the state-of-the-art progress on optimisation of wind turbine performance using CFD, reviewing the objective functions to judge the performance of wind turbine, CFD approaches applied in the simulation of wind turbines and optimisation algorithms for wind turbine performance. This paper has been written for both researchers new to this research area by summarising underlying theory whilst presenting a comprehensive review on the up-to-date studies, and experts in the field of study by collecting a comprehensive list of related references where the details of computational methods that have been employed lately can be obtained

    Optimization of 3-D flight trajectory of variable trim kites for airborne wind energy production

    Full text link
    Skysails Power GmbH is the leading manufacturer of light and efficient power kites that harness the wind's untapped supplies at high altitudes, aiming at profoundly altering wind energy's impact in achieving the global energy transition. Novel, variable trim kites have been developed that allow to modulate the aerodynamic coefficients of the airborne system, significantly improving the overall system efficiency. The flight control of variable trim kites is much more complex than that of previous kite generations and its mastering is a challenge and one of the keys to a successful operation. Numerical optimization is applied to find a set of flight trajectories in order to maximize the energy production while satisfying several constraints on the system operating in a wide range of conditions. This industry abstract provides a general introduction of the trajectory optimization problem with variable trim kites. We also briefly introduce the state-of-the-art optimization setup. This is followed by demonstration of high-quality example results of the optimization. Finally, we discuss the results and their applications.Comment: Industrial Abstract accepted to ECC 202

    Flight trajectory optimization of Fly-Gen airborne wind energy systems through a harmonic balance method

    Get PDF
    The optimal control problem for flight trajectories of Fly-Gen airborne wind energy systems (AWESs) is a crucial research topic for the field, as suboptimal paths can lead to a drastic reduction in power production. One of the novelties of the present work is the expression of the optimal control problem in the frequency domain through a harmonic balance formulation. This allows the potential reduction of the problem size by solving only for the main harmonics and allows the implicit imposition of periodicity of the solution. The trajectory is described by the Fourier coefficients of the dynamics (elevation and azimuth angles) and of the control inputs (onboard wind turbine thrust and AWES roll angle). To isolate the effects of each physical phenomenon, optimal trajectories are presented with an increasing level of physical representation from the most idealized case: (i) if the mean thrust power (mechanical power linked to the dynamics) is considered as the objective function, optimal trajectories are characterized by a constant AWES velocity over the loop and a circular shape. This is done by converting all the gravitational potential energy into electrical energy. At low wind speed, onboard wind turbines are then used as propellers in the ascendant part of the loop; (ii) if the mean shaft power (mechanical power after momentum losses) is the objective function, a part of the potential energy is converted into kinetic and the rest into electrical energy. Therefore, the AWES velocity fluctuates over the loop; (iii) if the mean electrical power is considered as the objective function, the onboard wind turbines are never used as propellers because of the power conversion efficiency. Optimal trajectories for case (ii) and (iii) have a circular shape squashed along the vertical direction. The optimal control inputs can be generally modeled with one harmonic for the onboard wind turbine thrust and two for AWES roll angle without a significant loss of power, demonstrating that the absence of high-frequency control is not detrimental to the power generated by Fly-Gen AWESs.The work by PoliMI had no external funding and was therefore self-funded by the research team. The work by ICF was carried out under the framework of the GreenKite-2 project (PID2019-110146RB-I00) funded by MCIN/AEI/10.13039/501100011033

    Airborne Wind Energy - To fly or not to fly?

    Get PDF
    This thesis investigates crosswind Airborne Wind Energy Systems (AWESs) in terms of power production and potential role in future electricity generation systems. The perspective ranges from the small scale, modelling AWE as a single system, to the large, implementing AWESs in regional electricity systems. \ua0To estimate the AWES power production, the thesis provides a dynamic system model that serves as the basis for all the work. The model describes the flight dynamics of a rigid wing that is exposed to tether and aerodynamic forces controlled by flight control surfaces. Index-3 Differential Algebraic Equations (DAEs) based on Lagrangian mechanics describe the dynamics. \ua0This model is validated by fitting it to real flight measurements obtained with a pumping-mode AWES, the prototype AP2 by Ampyx Power. The optimal power production of an AWES depends on complex trade-offs; this motivates formulating the power production computation as an Optimal Control Problem (OCP). The thesis presents the numerical methods needed to discretize the OCP and solve the resulting Nonlinear Program (NLP). \ua0Large-scale implementation of AWESs raises challenges related to variability in power production on the time scale of minutes to weeks. For the former, we investigate the periodic fluctuations in the power output of a single AWES. These fluctuations can be severe when operating a wind farm and have to be considered and reduced for an acceptable grid integration. We analyse the option of controlling the flight trajectories of the individual systems in a farm so that the total power output of the farm is smoothed. This controlled operation fixes the system\u27s trajectory, reducing the ability to maximize the power output of individual AWESs to local wind conditions. We quantify the lost power production if the systems are controlled such that the total farm power output is smoothed. Results show that the power difference between the optimal and fixed trajectory does not exceed 4% for the systems modelled in the study.\ua0The variations in AWESs power production on the timescale of hours to weeks are particularly relevant to the interaction between AWE and other power generation technologies. Investigating AWESs in an electricity system context requires power-generation profiles with high spatio-temporal resolution, which means solving a large number of OCPs. In order to efficiently solve these numerous OCPs in a sequential manner, this thesis presents a homotopy-path-following method combined with modifications to the NLP solver. The implementation shows a 20-fold reduction in computation time compared to the original method for solving the NLP for AWES power optimization.\ua0 For large wind-data sets, a random forest regression model is trained to a high accuracy, providing an even faster computation.The annual generation profiles for the modelled systems are computed using ERA5 wind data for several locations and compared to the generation profile for a traditional wind turbine. The results show that the profiles are strongly correlated in time, which is a sobering fact in terms of technology competition. However, the correlation is weaker in locations with high wind shear.\ua0 \ua0The potential role of AWESs in the future electricity system is further investigated. This thesis implements annual AWE-farm generation profiles into a cost-optimizing electricity system model. We find that AWE is most valuable to the electricity system if installed at sites with low wind speed within a region. At greater shares of the electricity system, even if AWESs could demonstrate lower costs compared to wind turbines, AWE would merely substitute for them instead of increasing the total share of wind energy in the system. This implies that the economic value of an AWES is limited by its cost relative to traditional wind turbines

    Locating and quantifying gas emission sources using remotely obtained concentration data

    Full text link
    We describe a method for detecting, locating and quantifying sources of gas emissions to the atmosphere using remotely obtained gas concentration data; the method is applicable to gases of environmental concern. We demonstrate its performance using methane data collected from aircraft. Atmospheric point concentration measurements are modelled as the sum of a spatially and temporally smooth atmospheric background concentration, augmented by concentrations due to local sources. We model source emission rates with a Gaussian mixture model and use a Markov random field to represent the atmospheric background concentration component of the measurements. A Gaussian plume atmospheric eddy dispersion model represents gas dispersion between sources and measurement locations. Initial point estimates of background concentrations and source emission rates are obtained using mixed L2-L1 optimisation over a discretised grid of potential source locations. Subsequent reversible jump Markov chain Monte Carlo inference provides estimated values and uncertainties for the number, emission rates and locations of sources unconstrained by a grid. Source area, atmospheric background concentrations and other model parameters are also estimated. We investigate the performance of the approach first using a synthetic problem, then apply the method to real data collected from an aircraft flying over: a 1600 km^2 area containing two landfills, then a 225 km^2 area containing a gas flare stack

    Airborne Wind Energy - to fly or not to fly?

    Get PDF
    This thesis investigates crosswind Airborne Wind Energy Systems (AWESs) in terms of power production and potential role in future electricity generation systems. The perspective ranges from the small scale, modelling AWE as a single system, to the large, implementing AWESs in regional electricity systems. \ua0To estimate the AWES power production, the thesis provides a dynamic system model that serves as the basis for all the work. The model describes the flight dynamics of a rigid wing that is exposed to tether and aerodynamic forces controlled by flight control surfaces. Index-3 Differential Algebraic Equations (DAEs) based on Lagrangian mechanics describe the dynamics. \ua0This model is validated by fitting it to real flight measurements obtained with a pumping-mode AWES, the prototype AP2 by Ampyx Power. The optimal power production of an AWES depends on complex trade-offs; this motivates formulating the power production computation as an Optimal Control Problem (OCP). The thesis presents the numerical methods needed to discretize the OCP and solve the resulting Nonlinear Program (NLP). \ua0Large-scale implementation of AWESs raises challenges related to variability in power production on the time scale of minutes to weeks. For the former, we investigate the periodic fluctuations in the power output of a single AWES. These fluctuations can be severe when operating a wind farm and have to be considered and reduced for an acceptable grid integration. We analyse the option of controlling the flight trajectories of the individual systems in a farm so that the total power output of the farm is smoothed. This controlled operation fixes the system\u27s trajectory, reducing the ability to maximize the power output of individual AWESs to local wind conditions. We quantify the lost power production if the systems are controlled such that the total farm power output is smoothed. Results show that the power difference between the optimal and fixed trajectory does not exceed 4% for the systems modelled in the study.\ua0The variations in AWESs power production on the timescale of hours to weeks are particularly relevant to the interaction between AWE and other power generation technologies. Investigating AWESs in an electricity system context requires power-generation profiles with high spatio-temporal resolution, which means solving a large number of OCPs. In order to efficiently solve these numerous OCPs in a sequential manner, this thesis presents a homotopy-path-following method combined with modifications to the NLP solver. The implementation shows a 20-fold reduction in computation time compared to the original method for solving the NLP for AWES power optimization.\ua0 For large wind-data sets, a random forest regression model is trained to a high accuracy, providing an even faster computation.The annual generation profiles for the modelled systems are computed using ERA5 wind data for several locations and compared to the generation profile for a traditional wind turbine. The results show that the profiles are strongly correlated in time, which is a sobering fact in terms of technology competition. However, the correlation is weaker in locations with high wind shear.\ua0 \ua0The potential role of AWESs in the future electricity system is further investigated. This thesis implements annual AWE-farm generation profiles into a cost-optimizing electricity system model. We find that AWE is most valuable to the electricity system if installed at sites with low wind speed within a region. At greater shares of the electricity system, even if AWESs could demonstrate lower costs compared to wind turbines, AWE would merely substitute for them instead of increasing the total share of wind energy in the system. This implies that the economic value of an AWES is limited by its cost relative to traditional wind turbines

    Aeronautical engineering: A continuing bibliography, supplement 122

    Get PDF
    This bibliography lists 303 reports, articles, and other documents introduced into the NASA scientific and technical information system in April 1980

    Multi-objective optimisation of aircraft flight trajectories in the ATM and avionics context

    Get PDF
    The continuous increase of air transport demand worldwide and the push for a more economically viable and environmentally sustainable aviation are driving significant evolutions of aircraft, airspace and airport systems design and operations. Although extensive research has been performed on the optimisation of aircraft trajectories and very efficient algorithms were widely adopted for the optimisation of vertical flight profiles, it is only in the last few years that higher levels of automation were proposed for integrated flight planning and re-routing functionalities of innovative Communication Navigation and Surveillance/Air Traffic Management (CNS/ATM) and Avionics (CNS+A) systems. In this context, the implementation of additional environmental targets and of multiple operational constraints introduces the need to efficiently deal with multiple objectives as part of the trajectory optimisation algorithm. This article provides a comprehensive review of Multi-Objective Trajectory Optimisation (MOTO) techniques for transport aircraft flight operations, with a special focus on the recent advances introduced in the CNS+A research context. In the first section, a brief introduction is given, together with an overview of the main international research initiatives where this topic has been studied, and the problem statement is provided. The second section introduces the mathematical formulation and the third section reviews the numerical solution techniques, including discretisation and optimisation methods for the specific problem formulated. The fourth section summarises the strategies to articulate the preferences and to select optimal trajectories when multiple conflicting objectives are introduced. The fifth section introduces a number of models defining the optimality criteria and constraints typically adopted in MOTO studies, including fuel consumption, air pollutant and noise emissions, operational costs, condensation trails, airspace and airport operations

    Aeronautical Engineering: A special bibliography with indexes, supplement 62

    Get PDF
    This bibliography lists 306 reports, articles, and other documents introduced into the NASA scientific and technical information system in September 1975
    corecore